1
|
Huang H, Duan B, Huang Z, Wang S, Wen Y, Jiang Q, Chen P, Huang P, Liu J, Zheng S, Ye Y, Zhang D, Wang Q, Huang F, Li J, Han L. Integrative multi-omics reveals the mechanism of ulcerative colitis treated with Ma-Mu-Ran antidiarrheal capsules. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9939. [PMID: 39663538 DOI: 10.1002/rcm.9939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
RATIONALE Ulcerative colitis (UC) is a chronic inflammatory gastrointestinal disease typically coexisting with intestinal microbiota dysbiosis, oxidative stress, and an inflammatory response. Although its underlying mechanism of action is unclear, Ma-Mu-Ran Antidiarrheal Capsules (MMRAC) have demonstrated significant therapeutic efficacy for UC. METHODS The mechanism of action of MMRAC in the treatment of UC model was investigated by combining metabolomics, transcriptomics, and intestinal microbiota detection techniques. RESULTS The high-dose group of MMRAC was determined as the best therapeutic dose by pathological changes and biochemical indexes. Transcriptome analysis revealed that 360 genes were differentially altered after MMRAC treatment. Metabolomic analysis using colon tissue yielded 14 colon tissue metabolites with significant differences. Intestinal flora analysis showed that 26 major microorganisms were identified at the genus level. CONCLUSIONS Based on a thorough multi-omics analysis of transcriptomics, metabolomics, and gut flora, it was determined that MMRAC regulated cysteine and methionine metabolism, arginine biosynthesis, and sphingolipid metabolism and their respective genes BHMT, PHGDH, iNOS, and SPHK1, which in turn served to inhibit UC-generated inflammatory responses and oxidative stress. Additionally, MMRAC regulated the abundance of Coprococcus, Helicobacter, Sutterella, Paraprevotella, and Roseburia in the intestinal tracts of UC mice, which was regulated toward normal levels, thereby restoring normal intestinal function.
Collapse
Affiliation(s)
- Hailing Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhuang Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Shanshan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuxin Wen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Qi Jiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Pengyu Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Huang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiajing Liu
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Sili Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiong Wang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Li
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Chinese Medicine Resources and Compound Chinese Medicine, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Cao X, Li L, Hu J, Zhu S, Song S, Kong S, Zhou L, Huang Y. Neohesperidin protects against colitis-associated colorectal cancer in mice via suppression of the NF-κB/p65 and MAPK pathways. J Nutr Biochem 2025; 136:109804. [PMID: 39547268 DOI: 10.1016/j.jnutbio.2024.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Patients with inflammatory bowel disease (IBD) are at increased risk of developing colitis-associated colorectal cancer (CAC). Neohesperidin (NHP), a flavanone glycoside derived from citrus fruits, has been reported to have anti-inflammatory, antioxidant, and anticancer potential. However, the function of NHP on tumorigenesis has not been well understood. To investigate the potential chemopreventive effects of NHP on CAC development, an in vivo azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model was used and NHP was administered by daily gavage for 10 weeks throughout the model period. In this study, we found that NHP effectively ameliorated AOM/DSS-induced pathological symptoms of colitis and thus inhibited colon tumorigenesis in mice. NHP treatment attenuated tumor proliferation, induced apoptosis, and inhibited angiogenesis during CAC development. In addition, NHP inhibited macrophage infiltration and reduced the expression of proinflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2 at both mRNA and protein levels, and the higher the concentration of NHP, the better the inhibition. It is worth noting that the positive therapeutic agent mesalazine (100 mg/kg) had a therapeutic effect comparable to that of a low concentration of NHP (50 mg/kg), but less effective than the same concentration of NHP (100 mg/kg). In addition, NHP may exert anti-inflammatory and anticancer effects by inhibiting the NF-κB/p65 and ERK/p38 MAPK pathways. Our findings highlight the potential of NHP as a potential therapeutic candidate for IBD and CAC.
Collapse
Affiliation(s)
- Xingyue Cao
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lingling Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jianing Hu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuhui Zhu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuang Song
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Siwei Kong
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li Zhou
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yefei Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Peng Y, Zhu J, Li Y, Yue X, Peng Y. Almond polysaccharides inhibit DSS-induced inflammatory response in ulcerative colitis mice through NF-κB pathway. Int J Biol Macromol 2024; 281:136206. [PMID: 39362427 DOI: 10.1016/j.ijbiomac.2024.136206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), is a chronic recurrent inflammatory disease of the colon. Our previous findings demonstrated that almond polysaccharide (AP-1) exhibits significant anti-inflammatory activity in vitro. Therefore, this study aimed to explore the ameliorative effect of AP-1 on dextrose sodium sulfate (DSS)-induced UC mice and to elucidate its possible mechanism of action. By observing changes in body weight, fecal viscosity, stool blood, disease activity index, and colon length, we found that AP-1 attenuated inflammation. It inhibited TNF-α, IL-1β, and IL-6 while boosting anti-inflammatory IL-10 levels. Histomorphologically, AP-1 protected against DSS-induced colonic tissue damage by reducing inflammatory cell infiltration and mucosal injury. It also lowered myeloperoxidase (MPO) and NO while increasing total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) in colonic tissues. Moreover, using the Western blot technique, AP-1 was shown to inhibit the phosphorylation of p65 and IκB-α proteins in the NF-κB/iNOS/COX2 signaling pathway and down-regulate the expression of inflammation-associated proteins COX2 and iNOS, thus slowing down and ameliorating inflammatory processes. Therefore, the safe and effective beneficial effects of AP-1 make it a promising therapeutic strategy for relieving IBD, especially UC.
Collapse
Affiliation(s)
- Yanqi Peng
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang 110034, China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayi Zhu
- College of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yingshuo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanyu Peng
- Department of Histology and Embryology, Shenyang Medical College, Shenyang 110034, China; Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, China.
| |
Collapse
|
4
|
de Lima JS, Leão AD, de Jesus Oliveira AC, Chaves LL, Ramos RKLG, Rodrigues CFC, Soares-Sobrinho JL, Soares MFDLR. Potential of plant-based polysaccharides as therapeutic agents in ulcerogenic diseases of the gastrointestinal tract: A review. Int J Biol Macromol 2024; 281:136399. [PMID: 39395521 DOI: 10.1016/j.ijbiomac.2024.136399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
In recent years, natural polysaccharides (PSs) have attracted increasing interest because of their remarkable biological properties and potential in various areas, such as medicine, and food. This study aimed to present a detailed review of the evidence on the therapeutic potential of PSs for the treatment of gastrointestinal diseases. The main evidence was correlated with their chemical composition, mechanism of action and therapeutic effect. The main results showed that the action can be attributed to their ability to suppress excessive inflammatory responses, regulating the expression of cytokines and interleukins, reducing intestinal inflammation and promoting wound healing. Furthermore, we discussed how PSs help in the repair of the intestinal mucosa and related these effects with the composition of monosaccharides. A detailed analysis was performed on the ability of PSs to modulate the intestinal microbiota, promoting the growth of beneficial bacteria and suppressing inflammatory bacteria, in addition to its probiotic action with production of short-chain fatty acids. All this evidence was also taken into a broader context, in which the main challenges in processing PSs were considered and strategies to circumvent them were pointed out. Therefore, this review sought to demonstrate the great potential and viability of PSs as innovative and effective therapeutic agents.
Collapse
Affiliation(s)
- Jucielma Silva de Lima
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Amanda Damaceno Leão
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Carla Fernanda Couto Rodrigues
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
5
|
Zheng M, Xie C, Ye D, Chen Y, Wang Z, Wang L, Xiong F, Zhang S, He Q, Wu H, Wu Z, Zhou H, Li L, Xing J, Miao X. Qingzhuan dark tea polysaccharides-zinc alleviates dextran sodium sulfate-induced ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7617-7628. [PMID: 38785267 DOI: 10.1002/jsfa.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Qingzhuan dark tea polysaccharides (QDTP) have been complexed with Zinc (Zn) to form the Qingzhuan dark tea polysaccharides-Zinc (QDTP-Zn) complex. The present study investigated the protective effects of QDTP-Zn on ulcerative colitis (UC) in mice. The UC mouse model was induced using dextran sodium sulfate (DSS), followed by oral administration of QDTP-Zn (0.2 and 0.4 g kg-1 day-1). RESULTS QDTP-Zn demonstrated alleviation of UC symptoms in mice, as evidenced by a decrease in disease activity index scores. QDTP-Zn also regulated colon tissue injury by upregulating ZO-1 and occludin protein expression, at the same time as downregulating tumor necrosis factor-α and interleukin-6β levels. Furthermore, QDTP-Zn induced significant alterations in the abundance of bacteroidetes and firmicutes and notably increased levels of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, and butyric acid. CONCLUSION In summary, QDTP-Zn exhibits therapeutic potential in alleviating enteritis by fortifying the colonic mucosal barrier, mitigating inflammation and modulating intestinal microbiota and SCFAs levels. Thus, QDTP-Zn holds promise as a functional food for both the prevention and treatment of UC. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Chen Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Dan Ye
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Yong Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Ziyao Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Le Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Fang Xiong
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Sheng Zhang
- Xianning Center for Disease Control and Prevention, Xianning, China
| | - Qiang He
- Xianning Public Inspection Center of Hubei Province, Xianning, China
| | - Hui Wu
- Xianning Public Inspection Center of Hubei Province, Xianning, China
| | - Zhinong Wu
- Xianning Central Hospital, Xianning, China
| | - Hongfu Zhou
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Ling Li
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Jun Xing
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Xiaolei Miao
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
6
|
Liu S, Geng J, Chen W, Zong Y, Zhao Y, Du R, He Z. Isolation, structure, biological activity and application progress of ginseng polysaccharides from the Araliaceae family. Int J Biol Macromol 2024; 276:133925. [PMID: 39032904 DOI: 10.1016/j.ijbiomac.2024.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Phytopolysaccharides are a class of natural macromolecules with a range of biological activities. Ginseng, red ginseng, American ginseng, and Panax notoginseng are all members of the Araliaceae family. They are known to contain a variety of medicinal properties and are typically rich in a wide range of medicinal values. Polysaccharides represent is one of the principal active ingredients in the aforementioned plants. However, there is a paucity of detailed reports on the separation methods, structural characteristics and comparison of various pharmacological effects of these polysaccharides. This paper presents a review of the latest research reports on ginseng, red ginseng, American ginseng and ginseng polysaccharides. The differences in extraction, separation, purification, structural characterization, and pharmacological activities of the four polysaccharides are compared and clarified. Upon examination of the current research literature, it becomes evident that the extraction and separation processes of the four polysaccharides are highly similar. Modern pharmacological studies have corroborated the multiple biological activities of these polysaccharides. These activities encompass a range of beneficial effects, including antioxidant stress injury, fatigue reduction, tumor inhibition, depression alleviation, regulation of intestinal flora, immunomodulation, diabetes management, central nervous system protection, anti-aging, and improvement of skin health. This paper presents a review of studies on the extraction, purification, characterization, and bioactivities of four natural plant ginseng polysaccharides. Furthermore, the review presents the most recent research findings on their pharmacological activities. The information provides a theoretical basis for the future application of natural plant polysaccharides and offers a new perspective for the in-depth development of the medicinal value of ginseng in the clinical practice of traditional Chinese medicine.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Wang D, Chen W, Cao J, Si L, Chen Z. Establishment and Evaluation of a Mouse Model of Experimental Ulcerative Colitis Induced by the Gavage Administration of Dextran Sulfate Sodium. Biomedicines 2024; 12:1764. [PMID: 39200228 PMCID: PMC11352140 DOI: 10.3390/biomedicines12081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Given the critical role of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse models in the appraisal of associated therapeutic drugs, the optimization of the administration method and dosages is of paramount importance. Therefore, UC was induced in mice through the gavage administration of a DSS solution instead of free drinking water. The effects of varying daily dosages (2, 4, 6, and 8 g/kg) and frequencies (once or twice) of administration on the body weight and survival rate of the model mice were evaluated. Concurrently, the inflammatory indicators and tissue sections of the model mice were thoroughly evaluated. The results revealed that when the daily dosage reached 8 g/kg, the dosage exhibited a high level of toxicity, resulting in a high mortality rate among the mice. The DSS administration of 6 g/kg*2 not only elicited conspicuous symptoms, significant weight loss, substantial shortening of the colon, and significant changes in various inflammatory indicators, such as myeloperoxidase (MPO), nitric oxide (NO), reactive oxygen species (ROS), and glutathione (GSH), but it also maintained a high survival rate in the UC mice. The findings from this experiment lay a solid experimental foundation for future research on drugs intended for the treatment of UC.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| | - Wei Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| | - Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.W.); (W.C.); (J.C.)
| |
Collapse
|
8
|
Liu X, Xiao H, Luo M, Meng J, Zhong L, Wu T, Zhao Y, Wu F, Xie J. Anti-inflammatory and protective effects of Pimpinella candolleana on ulcerative colitis in rats: a comprehensive study of quality, chemical composition, and molecular mechanisms. Front Pharmacol 2024; 15:1328977. [PMID: 38645561 PMCID: PMC11026630 DOI: 10.3389/fphar.2024.1328977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: P. candolleana Wight et Arn. Is a traditional Chinese herbal medicine used by the Gelao nationality in southwest China, has been historically applied to treat various gastrointestinal disorders. Despite its traditional usage, scientific evidence elucidating its efficacy and mechanisms in treating ulcerative colitis (UC) remains sparse. This study aimed to determine the quality and chemical composition of Pimpinella candolleana and to identify its potential therapeutic targets and mechanisms in acetic acid-induced ulcerative colitis (UC) rats through integrated approaches. Methods: Morphological and microscopic characteristics, thin layer chromatography (TLC) identification, and quantitative analysis of P. candolleana were performed. UPLC-Q-TOF-MS, network pharmacology, and molecular docking were used to identify its chemical composition and predict its related targets in UC. Furthermore, a rat model was established to evaluate the therapeutic effect and potential mechanism of P. candolleana on UC. Results: Microscopic identification revealed irregular and radial arrangement of the xylem in P. candolleana, with a light green cross-section and large medullary cells. UPLC-Q-TOF-MS analysis detected and analyzed 570 metabolites, including flavonoids, coumarins, and terpenoids. Network pharmacology identified 12 effective components and 176 target genes, with 96 common targets for P. candolleana-UC, including quercetin, luteolin, and nobiletin as key anti-inflammatory components. GO and KEGG revealed the potential involvement of their targets in RELA, JUN, TNF, IKBKB, PTGS2, and CHUK, with action pathways such as PI3K-Akt, TNF, IL-17, and apoptosis. Molecular docking demonstrated strong affinity and binding between these key components (quercetin, luteolin, and nobiletin) and the key targets of the pathway, including JUN and TNF. Treatment with P. candolleana improved body weight loss, the disease activity index, and colonic histological damage in UC rats. Pimpinella candolleana also modulated the levels of IL-2 and IL-6 in UC rats, reduced the expression of pro-inflammatory cytokines such as IL-6, MAPK8, TNF-α, CHUK, and IKBKB mRNA, and decreased the expression of TNF, IKBKB, JUN, and CHUK proteins in the colon of UC rats, thereby reducing inflammation and alleviating UC symptoms. Conclusion: P. candolleana exerts its protective effect on UC by reducing the expression of proinflammatory cytokines and inhibiting inflammation, providing scientific evidence for its traditional use in treating gastrointestinal diseases. This study highlights the potential of P. candolleana as a natural therapeutic agent for UC and contributes to the development of novel medicines for UC treatment.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
| | - Hai Xiao
- Maternal and Child Health Carelhospita, Zunyi, China
| | - Mingxia Luo
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
| | - Junpeng Meng
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Lin Zhong
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Tao Wu
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
| | - Faming Wu
- Department of Pharmacognosy, Zunyi Medical University, Zunyi, China
- Guizhou Medical and Health Industry Research Institute, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
- Guizhou Medical and Health Industry Research Institute, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Bai J, Wang Y, Li F, Wu Y, Chen J, Li M, Wang X, Lv B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci Prog 2024; 107:368504241253709. [PMID: 38778725 PMCID: PMC11113063 DOI: 10.1177/00368504241253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence, such as Crohn's disease and ulcerative colitis. The accurate etiology and pathogenesis of IBD remain unclear, and it is generally believed that it is related to genetic susceptibility, gut microbiota, environmental factors, immunological abnormalities, and potentially other factors. Currently, the mainstream therapeutic drugs are amino salicylic acid agents, corticosteroids, immunomodulators, and biological agents, but the remission rates do not surpass 30-60% of patients in a real-life setting. As a consequence, there are many studies focusing on emerging drugs and bioactive ingredients that have higher efficacy and long-term safety for achieving complete deep healing. This article begins with a review of the latest, systematic, and credible summaries of the pathogenesis of IBD. In addition, we provide a summary of the current treatments and drugs for IBD. Finally, we focus on the therapeutic effects of emerging drugs such as microRNAs and lncRNAs, nanoparticles-mediated drugs and natural products on IBD and their mechanisms of action.
Collapse
Affiliation(s)
- Junyi Bai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuhao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyao Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Shi Y, Chen J, Qu D, Sun Q, Yu Y, Zhang H, Liu Z, Sha J, Sun Y. Ginsenoside Rg 5 Activates the LKB1/AMPK/mTOR Signaling Pathway and Modifies the Gut Microbiota to Alleviate Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet. Nutrients 2024; 16:842. [PMID: 38542753 PMCID: PMC10974897 DOI: 10.3390/nu16060842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 01/05/2025] Open
Abstract
The primary objective of this investigation was to elucidate the manner in which ginsenoside Rg5 (Rg5) ameliorates nonalcoholic fatty liver disease (NAFLD) via the modulation of the gut microbiota milieu. We administered either a standard diet (ND) or a high-fat diet (HFD), coupled with 12-week treatment employing two distinct doses of Rg5 (50 and 100 mg/kg/d), to male C57BL/6J mice. In comparison to the HFD cohort, the Rg5-treated group demonstrated significant enhancements in biochemical parameters, exemplified by a substantial decrease in lipid concentrations, as well as the reduced expression of markers indicative of oxidative stress and liver injury. This signifies a mitigation of hepatic dysfunction induced by an HFD. Simultaneously, Rg5 demonstrates the capacity to activate the LKB1/AMPK/mTOR signaling pathway, instigating energy metabolism and consequently hindering the progression of NAFLD. Furthermore, we underscored the role of Rg5 in the treatment of NAFLD within the gut-microbiota-liver axis. Analysis via 16S rRNA sequencing unveiled that Rg5 intervention induced alterations in gut microbiota composition, fostering an increase in beneficial bacteria, such as Bacteroides and Akkermansia, while concurrently reducing the relative abundance of detrimental bacteria, exemplified by Olsenella. Furthermore, employing fecal microbiota transplantation (FMT) experiments, we observed analogous outcomes in mice subjected to fecal bacterial transplants, providing additional verification of the capacity of Rg5 to mitigate NAFLD in mice by actively participating in the restoration of gut microbiota via FMT. Drawing from these data, the regulation of the gut microbiota is recognized as an innovative strategy for treating or preventing NAFLD and metabolic syndrome. Consequently, these research findings suggest that Rg5 holds promise as a potential therapeutic agent for NAFLD management.
Collapse
Affiliation(s)
- Yingying Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Di Qu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Qiang Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Yang Yu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Zhengbo Liu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Jiyue Sha
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| | - Yinshi Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.S.); (Q.S.); (H.Z.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (J.C.); (D.Q.); (Y.Y.); (Z.L.)
| |
Collapse
|
12
|
Zhang Z, Zuo L, Song X, Wang L, Zhang Y, Cheng Y, Huang J, Zhao T, Yang Z, Zhang H, Li J, Zhang X, Geng Z, Wang Y, Ge S, Hu J. Arjunolic acid protects the intestinal epithelial barrier, ameliorating Crohn's disease-like colitis by restoring gut microbiota composition and inactivating TLR4 signalling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155223. [PMID: 38134862 DOI: 10.1016/j.phymed.2023.155223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is characterized by an overabundance of epithelial cell death and an imbalance in microflora, both of which contribute to the dysfunction of the intestinal barrier. Arjunolic acid (AA) has anti-apoptotic effects and regulates microbiota efficacy. The objective of this study was to assess the impact of the treatment on colitis resembling Crohn's disease, along with exploring the potential underlying mechanism. METHODS CD animal models were created using Il-10-/- mice, and the impact of AA on colitis in mice was evaluated through disease activity index, weight fluctuations, pathological examination, and assessment of intestinal barrier function. To clarify the direct role of AA on intestinal epithelial cell apoptosis, organoids were induced by LPS, and TUNEL staining was performed. To investigate the potential mechanisms of AA in protecting the intestinal barrier, various methods including bioinformatics analysis and FMT experiments were employed. RESULTS The treatment for AA enhanced the condition of colitis and the function of the intestinal barrier in Il-10-/- mice. This was demonstrated by the amelioration of weight loss, reduction in tissue inflammation score, and improvement in intestinal permeability. Moreover, AA suppressed the apoptosis of intestinal epithelial cells in Il-10-/- mice and LPS-induced colon organoids, while also reducing the levels of Bax and C-caspase-3. In terms of mechanism, AA suppressed the activation of TLR4 signaling in Il-10-/- mice and colon organoids induced by LPS. In addition, AA increased the abundance of short-chain fatty acid-producing bacteria in the stool of Il-10-/- mice, and transplantation of feces from AA-treated mice improved CD-like colitis. CONCLUSIONS The results of our study demonstrate that AA has a protective effect on the intestinal barrier in Crohn's disease-like colitis by preventing apoptosis. Additionally, this groundbreaking study reveals the capacity of AA to hinder TLR4 signaling and alter the makeup of the intestinal microbiome. The findings present fresh possibilities for treating individuals diagnosed with Crohn's disease. AA offers a hopeful novel strategy for managing Crohn's disease by obstructing crucial pathways implicated in intestinal inflammation and enhancing the gut microbiota.
Collapse
Affiliation(s)
- Zining Zhang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China
| | - Xue Song
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Zhang
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yang Cheng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ju Huang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianhao Zhao
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Li
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu, Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu, Medical College, Bengbu, China
| | - Sitang Ge
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China
| | - Jianguo Hu
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu, Medical College, Bengbu, China.
| |
Collapse
|
13
|
Huang H, Duan B, Zheng S, Ye Y, Zhang D, Huang Z, Wang S, Zhang F, Huang P, Huang F, Han L. Integrated network pharmacology and metabolomics analyses of the mechanism underlying the efficacy of Ma-Mu-Ran Antidiarrheal Capsules against dextran sulfate sodium-induced ulcerative colitis. Biomed Chromatogr 2023; 37:e5732. [PMID: 37732359 DOI: 10.1002/bmc.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
The current study utilizes a comprehensive network pharmacology and metabolomics analysis to investigate the mechanism of action of Ma-Mu-Ran Antidiarrheal Capsules (MMRAC) for the treatment of ulcerative colitis (UC). In this study, we established a mouse model of UC using dextran sulfate sodium. Colonic tissues were collected from mice and then subjected to hematoxylin and eosin staining, as well as histopathological analysis, to assess the therapeutic effect of MMRAC. Furthermore, we assessed the mechanisms through which MMRAC combats UC by employing integrated metabolomics and network pharmacology strategies. Lastly, we validated the key targets identified through western blot and molecular docking. An integrated network of metabolomics and network pharmacology was constructed using Cytoscape to identify eight endogenous metabolites involved in the therapeutic action of MMRAC on UC. Further comprehensive analyses were focused on four key targets and their associated core metabolites and pathways. The results of western blot and molecular docking demonstrated that MMRAC could modulate key targets and their expression levels. The cumulative results indicated that MMRAC restored intestinal function in UC, reduced inflammatory responses, and alleviated oxidative stress by influencing the methionine and cysteine metabolic pathways, as well as the urea cycle. In addition, it had an impact on arginine, proline, glutamate, aspartate, and asparagine metabolic pathways and their associated targets.
Collapse
Affiliation(s)
- Hailing Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Sili Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhuang Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shanshan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengyun Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Chinese Medicine Resources and Compound Chinese Medicine, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
14
|
de Oliveira NMT, Schneider VS, Bueno LR, de Mello Braga LLV, da Silva KS, Malaquias da Silva LC, Souza ML, da Luz BB, Lima CD, Bastos RS, de Paula Werner MF, Fernandes ES, Rocha JA, Gois MB, Cordeiro LMC, Maria-Ferreira D. CPW partially attenuates DSS-induced ulcerative colitis in mice. Food Res Int 2023; 173:113334. [PMID: 37803644 DOI: 10.1016/j.foodres.2023.113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the gastrointestinal tract. The etiology is not fully understood, but environmental, microbial, and immunologic factors, as well as a genetic predisposition, play a role. UC is characterized by episodes of abdominal pain, diarrhea, bloody stools, weight loss, severe colonic inflammation, and ulceration. Despite the increase in the frequency of UC and the deterioration of the quality of life, there are still patients who do not respond well to available treatment options. Against this background, natural products such as polysaccharides are becoming increasingly important as they protect the intestinal mucosa, promote wound healing, relieve inflammation and pain, and restore intestinal motility. In this study, we investigated the effect of a polysaccharide isolated from the biomass of Campomanesia adamantium and Campomanesia pubescens (here referred to as CPW) in an experimental model of acute and chronic ulcerative colitis induced by dextran sulfate sodium (DSS). CPW reversed weight loss, increased disease activity index (DAI), bloody diarrhea, and colon shortening. In addition, CPW reduced visceral mechanical hypersensitivity, controlled oxidative stress and inflammation, and protected the mucosal barrier. CPW is not absorbed in the intestine, does not inhibit cytochrome P450 proteins, and does not exhibit AMES toxicity. These results suggest that CPW attenuates DSS-induced acute and chronic colitis in mice and may be a potential alternative treatment for UC.
Collapse
Affiliation(s)
- Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Vanessa S Schneider
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Maria Luiza Souza
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Cleiane Dias Lima
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ruan Sousa Bastos
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Jefferson Almeida Rocha
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Marcelo Biondaro Gois
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | | | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
| |
Collapse
|
15
|
Li YY, Cui Y, Dong WR, Liu TT, Zhou G, Chen YX. Terminalia bellirica Fruit Extract Alleviates DSS-Induced Ulcerative Colitis by Regulating Gut Microbiota, Inflammatory Mediators, and Cytokines. Molecules 2023; 28:5783. [PMID: 37570753 PMCID: PMC10421151 DOI: 10.3390/molecules28155783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1β, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Xin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|