1
|
Mrisho M, Mwangoka G, Ali AM, Mkopi A, Mahende MK, Temu S, Msuya HM, Kazyoba PE, Abdallah G, Mihayo M, Juma O, Hamad A, Jongo S, Lweno O, Tumbo A, Mswata S, Kassim KR, Kishimba R, Haruna H, Kassa H, Kapologwe N, Rashid M, Abdulla S. Pilot deployment of a community health care worker in distributing and offering the COVID-19 AgRDT in Tanzania. Sci Rep 2024; 14:11679. [PMID: 38778088 PMCID: PMC11111661 DOI: 10.1038/s41598-024-62379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
A pilot implementation of the rapid diagnostic test program was performed to collect evidence of the feasibility, acceptability, and uptake of the COVID-19 AgRDT in Tanzania. We conducted a prospective cross-sectional study in the community to provide quantitative details of the pilot implementation of the antigen rapid diagnostic test (AgRDT) in Tanzania. This study was undertaken between March 2022 and September 2022. The pilot was implemented by distributing and offering test kits to people suspected of having COVID-19 in Dar es Salaam through community health workers. A total of 1039 participants consented to participate in the survey. All the participants reported having heard about the disease. The radio was the main source (93.2%) of information on COVID-19. With regard to prevention measures, approximately 930 (89.5%) of the respondents thought that COVID-19 could be prevented. Approximately 1035 (99.6%) participants reported that they were willing to have a COVID-19 AgRDT test and wait for 20 min for the results. With regard to the participants' opinions on the AgRDT device, the majority 907 (87.3%) felt comfortable with the test, and 1,029 (99.0%) were very likely to recommend the AgRDT test to their friends. The majority of participants 848 (83.1%) mentioned that they would be willing to pay for the test if it was not available for free. The results suggest overall good acceptance of the COVID-19 AgRDT test. It is evident that the use of trained community healthcare workers allows easy screening of all possible suspects and helps them receive early treatment.
Collapse
Affiliation(s)
- Mwifadhi Mrisho
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania.
| | - Grace Mwangoka
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Ali M Ali
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Abdallah Mkopi
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Muhidin K Mahende
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Silas Temu
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Hajirani M Msuya
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Paul E Kazyoba
- National Institute for Medical Research (NIMR), P O Box 9653, Dar es Salaam, Tanzania
| | - Gumi Abdallah
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Michael Mihayo
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Omar Juma
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Ali Hamad
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Said Jongo
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Omar Lweno
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Anneth Tumbo
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Sarah Mswata
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Kamaka R Kassim
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | | | - Hussein Haruna
- Ministry of Health (MoH), P. O. Box 743, Dodoma, Tanzania
| | - Hellen Kassa
- FIND|Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Ntuli Kapologwe
- Department of Health, Social Welfare and Nutrition Services, President's Office Regional Administration and Local Government (PORALG), P.O Box 1923, Dodoma, Tanzania
| | - Mohammed Rashid
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| | - Salim Abdulla
- Ifakara Health Institute (IHI), Kiko Avenue, Off Bagamoyo Road, Mikocheni, P O Box 78373, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Baldeh M, Bawa FK, Bawah FU, Chamai M, Dzabeng F, Jebreel WMA, Kabuya JBB, Molemodile Dele-Olowu SK, Odoyo E, Rakotomalala Robinson D, Cunnington AJ. Lessons from the pandemic: new best practices in selecting molecular diagnostics for point-of-care testing of infectious diseases in sub-Saharan Africa. Expert Rev Mol Diagn 2024; 24:153-159. [PMID: 37908160 DOI: 10.1080/14737159.2023.2277368] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Point-of-care molecular diagnostics offer solutions to the limited diagnostic availability and accessibility in resource-limited settings. During the COVID-19 pandemic, molecular diagnostics became essential tools for accurate detection and monitoring of SARS-CoV-2. The unprecedented demand for molecular diagnostics presented challenges and catalyzed innovations which may provide lessons for the future selection of point-of-care molecular diagnostics. AREAS COVERED We searched PubMed from January 2020 to August 2023 to identify lessons learned from the COVID-19 pandemic which may impact the selection of point-of-care molecular diagnostics for future use in sub-Saharan Africa. We evaluated this in the context of REASSURED criteria (Real-time connectivity; Ease of specimen collection; Affordable; Sensitive; Specific; User-friendly; Rapid and robust; Equipment free; and Deliverable to users at the point of need) for point-of-care diagnostics for resource-limited settings. EXPERT OPINION The diagnostic challenges and successes during the COVID-19 pandemic affirmed the importance of the REASSURED criteria but demonstrated that these are not sufficient to ensure new diagnostics will be appropriate for public health emergencies. Capacity for rapid scale-up of diagnostic testing and transferability of assays, data, and technology are also important, resulting in updated REST-ASSURED criteria. Few diagnostics will meet all criteria, and trade-offs between criteria will need to be context-specific.
Collapse
Affiliation(s)
- Mamadu Baldeh
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Flavia K Bawa
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Faiza U Bawah
- Department of Computer Science, University of Ghana, Accra, Ghana
- Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Martin Chamai
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Francis Dzabeng
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Computer Science, University of Ghana, Accra, Ghana
| | | | | | | | - Erick Odoyo
- Masinde Muliro University of Science & Technology, Kakamega, Kenya
| | | | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease and Centre for Paediatrics and Child Health, Imperial College, London, UK
| |
Collapse
|
3
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
4
|
Evans MV, Ramiadantsoa T, Kauffman K, Moody J, Nunn CL, Rabezara JY, Raharimalala P, Randriamoria TM, Soarimalala V, Titcomb G, Garchitorena A, Roche B. Sociodemographic Variables Can Guide Prioritized Testing Strategies for Epidemic Control in Resource-Limited Contexts. J Infect Dis 2023; 228:1189-1197. [PMID: 36961853 PMCID: PMC11007394 DOI: 10.1093/infdis/jiad076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Targeted surveillance allows public health authorities to implement testing and isolation strategies when diagnostic resources are limited, and can be implemented via the consideration of social network topologies. However, it remains unclear how to implement such surveillance and control when network data are unavailable. METHODS We evaluated the ability of sociodemographic proxies of degree centrality to guide prioritized testing of infected individuals compared to known degree centrality. Proxies were estimated via readily available sociodemographic variables (age, gender, marital status, educational attainment, household size). We simulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics via a susceptible-exposed-infected-recovered individual-based model on 2 contact networks from rural Madagascar to test applicability of these findings to low-resource contexts. RESULTS Targeted testing using sociodemographic proxies performed similarly to targeted testing using known degree centralities. At low testing capacity, using proxies reduced infection burden by 22%-33% while using 20% fewer tests, compared to random testing. By comparison, using known degree centrality reduced the infection burden by 31%-44% while using 26%-29% fewer tests. CONCLUSIONS We demonstrate that incorporating social network information into epidemic control strategies is an effective countermeasure to low testing capacity and can be implemented via sociodemographic proxies when social network data are unavailable.
Collapse
Affiliation(s)
- Michelle V Evans
- Maladies Infectieuses et Vecteurs : Écologie, Génétique, Évolution et Contrôle, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Tanjona Ramiadantsoa
- Maladies Infectieuses et Vecteurs : Écologie, Génétique, Évolution et Contrôle, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Kayla Kauffman
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Duke Global Health Institute, Durham, North Carolina, USA
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - James Moody
- Department of Sociology, Duke University, Durham, North Carolina, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Duke Global Health Institute, Durham, North Carolina, USA
| | - Jean Yves Rabezara
- Department of Science and Technology, University of Antsiranana, Antsiranana, Madagascar
| | | | - Toky M Randriamoria
- Association Vahatra, Antananarivo, Madagascar
- Zoologie et Biodiversité Animale, Domaine Sciences et Technologies, Université d’Antananarivo, Antananarivo, Madagascar
| | - Voahangy Soarimalala
- Association Vahatra, Antananarivo, Madagascar
- Institut des Sciences et Techniques de l’Environnement, Université de Fianarantsoa, Fianarantsoa, Madagascar
| | - Georgia Titcomb
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
- Marine Science Institute, University of California, Santa Barbara, California, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Andres Garchitorena
- Maladies Infectieuses et Vecteurs : Écologie, Génétique, Évolution et Contrôle, Université Montpellier, CNRS, IRD, Montpellier, France
- Pivot, Ifanadiana, Madagascar
| | - Benjamin Roche
- Maladies Infectieuses et Vecteurs : Écologie, Génétique, Évolution et Contrôle, Université Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
5
|
Thompson CR, Torres PM, Kontogianni K, Byrne RL, Noguera SV, Luna-Muschi A, Marchi AP, Andrade PS, dos Santos Barboza A, Nishikawara M, Body R, de Vos M, Escadafal C, Adams E, Figueiredo Costa S, Cubas-Atienzar AI. Multicenter Diagnostic Evaluation of OnSite COVID-19 Rapid Test (CTK Biotech) among Symptomatic Individuals in Brazil and the United Kingdom. Microbiol Spectr 2023; 11:e0504422. [PMID: 37212699 PMCID: PMC10269675 DOI: 10.1128/spectrum.05044-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
The COVID-19 pandemic has given rise to numerous commercially available antigen rapid diagnostic tests (Ag-RDTs). To generate and to share accurate and independent data with the global community requires multisite prospective diagnostic evaluations of Ag-RDTs. This report describes the clinical evaluation of the OnSite COVID-19 rapid test (CTK Biotech, CA, USA) in Brazil and the United Kingdom. A total of 496 paired nasopharyngeal (NP) swabs were collected from symptomatic health care workers at Hospital das Clínicas in São Paulo, Brazil, and 211 NP swabs were collected from symptomatic participants at a COVID-19 drive-through testing site in Liverpool, United Kingdom. Swabs were analyzed by Ag-RDT, and results were compared to quantitative reverse transcriptase PCR (RT-qPCR). The clinical sensitivity of the OnSite COVID-19 rapid test in Brazil was 90.3% (95% confidence interval [CI], 75.1 to 96.7%) and in the United Kingdom was 75.3% (95% CI, 64.6 to 83.6%). The clinical specificity in Brazil was 99.4% (95% CI, 98.1 to 99.8%) and in the United Kingdom was 95.5% (95% CI, 90.6 to 97.9%). Concurrently, analytical evaluation of the Ag-RDT was assessed using direct culture supernatant of SARS-CoV-2 strains from wild-type (WT), Alpha, Delta, Gamma, and Omicron lineages. This study provides comparative performance of an Ag-RDT across two different settings, geographical areas, and populations. Overall, the OnSite Ag-RDT demonstrated a lower clinical sensitivity than claimed by the manufacturer. The sensitivity and specificity from the Brazil study fulfilled the performance criteria determined by the World Health Organization, but the performance obtained from the UK study failed to do. Further evaluation of Ag-RDTs should include harmonized protocols between laboratories to facilitate comparison between settings. IMPORTANCE Evaluating rapid diagnostic tests in diverse populations is essential to improving diagnostic responses as it gives an indication of the accuracy in real-world scenarios. In the case of rapid diagnostic testing within this pandemic, lateral flow tests that meet the minimum requirements for sensitivity and specificity can play a key role in increasing testing capacity, allowing timely clinical management of those infected, and protecting health care systems. This is particularly valuable in settings where access to the test gold standard is often restricted.
Collapse
Affiliation(s)
- Caitlin R. Thompson
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - Pablo Muñoz Torres
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Konstantina Kontogianni
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - Rachel L. Byrne
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - LSTM Diagnostic group
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- FIND, Geneva, Switzerland
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Saidy Vásconez Noguera
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Luna-Muschi
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Marchi
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pâmela S. Andrade
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
| | - Antonio dos Santos Barboza
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marli Nishikawara
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - CONDOR steering group
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- FIND, Geneva, Switzerland
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Richard Body
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Camille Escadafal
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Emily Adams
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Silvia Figueiredo Costa
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana I. Cubas-Atienzar
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| |
Collapse
|
6
|
Manjate NJ, Sitoe N, Sambo J, Guimarães E, Canana N, Chilaúle J, Viegas S, Nguenha N, Jani I, Russo G. Testing for SARS-CoV-2 in resource-limited settings: A cost analysis study of diagnostic tests using different Ag-RDTs and RT-PCR technologies in Mozambique. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001999. [PMID: 37310935 DOI: 10.1371/journal.pgph.0001999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/09/2023] [Indexed: 06/15/2023]
Abstract
Early diagnosis of SARS-CoV-2 is fundamental to reduce the risk of community transmission and mortality, as well as public sector expenditures. Three years after the onset of the SARS-CoV-2 pandemic, there are still gaps on what is known regarding costs and cost drivers for the major diagnostic testing strategies in low- middle-income countries (LMICs). This study aimed to estimate the cost of SARS-CoV-2 diagnosis of symptomatic suspected patients by reverse transcription polymerase chain reaction (RT-PCR) and antigen rapid diagnostic tests (Ag-RDT) in Mozambique. We conducted a retrospective cost analysis from the provider's perspective using a bottom-up, micro-costing approach, and compared the direct costs of two nasopharyngeal Ag-RDTs (Panbio and Standard Q) against the costs of three nasal Ag-RDTs (Panbio, COVIOS and LumiraDx), and RT-PCR. The study was undertaken from November 2020 to December 2021 in the country's capital city Maputo, in four healthcare facilities at primary, secondary and tertiary levels of care, and at one reference laboratory. All the resources necessary for RT-PCR and Ag-RDT tests were identified, quantified, valued, and the unit costs per test and per facility were estimated. Our findings show that the mean unit cost of SARS-CoV-2 diagnosis by nasopharyngeal Ag-RDTs was MZN 728.00 (USD 11.90, at 2020 exchange rates) for Panbio and MZN 728.00 (USD 11.90) for Standard Q. For diagnosis by nasal Ag-RDTs, Panbio was MZN 547.00 (USD 8.90), COVIOS was MZN 768.00 (USD 12.50), and LumiraDx was MZN 798.00 (USD 13.00). Medical supplies expenditures represented the main driver of the final cost (>50%), followed by personnel and overhead costs (mean 15% for each). The mean unit cost regardless of the type of Ag-RDT was MZN 714.00 (USD 11.60). Diagnosis by RT-PCR cost MZN 2,414 (USD 39.00) per test. Our sensitivity analysis suggests that focussing on reducing medical supplies costs would be the most cost-saving strategy for governments in LMICs, particularly as international prices decrease. The cost of SARS-CoV-2 diagnosis using Ag-RDTs was three times lower than RT-PCR testing. Governments in LMICs can include cost-efficient Ag-RDTs in their screening strategies, or RT-PCR if international costs of such supplies decrease further in the future. Additional analyses are recommended as the costs of testing can be influenced by the sample referral system.
Collapse
Affiliation(s)
| | - Nádia Sitoe
- Instituto Nacional de Saúde, Marracuene, Mozambique
| | - Júlia Sambo
- Instituto Nacional de Saúde, Marracuene, Mozambique
| | | | | | | | - Sofia Viegas
- Instituto Nacional de Saúde, Marracuene, Mozambique
| | | | - Ilesh Jani
- Instituto Nacional de Saúde, Marracuene, Mozambique
| | - Giuliano Russo
- The Wolfson Institute for Population Health, Queen Mary University of London, London, The United Kingdom
| |
Collapse
|
7
|
Labhardt ND, González Fernández L, Katende B, Muhairwe J, Bresser M, Amstutz A, Glass TR, Ruhwald M, Sacks JA, Escadafal C, Mareka M, Mooko SM, de Vos M, Reither K. Head-to-head comparison of nasal and nasopharyngeal sampling using SARS-CoV-2 rapid antigen testing in Lesotho. PLoS One 2023; 18:e0278653. [PMID: 36862684 PMCID: PMC9980827 DOI: 10.1371/journal.pone.0278653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/21/2022] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES To assess the real-world diagnostic performance of nasal and nasopharyngeal swabs for SD Biosensor STANDARD Q COVID-19 Antigen Rapid Diagnostic Test (Ag-RDT). METHODS Individuals ≥5 years with COVID-19 compatible symptoms or history of exposure to SARS-CoV-2 presenting at hospitals in Lesotho received two nasopharyngeal and one nasal swab. Ag-RDT from nasal and nasopharyngeal swabs were performed as point-of-care on site, the second nasopharyngeal swab used for polymerase chain reaction (PCR) as the reference standard. RESULTS Out of 2198 participants enrolled, 2131 had a valid PCR result (61% female, median age 41 years, 8% children), 84.5% were symptomatic. Overall PCR positivity rate was 5.8%. The sensitivity for nasopharyngeal, nasal, and combined nasal and nasopharyngeal Ag-RDT result was 70.2% (95%CI: 61.3-78.0), 67.3% (57.3-76.3) and 74.4% (65.5-82.0), respectively. The respective specificity was 97.9% (97.1-98.4), 97.9% (97.2-98.5) and 97.5% (96.7-98.2). For both sampling modalities, sensitivity was higher in participants with symptom duration ≤ 3days versus ≤ 7days. Agreement between nasal and nasopharyngeal Ag-RDT was 99.4%. CONCLUSIONS The STANDARD Q Ag-RDT showed high specificity. Sensitivity was, however, below the WHO recommended minimum requirement of ≥ 80%. The high agreement between nasal and nasopharyngeal sampling suggests that for Ag-RDT nasal sampling is a good alternative to nasopharyngeal sampling.
Collapse
Affiliation(s)
- Niklaus D. Labhardt
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Lucia González Fernández
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- SolidarMed, Partnerships for Health, Lucerne, Switzerland
| | | | | | - Moniek Bresser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alain Amstutz
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Tracy R. Glass
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Morten Ruhwald
- FIND, The Global Alliance for Diagnostics, Geneva, Switzerland
| | - Jilian A. Sacks
- FIND, The Global Alliance for Diagnostics, Geneva, Switzerland
| | | | - Mathabo Mareka
- National Reference Laboratory, Ministry of Health of Lesotho, Maseru, Lesotho
| | - Sekhele M. Mooko
- National Reference Laboratory, Ministry of Health of Lesotho, Maseru, Lesotho
| | | | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Deutou Wondeu AL, Talom BM, Linardos G, Ngoumo BT, Bello A, Ndassi Soufo AM, Momo AC, Doll C, Tamuedjoun AT, Kiuate JR, Cappelli G, Russo C, Perno CF, Tchidjou HK, Scaramella L, Galgani A. The COVID-19 wave was already here: High seroprevalence of SARS-CoV-2 antibodies among staff and students in a Cameroon University. J Public Health Afr 2023; 14:2242. [PMID: 36798849 PMCID: PMC9926561 DOI: 10.4081/jphia.2023.2242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 01/28/2023] Open
Abstract
Background Seroprevalence studies, to estimate the proportion of people that has been infected by SARS-CoV-2 are importance in African countries, where incidence is among the lowest in the world. Objective This study aimed at evaluating the exposure to SARS-CoV-2 within a university setting of Cameroon. Methods A cross-sectional study performed in December 2020 - December 2021, among students and staffs of the Evangelical University of Cameroon. COVID-19 antigen rapid detection test (RDT) was performed using Standard Q Biosensor, and one year after SARS-CoV-2 antibody-test was performed within the same population using RDT and chemiluminescence immunoassay (CLIA). Results 106 participants were enrolled (80% students), female sex was the most represented. Positivity to SARS-CoV-2 was 0.0% based on antigen RDTs. The seroprevalence of SARSCoV- 2 antibodies was estimated at 73.6% (95% CI. 64.5-81.0) for IgG and 1.9% (95% CI. 0.2-6.8) for IgM/IgG with RDTs, and 91.9% (95% CI. 84.7-96.4) for anti-nucleocapsid with CLIA. 95.3% (101) reported having developed at least one of the known COVID-19 symptoms (cough and headache being the most common). 90.3% (28) of people who experienced at least one of these symptoms developed IgG antibodies. 40.6% (43) of participants took natural herbs, whereas 55.7% (59) took conventional drugs. The most used herb was Zingiber officinale, while the most used drugs were antibiotics. Conclusion In this Cameroonian University community, SARS-CoV-2 seroprevalence is high, with a greater detection using advanced serological assays. This indicates a wide viral exposure, and the need to adequate control measures especially for those experiencing any related COVID-19 symptoms.
Collapse
Affiliation(s)
- Andrillene Laure Deutou Wondeu
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
- Department of Biology and Interdipartimental Center for Comparative Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Beatrice Metchum Talom
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | | | - Barnes Tanetsop Ngoumo
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Aïchatou Bello
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Aurele Marc Ndassi Soufo
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Aimé Cesaire Momo
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Christian Doll
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Jena, Jena, Germany
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, Corporate Member of Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alaric Talom Tamuedjoun
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Jules-Roger Kiuate
- Laboratory of molecular biology and immunopathology, Evangelical University of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Giulia Cappelli
- Institute for Biological Systems, National Research Council, Rome, Italy
| | | | | | | | - Lucia Scaramella
- Unit of Food Biotechnology, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M.Aleandri”, Rome, Italy
| | - Andrea Galgani
- Department of Biology and Interdipartimental Center for Comparative Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Balde T, Oyugi B, Karamagi H, Okeibunor JC, Conteh IN, Ejiofor NE, Atuhebwe P, Nanyunja M, Diallo AB, Mihigo R, Yoti Z, Braka F, Gueye AS. Framing the future of the COVID-19 response operations in 2022 in the WHO African region. Glob Health Action 2022; 15:2130528. [PMID: 36314610 PMCID: PMC9629107 DOI: 10.1080/16549716.2022.2130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND With the evolving epidemiological parameters of COVID-19 in Africa, the response actions and lessons learnt during the pandemic's past two years, SARS-COV 2 will certainly continue to circulate in African countries in 2022 and beyond. As countries in the African continent need to be more prepared and plan to 'live with the virus' for the upcoming two years and after and at the same time mitigate risks by protecting the future most vulnerable and those responsible for maintaining essential services, WHO AFRO is anticipating four interim scenarios of the evolution of the pandemic in 2022 and beyond in the region. OBJECTIVE In preparation for the rollout of response actions given the predicted scenarios, WHO AFRO has identified ten strategic orientations and areas of focus for supporting member states and partners in responding to the COVID-19 pandemic in Africa in 2022 and beyond. METHODS WHO analysed trends of the transmissions since the first case in the African continent and reviewed lessons learnt over the past months. RESULTS Establishing a core and agile team solely dedicated to the COVID-19 response at the WHO AFRO, the emergency hubs, and WCOs will improve the effectiveness of the response and address identified challenges. The team will collaborate with the various clusters of the regional office, and other units and subunits in the WCOs supported with good epidemics intelligence. COVID-19 pandemic has afflicted global humanity at unprecedented levels. CONCLUSION Two years later and while starting the third year of the COVID-19 response, we now need to change and adapt our strategies, tools and approaches in responding timely and effectively to the pandemic in Africa and save more lives.
Collapse
Affiliation(s)
- Thierno Balde
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Boniface Oyugi
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo,Centre for Health Services Studies (CHSS), University of Kent, George Allen Wing, CanterburyUK
| | - Humphrey Karamagi
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Joseph Chukwudi Okeibunor
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo,CONTACT Joseph Chukwudi Okeibunor World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Ishata Nannie Conteh
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Nonso Ephraim Ejiofor
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Phionah Atuhebwe
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Miriam Nanyunja
- Emergency Preparedness and Response Hub, World Health Organisation Emergency Hub for East and Southern Africa, Nairobi, Kenya
| | - Amadou Bailo Diallo
- Emergency Preparedness and Response Hub, World Health Organisation Emergency Hub for East and Southern Africa, Nairobi, Kenya,World Health Organisation Emergency Hub for West and Central Africa, Dakar, Senegal
| | - Richard Mihigo
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Zabulon Yoti
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Fiona Braka
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| | - Abdou Salam Gueye
- World Health Organisation, Regional Office for Africa, Emergency Preparedness and Response Programme, Brazzaville, Congo
| |
Collapse
|
10
|
Wang Y, Upadhyay A, Pillai S, Khayambashi P, Tran SD. Saliva as a diagnostic specimen for SARS-CoV-2 detection: A scoping review. Oral Dis 2022; 28 Suppl 2:2362-2390. [PMID: 35445491 PMCID: PMC9115496 DOI: 10.1111/odi.14216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES This scoping review aims to summarize the diagnostic value of saliva assessed from current studies that (1) compare its performance in reverse transcriptase-polymerase chain reaction testing to nasopharyngeal swabs, (2) evaluate its performance in rapid and point-of-care COVID-19 diagnostic tests, and (3) explore its use as a specimen for detecting anti-SARS-CoV-2 antibodies. MATERIALS AND METHODS A systematic search was performed on the following databases: Medline and Embase (Ovid), World Health Organization, Centers for Disease Control and Prevention, and Global Health (Ovid) from January 2019 to September 2021. Of the 657 publications identified from the searches, n = 146 articles were included in the final scoping review. RESULTS Our findings showcase that salivary samples exceed nasopharyngeal swabs in detecting SARS-CoV-2 using reverse transcriptase-polymerase chain reaction testing in several studies. A select number of rapid antigen and point-of-care tests from the literature were also identified capable of high detection rates using saliva. Moreover, anti-SARS-CoV-2 antibodies have been shown to be detectable in saliva through biochemical assays. CONCLUSION We highlight the potential of saliva as an all-rounded specimen in detecting SARS-CoV-2. However, future large-scale clinical studies will be needed to support its widespread use as a non-invasive clinical specimen for COVID-19 testing.
Collapse
|
11
|
Peghin M, Bontempo G, De Martino M, Palese A, Gerussi V, Graziano E, Fabris M, D’Aurizio F, Sbrana F, Ripoli A, Curcio F, Isola M, Tascini C. Evaluation of qualitative and semi-quantitative cut offs for rapid diagnostic lateral flow test in relation to serology for the detection of SARS-CoV-2 antibodies: findings of a prospective study. BMC Infect Dis 2022; 22:810. [PMCID: PMC9619007 DOI: 10.1186/s12879-022-07786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background: There is limited information to compare the qualitative and semi-quantitative performance of rapid diagnostic tests (RDT) and serology for the assessment of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, the objective of the study was (a) to compare the efficacy of SARS-CoV-2 antibody detection between RDT and laboratory serology, trying to identify appropriate semi-quantitative cut-offs for RDT in relation with quantitative serology values and to (b) evaluate diagnostic accuracy of RDT compared to the NAAT gold standard in an unselected adult population. Methods: SARS-CoV-2 antibodies were simultaneously measured with lateral flow immunochromatographic assays (LFA), the Cellex qSARS-CoV-2 IgG/IgM Rapid Test (by capillary blood), the iFlash-SARS-CoV-2 IgG/IgM chemiluminescent immunoassay (CLIA) (by venous blood) and the nucleic acid amplification test (NAAT) in samples from in- and out-patients with confirmed, suspected and negative diagnosis of coronavirus disease 2019 (COVID-19) attending Udine Hospital (Italy) (March-May 2020). Interpretation of RDT was qualitative (positive/negative) and semi-quantitative based on a chromatographic intensity scale (negative, weak positive, positive). Results: Overall, 720 paired antibody measures were performed on 858 patients. The qualitative and semiquantitative agreement analysis performed in the whole sample between LFA and CLIA provided a Kendall’s tau of 0.578 (p < 0.001) and of 0.623 (p < 0.001), respectively, for IgM and IgG. In patients with a diagnosis of COVID-19, accordance between LFA and CLIA was maintained as a function of time from the onset of COVID-19 disease and the severity of disease both for qualitative and semi-quantitative assessments. RDT compared to the NAAT gold standard in 858 patients showed 78.5% sensitivity (95% CI 75.1%-81.7%) and 94.1% specificity (95% CI 90.4%-96.8%), with variable accordance depending on the timing from symptom onset. Conclusion: The RDT used in our study can be a non-invasive and reliable alternative to serological tests and facilitate both qualitative and a semi-quantitative antibody detection in COVID-19.
Collapse
Affiliation(s)
- Maddalena Peghin
- grid.5390.f0000 0001 2113 062XInfectious Diseases Division, Department of Medicine, University of Udine and Azienda sanitaria universitaria Friuli Centrale (ASUFC), Udine, Italy ,grid.18147.3b0000000121724807Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy ,Infectious Diseases Division , Azienda sanitaria universitaria Friuli Centrale (ASUFC), Presidio Ospedaliero Universitario Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33010 Udine, Italy
| | - Giulia Bontempo
- grid.5390.f0000 0001 2113 062XInfectious Diseases Division, Department of Medicine, University of Udine and Azienda sanitaria universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Maria De Martino
- grid.5390.f0000 0001 2113 062XDivision of Medical Statistics, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Alvisa Palese
- grid.5390.f0000 0001 2113 062XDepartment of Medical Sciences, School of Nursing, University of Udine, Udine, Italy
| | - Valentina Gerussi
- grid.5390.f0000 0001 2113 062XInfectious Diseases Division, Department of Medicine, University of Udine and Azienda sanitaria universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Elena Graziano
- grid.5390.f0000 0001 2113 062XInfectious Diseases Division, Department of Medicine, University of Udine and Azienda sanitaria universitaria Friuli Centrale (ASUFC), Udine, Italy ,grid.18147.3b0000000121724807Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Martina Fabris
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Federica D’Aurizio
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Francesco Sbrana
- grid.452599.60000 0004 1781 8976U.O. Lipoapheresis and Center for Inherited Dyslipidemias - Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Andrea Ripoli
- grid.452599.60000 0004 1781 8976Bioengineering Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Francesco Curcio
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Miriam Isola
- grid.5390.f0000 0001 2113 062XDivision of Medical Statistics, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Carlo Tascini
- grid.5390.f0000 0001 2113 062XInfectious Diseases Division, Department of Medicine, University of Udine and Azienda sanitaria universitaria Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
12
|
Euliano EM, Sklavounos AA, Wheeler AR, McHugh KJ. Translating diagnostics and drug delivery technologies to low-resource settings. Sci Transl Med 2022; 14:eabm1732. [PMID: 36223447 PMCID: PMC9716722 DOI: 10.1126/scitranslmed.abm1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diagnostics and drug delivery technologies engineered for low-resource settings aim to meet their technical design specifications using strategies that are compatible with limited equipment, infrastructure, and operator training. Despite many preclinical successes, very few of these devices have been translated to the clinic. Here, we identify factors that contribute to the clinical success of diagnostics and drug delivery systems for low-resource settings, including the need to engage key stakeholders at an early stage, and provide recommendations for the clinical translation of future medical technologies.
Collapse
Affiliation(s)
- Erin M. Euliano
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| | - Alexandros A. Sklavounos
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto; Toronto, Ontario M5S 3G9, Canada
| | - Kevin J. McHugh
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| |
Collapse
|
13
|
Xu J, Kerr L, Jiang Y, Suo W, Zhang L, Lao T, Chen Y, Zhang Y. Rapid Antigen Diagnostics as Frontline Testing in the COVID-19 Pandemic. SMALL SCIENCE 2022; 2:2200009. [PMID: 35942171 PMCID: PMC9349911 DOI: 10.1002/smsc.202200009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
The ongoing global COVID-19 pandemic, caused by the SARS-CoV-2 virus, has resulted in significant loss of life since December 2019. Timely and precise virus detection has been proven as an effective solution to reduce the spread of the virus and to track the epidemic. Rapid antigen diagnostics has played a significant role in the frontline of COVID-19 testing because of its convenience, low cost, and high accuracy. Herein, different types of recently innovated in-lab and commercial antigen diagnostic technologies with emphasis on the strengths and limitations of these technologies including the limit of detection, sensitivity, specificity, affordability, and usability are systematically reviewed. The perspectives of assay development are looked into.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Systems BiologyBlavatnik InstituteHarvard Medical SchoolBostonMA02115USA
- Department of Molecular VirologyVirogin Biotech Ltd.3800 Wesbrook MallVancouverBCV6S 2L9Canada
| | - Liam Kerr
- Department of Mechanical EngineeringCenter for Intelligent MachinesMcGill UniversityMontrealQCH3A0C3Canada
| | - Yue Jiang
- China-Australia Institute for Advanced Materials and ManufacturingJiaxing UniversityJiaxing314001China
| | - Wenhao Suo
- Dana-Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
- Department of PathologyThe First Affiliated Hospital of Xiamen University55 Zhenhai RoadXiamen361003China
| | - Lei Zhang
- Department of Chemical EngineeringWaterloo Institute for NanotechnologyUniversity of Waterloo200 University Avenue WestWaterlooONN2L3G1Canada
| | - Taotao Lao
- Department of Molecular DiagnosticsBoston Molecules Inc.564 Main StreetWalthamMA02452USA
- Center for Immunology and Inflammatory DiseasesMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02114USA
| | - Yuxin Chen
- Department of Laboratory MedicineNanjing Drum Tower HospitalNanjing University Medical SchoolNanjingJiangsu210008China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-EfficiencyCollaborative Innovation Center of Chemical Science and EngineeringSchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072China
- Frontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072China
| |
Collapse
|
14
|
Tobik ER, Kitfield-Vernon LB, Thomas RJ, Steel SA, Tan SH, Allicock OM, Choate BL, Akbarzada S, Wyllie AL. Saliva as a sample type for SARS-CoV-2 detection: implementation successes and opportunities around the globe. Expert Rev Mol Diagn 2022; 22:519-535. [PMID: 35763281 DOI: 10.1080/14737159.2022.2094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Symptomatic testing and asymptomatic screening for SARS-CoV-2 continue to be essential tools for mitigating virus transmission. Though COVID-19 diagnostics initially defaulted to oropharyngeal or nasopharyngeal sampling, the worldwide urgency to expand testing efforts spurred innovative approaches and increased diversity of detection methods. Strengthening innovation and facilitating widespread testing remains critical for global health, especially as additional variants emerge and other mitigation strategies are recalibrated. AREAS COVERED A growing body of evidence reflects the need to expand testing efforts and further investigate the efficiency, sensitivity, and acceptability of saliva samples for SARS-CoV-2 detection. Countries have made pandemic response decisions based on resources, costs, procedures, and regional acceptability - the adoption and integration of saliva-based testing among them. Saliva has demonstrated high sensitivity and specificity while being less invasive relative to nasopharyngeal swabs, securing saliva's position as a more acceptable sample type. EXPERT OPINION Despite the accessibility and utility of saliva sampling, global implementation remains low compared to swab-based approaches. In some cases, countries have validated saliva-based methods but face challenges with testing implementation or expansion. Here, we review the localities that have demonstrated success with saliva-based SARS-CoV-2 testing approaches and can serve as models for transforming concepts into globally-implemented best practices.
Collapse
Affiliation(s)
- Emily R Tobik
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lily B Kitfield-Vernon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Russell J Thomas
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sydney A Steel
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Steph H Tan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Brittany L Choate
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sumaira Akbarzada
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Bwogi J, Lutalo T, Tushabe P, Bukenya H, Eliku JP, Ssewanyana I, Nabadda S, Nsereko C, Cotten M, Downing R, Lutwama J, Kaleebu P. Field evaluation of the performance of seven Antigen Rapid diagnostic tests for the diagnosis of SARs-CoV-2 virus infection in Uganda. PLoS One 2022; 17:e0265334. [PMID: 35536792 PMCID: PMC9089886 DOI: 10.1371/journal.pone.0265334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the performance of seven antigen rapid diagnostic tests (Ag RDTs) in a clinical setting to identify those that could be recommended for use in the diagnosis of SARS-CoV-2 infection in Uganda. METHODS This was a cross-sectional prospective study. Nasopharyngeal swabs were collected consecutively from COVID-19 PCR positive and COVID-19 PCR negative participants at isolation centers and points of entry, and tested with the SARS-CoV-2 Ag RDTs. Test sensitivity and specificity were generated by comparing results against qRT-PCR results (Berlin Protocol) at a cycle threshold (Ct) cut-off of ≤39. Sensitivity was also calculated at Ct cut-offs ≤29 and ≤33. RESULTS None of the Ag RDTs had a sensitivity of ≥80% at Ct cut-off values ≤33 and ≤39. Two kits, Panbio™ COVID-19 Ag and VivaDiag™ SARS-CoV-2 Ag had a sensitivity of ≥80% at a Ct cut-off value of ≤29. Four kits: BIOCREDIT COVID -19 Ag, COVID-19 Ag Respi-Strip, MEDsan® SARS-CoV-2 Antigen Rapid Test and Panbio™ COVID-19 Ag Rapid Test had a specificity of ≥97%. CONCLUSIONS This evaluation identified one Ag RDT, Panbio™ COVID-19 Ag with a performance at high viral load (Ct value ≤29) reaching that recommended by WHO. This kit was recommended for screening of patients with COVID -19-like symptoms presenting at health facilities.
Collapse
Affiliation(s)
| | - Tom Lutalo
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | | | | | | | | | - Matthew Cotten
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | | | - Pontiano Kaleebu
- Uganda Virus Research Institute, Entebbe, Uganda
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | | |
Collapse
|
16
|
Muacevic A, Adler JR, Aibinuomo AO, Ipinnimo TM, Ilesanmi MO, Adu JA. Assessment of the Quality of COVID-19 Antigen Rapid Diagnostic Testing in the Testing Sites of Ekiti State, Nigeria: A Quality Improvement Cross-Sectional Study. Cureus 2022; 14:e24173. [PMID: 35586352 PMCID: PMC9108682 DOI: 10.7759/cureus.24173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/13/2023] Open
Abstract
Background Antigen rapid diagnostic testing (Ag-RDT) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important testing technique used for the control and containment of COVID-19. This study aims to assess the quality of COVID-19 Ag-RDT in the testing sites in Ekiti State, Nigeria. Methods A validated World Health Organization (WHO) questionnaire was used to collect data from 138 testing sites located in 138 health facilities in Ekiti State. The assessment was based on the activities carried out in the last three months before the study. Results A total of 138 testing sites participated in the study out of which 121 (87.7%) were primary health facility testing sites. The mean number of samples tested in these sites was 26 samples, and 97 (70.3%) testing sites were tested below this. The average quality performance of the secondary/tertiary health facility testing sites (64.46 ± 10.47) was significantly higher than that of the primary health facility testing sites (53.13 ± 13.54) (p = 0.002). Additionally, the average quality performance of testing sites that tested 26 samples or more (61.61 ± 9.84) was significantly higher than that of the testing sites that tested below this mean cut-off (51.53 ± 13.97) (p < 0.001). Conclusion The majority of the testing sites that tested below the mean 26 samples, secondary/tertiary health facility testing sites, and sites that tested above the mean cut-off had higher average quality performance scores. Therefore, encouraging clinicians to refer for more testing of suspected cases and supportive supervision of COVID-19 Ag-RDT, especially in primary health facilities, is recommended.
Collapse
|
17
|
Field Experiences with Handheld Diagnostic Devices to Triage Children under Five Presenting with Severe Febrile Illness in a District Hospital in DR Congo. Diagnostics (Basel) 2022; 12:diagnostics12030746. [PMID: 35328299 PMCID: PMC8947034 DOI: 10.3390/diagnostics12030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
As part of a field study (NCT04473768) in children presenting with severe febrile illness to Kisantu hospital (DR Congo), we retrospectively compiled user experiences (not performance) with handheld diagnostic devices assisting triage: tympanic thermometer, pulse oximeter (measuring heart rate, respiratory rate and oxygen saturation), hemoglobinometer and glucometer. Guidance documents for product selection were generic and scattered. Stock rupture, market withdrawal and unaffordable prices interfered with procurement. Challenges at implementation included environmental temperature, capillary blood sampling (antisepsis, order of multiple tests, filling microcuvettes and glucose strips), calibration (environmental temperature, cold chain) and liability-oriented communication with a manufacturer. Instructions for use were readable and contained symbol keys; two devices had printed French-language instructions. Shortcomings were poor integration of figures with text and distinct procedures for the oximeter and its sensor. Usability interview revealed appreciations for quick results, visibility of the display and memory function (three devices) but also problems of capillary blood sample transfer, cleaning, too long of a time-to-results (respiratory rate) and size, fitting and disposal of thermometer probes. Pictorial error messages were preferred over alphanumeric error codes but interpretation of symbols was poor. Alarm sounds of the oximeter caused unrest in children and caretakers perceived the device as associated with poor prognosis.
Collapse
|
18
|
Dzinamarira T, Murewanhema G, Iradukunda PG, Madziva R, Herrera H, Cuadros DF, Tungwarara N, Chitungo I, Musuka G. Utilization of SARS-CoV-2 Wastewater Surveillance in Africa-A Rapid Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:969. [PMID: 35055789 PMCID: PMC8775514 DOI: 10.3390/ijerph19020969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Wastewater-based epidemiology for SARS-CoV-2 RNA detection in wastewater is desirable for understanding COVID-19 in settings where financial resources and diagnostic facilities for mass individual testing are severely limited. We conducted a rapid review to map research evidence on the utilization of SARS-CoV-2 wastewater surveillance in Africa. We searched PubMed, Google Scholar, and the World Health Organization library databases for relevant reports, reviews, and primary observational studies. Eight studies met the inclusion criteria. Narrative synthesis of the findings from included primary studies revealed the testing methodologies utilized and that detected amount of SARS-CoV-2 viral RNA correlated with the number of new cases in the studied areas. The included reviews revealed the epidemiological significance and environmental risks of SARS-CoV-2 wastewater. Wastewater surveillance data at the community level can be leveraged for the rapid assessment of emerging threats and aid pandemic preparedness. Our rapid review revealed a glaring gap in the primary literature on SARS-CoV-2 wastewater surveillance on the continent, and accelerated and adequate investment into research is urgently needed to address this gap.
Collapse
Affiliation(s)
- Tafadzwa Dzinamarira
- School of Health Systems & Public Health, University of Pretoria, Pretoria 0002, South Africa
- ICAP at Columbia University, Harare, Zimbabwe;
| | - Grant Murewanhema
- Unit of Obstetrics and Gynaecology, Department of Primary Health Care Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe;
| | - Patrick Gad Iradukunda
- London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HU, UK;
| | - Roda Madziva
- School of Sociology and Social Policy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Helena Herrera
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Diego F. Cuadros
- Department of Geography and Geographic Information Science, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Nigel Tungwarara
- Department of Health Studies, University of South Africa, Pretoria 0002, South Africa;
| | - Itai Chitungo
- Chemical Pathology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe;
| | | |
Collapse
|
19
|
Abstract
Unique pneumonia due to an unknown source emerged in December 2019 in the city of Wuhan, China. Consequently, the World Health Organization (WHO) declared this condition as a new coronavirus disease-19 also known as COVID-19 on February 11, 2020, which on March 13, 2020 was declared as a pandemic. The virus that causes COVID-19 was found to have a similar genome (80% similarity) with the previously known acute respiratory syndrome also known as SARS-CoV. The novel virus was later named Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 falls in the family of Coronaviridae which is further divided into Nidovirales and another subfamily called Orthocoronavirinae. The four generations of the coronaviruses belongs to the Orthocoronavirinae family that consists of alpha, beta, gamma and delta coronavirus which are denoted as α-CoV, β-CoV, γ-CoV, δ-CoV respectively. The α-CoV and β-CoVs are mainly known to infect mammals whereas γ-CoV and δ-CoV are generally found in birds. The β-CoVs also comprise of SARS-CoV and also include another virus that was found in the Middle East called the Middle East respiratory syndrome virus (MERS-CoV) and the cause of current pandemic SARS-CoV-2. These viruses initially cause the development of pneumonia in the patients and further development of a severe case of acute respiratory distress syndrome (ARDS) and other related symptoms that can be fatal leading to death.
Collapse
|
20
|
Lutalo T, Nalumansi A, Olara D, Kayiwa J, Ogwang B, Odwilo E, Watera C, Balinandi S, Kiconco J, Nakaseegu J, Serwanga J, Kikaire B, Ssemwanga D, Abiko B, Nsereko C, Cotten M, Buule J, Lutwama J, Downing R, Kaleebu P. Evaluation of the performance of 25 SARS-CoV-2 serological rapid diagnostic tests using a reference panel of plasma specimens at the Uganda Virus Research Institute. Int J Infect Dis 2021; 112:281-287. [PMID: 34536612 PMCID: PMC8442260 DOI: 10.1016/j.ijid.2021.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Serological testing is needed to better understand the epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Rapid diagnostic tests (RDTs) have been developed to detect specific antibodies, IgM and IgG, to the virus. The performance of 25 of these RDTs was evaluated. METHODS A serological reference panel of 50 positive and 100 negative plasma specimens was developed from SARS-CoV-2 PCR and antibody positive patients and pre-pandemic SARS-CoV-2-negative specimens collected in 2016. Test performance of the 25 RDTs was evaluated against this panel. RESULTS A total of 10 RDTs had a sensitivity ≥98%, while 13 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Four RDTs (Boson, MultiG, Standard Q, and VivaDiag) had both sensitivity and specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Only three RDTs had a sensitivity ≥98%, while 10 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgM antibodies. Three RDTs (Autobio, MultiG, and Standard Q) had sensitivity and specificity ≥98% to combined IgG/IgM. The RDTs that performed well also had perfect or almost perfect inter-reader agreement. CONCLUSIONS This evaluation identified three RDTs with a sensitivity and specificity to IgM/IgG antibodies of ≥98% with the potential for widespread antibody testing in Uganda.
Collapse
Affiliation(s)
- Tom Lutalo
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Aminah Nalumansi
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Denis Olara
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - John Kayiwa
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Bernard Ogwang
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Emmanuel Odwilo
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Christine Watera
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Stephen Balinandi
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Jocelyn Kiconco
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Joweria Nakaseegu
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Jennifer Serwanga
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda; Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, PO Box 49, Plot 1-59, Nakiwogo Road, Entebbe, Uganda
| | - Bernard Kikaire
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Deogratius Ssemwanga
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda; Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, PO Box 49, Plot 1-59, Nakiwogo Road, Entebbe, Uganda
| | - Brendah Abiko
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Christopher Nsereko
- Entebbe Regional Referral Hospital, PO Box 29, Kampala Road, Entebbe, Uganda
| | - Matthew Cotten
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, PO Box 49, Plot 1-59, Nakiwogo Road, Entebbe, Uganda
| | - Joshua Buule
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Julius Lutwama
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Robert Downing
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda
| | - Pontiano Kaleebu
- Uganda Virus Research Institute, PO Box 49, Plot 51-59, Nakiwogo Road, Entebbe, Uganda; Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, PO Box 49, Plot 1-59, Nakiwogo Road, Entebbe, Uganda.
| |
Collapse
|
21
|
Puyskens A, Krause E, Michel J, Nübling CM, Scheiblauer H, Bourquain D, Grossegesse M, Valusenko R, Corman VM, Drosten C, Zwirglmaier K, Wölfel R, Lange C, Kramer J, Friesen J, Ignatius R, Müller M, Schmidt-Chanasit J, Emmerich P, Schaade L, Nitsche A. Establishment of a specimen panel for the decentralised technical evaluation of the sensitivity of 31 rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Euro Surveill 2021; 26:2100442. [PMID: 34738516 PMCID: PMC8569922 DOI: 10.2807/1560-7917.es.2021.26.44.2100442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
IntroductionThe detection of SARS-CoV-2 with rapid diagnostic tests (RDT) has become an important tool to identify infected people and break infection chains. These RDT are usually based on antigen detection in a lateral flow approach.AimWe aimed to establish a comprehensive specimen panel for the decentralised technical evaluation of SARS-CoV-2 antigen rapid diagnostic tests.MethodsWhile for PCR diagnostics the validation of a PCR assay is well established, there is no common validation strategy for antigen tests, including RDT. In this proof-of-principle study we present the establishment of a panel of 50 pooled clinical specimens that cover a SARS-CoV-2 concentration range from 1.1 × 109 to 420 genome copies per mL of specimen. The panel was used to evaluate 31 RDT in up to six laboratories.ResultsOur results show that there is considerable variation in the detection limits and the clinical sensitivity of different RDT. We show that the best RDT can be applied to reliably identify infectious individuals who present with SARS-CoV-2 loads down to 106 genome copies per mL of specimen. For the identification of infected individuals with SARS-CoV-2 loads corresponding to less than 106 genome copies per mL, only three RDT showed a clinical sensitivity of more than 60%.ConclusionsSensitive RDT can be applied to identify infectious individuals with high viral loads but not to identify all infected individuals.
Collapse
Affiliation(s)
- Andreas Puyskens
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Eva Krause
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Janine Michel
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - C Micha Nübling
- Testing Laboratory for In-vitro Diagnostic Medical Devices, Paul-Ehrlich-Institute, Langen, Germany
| | - Heinrich Scheiblauer
- Testing Laboratory for In-vitro Diagnostic Medical Devices, Paul-Ehrlich-Institute, Langen, Germany
| | - Daniel Bourquain
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Marica Grossegesse
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Roman Valusenko
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin, Institute of Virology and German Centre for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
- Labor Berlin, Charité - Vivantes GmbH, Berlin, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin, Institute of Virology and German Centre for Infection Research (DZIF), Associated Partner Site, Berlin, Germany
| | - Katrin Zwirglmaier
- Bundeswehr Institute of Microbiology and German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology and German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Constanze Lange
- LADR Central Laboratory Dr. Kramer & Colleagues, Geesthacht, Germany
| | - Jan Kramer
- LADR Central Laboratory Dr. Kramer & Colleagues, Geesthacht, Germany
| | | | | | | | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Arbovirology Department, Hamburg, Germany
| | - Petra Emmerich
- Bernhard Nocht Institute for Tropical Medicine, Arbovirology Department, Hamburg, Germany
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, Rostock, Germany
| | - Lars Schaade
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Robert Koch Institute, Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
22
|
Wamai RG, Hirsch JL, Van Damme W, Alnwick D, Bailey RC, Hodgins S, Alam U, Anyona M. What Could Explain the Lower COVID-19 Burden in Africa despite Considerable Circulation of the SARS-CoV-2 Virus? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8638. [PMID: 34444386 PMCID: PMC8391172 DOI: 10.3390/ijerph18168638] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023]
Abstract
The differential spread and impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing Coronavirus Disease 2019 (COVID-19), across regions is a major focus for researchers and policy makers. Africa has attracted tremendous attention, due to predictions of catastrophic impacts that have not yet materialized. Early in the pandemic, the seemingly low African case count was largely attributed to low testing and case reporting. However, there is reason to consider that many African countries attenuated the spread and impacts early on. Factors explaining low spread include early government community-wide actions, population distribution, social contacts, and ecology of human habitation. While recent data from seroprevalence studies posit more extensive circulation of the virus, continuing low COVID-19 burden may be explained by the demographic pyramid, prevalence of pre-existing conditions, trained immunity, genetics, and broader sociocultural dynamics. Though all these prongs contribute to the observed profile of COVID-19 in Africa, some provide stronger evidence than others. This review is important to expand what is known about the differential impacts of pandemics, enhancing scientific understanding and gearing appropriate public health responses. Furthermore, it highlights potential lessons to draw from Africa for global health on assumptions regarding deadly viral pandemics, given its long experience with infectious diseases.
Collapse
Affiliation(s)
- Richard G. Wamai
- Department of Cultures, Societies, and Global Studies, Northeastern University, 201 Renaissance Park, 360 Huntington Ave., Boston, MA 02115, USA;
| | - Jason L. Hirsch
- Department of Cultures, Societies, and Global Studies, Northeastern University, 201 Renaissance Park, 360 Huntington Ave., Boston, MA 02115, USA;
| | - Wim Van Damme
- Department of Public Health, Institute of Tropical Medicine, B-2000 Antwerp, Belgium;
| | - David Alnwick
- DUNDEX (Deployable U.N.-Experienced Development Experts), FX68 Belturbet, Ireland;
| | - Robert C. Bailey
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Stephen Hodgins
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Uzma Alam
- Researcher Africa Institute for Health Policy Foundation, Nairobi 020, Kenya;
| | - Mamka Anyona
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| |
Collapse
|
23
|
Vanroye F, den Bossche DV, Brosius I, Tack B, Esbroeck MV, Jacobs J. COVID-19 Antibody Detecting Rapid Diagnostic Tests Show High Cross-Reactivity When Challenged with Pre-Pandemic Malaria, Schistosomiasis and Dengue Samples. Diagnostics (Basel) 2021; 11:diagnostics11071163. [PMID: 34202195 PMCID: PMC8305106 DOI: 10.3390/diagnostics11071163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 Antibody Detecting Rapid Diagnostic Tests (COVID-19 Ab RDTs) are the preferred tool for SARS-CoV-2 seroprevalence studies, particularly in low- and middle-income countries. The present study challenged COVID-19 Ab RDTs with pre-pandemic samples of patients exposed to tropical pathogens. A retrospective study was performed on archived serum (n = 94) and EDTA whole blood (n = 126) samples obtained during 2010–2018 from 196 travelers with malaria (n = 170), schistosomiasis (n = 25) and dengue (n = 25). COVID-19 Ab RDTs were selected based on regulatory approval status, independent evaluation results and detecting antigens. Among 13 COVID-19 Ab RDT products, overall cross-reactivity was 18.5%; cross-reactivity for malaria, schistosomiasis and dengue was 20.3%, 18.1% and 7.5%, respectively. Cross-reactivity for current and recent malaria, malaria antibodies, Plasmodium species and parasite densities was similar. Cross-reactivity among the different RDT products ranged from 2.7% to 48.9% (median value 14.5%). IgM represented 67.9% of cross-reactive test lines. Cross-reactivity was not associated with detecting antigens, patient categories or disease (sub)groups, except for schistosomiasis (two products with ≥60% cross-reactivity). The high cross-reactivity for malaria, schistosomiasis and—to a lesser extent—dengue calls for risk mitigation when using COVID-19 Ab RDTs in co-endemic regions.
Collapse
Affiliation(s)
- Fien Vanroye
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (D.V.d.B.); (I.B.); (B.T.); (M.V.E.); (J.J.)
- Correspondence:
| | - Dorien Van den Bossche
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (D.V.d.B.); (I.B.); (B.T.); (M.V.E.); (J.J.)
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (D.V.d.B.); (I.B.); (B.T.); (M.V.E.); (J.J.)
| | - Bieke Tack
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (D.V.d.B.); (I.B.); (B.T.); (M.V.E.); (J.J.)
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (D.V.d.B.); (I.B.); (B.T.); (M.V.E.); (J.J.)
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (D.V.d.B.); (I.B.); (B.T.); (M.V.E.); (J.J.)
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Differential Performance of CoronaCHEK SARS-CoV-2 Lateral Flow Antibody Assay by Geographic Origin of Samples. J Clin Microbiol 2021; 59:e0083721. [PMID: 33903166 DOI: 10.1128/jcm.00837-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We assessed the performance of the CoronaCHEK lateral flow assay on samples from Uganda and Baltimore to determine the impact of geographic origin on assay performance. Plasma samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-positive individuals (Uganda, 78 samples from 78 individuals, and Baltimore, 266 samples from 38 individuals) and from prepandemic individuals (Uganda, 1,077, and Baltimore, 532) were evaluated. Prevalence ratios (PR) were calculated to identify factors associated with a false-positive test. After the first positive PCR in Ugandan samples, the sensitivity was 45% (95% confidence interval [CI], 24,68) at 0 to 7 days, 79% (95% CI, 64 to 91) at 8 to 14 days, and 76% (95% CI, 50 to 93) at >15 days. In samples from Baltimore, sensitivity was 39% (95% CI, 30 to 49) at 0 to 7 days, 86% (95% CI, 79 to 92) at 8 to 14 days, and 100% (95% CI, 89 to 100) at 15 days after positive PCR. The specificity of 96.5% (95% CI, 97.5 to 95.2) in Ugandan samples was significantly lower than that in samples from Baltimore, 99.3% (95% CI, 98.1 to 99.8; P < 0.01). In Ugandan samples, individuals with a false-positive result were more likely to be male (PR, 2.04; 95% CI, 1.03,3.69) or individuals who had had a fever more than a month prior to sample acquisition (PR, 2.87; 95% CI, 1.12 to 7.35). Sensitivity of the CoronaCHEK was similar in samples from Uganda and Baltimore. The specificity was significantly lower in Ugandan samples than in Baltimore samples. False-positive results in Ugandan samples appear to correlate with a recent history of a febrile illness, potentially indicative of a cross-reactive immune response in individuals from East Africa.
Collapse
|
25
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021; 47:100. [PMID: 33846767 PMCID: PMC8043662 DOI: 10.3892/ijmm.2021.4933] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
- Research Center for the Prevention, Diagnosis and Treatment of Tumors, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
26
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021. [PMID: 33846767 DOI: 10.3892/ijmm.2021.4933/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute‑IRCCS 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
27
|
Dierks S, Bader O, Schwanbeck J, Groß U, Weig MS, Mese K, Lugert R, Bohne W, Hahn A, Feltgen N, Torkieh S, Denker FR, Lauermann P, Storch MW, Frickmann H, Zautner AE. Diagnosing SARS-CoV-2 with Antigen Testing, Transcription-Mediated Amplification and Real-Time PCR. J Clin Med 2021; 10:2404. [PMID: 34072381 PMCID: PMC8199284 DOI: 10.3390/jcm10112404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
This study was performed as a head-to-head comparison of the performance characteristics of (1) two SARS-CoV-2-specific rapid antigen assays with real-time PCR as gold standard as well as (2) a fully automated high-throughput transcription-mediated amplification (TMA) assay and real-time PCR in a latent class analysis-based test comparison without a gold standard with several hundred samples in a low prevalence "real world" setting. Recorded sensitivity and specificity of the NADAL and the LumiraDx antigen assays and the Hologic Aptima SARS-CoV-2 TMA assay were 0.1429 (0.0194, 0.5835), 0.7644 (0.7016, 0.8174), and 0.7157 (0, 1) as well as 0.4545 (0.2022, 0.7326), 0.9954 (0.9817, 0.9988), and 0.9997 (not estimable), respectively. Agreement kappa between the positive results of the two antigen-based assays was 0.060 (0.002, 0.167) and 0.659 (0.492, 0.825) for TMA and real-time PCR. Samples with low viral load as indicated by cycle threshold (Ct) values > 30 were generally missed by both antigen assays, while 1:10 pooling suggested higher sensitivity of TMA compared to real-time PCR. In conclusion, both sensitivity and specificity speak in favor of the use of the LumiraDx rather than the NADAL antigen assay, while TMA results are comparably as accurate as PCR, when applied in a low prevalence setting.
Collapse
Affiliation(s)
- Sascha Dierks
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| | - Julian Schwanbeck
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| | - Michael S. Weig
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| | - Kemal Mese
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| | - Raimond Lugert
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (A.H.); (H.F.)
| | - Nicolas Feltgen
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany; (N.F.); (S.T.); (F.R.D.); (P.L.); (M.W.S.)
| | - Setare Torkieh
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany; (N.F.); (S.T.); (F.R.D.); (P.L.); (M.W.S.)
| | - Fenja R. Denker
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany; (N.F.); (S.T.); (F.R.D.); (P.L.); (M.W.S.)
| | - Peer Lauermann
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany; (N.F.); (S.T.); (F.R.D.); (P.L.); (M.W.S.)
| | - Marcus W. Storch
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany; (N.F.); (S.T.); (F.R.D.); (P.L.); (M.W.S.)
| | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany; (A.H.); (H.F.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
| | - Andreas Erich Zautner
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (O.B.); (J.S.); (U.G.); (M.S.W.); (K.M.); (R.L.); (W.B.)
| |
Collapse
|
28
|
Borrelli M, Corcione A, Castellano F, Fiori Nastro F, Santamaria F. Coronavirus Disease 2019 in Children. Front Pediatr 2021; 9:668484. [PMID: 34123972 PMCID: PMC8193095 DOI: 10.3389/fped.2021.668484] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
Since its appearance in Wuhan in mid-December 2019, acute respiratory syndrome coronavirus 2 (SARS-CoV-2) related 19 coronavirus disease (COVID-19) has spread dramatically worldwide. It soon became apparent that the incidence of pediatric COVID-19 was much lower than the adult form. Morbidity in children is characterized by a variable clinical presentation and course. Symptoms are similar to those of other acute respiratory viral infections, the upper airways being more affected than the lower airways. Thus far, over 90% of children who tested positive for the virus presented mild or moderate symptoms and signs. Most children were asymptomatic, and only a few cases were severe, unlike in the adult population. Deaths have been rare and occurred mainly in children with underlying morbidity. Factors as reduced angiotensin-converting enzyme receptor expression, increased activation of the interferon-related innate immune response, and trained immunity have been implicated in the relative resistance to COVID-19 in children, however the underlying pathogenesis and mechanism of action remain to be established. While at the pandemic outbreak, mild respiratory manifestations were the most frequently described symptoms in children, subsequent reports suggested that the clinical course of COVID-19 is more complex than initially thought. Thanks to the experience acquired in adults, the diagnosis of pediatric SARS-CoV-2 infection has improved with time. Data on the treatment of children are sparse, however, several antiviral trials are ongoing. The purpose of this narrative review is to summarize current understanding of pediatric SARS-CoV-2 infection and provide more accurate information for healthcare workers and improve the care of patients.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Santamaria
- Section of Pediatrics, Pediatric Pulmonology Unit, Department of Translational Medical Sciences, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
29
|
Orekan J, Barbé B, Oeng S, Ronat JB, Letchford J, Jacobs J, Affolabi D, Hardy L. Culture media for clinical bacteriology in low- and middle-income countries: challenges, best practices for preparation and recommendations for improved access. Clin Microbiol Infect 2021; 27:1400-1408. [PMID: 34015533 DOI: 10.1016/j.cmi.2021.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Culture media are fundamental in clinical microbiology. In laboratories in low- and middle-income countries (LMICs), they are mostly prepared in-house, which is challenging. OBJECTIVES This narrative review describes challenges related to culture media in LMICs, compiles best practices for in-house media preparation, gives recommendations to improve access to quality-assured culture media products in LMICs and formulates outstanding questions for further research. SOURCES Scientific literature was searched using PubMed and predefined MeSH terms. In addition, grey literature was screened, including manufacturer's websites and manuals as well as microbiology textbooks. CONTENT Bacteriology laboratories in LMICs often face challenges at multiple levels: lack of clean water and uninterrupted power supply, high environmental temperatures and humidity, dust, inexperienced and poorly trained staff, and a variable supply of consumables (often of poor quality). To deal with this at a base level, one should be very careful in selecting culture media. It is recommended to look for products supported by the national reference laboratory that are being distributed by an in-country supplier. Correct storage is key, as is appropriate preparation and waste management. Centralized media acquisition has been advocated for LMICs, a role that can be taken up by the national reference laboratories, next to guidance and support of the local laboratories. In addition, there is an important role in tropicalization and customization of culture media formulations for private in vitro diagnostic manufacturers, who are often still unfamiliar with the LMIC market and the plethora of bacteriology products. IMPLICATION The present narrative review will assist clinical microbiology laboratories in LMICs to establish best practices for handling culture media by defining quality, regulatory and research paths.
Collapse
Affiliation(s)
- Jeanne Orekan
- Clinical Microbiology, Centre National Hospitalier Universitaire Hubert Koutoukou Maga, Cotonou, Benin
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Sopheap Oeng
- Laboratory Department, Diagnostic Microbiology Development Program, Phnom Penh, Cambodia
| | - Jean-Baptiste Ronat
- Mini-Lab Project, Médecins Sans Frontières, Paris, France; Team ReSIST, INSERM U1184, School of Medicine University Paris-Saclay, France; Bacteriology-Hygiene Unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Joanne Letchford
- Laboratory Department, Diagnostic Microbiology Development Program, Phnom Penh, Cambodia
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dissou Affolabi
- Clinical Microbiology, Centre National Hospitalier Universitaire Hubert Koutoukou Maga, Cotonou, Benin
| | - Liselotte Hardy
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
30
|
Baker OR, Grabowski MK, Galiwango RM, Nalumansi A, Serwanga J, Clarke W, Hsieh YH, Rothman RE, Fernandez RE, Serwadda D, Kagaayi J, Lutalo T, Reynolds SJ, Kaleebu P, Quinn TC, Laeyendecker O. Differential Performance of CoronaCHEK SARS-CoV-2 Lateral Flow Antibody Assay by Geographic Origin of Samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.04.12.21255284. [PMID: 33880484 PMCID: PMC8057252 DOI: 10.1101/2021.04.12.21255284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background We assessed the performance of CoronaCHEK lateral flow assay on samples from Uganda and Baltimore to determine the impact of geographic origin on assay performance. Methods Serum samples from SARS-CoV-2 PCR+ individuals (Uganda: 78 samples from 78 individuals and Baltimore: 266 samples from 38 individuals) and from pre-pandemic individuals (Uganda 1077 and Baltimore 532) were evaluated. Prevalence ratios (PR) were calculated to identify factors associated with a false-positive test. Results After first positive PCR in Ugandan samples the sensitivity was: 45% (95% CI 24,68) at 0-7 days; 79% (95%CI 64,91) 8-14 days; and 76% (95%CI 50,93) >15 days. In samples from Baltimore, sensitivity was: 39% (95% CI 30, 49) 0-7 days; 86% (95% CI 79,92) 8-14 days; and 100% (95% CI 89,100) 15 days post positive PCR. The specificity of 96.5% (95% CI 97.5,95.2) in Ugandan samples was significantly lower than samples from Baltimore 99.3% (95% CI 98.1,99.8), p<0.01. In Ugandan samples, individuals with a false positive result were more likely to be male (PR 2.04, 95% CI 1.03,3.69) or individuals who had a fever more than a month prior to sample acquisition (PR 2.87, 95% CI 1.12,7.35). Conclusions Sensitivity of the CoronaCHEK was similar in samples from Uganda and Baltimore. The specificity was significantly lower in Ugandan samples than in Baltimore samples. False positive results in Ugandan samples appear to correlate with a recent history of a febrile illness, potentially indicative of a cross-reactive immune response in individuals from East Africa.
Collapse
Affiliation(s)
- Owen R. Baker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, USA
| | - M. Kate Grabowski
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Rakai Health Sciences Program, Kalisizo, Uganda
| | | | | | - Jennifer Serwanga
- Uganda Virus Research Institute, Entebbe, Uganda
- Medical Research Council, Uganda Virus Research Institute and London School of hygiene and Tropical Medicine Uganda Research Unit
| | - William Clarke
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu-Hsiang Hsieh
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - David Serwadda
- Rakai Health Sciences Program, Kalisizo, Uganda
- Makerere University School of Public Health, Kampala, Uganda
| | | | - Tom Lutalo
- Rakai Health Sciences Program, Kalisizo, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Rakai Health Sciences Program, Kalisizo, Uganda
| | - Pontiano Kaleebu
- Uganda Virus Research Institute, Entebbe, Uganda
- Medical Research Council, Uganda Virus Research Institute and London School of hygiene and Tropical Medicine Uganda Research Unit
| | - Thomas C. Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Yin N, Debuysschere C, Decroly M, Bouazza FZ, Collot V, Martin C, Ponthieux F, Dahma H, Gilbert M, Wautier M, Duterme C, De Vos N, Delforge ML, Malinverni S, Cotton F, Bartiaux M, Hallin M. SARS-CoV-2 Diagnostic Tests: Algorithm and Field Evaluation From the Near Patient Testing to the Automated Diagnostic Platform. Front Med (Lausanne) 2021; 8:650581. [PMID: 33889587 PMCID: PMC8055843 DOI: 10.3389/fmed.2021.650581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Since the first wave of COVID-19 in Europe, new diagnostic tools using antigen detection and rapid molecular techniques have been developed. Our objective was to elaborate a diagnostic algorithm combining antigen rapid diagnostic tests, automated antigen dosing and rapid molecular tests and to assess its performance under routine conditions. Methods: An analytical performance evaluation of four antigen rapid tests, one automated antigen dosing and one molecular point-of-care test was performed on samples sent to our laboratory for a SARS-CoV-2 reverse transcription PCR. We then established a diagnostic algorithm by approaching median viral loads in target populations and evaluated the limit of detection of each test using the PCR cycle threshold values. A field performance evaluation including a clinical validation and a user-friendliness assessment was then conducted on the antigen rapid tests in point-of-care settings (general practitioners and emergency rooms) for outpatients who were symptomatic for <7 days. Automated antigen dosing was trialed for the screening of asymptomatic inpatients. Results: Our diagnostic algorithm proposed to test recently symptomatic patients using rapid antigen tests, asymptomatic patients using automated tests, and patients requiring immediate admission using molecular point-of-care tests. Accordingly, the conventional reverse transcription PCR was kept as a second line tool. In this setting, antigen rapid tests yielded an overall sensitivity of 83.3% (not significantly different between the four assays) while the use of automated antigen dosing would have spared 93.5% of asymptomatic inpatient screening PCRs. Conclusion: Using tests not considered the "gold standard" for COVID-19 diagnosis on well-defined target populations allowed for the optimization of their intrinsic performances, widening the scale of our testing arsenal while sparing molecular resources for more seriously ill patients.
Collapse
Affiliation(s)
- Nicolas Yin
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Cyril Debuysschere
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fatima-Zohra Bouazza
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Collot
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Charlotte Martin
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Fanny Ponthieux
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Hafid Dahma
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Marius Gilbert
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Wautier
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Cecile Duterme
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie De Vos
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie-Luce Delforge
- Institut de Biologie Clinique, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefano Malinverni
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Frédéric Cotton
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Bartiaux
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Hallin
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium.,Center for Environmental Health and Occupational Health, Public Health School, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Soin N, Fishlock SJ, Kelsey C, Smith S. Triboelectric Effect Enabled Self-Powered, Point-of-Care Diagnostics: Opportunities for Developing ASSURED and REASSURED Devices. MICROMACHINES 2021; 12:337. [PMID: 33810006 PMCID: PMC8005158 DOI: 10.3390/mi12030337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.
Collapse
Affiliation(s)
- Navneet Soin
- School of Engineering, Ulster University, Belfast BT37 0QB, Northern Ireland, UK; (S.J.F.); (C.K.)
| | - Sam J. Fishlock
- School of Engineering, Ulster University, Belfast BT37 0QB, Northern Ireland, UK; (S.J.F.); (C.K.)
| | - Colin Kelsey
- School of Engineering, Ulster University, Belfast BT37 0QB, Northern Ireland, UK; (S.J.F.); (C.K.)
| | - Suzanne Smith
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
33
|
Mukwege D, Byabene AK, Akonkwa EM, Dahma H, Dauby N, Cikwanine Buhendwa JP, Le Coadou A, Montesinos I, Bruyneel M, Cadière GB, Vandenberg O, Van Laethem Y. High SARS-CoV-2 Seroprevalence in Healthcare Workers in Bukavu, Eastern Democratic Republic of Congo. Am J Trop Med Hyg 2021; 104:1526-1530. [PMID: 33591936 PMCID: PMC8045652 DOI: 10.4269/ajtmh.20-1526] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Among 359 healthcare workers (HCW) employed in Panzi General Referral Hospital located in Bukavu in the Democratic Republic of Congo, 148 (41.2%) tested positive for SARS-CoV-2 antibodies. Thirty-three (22.3%) of the 148 personnel with positive serology reported symptoms evoking a prior COVID-19 illness. None of the infected HCWs reported COVID-related hospitalization, and all of them recovered. Our findings indicate high and underestimated circulation of SARS-CoV-2 within the Bukavu area.
Collapse
Affiliation(s)
- Denis Mukwege
- 1Gynaecology and General Surgery, Panzi General Referral Hospital, Bukavu, Democratic Republic of Congo.,2Faculty of Medicine, Evangelical University in Africa, Bukavu, Democratic Republic of Congo
| | - Aline Kusinza Byabene
- 2Faculty of Medicine, Evangelical University in Africa, Bukavu, Democratic Republic of Congo
| | - Eric Mungu Akonkwa
- 1Gynaecology and General Surgery, Panzi General Referral Hospital, Bukavu, Democratic Republic of Congo.,2Faculty of Medicine, Evangelical University in Africa, Bukavu, Democratic Republic of Congo
| | - Hafid Dahma
- 3Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Dauby
- 4Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium.,5Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium.,6Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Anne Le Coadou
- 5Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabel Montesinos
- 3Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Bruyneel
- 7Department of Pulmonary Medicine, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy-Bernard Cadière
- 8Department of Gastrointestinal Surgery, European School of Laparoscopic Surgery, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Vandenberg
- 5Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium.,9Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Yves Van Laethem
- 4Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
34
|
Nachega JB, Atteh R, Ihekweazu C, Sam-Agudu NA, Adejumo P, Nsanzimana S, Rwagasore E, Condo J, Paleker M, Mahomed H, Suleman F, Ario AR, Kiguli-Malwadde E, Omaswa FG, Sewankambo NK, Viboud C, Reid MJA, Zumla A, Kilmarx PH. Contact Tracing and the COVID-19 Response in Africa: Best Practices, Key Challenges, and Lessons Learned from Nigeria, Rwanda, South Africa, and Uganda. Am J Trop Med Hyg 2021; 104:1179-1187. [PMID: 33571138 PMCID: PMC8045625 DOI: 10.4269/ajtmh.21-0033] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Most African countries have recorded relatively lower COVID-19 burdens than Western countries. This has been attributed to early and strong political commitment and robust implementation of public health measures, such as nationwide lockdowns, travel restrictions, face mask wearing, testing, contact tracing, and isolation, along with community education and engagement. Other factors include the younger population age strata and hypothesized but yet-to-be confirmed partially protective cross-immunity from parasitic diseases and/or other circulating coronaviruses. However, the true burden may also be underestimated due to operational and resource issues for COVID-19 case identification and reporting. In this perspective article, we discuss selected best practices and challenges with COVID-19 contact tracing in Nigeria, Rwanda, South Africa, and Uganda. Best practices from these country case studies include sustained, multi-platform public communications; leveraging of technology innovations; applied public health expertise; deployment of community health workers; and robust community engagement. Challenges include an overwhelming workload of contact tracing and case detection for healthcare workers, misinformation and stigma, and poorly sustained adherence to isolation and quarantine. Important lessons learned include the need for decentralization of contact tracing to the lowest geographic levels of surveillance, rigorous use of data and technology to improve decision-making, and sustainment of both community sensitization and political commitment. Further research is needed to understand the role and importance of contact tracing in controlling community transmission dynamics in African countries, including among children. Also, implementation science will be critically needed to evaluate innovative, accessible, and cost-effective digital solutions to accommodate the contact tracing workload.
Collapse
Affiliation(s)
- Jean B Nachega
- 1Department of Medicine and Center for Infectious Diseases, Stellenbosch University Faculty of Medicine and Health Sciences, Cape Town, South Africa.,2Department of Epidemiology, Infectious Diseases and Microbiology, Center for Global Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,3Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,4Department of International Health, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Rhoda Atteh
- 5Surveillance and Epidemiology, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Chikwe Ihekweazu
- 6Office of the Director-General, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Nadia A Sam-Agudu
- 7International Research Center of Excellence, Institute of Human Virology Nigeria, Abuja, Nigeria.,8Department of Pediatrics, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.,9Department of Pediatrics and Child Health, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Prisca Adejumo
- 10Department of Nursing, University of Ibadan, Ibadan, Nigeria
| | | | - Edson Rwagasore
- 11Rwanda Biomedical Centre, Ministry of Health, Kigali, Rwanda
| | - Jeanine Condo
- 12University of Rwanda, School of Public Health, Kigali, Rwanda.,13School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Masudah Paleker
- 14South African Department of Health, Western Cape Province, Cape Town, South Africa.,15Division of Health Systems and Public Health, Department of Global Health, Stellenbosch Faculty of Medicine and Health Sciences and Western Cape Department of Health, Cape Town, South Africa
| | - Hassan Mahomed
- 14South African Department of Health, Western Cape Province, Cape Town, South Africa.,15Division of Health Systems and Public Health, Department of Global Health, Stellenbosch Faculty of Medicine and Health Sciences and Western Cape Department of Health, Cape Town, South Africa
| | - Fatima Suleman
- 16Discipline of Pharmaceutical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Alex Riolexus Ario
- 17Uganda National Institute of Public Health, Ministry of Health, Kampala, Uganda
| | | | - Francis G Omaswa
- 18African Centre for Global Health and Social Transformation, Kampala, Uganda
| | - Nelson K Sewankambo
- 19Department of Internal Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Cecile Viboud
- 20Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Michael J A Reid
- 21University of California San Francisco, San Francisco, California
| | - Alimuddin Zumla
- 22Division of Infection and Immunity, University College London, London, United Kingdom.,23NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Peter H Kilmarx
- 20Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Oyewole AO, Barrass L, Robertson EG, Woltmann J, O’Keefe H, Sarpal H, Dangova K, Richmond C, Craig D. COVID-19 Impact on Diagnostic Innovations: Emerging Trends and Implications. Diagnostics (Basel) 2021; 11:182. [PMID: 33513988 PMCID: PMC7912626 DOI: 10.3390/diagnostics11020182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diagnostic testing remains the backbone of the coronavirus disease 2019 (COVID-19) response, supporting containment efforts to mitigate the outbreak. The severity of this crisis and increasing capacity issues associated with polymerase chain reaction (PCR)-based testing, accelerated the development of diagnostic solutions to meet demands for mass testing. The National Institute for Health Research (NIHR) Innovation Observatory is the national horizon scanning organization in England. Since March, the Innovation Observatory has applied advanced horizon scanning methodologies and tools to compile a diagnostic landscape, based upon data captured for molecular (MDx) and immunological (IDx) based diagnostics (commercialized/in development), for the diagnosis of SARS-CoV-2. In total we identified and tracked 1608 diagnostics, produced by 1045 developers across 54 countries. Our dataset shows the speed and scale in which diagnostics were produced and provides insights into key periods of development and shifts in trends between MDx and IDx solutions as the pandemic progressed. Stakeholders worldwide required timely and detailed intelligence to respond to major challenges, including testing capacity and regulatory issues. Our intelligence assisted UK stakeholders with assessing priorities and mitigation options throughout the pandemic. Here we present the global evolution of diagnostic innovations devised to meet changing needs, their regulation and trends across geographical regions, providing invaluable insights into the complexity of the COVID-19 phenomena.
Collapse
Affiliation(s)
- Anne O. Oyewole
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Lucy Barrass
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Emily G. Robertson
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - James Woltmann
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Hannah O’Keefe
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, Newcastle NE2 4AX, UK
| | - Harsimran Sarpal
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Kim Dangova
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Catherine Richmond
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, Newcastle NE2 4AX, UK
| | - Dawn Craig
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, Newcastle NE2 4AX, UK
| |
Collapse
|
36
|
Sisay A, Tesfaye A, Desale A, Ataro I, Woldesenbet Z, Nigusse B, Tayachew A, Kebede A, Desta AF. Diagnostic Performance of SARS-CoV-2 IgM/IgG Rapid Test Kits for the Detection of the Novel Coronavirus in Ethiopia. J Multidiscip Healthc 2021; 14:171-180. [PMID: 33536760 PMCID: PMC7850445 DOI: 10.2147/jmdh.s290711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Rapid severe acute respiratory syndrome coronavirus 2 test kits are crucial for bridging diagnostic gaps in health facilities and community screening mainly in resource limited settings. However, there is no objective evidence on their diagnostic performance. Thus, the study aimed to evaluate comparative diagnostic performance of three selected SARS-CoV-2 IgG/IgM rapid test kits in Ethiopia. METHODS A cross-sectional study was conducted among 200 clients between May and July 2020 in Addis Ababa, Ethiopia. The performance of three SARS-CoV-2 rapid test kits EGENE, CTK BIOTECKs Onsite, and ACON Biotech were evaluated using blood specimens against RT-PCR on respiratory swabs. Sensitivity, specificity, and agreement with each other and to RT-PCR were computed using Vassarstats, MedCalc and SPSS version 23 statistical software. RESULTS Test kits showed a heterogeneous comparative diagnostic performance in their sensitivity and specificity. The sensitivity was 61.18% (95% CI: 49.96-71.37%), 74.12% (95% CI: 63.28-82.74%) and 83.53% (95% CI: 73.57-90.38%) for kit A, B and C, respectively. Similarly, the specificity was 96.52% (90.81-98.88%), 94.78% (88.52-97.86%) and 94.78% (88.52-97.86%) for test kit A, B and C, respectively. The test kits have an agreement with RT-PCR with kappa value of 0.60 (0.48-0.83), 0.71 (0.65-0.93), and 0.80 (0.76-1.04) for A, B, and C, respectively. There was a significant difference on diagnostic performance among the three test kits and PCR with a p-value < 0.001 Cochran's Q test. CONCLUSION The diagnostic performance of the test kits was promising and recommended for COVID-19 diagnostics in combination with RT-PCR to detect more infected patients. It allows determining the seroprevalence of the virus and true extent of SARS-COV-2 community spread in resource limited settings. We underline countries to evaluate rapid diagnostic test kits before diagnostic use.
Collapse
Affiliation(s)
- Abay Sisay
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Tesfaye
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Diagnostic Unit, Center for Innovative Drug Development and Therapeutic Trials for Africa, CDT-Africa, Addis Ababa, Ethiopia
| | - Adino Desale
- National Laboratories Capacity Building Directorate, Ethiopian Public Health Institutes, EPHI, Addis Ababa, Ethiopia
| | - Israel Ataro
- Health Extension Program and Primary Health Care Directorate, Federal Democratic Republic of Ethiopia, Ministry of Health, Addis Ababa, Ethiopia
| | - Zerihun Woldesenbet
- Department of Medical Laboratory, Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia
| | - Bisrat Nigusse
- Program Management Unit, Ethiopian Public Health Laboratory Association, Addis Ababa, Ethiopia
| | - Adamu Tayachew
- National Laboratories Capacity Building Directorate, Ethiopian Public Health Institutes, EPHI, Addis Ababa, Ethiopia
- National Influenza and Arbovirus Reference Laboratory, Ethiopian Public Health Institutes, EPHI, Addis Ababa, Ethiopia
| | - Adisu Kebede
- National Laboratories Capacity Building Directorate, Ethiopian Public Health Institutes, EPHI, Addis Ababa, Ethiopia
| | - Adey F Desta
- Department of Microbial Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
37
|
Abdul-Mumin A, Abubakari A, Agbozo F, Abdul-Karim A, Nuertey BD, Mumuni K, Heuschen AK, Hennig L, Denkinger CM, Müller O, Jahn A. Field evaluation of specificity and sensitivity of a standard SARS-CoV-2 antigen rapid diagnostic test: A prospective study at a teaching hospital in Northern Ghana. PLOS GLOBAL PUBLIC HEALTH 2021; 1:e0000040. [PMID: 36962111 PMCID: PMC10021174 DOI: 10.1371/journal.pgph.0000040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
The testing capacity for SARS-CoV-2 in Africa is rather limited. Antigen detection rapid diagnostic tests (Ag-RDTs) are a cheap and rapid alternative to reverse transcriptase-polymerase chain reaction (RT-PCR) tests, but there is little data about their performance under real life conditions in tropical countries. The objective of this study is to evaluate the performance of a standard Ag-RDT in a population of a major hospital in northern Ghana. Prospective, cross-sectional, blinded verification of the performance of the SD Biosensor Standard Q SARS-CoV-2 Ag-RDT under real life conditions in 135 symptomatic patients and 58 contacts of RT-PCR positives at Tamale Teaching Hospital in February 2021. Nasopharyngeal samples were taken under standard conditions and tested against RT-PCR in the hospital laboratory. 193 participants (median age 35 years, 109 male) were included into the study for which both RT-PCR test and Ag-RDT results were available. A total of 42 (22%) were RT-PCR positive. Of the 42 RT-PCR positives, 27 were Ag-RDT positive, resulting in a sensitivity of 64% (95% CI 49-79). Sensitivity among symptomatic patients was 58% (95% CI 38-78). 123 were identified Ag-RDT negatives of the 151 RT-PCR negatives, resulting in a specificity of 81% (95% CI 75-87). SARS-CoV-2 Ag-RDTs appear to have a rather low sensitivity and particularly a low specificity under real life conditions in Africa. The role of existing Ag-RDTs in countries with high-temperature climates and limited resources still needs more data and discussion.
Collapse
Affiliation(s)
- Alhassan Abdul-Mumin
- Department of Paediatrics and Child Health, University for Development Studies, School of Medicine, Tamale, Ghana
- Tamale Teaching Hospital, Tamale, Ghana
| | - Abdulai Abubakari
- Department of Global Health, University for Development Studies, School of Public Health, Tamale, Ghana
| | - Faith Agbozo
- Department of Family and Community Health, University of Health and Allied Sciences, School of Public Health, Hohoe, Ghana
| | - Abass Abdul-Karim
- Zonal Public Health and Reference Laboratory, Ghana Health Service, Tamale, Ghana
| | | | | | - Anna-Katharina Heuschen
- Institute for Global Health, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lisa Hennig
- Institute for Global Health, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Claudia M Denkinger
- Division of Tropical Medicine, Department of Infectious Diseases, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Olaf Müller
- Institute for Global Health, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Albrecht Jahn
- Institute for Global Health, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| |
Collapse
|