1
|
García-Hidalgo MC, Benítez ID, Perez-Pons M, Molinero M, Belmonte T, Rodríguez-Muñoz C, Aguilà M, Santisteve S, Torres G, Moncusí-Moix A, Gort-Paniello C, Peláez R, Larráyoz IM, Caballero J, Barberà C, Nova-Lamperti E, Torres A, González J, Barbé F, de Gonzalo-Calvo D. MicroRNA-guided drug discovery for mitigating persistent pulmonary complications in critical COVID-19 survivors: A longitudinal pilot study. Br J Pharmacol 2025; 182:380-395. [PMID: 38359818 DOI: 10.1111/bph.16330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND AND PURPOSE The post-acute sequelae of SARS-CoV-2 infection pose a significant global challenge, with nearly 50% of critical COVID-19 survivors manifesting persistent lung abnormalities. The lack of understanding about the molecular mechanisms and effective treatments hampers their management. Here, we employed microRNA (miRNA) profiling to decipher the systemic molecular underpinnings of the persistent pulmonary complications. EXPERIMENTAL APPROACH We conducted a longitudinal investigation including 119 critical COVID-19 survivors. A comprehensive pulmonary evaluation was performed in the short-term (median = 94.0 days after hospital discharge) and long-term (median = 358 days after hospital discharge). Plasma miRNAs were quantified at the short-term evaluation using the gold-standard technique, RT-qPCR. The analyses combined machine learning feature selection techniques with bioinformatic investigations. Two additional datasets were incorporated for validation. KEY RESULTS In the short-term, 84% of the survivors exhibited impaired lung diffusion (DLCO < 80% of predicted). One year post-discharge, 54.4% of this patient subgroup still presented abnormal DLCO. Four feature selection methods identified two specific miRNAs, miR-9-5p and miR-486-5p, linked to persistent lung dysfunction. The downstream experimentally validated targetome included 1473 genes, with heterogeneous enriched pathways associated with inflammation, angiogenesis and cell senescence. Validation studies using RNA-sequencing and proteomic datasets emphasized the pivotal roles of cell migration and tissue repair in persistent lung dysfunction. The repositioning potential of the miRNA targets was limited. CONCLUSION AND IMPLICATIONS Our study reveals early mechanistic pathways contributing to persistent lung dysfunction in critical COVID-19 survivors, offering a promising approach for the development of targeted disease-modifying agents. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Carlos Rodríguez-Muñoz
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - María Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain
| | - Ignacio M Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, Logroño, Spain
- BIAS, Department of Nursing, University of La Rioja, Logroño, Spain
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepcion, Concepcion, Chile
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Pneumology Department, Clinic Institute of Thorax (ICT), Hospital Clinic of Barcelona, Insitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), ICREA, University of Barcelona (UB), Barcelona, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Brandes F, Keiler AM, Kirchner B, Borrmann M, Billaud JN, Reithmair M, Klein M, Campolongo P, Thieme D, Pfaffl MW, Schelling G, Meidert AS. Extracellular Vesicles and Endocannabinoid Signaling in Patients with COVID-19. Cannabis Cannabinoid Res 2024; 9:1326-1338. [PMID: 37713293 DOI: 10.1089/can.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Introduction: Endocannabinoids in COVID-19 have immunomodulatory and anti-inflammatory properties but the functional role and the regulation of endocannabinoid signaling in this pandemic disorder is controversial. To exercise their biologic function, endocannabinoids need to travel across the intercellular space and within the blood stream to reach their target cells. How the lipophilic endocannabinoids are transported in the vascular system and how these hydrophobic compounds cross cell membranes is still unclear. Extracellular vesicles (EVs) are released and incorporated by many cell types including immune cells. EVs are small lipid-membrane covered particles and contain RNA, lipids and proteins. They play an important role in intercellular communication by transporting these signaling molecules from their cells of origin to specific target cells. EVs may represent ideal transport vehicles for lipophilic signaling molecules like endocannabinoids and this effect could also be evident in COVID-19. Materials and Methods: We measured the endocannabinoids anandamide, 2-AG, SEA, PEA and OEA in patients with COVID-19 in EVs and plasma. RNA sequencing of microRNAs (miRNAs) derived from EVs (EV-miRNAs) and mRNA transcripts from blood cells was used for the construction of signaling networks reflecting endocannabinoid and miRNA communication by EVs to target immune cells. Results: With the exception of anandamide, endocannabinoid concentrations were significantly enriched in EVs in comparison to plasma and increased with disease severity. No enrichment in EVs was seen for the more hydrophilic steroid hormones cortisol and testosterone. High EV-endocannabinoid concentrations were associated with downregulation of CNR2 (CB2) by upregulated EV-miRNA miR-146a-5p and upregulation of MGLL by downregulated EV-miR-199a-5p and EV-miR-370-5p suggesting counterregulatory effects. In contrast, low EV-levels of anandamide were associated with upregulation of CNR1 by downregulation of EV-miR-30c-5p and miR-26a-5p along with inhibition of FAAH. Immunologically active molecules in immune cells regulated by endocannabinoid signaling included VEGFA, GNAI2, IGF1, BDNF, IGF1R and CREB1 and CCND1 among others. Discussion and Conclusions: EVs carry immunologically functional endocannabinoids in COVID-19 along with miRNAs which may regulate the expression of mRNA transcripts involved in the regulation of endocannabinoid signaling and metabolism. This mechanism could fine-tune and adapt endocannabinoid effects in recipient cells in relationship to the present biological context.
Collapse
Affiliation(s)
- Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology «V. Erspamer», Sapienza University of Rome, Rome, Italy
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry, Kreischa, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Agnes S Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
3
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
4
|
Helin TA, Lemponen M, Immonen K, Lakkisto P, Joutsi-Korhonen L. Circulating microRNAs targeting coagulation and fibrinolysis in patients with severe COVID-19. Thromb J 2024; 22:80. [PMID: 39237986 PMCID: PMC11375984 DOI: 10.1186/s12959-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Coronavirus-19 disease (COVID-19) frequently causes coagulation disturbances. Data remains limited on the effects of microRNAs (miRNAs) on coagulation during COVID-19 infection. We aimed to analyze the comprehensive miRNA profile as well as coagulation markers and blood count in hospitalized COVID-19 patients. METHODS Citrated plasma samples from 40 patients (24 men and 16 women) hospitalized for COVID-19 were analyzed. Basic coagulation tests, von Willebrand factor (VWF), ADAMTS13, blood count, C-reactive protein, and 27 miRNAs known to associate with thrombosis or platelet activation were analyzed. MiRNAs were analyzed using quantitative reverse transcription polymerase chain reaction (RT qPCR), with 10 healthy controls serving as a comparator. RESULTS Among the patients, 15/36 (41%) had platelet count of over 360 × 109/L and 10/36 (28%) had low hemoglobin of < 100 g/L, while 26/37 (72%) had high VWF of over 200 IU/dL. Patients had higher levels of the miRNAs miR-27b-3p, miR-320a-3p, miR-320b-3p, and miR-424-5p, whereas levels of miR-103a-3p and miR-145-5p were lower than those in healthy controls. In total, 11 miRNAs were associated with platelet count. Let-7b-3p was associated with low hemoglobin levels of < 100 g/L. miR-24-3p, miR-27b-3p, miR-126-3p, miR-145-5p and miR-338-5p associated with high VWF. CONCLUSION COVID-19 patients differentially express miRNAs with target genes involved in fibrinolysis inhibition, coagulation activity, and increased inflammatory response. These findings support the notion that COVID-19 widely affects hemostasis, including platelets, coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Tuukka A Helin
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland.
| | - Marja Lemponen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Päivi Lakkisto
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| |
Collapse
|
5
|
Qing L, Wu W. The mechanism of geniposide in patients with COVID-19 and atherosclerosis: A pharmacological and bioinformatics analysis. Medicine (Baltimore) 2024; 103:e39065. [PMID: 39093733 PMCID: PMC11296471 DOI: 10.1097/md.0000000000039065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
In patients with severe acute respiratory syndrome coronavirus 2 (which causes coronavirus disease 2019 [COVID-19]), oxidative stress (OS) is associated with disease severity and death. OS is also involved in the pathogenesis of atherosclerosis (AS). Previous studies have shown that geniposide has anti-inflammatory and anti-viral properties, and can protect cells against OS. However, the potential target(s) of geniposide in patients with COVID-19 and AS, as well as the mechanism it uses, are unclear. We combined pharmacology and bioinformatics analysis to obtain geniposide against COVID-19/AS targets, and build protein-protein interaction network to filter hub genes. The hub genes were performed an enrichment analysis by ClueGO, including Gene Ontology and KEGG. The Enrichr database and the target microRNAs (miRNAs) of hub genes were predicted through the MiRTarBase via Enrichr. The common miRNAs were used to construct the miRNAs-mRNAs regulated network, and the miRNAs' function was evaluated by mirPath v3.0 software. Two hundred forty-seven targets of geniposide were identified in patients with COVID-19/AS comorbidity by observing the overlap between the genes modulated by geniposide, COVID-19, and AS. A protein-protein interaction network of geniposide in patients with COVID-19/AS was constructed, and 27 hub genes were identified. The results of enrichment analysis suggested that geniposide may be involved in regulating the OS via the FoxO signaling pathway. MiRNA-mRNA network revealed that hsa-miR-34a-5p may play an important role in the therapeutic mechanism of geniposide in COVID-19/AS patients. Our study found that geniposide represents a promising therapy for patients with COVID-19 and AS comorbidity. Furthermore, the target genes and miRNAs that we identified may aid the development of new treatment strategies against COVID-19/AS.
Collapse
Affiliation(s)
- Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Wei Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| |
Collapse
|
6
|
Molinero M, Perez-Pons M, González J, Barbé F, de Gonzalo-Calvo D. Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections. Biomed Pharmacother 2024; 177:116984. [PMID: 38908203 DOI: 10.1016/j.biopha.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The global public health crisis caused by the COVID-19 pandemic has intensified the global concern regarding viral respiratory tract infections. Despite their considerable impact on health, society and the economy, effective management of these conditions remains a significant challenge. Integrating high-throughput analyses is pivotal for early detection, prognostication of adverse outcomes, elucidating pathogenetic pathways and developing therapeutic approaches. In recent years, microRNAs (miRNAs), a subset of small noncoding RNAs (ncRNAs), have emerged as promising tools for molecular phenotyping. Current evidence suggests that miRNAs could serve as innovative biological markers, aiding in informed medical decision-making. The cost-effective quantification of miRNAs in standardized samples using techniques routinely employed in clinical laboratories has become feasible. In this context, samples obtained from the airways represent a valuable source of information due to their direct exposure to the infectious agent and host response within the respiratory tract. This review explores viral and host miRNA profiling in airway-derived biosamples as a source of molecular information to guide patient management, with a specific emphasis on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Shi L, Han X, Wang Y, Xu J, Yang H. Significant association between asthma and a lower risk of mortality among COVID-19 patients in Spain: A meta-analysis. Qatar Med J 2024; 2024:34. [PMID: 39040991 PMCID: PMC11262156 DOI: 10.5339/qmj.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/12/2024] [Indexed: 07/24/2024] Open
Abstract
Background Various prevalences of asthma in coronavirus disease 2019 (COVID-19) have been reported in different regions, and the association between asthma and COVID-19 subsequent mortality has been in debate. Thus, this study aimed to investigate whether there was a significant association between asthma and COVID-19 mortality in Spain through a meta-analysis. Methods The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were strictly complied with conducting this study. The pooled odds ratio (OR) with a corresponding 95% confidence interval (CI) was calculated by a random-effects model. The I 2 statistics for heterogeneity, sensitivity analysis for robustness, Begg's test, and Egger's test for publication bias, along with subgroup analyses for confounding bias, were also performed to support the foundation of this study. Results The meta-analysis revealed that asthma was significantly associated with a lower risk of mortality among COVID-19 patients in Spain with a random-effects model (pooled OR = 0.78, 95% CI = 0.69-0.88, I 2 = 35%). Further subgroup analyses by male proportion and sample size also indicated that a statistically significant negative correlation did exist between asthma and COVID-19 mortality. Robustness and no publication on-bias were evidenced by sensitivity analysis, Egger's test, and Begg's test, respectively. Conclusion In conclusion, patients with asthma were found to have a lower risk of mortality from COVID-19 in Spain, especially among elderly patients. In addition, asthmatic patients infected with COVID-19 may be at risk of death compared to non-asthmatic patients, which is not a cause for undue concern, thereby reducing the burden of medication.
Collapse
Affiliation(s)
- Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China *
| | - Xueya Han
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China *
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China *
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China *
| |
Collapse
|
8
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Wicik Z, Eyileten C, Nowak A, Keshwani D, Simões SN, Martins DC, Klos K, Wlodarczyk W, Assinger A, Soldacki D, Chcialowski A, Siller-Matula JM, Postula M. Alteration of circulating ACE2-network related microRNAs in patients with COVID-19. Sci Rep 2024; 14:13573. [PMID: 38866792 PMCID: PMC11169442 DOI: 10.1038/s41598-024-58037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 06/14/2024] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) serves as the primary receptor for the SARS-CoV-2 virus and has implications for the functioning of the cardiovascular system. Based on our previously published bioinformatic analysis, in this study we aimed to analyze the diagnostic and predictive utility of miRNAs (miR-10b-5p, miR-124-3p, miR-200b-3p, miR-26b-5p, miR-302c-5p) identified as top regulators of ACE2 network with potential to affect cardiomyocytes and cardiovascular system in patients with COVID-19. The expression of miRNAs was determined through qRT-PCR in a cohort of 79 hospitalized COVID-19 patients as well as 32 healthy volunteers. Blood samples and clinical data of COVID-19 patients were collected at admission, 7-days and 21-days after admission. We also performed SHAP analysis of clinical data and miRNAs target predictions and advanced enrichment analyses. Low expression of miR-200b-3p at the seventh day of admission is indicative of predictive value in determining the length of hospital stay and/or the likelihood of mortality, as shown in ROC curve analysis with an AUC of 0.730 and a p-value of 0.002. MiR-26b-5p expression levels in COVID-19 patients were lower at the baseline, 7 and 21-days of admission compared to the healthy controls (P < 0.0001). Similarly, miR-10b-5p expression levels were lower at the baseline and 21-days post admission (P = 0.001). The opposite situation was observed in miR-124-3p and miR-302c-5p. Enrichment analysis showed influence of analyzed miRNAs on IL-2 signaling pathway and multiple cardiovascular diseases through COVID-19-related targets. Moreover, the COVID-19-related genes regulated by miR-200b-3p were linked to T cell protein tyrosine phosphatase and the HIF-1 transcriptional activity in hypoxia. Analysis focused on COVID-19 associated genes showed that all analyzed miRNAs are strongly affecting disease pathways related to CVDs which could be explained by their strong interaction with the ACE2 network.
Collapse
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
- Department of Diabetology and Internal Medicine, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
| | - Disha Keshwani
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Sérgio N Simões
- Federal Institute of Education, Science and Technology of Espírito Santo, Serra, Espírito Santo, 29056-264, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre, 09606-045, Brazil
| | - Krzysztof Klos
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Wojciech Wlodarczyk
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dariusz Soldacki
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Chcialowski
- Department of Infectious Diseases and Allergology - Military Institute of Medicine, Warsaw, Poland
| | - Jolanta M Siller-Matula
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, 02-097, Warsaw, Poland.
| |
Collapse
|
10
|
Li D, Chen R, Huang C, Zhang G, Li Z, Xu X, Wang B, Li B, Chu XM. Comprehensive bioinformatics analysis and systems biology approaches to identify the interplay between COVID-19 and pericarditis. Front Immunol 2024; 15:1264856. [PMID: 38455049 PMCID: PMC10918693 DOI: 10.3389/fimmu.2024.1264856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Background Increasing evidence indicating that coronavirus disease 2019 (COVID-19) increased the incidence and related risks of pericarditis and whether COVID-19 vaccine is related to pericarditis has triggered research and discussion. However, mechanisms behind the link between COVID-19 and pericarditis are still unknown. The objective of this study was to further elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene level using bioinformatics analysis. Methods Genes associated with COVID-19 and pericarditis were collected from databases using limited screening criteria and intersected to identify the common genes of COVID-19 and pericarditis. Subsequently, gene ontology, pathway enrichment, protein-protein interaction, and immune infiltration analyses were conducted. Finally, TF-gene, gene-miRNA, gene-disease, protein-chemical, and protein-drug interaction networks were constructed based on hub gene identification. Results A total of 313 common genes were selected, and enrichment analyses were performed to determine their biological functions and signaling pathways. Eight hub genes (IL-1β, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) were identified using the protein-protein interaction network, and immune infiltration analysis was then carried out to examine the functional relationship between the eight hub genes and immune cells as well as changes in immune cells in disease. Transcription factors, miRNAs, diseases, chemicals, and drugs with high correlation with hub genes were predicted using bioinformatics analysis. Conclusions This study revealed a common gene interaction network between COVID-19 and pericarditis. The screened functional pathways, hub genes, potential compounds, and drugs provided new insights for further research on COVID-19 associated with pericarditis.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Banghui Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Khanaliha K, Sadri Nahand J, Khatami A, Mirzaei H, Chavoshpour S, Taghizadieh M, Karimzadeh M, Donyavi T, Bokharaei‐Salim F. Analyzing the expression pattern of the noncoding RNAs (HOTAIR, PVT-1, XIST, H19, and miRNA-34a) in PBMC samples of patients with COVID-19, according to the disease severity in Iran during 2022-2023: A cross-sectional study. Health Sci Rep 2024; 7:e1861. [PMID: 38332929 PMCID: PMC10850438 DOI: 10.1002/hsr2.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background and aims MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - AliReza Khatami
- Department of VirologyIran University of Medical SciencesTehranIran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran
| | - Sara Chavoshpour
- Department of VirologyTehran University of Medical SciencesTehranIran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF)Isfahan University of Medical ScienceIsfahanIran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | |
Collapse
|
12
|
de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, Postigo T, García-Hidalgo MC, Belmonte T, Rodríguez-Muñoz C, González J, Torres G, Gort-Paniello C, Moncusí-Moix A, Estella Á, Tamayo Lomas L, Martínez de la Gándara A, Socias L, Peñasco Y, de la Torre MDC, Bustamante-Munguira E, Gallego Curto E, Martínez Varela I, Martin Delgado MC, Vidal-Cortés P, López Messa J, Pérez-García F, Caballero J, Añón JM, Loza-Vázquez A, Carbonell N, Marin-Corral J, Jorge García RN, Barberà C, Ceccato A, Fernández-Barat L, Ferrer R, Garcia-Gasulla D, Lorente-Balanza JÁ, Menéndez R, Motos A, Peñuelas O, Riera J, Bermejo-Martin JF, Torres A, Barbé F. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res 2023; 24:159. [PMID: 37328754 DOI: 10.1186/s12931-023-02462-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Nadia García-Mateo
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - Alicia Ortega
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - Tamara Postigo
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Carlos Rodríguez-Muñoz
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ángel Estella
- Department of Medicine, Intensive Care Unit University Hospital of Jerez, University of Cádiz, INIBiCA, Cádiz, Spain
| | - Luis Tamayo Lomas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Critical Care Department, Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | | | - Lorenzo Socias
- Intensive Care Unit, Hospital Son Llàtzer, Palma de Mallorca, Illes Balears, Spain
| | - Yhivian Peñasco
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Maria Del Carmen de la Torre
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Medicina Intensiva, Hospital de Mataró (Consorci Sanitari del Maresme), Mataró, Spain
| | - Elena Bustamante-Munguira
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Intensive Care Medicine, Hospital Clínico Universitario Valladolid, Valladolid, Spain
| | - Elena Gallego Curto
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Unidad de Cuidados Intensivos, Hospital Universitario San Pedro de Alcántara, Cáceres, Spain
| | | | | | - Pablo Vidal-Cortés
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Felipe Pérez-García
- Servicio de Microbiología Clínica, Facultad de Medicina, Departamento de Biomedicina y Biotecnología, Hospital Universitario Príncipe de Asturias - Universidad de Alcalá, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital, Universitari Arnau de Vilanova, Lleida, Spain
| | - José M Añón
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servicio de Medicina Intensiva. Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Ana Loza-Vázquez
- Unidad de Medicina Intensiva, Hospital Universitario Virgen de Valme, Seville, Spain
| | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | | | | | - Carmen Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Intensive Care Department, SODIR Research Group, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | | - Jose Ángel Lorente-Balanza
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario de Getafe, Madrid, Spain
- Dep. of Medicine, Universidad Europea, Madrid, Spain
- Dep. of Bioengineering, Universidad Carlos III, Madrid, Spain
| | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario de Getafe, Madrid, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Intensive Care Department, SODIR Research Group, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Jesús F Bermejo-Martin
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
- Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Xiao C, Li Q, Xiao J, Chen X, Yuan J, Li S, Li W, Gao D, Li L, Liu Y, Shen F. miR-9 targeting RUNX1 improves LPS-induced alveolar hypercoagulation and fibrinolysis inhibition through NF-κB inactivation in ARDS. Int Immunopharmacol 2023; 120:110318. [PMID: 37201407 DOI: 10.1016/j.intimp.2023.110318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a clinical and pathophysiological complex syndrome with high mortality. Alveolar hypercoagulation and fibrinolytic inhibition constitute the core part of the pathophysiology of ARDS. miR-9 (microRNA-9a-5p) plays an important role in the pathogenesis of ARDS, but whether it regulates alveolar pro-coagulation and fibrinolysis inhibition in ARDS remains to be elucidated. We aimed to determine the contributing role of miR-9 on alveolar hypercoagulation and fibrinolysis inhibition in ARDS. METHODS In the ARDS animal model, we first observed the miR-9 and runt-related transcription factor 1 (RUNX1) expression in lung tissue, the effects of miR-9 on alveolar hypercoagulation and fibrinolytic inhibition in ARDS rats, and the efficacy of miR-9 on acute lung injury. In the cell, alveolar epithelial cells type II (AECII) were treated with LPS, and the levels of miR-9 and RUNX1 were detected. Then we observed the effects of miR-9 on procoagulant and fibrinolysis inhibitor factors in cells. Finally, we explored whether the efficacies of miR-9 were associated with RUNX1; we also preliminarily examined the miR-9 and RUNX1 levels in plasma in patients with ARDS. RESULTS In ARDS rats, miR-9 expression decreased, but RUNX1 expression increased in the pulmonary tissue of ARDS rats. miR-9 displayed to attenuate lung injury and pulmonary wet/dry ratio. Study results in vivo demonstrated that miR-9 ameliorated alveolar hypercoagulation and fibrinolysis inhibition and attenuated the collagen III expressions in tissue. miR-9 also inhibited NF-κB signaling pathway activation in ARDS. In LPS-induced AECII, the expression changes of both miR-9 and RUNX1 were similar to those in pulmonary tissue in the animal ARDS model. miR-9 effectively inhabited tissue factor (TF), plasma activator inhibitor (PAI-1) expressions, and NF-κB activation in LPS-treated ACEII cells. Besides, miR-9 directly targeted RUNX1, inhibiting TF and PAI-1 expression and attenuating NF-κB activation in LPS-treated AECII cells. Clinically, we preliminarily found that the expression of miR-9 was significantly reduced in ARDS patients compared to non-ARDS patients. CONCLUSION Our experimental data indicate that by directly targeting RUNX1, miR-9 improves alveolar hypercoagulation and fibrinolysis inhibition via suppressing NF-κB pathway activation in LPS-induced rat ARDS, implying that miR-9/RUNX1 is expected to be a new therapeutic target for ARDS treatment.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Qing Li
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Jingjing Xiao
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Xianjun Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Jia Yuan
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Shuwen Li
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Wei Li
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Daixiu Gao
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Lu Li
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Ying Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Feng Shen
- Department of Critical Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
14
|
Garnier N, Sane F, Massara L, Soncin F, Gosset P, Hober D, Szunerits S, Engelmann I. Genes Involved in miRNA Biogenesis Are Not Downregulated in SARS-CoV-2 Infection. Viruses 2023; 15:v15051177. [PMID: 37243263 DOI: 10.3390/v15051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs, small non-coding RNAs that regulate gene expression, are involved in various pathological processes, including viral infections. Virus infections may interfere with the miRNA pathway through the inhibition of genes involved in miRNA biogenesis. A reduction in the number and the levels of miRNAs expressed in nasopharyngeal swabs of patients with severe COVID-19 was lately observed by us, pointing towards the potential of miRNAs as possible diagnostic or prognostic biomarkers for predicting outcomes among patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The objective of the present study was to investigate whether SARS-CoV-2 infection influences the expression levels of messenger RNAs (mRNAs) of key genes involved in miRNA biogenesis. mRNA levels of AGO2, DICER1, DGCR8, DROSHA, and Exportin-5 (XPO5) were measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) in nasopharyngeal swab specimens from patients with COVID-19 and controls, as well as in cells infected with SARS-CoV-2 in vitro. Our data showed that the mRNA expression levels of AGO2, DICER1, DGCR8, DROSHA, and XPO5 were not significantly different in patients with severe COVID-19 when compared to patients with non-severe COVID-19 and controls. Similarly, the mRNA expression of these genes was not affected by SARS-CoV-2 infection in NHBE and Calu-3 cells. However, in Vero E6 cells, AGO2, DICER1, DGCR8, and XPO5 mRNA levels were slightly upregulated 24 h after infection with SARS-CoV-2. In conclusion, we did not find evidence for downregulation of mRNA levels of miRNA biogenesis genes during SARS-CoV-2 infection, neither ex vivo nor in vitro.
Collapse
Affiliation(s)
- Nathalie Garnier
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
| | - Layal Massara
- CNRS UMR 9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL-OpInfIELD, University Lille, F-59000 Lille, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, F-59000 Lille, France
- Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, CNRS IRL2820, Tokyo 113-0033, Japan
| | - Philippe Gosset
- CNRS UMR 9017, Inserm U1019, CHU Lille, Institut Pasteur de Lille, CIIL-OpInfIELD, University Lille, F-59000 Lille, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, University Lille and CHU Lille, F-59000 Lille, France
- PCCEI, University Montpellier, INSERM, EFS, CHU Montpellier, F-34000 Montpellier, France
| |
Collapse
|
15
|
Wu H, Han F. Investigation of shared genes and regulatory mechanisms associated with coronavirus disease 2019 and ischemic stroke. Front Neurol 2023; 14:1151946. [PMID: 37090981 PMCID: PMC10115163 DOI: 10.3389/fneur.2023.1151946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectiveClinical associations between coronavirus disease (COVID-19) and ischemic stroke (IS) have been reported. This study aimed to investigate the shared genes between COVID-19 and IS and explore their regulatory mechanisms.MethodsPublished datasets for COVID-19 and IS were downloaded. Common differentially expressed genes (DEGs) in the two diseases were identified, followed by protein–protein interaction (PPI) network analysis. Moreover, overlapping module genes associated with the two diseases were investigated using weighted correlation network analysis (WGCNA). Through intersection analysis of PPI cluster genes and overlapping module genes, hub-shared genes associated with the two diseases were obtained, followed by functional enrichment analysis and external dataset validation. Moreover, the upstream miRNAs and transcription factors (TFs) of the hub-shared genes were predicted.ResultsA total of 91 common DEGs were identified from the clusters of the PPI network, and 129 overlapping module genes were screened using WGCNA. Based on further intersection analysis, four hub-shared genes in IS and COVID-19 were identified, including PDE5A, ITGB3, CEACAM8, and BPI. These hub-shared genes were remarkably enriched in pathways such as ECM-receptor interaction and focal adhesion pathways. Moreover, ITGB3, PDE5A, and CEACAM8 were targeted by 53, 32, and 3 miRNAs, respectively, and these miRNAs were also enriched in the aforementioned pathways. Furthermore, TFs, such as lactoferrin, demonstrated a stronger predicted correlation with the hub-shared genes.ConclusionThe four identified hub-shared genes may participate in crucial mechanisms underlying both COVID-19 and IS and may exhibit the potential to be biomarkers or therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Fei Han,
| |
Collapse
|
16
|
Borrmann M, Brandes F, Kirchner B, Klein M, Billaud JN, Reithmair M, Rehm M, Schelling G, Pfaffl MW, Meidert AS. Extensive blood transcriptome analysis reveals cellular signaling networks activated by circulating glycocalyx components reflecting vascular injury in COVID-19. Front Immunol 2023; 14:1129766. [PMID: 36776845 PMCID: PMC9909741 DOI: 10.3389/fimmu.2023.1129766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Background Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells. Methods We studied patients with RT-PCR confirmed COVID-19 pneumonia, patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy controls (wildtype, n=20 in each group) and measured syndecan-1, heparan sulfate and hyaluronic acid. The in-silico construction of signaling networks was based on RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of miRNAs isolated from extracellular vesicles from the identical cohort. Differentially regulated RNAs between groups were identified by gene expression analysis. Both RNAseq data sets were used for network construction of circulating glycosaminoglycans focusing on immune and endothelial cells. Results Plasma concentrations of glycocalyx components were highest in COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with COVID-19 pneumonia who later developed ARDS during hospital treatment (n=8) were significantly higher at hospital admission than in patients with an early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a co-receptor of activated VEGFA, which is associated with pulmonary vascular hyperpermeability and interacted with VCAN (upregulated), a proteoglycan important for chemokine communication. Conclusions Circulating glycocalyx components in COVID-19 have distinct biologic feedback effects on immune and endothelial cells and result in upregulation of key regulatory transcripts leading to further immune activation and more severe systemic inflammation. These consequences are most pronounced during the early hospital phase of COVID-19 before pulmonary failure develops. Elevated levels of circulating glycocalyx components may early identify patients at risk for microvascular injury and ARDS. The timely inhibition of glycocalyx degradation could provide a novel therapeutic approach to prevent the development of ARDS in COVID-19.
Collapse
Affiliation(s)
- Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Rehm
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,Department of Anesthesiology and intensive Care Medicine, Hospital Agatharied, Hausham, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Gustav Schelling,
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Agnes S. Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
17
|
MicroRNA-155 is a main part of proinflammatory puzzle during severe coronavirus disease 2019 (COVID-19). Allergol Immunopathol (Madr) 2023; 51:115-119. [PMID: 36916095 DOI: 10.15586/aei.v51i2.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/28/2022] [Indexed: 03/08/2023]
Abstract
Genetic and epigenetic parameters play critical roles in determining the outcomes of the severe acute respiratory syndrome coronavirus type 19 (SARS-CoV-2) infection. MicroRNAs (miRNAs) are an important part of the epigenetic factors that regulate several functions of the immune cells and also viruses. Accordingly, the molecules can regulate expression of the immune cell proteins and virus in the host cells. Among the miRNAs, miRNA-155 (miR-155) is well-studied in patients suffering from severe coronavirus disease 2019 (COVID-19). It has been reported that the SARS-CoV-2 infected patients may be directed to induce a cytokine storm or severe proinflammatory responses. This review article discusses the pathological roles of miR-155 during COVID-19 infection.
Collapse
|
18
|
Gaytán-Pacheco N, Ibáñez-Salazar A, Herrera-Van Oostdam AS, Oropeza-Valdez JJ, Magaña-Aquino M, Adrián López J, Monárrez-Espino J, López-Hernández Y. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics (Basel) 2022; 13:133. [PMID: 36611425 PMCID: PMC9818442 DOI: 10.3390/diagnostics13010133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
COVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying immunological mechanisms, and their possible use as biomarkers to discriminate against patients with severe COVID-19. Functional analysis showed that most enriched pathways were significantly associated with processes related to cell proliferation and immune responses (innate and adaptive). Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential use as predictive prognosis biomarkers.
Collapse
Affiliation(s)
- Noemí Gaytán-Pacheco
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Alejandro Ibáñez-Salazar
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | | | - Juan José Oropeza-Valdez
- Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98600, Mexico
| | | | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital Chihuahua, University of Monterrey, San Pedro Garza García 66238, Mexico
| | - Yamilé López-Hernández
- CONACyT-Metabolomics and Proteomics Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
19
|
Molinero M, Gómez S, Benítez ID, Vengoechea JJ, González J, Polanco D, Gort-Paniello C, Moncusí-Moix A, García-Hidalgo MC, Perez-Pons M, Belmonte T, Torres G, Caballero J, Barberà C, Ayestarán Rota JI, Socías Crespí L, Ceccato A, Fernández-Barat L, Ferrer R, Garcia-Gasulla D, Lorente-Balanza JÁ, Menéndez R, Motos A, Peñuelas O, Riera J, Torres A, Barbé F, de Gonzalo-Calvo D. Multiplex protein profiling of bronchial aspirates reveals disease-, mortality- and respiratory sequelae-associated signatures in critically ill patients with ARDS secondary to SARS-CoV-2 infection. Front Immunol 2022; 13:942443. [PMID: 35967328 PMCID: PMC9373836 DOI: 10.3389/fimmu.2022.942443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Bronchial aspirates (BAS) obtained during invasive mechanical ventilation (IMV) constitutes a useful tool for molecular phenotyping and decision making. Aim To identify the proteomic determinants associated with disease pathogenesis, all-cause mortality and respiratory sequelae in BAS samples from critically ill patients with SARS-CoV-2-induced ARDS. Methods Multicenter study including 74 critically ill patients with COVID-19 and non-COVID-19 ARDS. BAS were obtained by bronchoaspiration after IMV initiation. Three hundred sixty-four proteins were quantified using proximity extension assay (PEA) technology. Random forest models were used to assess predictor importance. Results After adjusting for confounding factors, CST5, NADK, SRPK2 and TGF-α were differentially detected in COVID-19 and non-COVID-19 patients. In random forest models for COVID-19, CST5, DPP7, NADK, KYAT1 and TYMP showed the highest variable importance. In COVID-19 patients, reduced levels of ENTPD2 and PTN were observed in nonsurvivors of ICU stay, even after adjustment. AGR2, NQO2, IL-1α, OSM and TRAIL showed the strongest associations with in-ICU mortality and were used to construct a protein-based prediction model. Kaplan-Meier curves revealed a clear separation in mortality risk between subgroups of PTN, ENTPD2 and the prediction model. Cox regression models supported these findings. In survivors, the levels of FCRL1, NTF4 and THOP1 in BAS samples obtained during the ICU stay correlated with lung function (i.e., DLCO levels) 3 months after hospital discharge. Similarly, Flt3L and THOP1 levels were correlated with radiological features (i.e., TSS). These proteins are expressed in immune and nonimmune lung cells. Poor host response to viral infectivity and an inappropriate reparative mechanism seem to be linked with the pathogenesis of the disease and fatal outcomes, respectively. Conclusion BAS proteomics identified novel factors associated with the pathology of SARS-CoV-2-induced ARDS and its adverse outcomes. BAS-based protein testing emerges as a novel tool for risk assessment in the ICU.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Silvia Gómez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - J J Vengoechea
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Dinora Polanco
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jesús Caballero
- Intensive Care Department, University Hospital Arnau de Vilanova, IRBLleida, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Jose Ignacio Ayestarán Rota
- Intensive Care Unit, Son Espases University Hospital, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Intensive Care Department, Vall d'Hebron Hospital Universitari. SODIR Research Group, Vall d'Hebron Institut de Recerca VHIR), Barcelona, Spain
| | | | - Jose Ángel Lorente-Balanza
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Hospital Universitario de Getafe, Madrid, Spain
| | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Hospital Universitario de Getafe, Madrid, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Intensive Care Department, Vall d'Hebron Hospital Universitari. SODIR Research Group, Vall d'Hebron Institut de Recerca VHIR), Barcelona, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.,Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Understanding the Pivotal Role of the Vagus Nerve in Health from Pandemics. Bioengineering (Basel) 2022; 9:bioengineering9080352. [PMID: 36004877 PMCID: PMC9405360 DOI: 10.3390/bioengineering9080352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
The COVID-19 pandemic seems endless with the regular emergence of new variants. Is the SARS-CoV-2 virus particularly evasive to the immune system, or is it merely disrupting communication between the body and the brain, thus pre-empting homeostasis? Retrospective analysis of the COVID-19 and AIDS pandemics, as well as prion disease, emphasizes the pivotal but little-known role of the 10th cranial nerve in health. Considering neuroimmunometabolism from the point of view of the vagus nerve, non-invasive bioengineering solutions aiming at monitoring and stimulating the vagal tone are subsequently discussed as the next optimal and global preventive treatments, far beyond pandemics.
Collapse
|
21
|
Li X, Wang Y, Zhou Q, Pan J, Xu J. Potential Predictive Value of miR-125b-5p, miR-155-5p and Their Target Genes in the Course of COVID-19. Infect Drug Resist 2022; 15:4079-4091. [PMID: 35937783 PMCID: PMC9346419 DOI: 10.2147/idr.s372420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to provide new biomarkers for predicting the disease course of COVID-19 by analyzing the dynamic changes of microRNA (miRNA) and its target gene expression in the serum of COVID-19 patients at different stages. Methods Serum samples were collected from all COVID-19 patients at three time points: the acute stage, the turn-negative stage, and the recovery stage. The expression level of miRNA and the target mRNA was measured by Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR). The classification tree model was established to predict the disease course, and the prediction efficiency of independent variables in the model was analyzed using the receiver operating characteristic (ROC) curve. Results The expression of miR-125b-5p and miR-155-5p was significantly up-regulated in the acute stage and gradually decreased in the turn-negative and recovery stages. The expression of the target genes CDH5, STAT3, and TRIM32 gradually down-regulated in the acute, turn-negative, and recovery stages. MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 constituted a classification tree model with 100% accuracy of prediction and AUC >0.7 for identification and prediction in all stages. Conclusion MiR-125b-5p, miR-155-5p, STAT3, and TRIM32 could be useful biomarkers to predict the time nodes of the acute, turn-negative, and recovery stages of COVID-19.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yiting Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Junqi Pan
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|