1
|
Chou CL, Lin CY, Li WS, Lee SW, Yang CC, Tian YF, Shiue YL, Tsai HH, Lai HY. Low CXCL11 expression is indicative of poor prognosis in rectal cancer patients undergoing preoperative chemoradiotherapy: a retrospective cohort study. Virchows Arch 2024:10.1007/s00428-024-03974-7. [PMID: 39592484 DOI: 10.1007/s00428-024-03974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Neoadjuvant concurrent chemoradiotherapy (CCRT) is routinely used before surgery in patients with locally advanced rectal cancer to reduce tumor size and decrease the risk of local recurrence. However, the disease-specific survival has not improved in most cases due to distant metastases. In selected individuals exhibiting a clinical complete response, non-operative management may be allowed; however, those who presented no or little response tend to have an inferior prognosis. Consequently, refined molecular characterization could aid in predicting which patients would benefit from neoadjuvant chemoradiotherapy. METHODS The mRNA level (by transcriptomic profiling) and protein expression (by immunohistochemical staining) of C-X-C motif chemokine ligand 11 (CXCL11) were integrated to predict neoadjuvant chemoradiotherapy efficacy. For survival analysis, clinicopathological features and CXCL11 immunoreactivity that were statistically significant in univariate analysis were included in multivariate analysis using the Cox proportional hazards regression model. RESULTS We identified that the CXCL11 level exhibits the most significant downregulation among neoadjuvant chemoradiotherapy non-responders. Using tumor samples from our rectal cancer cohort (n = 343) with immunohistochemistry validation, we demonstrated that low CXCL11 immunoexpression shows significant correlations with advanced disease and positive lymph nodes both prior to and following CCRT (all p < 0.001), vascular and perineural invasion (p < 0.001 and p = 0.006), and poor response to CCRT (p < 0.001). Moreover, low CXCL11 immunoexpression was an independent adverse prognostic factor significantly associated with patient survival. Additionally, we further identified pyroptotic cell death as an unrevealed role of CXCL11 in rectal cancer through bioinformatic analysis. CONCLUSION CXCL11 expression may serve as an early predictor of clinical outcomes and aid in therapeutic decision-making by identifying individuals likely to respond to neoadjuvant chemoradiotherapy in rectal cancer.
Collapse
Affiliation(s)
- Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Cheng-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sung-Wei Lee
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, 736, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, 710, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, 717, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hsin-Hwa Tsai
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Hong-Yue Lai
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
2
|
Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024; 12:2381. [PMID: 39457693 PMCID: PMC11504891 DOI: 10.3390/biomedicines12102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The colony-stimulating factor 1 receptor (CSF-1R) plays a pivotal role in orchestrating cellular interactions within the tumor microenvironment (TME). Although the CSF-1R has been extensively studied in myeloid cells, the expression of this receptor and its emerging role in other cell types in the TME need to be further analyzed. This review explores the multifaceted functions of the CSF-1R across various TME cellular populations, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs). The activation of the CSF-1R by its ligands, colony-stimulating factor 1 (CSF-1) and Interleukin-34 (IL-34), regulates TAM polarization towards an immunosuppressive M2 phenotype, promoting tumor progression and immune evasion. Similarly, CSF-1R signaling influences MDSCs to exert immunosuppressive functions, hindering anti-tumor immunity. In DCs, the CSF-1R alters antigen-presenting capabilities, compromising immune surveillance against cancer cells. CSF-1R expression in CAFs and ECs regulates immune modulation, angiogenesis, and immune cell trafficking within the TME, fostering a pro-tumorigenic milieu. Notably, the CSF-1R in CSCs contributes to tumor aggressiveness and therapeutic resistance through interactions with TAMs and the modulation of stemness features. Understanding the diverse roles of the CSF-1R in the TME underscores its potential as a therapeutic target for cancer treatment, aiming at disrupting pro-tumorigenic cellular crosstalk and enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Caterina Tomassetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Gaia Insinga
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
4
|
Berthe J, Poudel P, Segerer FJ, Jennings EC, Ng F, Surace M, Andoni A, Testori M, Saraiya M, Vuko M, Hessel H, Heininen-Brown M, Blando J, Jones EV, Willis SE, Galon J, van de Ven R, de Gruijl TD, Angell HK. Exploring the impact of tertiary lymphoid structures maturity in NSCLC: insights from TLS scoring. Front Immunol 2024; 15:1422206. [PMID: 39376565 PMCID: PMC11457083 DOI: 10.3389/fimmu.2024.1422206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are lymphoid structures commonly associated with improved survival of cancer patients and response to immunotherapies. However, conflicting reports underscore the need to consider TLS heterogeneity and multiple features such as TLS size, composition, and maturation status, when assessing their functional impact. With the aim of gaining insights into TLS biology and evaluating the prognostic impact of TLS maturity in Non-Small Cell Lung Carcinoma (NSCLC), we developed a multiplex immunofluorescent (mIF) panel including T cell (CD3, CD8), B cell (CD20), Follicular Dendritic cell (FDC) (CD21, CD23) and mature dendritic cell (DC-LAMP) markers. We deployed this panel across a cohort of primary tumor resections from NSCLC patients (N=406) and established a mIF image analysis workstream to specifically detect TLS structures and evaluate the density of each cell phenotype. We assessed the prognostic significance of TLS size, number, and composition, to develop a TLS scoring system representative of TLS biology within a tumor. TLS relative area, (total TLS area divided by the total tumor area), was the most prognostic TLS feature (C-index: 0.54, p = 0.04). CD21 positivity was a marker driving the favorable prognostic impact, where CD21+ CD23- B cells (C-index: 0.57, p = 0.04) and CD21+ CD23- FDC (C-index: 0.58, p = 0.01) were the only prognostic cell phenotypes in TLS. Combining the three most robust prognostic TLS features: TLS relative area, the density of B cells, and FDC CD21+ CD23- we generated a TLS scoring system that demonstrated strong prognostic value in NSCLC when considering the effect of age, sex, histology, and smoking status. This TLS Score also demonstrated significant association with Immunoscore, EGFR mutational status and gene expression-based B-cell and TLS signature scores. It was not correlated with PD-L1 status in tumor cells or immune cells. In conclusion, we generated a prognostic TLS Score representative of the TLS heterogeneity and maturity undergoing within NSCLC tissues. This score could be used as a tool to explore how TLS presence and maturity impact the organization of the tumor microenvironment and support the discovery of spatial biomarker surrogates of TLS maturity, that could be used in the clinic.
Collapse
Affiliation(s)
- Julie Berthe
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pawan Poudel
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Felix J. Segerer
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Emily C. Jennings
- Oncology Data Science, Oncology R&D, AstraZeneca, Waltham, MA, United States
| | - Felicia Ng
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Surace
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Alma Andoni
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marco Testori
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Megha Saraiya
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Miljenka Vuko
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Harald Hessel
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | | | - Jorge Blando
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Emma V. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sophie E. Willis
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Rieneke van de Ven
- Department of Otolaryngology, Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Theme, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology Theme, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helen K. Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
5
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
7
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
8
|
Xu S, Wang Q, Ma W. Cytokines and soluble mediators as architects of tumor microenvironment reprogramming in cancer therapy. Cytokine Growth Factor Rev 2024; 76:12-21. [PMID: 38431507 DOI: 10.1016/j.cytogfr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Navigating the intricate landscape of the tumor microenvironment (TME) unveils a pivotal arena for cancer therapeutics, where cytokines and soluble mediators emerge as double-edged swords in the fight against cancer. This review ventures beyond traditional perspectives, illuminating the nuanced interplay of these elements as both allies and adversaries in cancer dynamics. It critically evaluates the evolving paradigms of TME reprogramming, spotlighting innovative strategies that target the sophisticated network of cytokines and mediators. Special focus is placed on unveiling the therapeutic potential of novel cytokines and mediators, particularly their synergistic interactions with extracellular vesicles, which represent underexplored conduits for therapeutic targeting. Addressing a significant gap in current research, we explore the untapped potential of these biochemical players in orchestrating immune responses, tumor proliferation, and metastasis. The review advocates for a paradigm shift towards exploiting these dynamic interactions within the TME, aiming to transcend conventional treatments and pave the way for a new era of precision oncology. Through a critical synthesis of recent advancements, we highlight the imperative for innovative approaches that harness the full spectrum of cytokine and mediator activities, setting the stage for breakthrough therapies that offer heightened specificity, reduced toxicity, and improved patient outcomes.
Collapse
Affiliation(s)
- Suling Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Alkader MS, Altaha RZ, Jabali EH, Attieh OA, Matalqa AW. Is there an association between lymph node size and hyperprogression in immunotherapy-treated patients? ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2024; 62:33-43. [PMID: 37882575 DOI: 10.2478/rjim-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Hyperprogressive disease (HPD) can be described as an accelerated increase in the growth rate of tumors combined with rapid clinical deterioration observed in a subset of cancer patients undergoing immunotherapy, specifically with immune checkpoint inhibitors (ICIs). The reported incidence of HPD ranges from 5.9% to 43.1% in patients receiving ICIs. In this context, identifying reliable predictive risk factors for HPD is crucial as it may allow for earlier intervention and ultimately improve patient outcomes. METHODS This study retrospectively analyzed ten metastatic renal cell carcinoma (mRCC) patients. The identification of HPD was based on the diagnostic criteria proposed by Ferrara R et al. This study aimed to investigate whether there is an association between LN size and HPD using a cutoff value of 3 cm for LN size. Given the limited sample size, Fisher's exact test was used to test this association. We conducted a Kaplan-Meier (KM) analysis to estimate the median overall survival (OS) of patients with HPD and compared it to those without HPD. RESULTS Three patients (30%) developed HPD, while seven (70%) did not. Fisher's exact test revealed a statistically significant association between the HPD and LN size ≥ 3 cm (p=0.008). In the HPD group, the median OS was significantly shorter, with a median OS of 3 months, whereas in the non-HPD group, the median OS was not reached (P =0.001). CONCLUSION The present study found a significant association between LN size ≥ 3 cm in the pretreatment period and HPD development.
Collapse
Affiliation(s)
- Mohammad S Alkader
- Department of Clinical Oncology, Military Cancer Center, Royal Medical Services, Amman, Jordan
| | - Rashed Z Altaha
- Department of Internal Medicine, Military Cancer Center, Royal Medical Services, Amman, Jordan
| | - Eslam H Jabali
- Department of nuclear medicine, Royal Medical Services, Amman, Jordan
| | - Ola A Attieh
- Department of nuclear medicine, Royal Medical Services, Amman, Jordan
| | - Ala' W Matalqa
- Department of Internal Medicine, Military Cancer Center, Royal Medical Services, Amman, Jordan
| |
Collapse
|
10
|
Zeng S, Wang Q, Zhou R, Wang D. KIF4A functions as a diagnostic and prognostic biomarker and regulates tumor immune microenvironment in skin cutaneous melanoma. Pathol Res Pract 2024; 254:155166. [PMID: 38286055 DOI: 10.1016/j.prp.2024.155166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND KIF4A is upregulated in various malignancies and serves as an independent risk factor. However, its function in skin cutaneous melanoma (SKCM) and the regulation of the immunological environment remains unknown. METHODS We first explored the mRNA and protein levels of KIF4A in SKCM through public databases. Then, the co-expressed genes with KIF4A in SKCM and their functional enrichment analysis were performed. Moreover, the clinical value, relationship with immune infiltration and tumor microenvironment (TME), as well as the correlation between KIF4A and immunomodulators were evaluated. In addition, we validated the function of KIF4A by in vitro experiments such as CCK-8 assay, clone formation and wound healing assay. RESULTS Our data reveal that the mRNA and protein levels of KIF4A are highly expressed in SKCM. Moreover, functional enrichment analysis of the top 50 co-expressed genes with KIF4A showed significant association with organelle fission, tubulin binding and immune processes. KIF4A can distinguish SKCM from normal tissue and predict a poorer prognosis. A negative association was observed between KIF4A and TME, and KIF4A exhibited a negative correlation with most immunomodulators. Additionally, the knockdown of KIF4A inhibited the proliferation and migration ability of A375 cells. CONCLUSIONS Our findings suggest that KIF4A promotes the progression of SKCM and is negatively associated with immune infiltration and immunomodulators, which indicates a poor prognosis.
Collapse
Affiliation(s)
- Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| |
Collapse
|
11
|
Hou S, Zhao Y, Chen J, Lin Y, Qi X. Tumor-associated macrophages in colorectal cancer metastasis: molecular insights and translational perspectives. J Transl Med 2024; 22:62. [PMID: 38229160 PMCID: PMC10792812 DOI: 10.1186/s12967-024-04856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Metastasis is the leading cause of high mortality in colorectal cancer (CRC), which is not only driven by changes occurring within the tumor cells, but is also influenced by the dynamic interaction between cancer cells and components in the tumor microenvironment (TME). Currently, the exploration of TME remodeling and its impact on CRC metastasis has attracted increasing attention owing to its potential to uncover novel therapeutic avenues. Noteworthy, emerging studies suggested that tumor-associated macrophages (TAMs) within the TME played important roles in CRC metastasis by secreting a variety of cytokines, chemokines, growth factors and proteases. Moreover, TAMs are often associated with poor prognosis and drug resistance, making them promising targets for CRC therapy. Given the prognostic and clinical value of TAMs, this review provides an updated overview on the origin, polarization and function of TAMs, and discusses the mechanisms by which TAMs promote the metastatic cascade of CRC. Potential TAM-targeting techniques for personalized theranostics of metastatic CRC are emphasized. Finally, future perspectives and challenges for translational applications of TAMs in CRC development and metastasis are proposed to help develop novel TAM-based strategies for CRC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
12
|
Shao S, Miao H, Ma W. Unraveling the enigma of tumor-associated macrophages: challenges, innovations, and the path to therapeutic breakthroughs. Front Immunol 2023; 14:1295684. [PMID: 38035068 PMCID: PMC10682717 DOI: 10.3389/fimmu.2023.1295684] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are integral to the tumor microenvironment (TME), influencing cancer progression significantly. Attracted by cancer cell signals, TAMs exhibit unparalleled adaptability, aligning with the dynamic tumor milieu. Their roles span from promoting tumor growth and angiogenesis to modulating metastasis. While substantial research has explored the fundamentals of TAMs, comprehending their adaptive behavior, and leveraging it for novel treatments remains challenging. This review delves into TAM polarization, metabolic shifts, and the complex orchestration of cytokines and chemokines determining their functions. We highlight the complexities of TAM-targeted research focusing on their adaptability and potential variability in therapeutic outcomes. Moreover, we discuss the synergy of integrating TAM-focused strategies with established cancer treatments, such as chemotherapy, and immunotherapy. Emphasis is laid on pioneering methods like TAM reprogramming for cancer immunotherapy and the adoption of single-cell technologies for precision intervention. This synthesis seeks to shed light on TAMs' multifaceted roles in cancer, pinpointing prospective pathways for transformative research and enhancing therapeutic modalities in oncology.
Collapse
Affiliation(s)
- Shengwen Shao
- Clinical Research Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Hepatobiliary Surgery, Liaobu Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Tang M, Chen B, Xia H, Pan M, Zhao R, Zhou J, Yin Q, Wan F, Yan Y, Fu C, Zhong L, Zhang Q, Wang Y. pH-gated nanoparticles selectively regulate lysosomal function of tumour-associated macrophages for cancer immunotherapy. Nat Commun 2023; 14:5888. [PMID: 37735462 PMCID: PMC10514266 DOI: 10.1038/s41467-023-41592-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Tumour-associated macrophages (TAMs), as one of the most abundant tumour-infiltrating immune cells, play a pivotal role in tumour antigen clearance and immune suppression. M2-like TAMs present a heightened lysosomal acidity and protease activity, limiting an effective antigen cross-presentation. How to selectively reprogram M2-like TAMs to reinvigorate anti-tumour immune responses is challenging. Here, we report a pH-gated nanoadjuvant (PGN) that selectively targets the lysosomes of M2-like TAMs in tumours rather than the corresponding organelles from macrophages in healthy tissues. Enabled by the PGN nanotechnology, M2-like TAMs are specifically switched to a M1-like phenotype with attenuated lysosomal acidity and cathepsin activity for improved antigen cross-presentation, thus eliciting adaptive immune response and sustained tumour regression in tumour-bearing female mice. Our findings provide insights into how to specifically regulate lysosomal function of TAMs for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Mingmei Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meijie Pan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruiyang Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiayi Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuanxun Fu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lijun Zhong
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|