1
|
Ridha-Salman H, Al-Zubaidy AA, Abbas AH, Hassan DM, Malik SA. The alleviative effects of canagliflozin on imiquimod-induced mouse model of psoriasis-like inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03406-y. [PMID: 39254877 DOI: 10.1007/s00210-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.
Collapse
Affiliation(s)
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| | - Dhuha M Hassan
- Pedodontic, Orthodontic and Preventive Department, College of Dentistry, Babylon University, Babylon, Iraq
| | - Samir A Malik
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| |
Collapse
|
2
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
3
|
Tang H, Zhang N, Deng J, Zhou K. Changing trends in the prevalence of heart failure impairment with Thalassemias over three decades. Eur J Clin Invest 2024; 54:e14098. [PMID: 37724975 DOI: 10.1111/eci.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND To assess the prevalence trend and contributing factors of heart failure (HF) impairment with thalassemias at global, regional and national levels. METHODS Data on HF impairment with thalassemias was collected from the Global Burden of Disease study. The absolute number and prevalence of the disease were systematically collected for each year, and the estimated annual percentage changes (EAPC) in HF impairment were calculated by gender, region and country to measure temporal trends. RESULTS Thalassemias have caused a significant global burden since 1990, and the case number of HF related to thalassemias has been steadily increasing. The highest case number of HF impairments with thalassemias is observed in China (7739 cases) and the highest prevalence is in Pakistan (1.61 per 100,000) currently. Besides, the middle sociodemographic index (SDI) region carries the highest burden of comorbid disease yet exhibits the most evident trend for improvement across the five regions (EAPC = -.98). The burden of thalassemias and comorbid HF is generally higher in males than females with the gender gap growing chasm in the future. Besides, the hotspots of HF impairment with thalassemias have gradually shifted to low SDI regions, though middle SDI regions still hold a relatively higher prevalence (.37 per 100,000) across different regions. CONCLUSIONS The burden of thalassemias and accompanying HF, as well as their temporal trends, vary greatly across countries and regions. These findings can improve understanding of these conditions and guide policymakers in developing appropriate policies to address disparities between countries.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Zhou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Speedtsberg ES, Tepel M. Narrative review investigating the nephroprotective mechanisms of sodium glucose cotransporter type 2 inhibitors in diabetic and nondiabetic patients with chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1281107. [PMID: 38174341 PMCID: PMC10761498 DOI: 10.3389/fendo.2023.1281107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Background and aims Outcome trials using sodium glucose cotransporter type 2 inhibitors have consistently shown their potential to preserve kidney function in diabetic and nondiabetic patients. Several mechanisms have been introduced which may explain the nephroprotective effect of sodium glucose cotransporter type 2 inhibitors beyond lowering blood glucose. This current narrative review has the objective to describe main underlying mechanisms causing a nephroprotective effect and to show similarities as well as differences between proposed mechanisms which can be observed in patients with diabetic and nondiabetic chronic kidney disease. Methods We performed a narrative review of the literature on Pubmed and Embase. The research string comprised various combinations of items including "chronic kidney disease", "sodium glucose cotransporter 2 inhibitor" and "mechanisms". We searched for original research and review articles published until march, 2022. The databases were searched independently and the agreements by two authors were jointly obtained. Results Sodium glucose cotransporter type 2 inhibitors show systemic, hemodynamic, and metabolic effects. Systemic effects include reduction of blood pressure without compensatory activation of the sympathetic nervous system. Hemodynamic effects include restoration of tubuloglomerular feedback which may improve pathologic hyperfiltration observed in most cases with chronic kidney disease. Current literature indicates that SGLT2i may not improve cortical oxygenation and may reduce medullar oxygenation. Conclusion Sodium glucose cotransporter type 2 inhibitors cause nephroprotective effects by several mechanisms. However, several mediators which are involved in the underlying pathophysiology may be different between diabetic and nondiabetic patients.
Collapse
Affiliation(s)
- Emma S Speedtsberg
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Martin Tepel
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Andreadi A, Muscoli S, Tajmir R, Meloni M, Muscoli C, Ilari S, Mollace V, Della Morte D, Bellia A, Di Daniele N, Tesauro M, Lauro D. Recent Pharmacological Options in Type 2 Diabetes and Synergic Mechanism in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24021646. [PMID: 36675160 PMCID: PMC9862607 DOI: 10.3390/ijms24021646] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes Mellitus is a multifactorial disease with a critical impact worldwide. During prediabetes, the presence of various inflammatory cytokines and oxidative stress will lead to the pathogenesis of type 2 diabetes. Furthermore, insulin resistance and chronic hyperglycemia will lead to micro- and macrovascular complications (cardiovascular disease, heart failure, hypertension, chronic kidney disease, and atherosclerosis). The development through the years of pharmacological options allowed us to reduce the persistence of chronic hyperglycemia and reduce diabetic complications. This review aims to highlight the specific mechanisms with which the new treatments for type 2 diabetes reduce oxidative stress and insulin resistance and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| | - Saverio Muscoli
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rojin Tajmir
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Carolina Muscoli
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University of Magna Graecia, 88100 Catanzaro, Italy
| | - David Della Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alfonso Bellia
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Internal Medicine—Hypertension, Department of Medical Sciences, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Section of Endocrinology and Metabolic Diseases, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Endocrinology and Diabetology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
- Correspondence: (A.A.); (D.L.)
| |
Collapse
|
6
|
Cost-Effectiveness of Adding Empagliflozin to Standard Treatment for Heart Failure with Preserved Ejection Fraction Patients in China. Am J Cardiovasc Drugs 2023; 23:47-57. [PMID: 36207658 DOI: 10.1007/s40256-022-00550-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Heart failure is a worldwide health problem and is the leading cause of hospitalization in older patients. Heart failure with preserved ejection fraction (HFpEF) accounts for about 38% of heart failure cases. The latest EMPEROR-Preserved study shows that empagliflozin can reduce the risk of hospitalization in HFpEF, but whether empagliflozin is cost-effective in HFpEF in a Chinese setting remained uninvestigated. METHODS A simulation of lifetime horizon for a 72-year-old HFpEF patient was conducted using a Markov model. The primary outcome was incremental cost-effectiveness ratio (ICER), expressed as incremental costs per quality-adjusted life-year (QALY). Three times the per capita GDP of China was set as the willingness-to-pay (WTP) threshold. Empagliflozin was considered cost-effective if the ICER was below the WTP threshold, otherwise it would be regarded as not cost-effective. One-way sensitivity and probabilistic sensitivity analysis (PSA) were used to assess uncertainty. RESULTS After a simulation of lifetime horizon, a 72-year-old HFpEF patient is expected to have an expected QALY of 4.80 in the empagliflozin group, and 4.67 QALY with standard treatment. The costs of empagliflozin and standard treatment are 34,987 (US$5423) and 27,027 (US$4189) Chinese Yuan (CNY), respectively, with an ICER of 63,746 (US$9881)/QALY, lower than the WTP threshold. One-way sensitivity and PSA show that our results are robust. CONCLUSION In Chinese HFpEF patients, adding empagliflozin to standard treatment is cost-effective, but studies based on real-world data are needed.
Collapse
|
7
|
Kim YK, Ning X, Munir KM, Davis SN. Emerging drugs for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs 2022; 27:417-430. [PMID: 36472144 DOI: 10.1080/14728214.2022.2155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic nephropathy remains a significant economic and social burden on both the individual patient and health-care systems as the prevalence of diabetes increases in the general population. The complex pathophysiology of diabetic kidney disease poses a challenge in the development of effective medical treatments for the disease. However, the multiple facets of diabetic nephropathy also offer a variety of potential strategies to manage this condition. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat diabetic nephropathy. EXPERT OPINION RAAS blockers have remained the mainstay of therapy for DM nephropathy for many years, with only recent advancements with SGLT2 inhibitors and nonsteroidal MRAs. Better understanding of the long-term renal effects of ambient hyperglycemia, ranging from hemodynamic changes to increased production of oxidative and pro-inflammatory substances, has evolved our approach to the treatment of diabetic nephropathy. With continuing research for new therapeutics as well as combination therapy, the medical community may be able to better ease the burden of diabetic kidney disease.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Xinyuan Ning
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Scisciola L, Cataldo V, Taktaz F, Fontanella RA, Pesapane A, Ghosh P, Franzese M, Puocci A, De Angelis A, Sportiello L, Marfella R, Barbieri M. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Front Cardiovasc Med 2022; 9:1008922. [PMID: 36148061 PMCID: PMC9485634 DOI: 10.3389/fcvm.2022.1008922] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is a progressive inflammatory disease leading to mortality and morbidity in the civilized world. Atherosclerosis manifests as an accumulation of plaques in the intimal layer of the arterial wall that, by its subsequent erosion or rupture, triggers cardiovascular diseases. Diabetes mellitus is a well-known risk factor for atherosclerosis. Indeed, Type 2 diabetes mellitus patients have an increased risk of atherosclerosis and its associated-cardiovascular complications than non-diabetic patients. Sodium-glucose co-transport 2 inhibitors (SGLT2i), a novel anti-diabetic drugs, have a surprising advantage in cardiovascular effects, such as reducing cardiovascular death in a patient with or without diabetes. Numerous studies have shown that atherosclerosis is due to a significant inflammatory burden and that SGLT2i may play a role in inflammation. In fact, several experiment results have demonstrated that SGLT2i, with suppression of inflammatory mechanism, slows the progression of atherosclerosis. Therefore, SGLT2i may have a double benefit in terms of glycemic control and control of the atherosclerotic process at a myocardial and vascular level. This review elaborates on the anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Lucia Scisciola
| | - Vittoria Cataldo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberata Sportiello
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
9
|
Maccari R, Ottanà R. Sodium-Glucose Cotransporter Inhibitors as Antidiabetic Drugs: Current Development and Future Perspectives. J Med Chem 2022; 65:10848-10881. [PMID: 35924548 PMCID: PMC9937539 DOI: 10.1021/acs.jmedchem.2c00867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT-2) inhibitors (gliflozins) represent the most recently approved class of oral antidiabetic drugs. SGLT-2 overexpression in diabetic patients contributes significantly to hyperglycemia and related complications. Therefore, SGLT-2 became a highly interesting therapeutic target, culminating in the approval for clinical use of dapagliflozin and analogues in the past decade. Gliflozins improve glycemic control through a novel insulin-independent mechanism of action and, moreover, exhibit significant cardiorenal protective effects in both diabetic and nondiabetic subjects. Therefore, gliflozins have received increasing attention, prompting extensive structure-activity relationship studies and optimization approaches. The discovery that intestinal SGLT-1 inhibition can provide a novel opportunity to control hyperglycemia, through a multifactorial mechanism, recently encouraged the design of low adsorbable inhibitors selectively directed to the intestinal SGLT-1 subtype as well as of dual SGLT-1/SGLT-2 inhibitors, representing a compelling strategy to identify new antidiabetic drug candidates.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Col4a3-/- Mice on Balb/C Background Have Less Severe Cardiorespiratory Phenotype and SGLT2 Over-Expression Compared to 129x1/SvJ and C57Bl/6 Backgrounds. Int J Mol Sci 2022; 23:ijms23126674. [PMID: 35743114 PMCID: PMC9223785 DOI: 10.3390/ijms23126674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Alport syndrome (AS) is a hereditary renal disorder with no etiological therapy. In the preclinical Col4a3-/- model of AS, disease progression and severity vary depending on mouse strain. The sodium-glucose cotransporter 2 (SGLT2) is emerging as an attractive therapeutic target in cardiac/renal pathologies, but its application to AS remains untested. This study investigates cardiorespiratory function and SGLT2 renal expression in Col4a3-/- mice from three different genetic backgrounds, 129x1/SvJ, C57Bl/6 and Balb/C. male Col4a3-/- 129x1/SvJ mice displayed alterations consistent with heart failure with preserved ejection fraction (HFpEF). Female, but not male, C57Bl/6 and Balb/C Col4a3-/- mice exhibited mild changes in systolic and diastolic function of the heart by echocardiography. Male C57Bl/6 Col4a3-/- mice presented systolic dysfunction by invasive hemodynamic analysis. All strains except Balb/C males demonstrated alterations in respiratory function. SGLT2 expression was significantly increased in AS compared to WT mice from all strains. However, cardiorespiratory abnormalities and SGLT2 over-expression were significantly less in AS Balb/C mice compared to the other two strains. Systolic blood pressure was significantly elevated only in mutant 129x1/SvJ mice. The results provide further evidence for strain-dependent cardiorespiratory and hypertensive phenotype variations in mouse AS models, corroborated by renal SGLT2 expression, and support ongoing initiatives to develop SGLT2 inhibitors for the treatment of AS.
Collapse
|
11
|
Ke JJ, Lin J, Zhang X, Wu XZ, Zheng YY, Hu CM, Kang Y, Zhang K, Xiong Z, Ma ZQ. Synthesis of Benzylidene Analogs of Oleanolic Acid as Potential α-Glucosidase and α-Amylase Inhibitors. Front Chem 2022; 10:911232. [PMID: 35755256 PMCID: PMC9213889 DOI: 10.3389/fchem.2022.911232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
A series of benzylidene analogs of oleanolic acid 4a∼4s were synthesized and assessed for their α-glucosidase and α-amylase inhibitory activities. The results presented that all synthesized analogs exhibited excellent-to-moderate inhibitory effects on α-glucosidase and α-amylase. Analog 4i showed the highest α-glucosidase inhibition (IC50: 0.40 μM), and analog 4o presented the strongest α-amylase inhibition (IC50: 9.59 μM). Inhibition kinetics results showed that analogs 4i and 4o were reversible and mixed-type inhibitors against α-glucosidase and α-amylase, respectively. Simulation docking results demonstrated the interaction between analogs and two enzymes. Moreover, analogs 4i and 4o showed a high level of safety against 3T3-L1 and HepG2 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Zhi-Qiang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
12
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
13
|
Bai Z, Xie T, Liu T, Chen Z, Yu L, Zhang C, Luo J, Chen L, Zhao X, Xiao Y. An integrated RNA sequencing and network pharmacology approach reveals the molecular mechanism of dapagliflozin in the treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:967822. [PMID: 36213291 PMCID: PMC9533015 DOI: 10.3389/fendo.2022.967822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dapagliflozin, an inhibitor of sodium-glucose cotransporter 2 (SGLT2), is a new type of oral hypoglycemic drugs which can promote glucose excretion in the kidney. Studies have shown that dapagliflozin has renoprotective effect in the treatment of type 2 diabetes. However, the underlying mechanism remains unclear. Here, we combined integrated RNA sequencing and network pharmacology approach to investigate the molecular mechanism of dapagliflozin for diabetic nephropathy (DN). Dapagliflozin significantly relieved glucose intolerance, urinary albumin/creatinine ratio (UACR) and renal pathological injuries of db/db mice. The LncRNA and mRNA expression in kidney tissues from control group (CR), db/db group (DN) and dapagliflozin group (DG) were assessed by RNA sequencing. We identified 7 LncRNAs and 64 mRNAs common differentially expressed in CR vs DN and DN vs DG, which were used to construct co-expression network to reveal significantly correlated expression patterns in DN. In addition, network pharmacology was used to predict the therapeutic targets of dapagliflozin and we constructed component-target-pathway network according to the results of RNA sequencing and network pharmacology. We found that SMAD9, PPARG, CD36, CYP4A12A, CYP4A12B, CASP3, H2-DMB2, MAPK1, MAPK3, C3 and IL-10 might be the pivotal targets of dapagliflozin for treating DN and these genes were mainly enriched in pathways including TGF-β signaling pathway, PPAR signaling pathway, Chemokine signaling pathway, etc. Our results have important implication and provide novel insights into the protective mechanism of dapagliflozin for treating DN.
Collapse
Affiliation(s)
- Zhenyu Bai
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zedong Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Linde Yu
- GuangDong Province Engineering Technology Research Institute of Traditional Chinese Medicine (TCM), Guangzhou, China
- Emergency Department, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Chao Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jincheng Luo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liguo Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Liguo Chen, ; Xiaoshan Zhao, ; Ya Xiao,
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Liguo Chen, ; Xiaoshan Zhao, ; Ya Xiao,
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Liguo Chen, ; Xiaoshan Zhao, ; Ya Xiao,
| |
Collapse
|
14
|
Yang Y, Xu G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:872918. [PMID: 35663316 PMCID: PMC9161673 DOI: 10.3389/fendo.2022.872918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the existing stages of diabetic kidney disease (DKD), the first stage of DKD is called the preclinical stage, characterized by glomerular hyperfiltration, an abnormally elevated glomerular filtration rate. Glomerular hyperfiltration is an independent risk factor for accelerated deterioration of renal function and progression of nephropathy, which is associated with a high risk for metabolic and cardiovascular disease. It is imperative to understand hyperfiltration and identify potential treatments to delay DKD progress. This paper summarizes the current mechanisms of hyperfiltration in early DKD. We pay close attention to the effect of glucose reabsorption mediated by sodium-glucose cotransporters and renal growth on hyperfiltration in DKD patients, as well as the mechanisms of nitric oxide and adenosine actions on renal afferent arterioles via tubuloglomerular feedback. Furthermore, we also focus on the contribution of the atrial natriuretic peptide, cyclooxygenase, renin-angiotensin-aldosterone system, and endothelin on hyperfiltration. Proposing potential treatments based on these mechanisms may offer new therapeutic opportunities to reduce the renal burden in this population.
Collapse
|
15
|
OMICS in Chronic Kidney Disease: Focus on Prognosis and Prediction. Int J Mol Sci 2021; 23:ijms23010336. [PMID: 35008760 PMCID: PMC8745343 DOI: 10.3390/ijms23010336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) patients are characterized by a high residual risk for cardiovascular (CV) events and CKD progression. This has prompted the implementation of new prognostic and predictive biomarkers with the aim of mitigating this risk. The ‘omics’ techniques, namely genomics, proteomics, metabolomics, and transcriptomics, are excellent candidates to provide a better understanding of pathophysiologic mechanisms of disease in CKD, to improve risk stratification of patients with respect to future cardiovascular events, and to identify CKD patients who are likely to respond to a treatment. Following such a strategy, a reliable risk of future events for a particular patient may be calculated and consequently the patient would also benefit from the best available treatment based on their risk profile. Moreover, a further step forward can be represented by the aggregation of multiple omics information by combining different techniques and/or different biological samples. This has already been shown to yield additional information by revealing with more accuracy the exact individual pathway of disease.
Collapse
|
16
|
Pelle MC, Provenzano M, Zaffina I, Pujia R, Giofrè F, Lucà S, Andreucci M, Sciacqua A, Arturi F. Role of a Dual Glucose-Dependent Insulinotropic Peptide (GIP)/Glucagon-like Peptide-1 Receptor Agonist (Twincretin) in Glycemic Control: From Pathophysiology to Treatment. Life (Basel) 2021; 12:29. [PMID: 35054422 PMCID: PMC8779403 DOI: 10.3390/life12010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two gut hormones, defined incretins, responsible for the amplification of insulin secretion after oral glucose intake. Unlike GLP-1, GIP has little acute effect on insulin secretion and no effect on food intake; instead it seems that the GIP may be an obesity-promoting hormone. In patients with type2 diabetes mellitus (T2DM) some studies found a downregulation of GIP receptors on pancreatic β cells caused by hyperglycemic state, but the glucagonotropic effect persisted. Agonists of the receptor for the GLP-1 have proven successful for the treatment of diabetes, since they reduce the risk for cardiovascular and renal events, but the possible application of GIP as therapy for T2DM is discussed. Moreover, the latest evidence showed a synergetic effect when GIP was combined with GLP-1 in monomolecular co-agonists. In fact, compared with the separate infusion of each hormone, the combination increased both insulin response and glucagonostatic response. In accordance with theseconsiderations, a dual GIP/GLP-1receptor agonist, i.e., Tirzepatide, known as a "twincretin" had been developed. In the pre-clinical trials, as well as Phase 1-3 clinical trials, Tirzepatideshowedpotent glucose lowering and weight loss effects within an acceptable safety.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Michele Provenzano
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (M.A.)
| | - Isabella Zaffina
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Roberta Pujia
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Federica Giofrè
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Stefania Lucà
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Michele Andreucci
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (M.A.)
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.C.P.); (I.Z.); (R.P.); (F.G.); (S.L.); (A.S.)
| |
Collapse
|