1
|
Bontempo A, Chirino A, Heidari A, Lugo A, Shindo S, Pastore MR, Madonia R, Antonson SA, Godoy C, Nichols FC, Potempa J, Davey ME, Kawai T, Cayabyab MJ. Inhibition of SARS-CoV-2 infection by Porphyromonas gingivalis and the oral microbiome. Microbiol Spectr 2024; 12:e0059924. [PMID: 39162507 PMCID: PMC11448423 DOI: 10.1128/spectrum.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
The COVID-19 pandemic persists despite the availability of vaccines, and it is, therefore, crucial to develop new therapeutic and preventive approaches. In this study, we investigated the potential role of oral microbiome in SARS-CoV-2 infection. Using an in vitro SARS-CoV-2 pseudovirus infection assay, we found a potent inhibitory effect exerted by Porphyromonas gingivalis on SARS-CoV-2 infection mediated by known P. gingivalis compounds such as phosphoglycerol dihydroceramide (PGDHC) and gingipains as well as by unknown bacterial factors. We found that the gingipain-mediated inhibition of infection is likely due to cytotoxicity, whereas PGDHC inhibited virus infection by an unknown mechanism. Unidentified factors present in P. gingivalis supernatant inhibited SARS-CoV-2 likely via the fusion step of the virus life cycle. We addressed the role of other oral bacteria and found certain periodontal pathogens capable of inhibiting SARS-CoV-2 pseudovirus infection by inducing cytotoxicity on target cells. In the human oral cavity, we observed that the modulatory activity of oral microbial communities varied among individuals, in that some saliva-based cultures were capable of inhibiting while others were enhancing infection. These findings contribute to our understanding of the complex relationship between the oral microbiome and viral infections, offering potential avenues for innovative therapeutic strategies in combating COVID-19. IMPORTANCE The oral microbiome is important in health and disease, and in this study, we addressed the potential role of the oral microbiome in COVID-19 infection. Our in vitro studies suggest that certain bacteria of the oral microbiome such as P. gingivalis produce compounds that could potentially inhibit SARS-CoV-2 infection. These findings elucidating the interactions between the oral microbiome and SARS-CoV-2 infection will be important in our understanding of COVID-19 pathogenesis and the development of innovative therapeutic and preventive strategies against COVID-19 infection.
Collapse
Affiliation(s)
- Alexander Bontempo
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Alexandra Chirino
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Alireza Heidari
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Alexandra Lugo
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Satoru Shindo
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Maria R. Pastore
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Riccardo Madonia
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sibel A. Antonson
- Department of Prosthodontics, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Prosthodontics, Biruni University, Istanbul, Turkey
| | - Cristina Godoy
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Frank C. Nichols
- Department of Periodontology, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mary Ellen Davey
- Department of Microbiology, ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Mark J. Cayabyab
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
2
|
Wilson JD, Dworsky-Fried M, Ismail N. Neurodevelopmental implications of COVID-19-induced gut microbiome dysbiosis in pregnant women. J Reprod Immunol 2024; 165:104300. [PMID: 39004033 DOI: 10.1016/j.jri.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The global public health emergency of COVID-19 in January 2020 prompted a surge in research focusing on the pathogenesis and clinical manifestations of the virus. While numerous reports have been published on the acute effects of COVID-19 infection, the review explores the multifaceted long-term implications of COVID-19, with a particular focus on severe maternal COVID-19 infection, gut microbiome dysbiosis, and neurodevelopmental disorders in offspring. Severe COVID-19 infection has been associated with heightened immune system activation and gastrointestinal symptoms. Severe COVID-19 may also result in gut microbiome dysbiosis and a compromised intestinal mucosal barrier, often referred to as 'leaky gut'. Increased gut permeability facilitates the passage of inflammatory cytokines, originating from the inflamed intestinal mucosa and gut, into the bloodstream, thereby influencing fetal development during pregnancy and potentially elevating the risk of neurodevelopmental disorders such as autism and schizophrenia. The current review discusses the role of cytokine signaling molecules, microglia, and synaptic pruning, highlighting their potential involvement in the pathogenesis of neurodevelopmental disorders following maternal COVID-19 infection. Additionally, this review addresses the potential of probiotic interventions to mitigate gut dysbiosis and inflammatory responses associated with COVID-19, offering avenues for future research in optimizing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Jacob D Wilson
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Michaela Dworsky-Fried
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada; LIFE Research Institute, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
3
|
Patić A, Kovačević G, Vuković V, Hrnjaković Cvjetković I, Ristić M, Milosavljević B, Medić D, Djilas M, Radovanov J, Kovačević A, Pustahija T, Balać D, Petrović V. Analysis of Cultured Gut Microbiota Using MALDI-TOF MS in COVID-19 Patients from Serbia during the Predominance of the SARS-CoV-2 Omicron Variant. Microorganisms 2024; 12:1800. [PMID: 39338474 PMCID: PMC11433956 DOI: 10.3390/microorganisms12091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
The currently dominant SARS-CoV-2 omicron variant, while causing mild respiratory symptoms, exhibits high transmissibility, drug resistance, and immune evasion. We investigated whether the presence of the SARS-CoV-2 affected the dynamics of fecal microbial composition isolated in culture in moderate COVID-19 patients. Blood, stool, and medical records were collected from 50 patients with confirmed SARS-CoV-2 infection. Two samples were taken per patient, at disease onset (within 5 days) and after symptom resolution (30-35 days). The part of the gut microbiota identifiable using MALDI-TOF MS was analyzed, and inflammatory cytokines and blood markers were measured in serum. The analysis identified 566 isolates at the species level, including 83 bacterial and 9 fungal species. Our findings indicate a change in the gut microbiota composition isolated in culture during the initial phase of infection, characterized by the proliferation of opportunistic bacteria such as Enterococcus spp. and Citrobacter spp., at the expense of beneficial commensal bacteria from the genus Bacillus and Lactobacillus. Additionally, the enrichment of fungal pathogens in fecal samples collected 30 days after the cessation of disease symptoms might suggest a prolonged disruption of the gut microbiota even after the resolution of COVID-19 symptoms. This study contributes to a growing body of evidence on the systemic effects of SARS-CoV-2 and highlights the importance of considering gastrointestinal involvement in the management and treatment of COVID-19.
Collapse
Affiliation(s)
- Aleksandra Patić
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Kovačević
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Vuković
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Hrnjaković Cvjetković
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mioljub Ristić
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Biljana Milosavljević
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
| | - Deana Medić
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Milan Djilas
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
| | - Jelena Radovanov
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Aleksandra Kovačević
- Clinic of Nephrology and Clinical Immunology, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia;
| | - Tatjana Pustahija
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Balać
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Hygiene, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Vladimir Petrović
- Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia; (A.P.); (V.V.); (I.H.C.); (M.R.); (B.M.); (D.M.); (M.D.); (J.R.); (T.P.); (D.B.); (V.P.)
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Missa KF, Diallo K, Bla KB, Tuo KJ, Gboko KDT, Tiémélé LS, Ouattara AF, Gragnon BG, Ngoi JM, Wilkinson RJ, Awandare GA, Bonfoh B. Association of symptomatic upper respiratory tract infections with the alteration of the oropharyngeal microbiome in a cohort of school children in Côte d'Ivoire. Front Microbiol 2024; 15:1412923. [PMID: 38993497 PMCID: PMC11238735 DOI: 10.3389/fmicb.2024.1412923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction The oropharyngeal microbiome plays an important role in protection against infectious agents when in balance. Despite use of vaccines and antibiotic therapy to prevent respiratory tract infections, they remain one of the major causes of mortality and morbidity in Low- and middle-income countries. Hence the need to explore other approaches to prevention by identifying microbial biomarkers that could be leveraged to modify the microbiota in order to enhance protection against pathogenic bacteria. The aim of this study was to analyze the oropharyngeal microbiome (OPM) of schoolchildren in Côte d'Ivoire presenting symptoms of upper respiratory tract infections (URTI) for better prevention strategy. Methods Primary schools' children in Korhogo (n = 37) and Abidjan (n = 39) were followed for six months with monthly oropharyngeal sampling. Clinical diagnostic of URT infection was performed and nucleic acid extracted from oropharyngeal swabs were used for 16S rRNA metagenomic analysis and RT-PCR. Results The clinical examination of children's throat in Abidjan and Korhogo identified respectively 17 (43.59%) and 15 (40.54%) participants with visible symptoms of URTIs, with 26 episodes of infection in Abidjan and 24 in Korhogo. Carriage of Haemophilus influenzae (12%), Streptococcus pneumoniae (6%) and SARS-CoV-2 (6%) was confirmed by PCR. A significant difference in alpha diversity was found between children colonized by S. pneumoniae and those that were not (p = 0.022). There was also a significant difference in alpha diversity between children colonised with H. influenzae and those who were not (p = 0.017). No significant difference was found for SARS-CoV-2. Sphingomonas, Ralstonia and Rothia were significantly enriched in non-carriers of S. pneumoniae; Actinobacillus was significantly enriched in non-carriers of H. influenzae; Actinobacillus and Porphyromonas were significantly enriched in non-carriers of SARS-CoV-2 (p < 0.001). Discussion Nearly 40% of children showed clinical symptoms of infection not related to geographical location. The OPM showed an imbalance during H. influenzae and S. pneumoniae carriage. This study provides a baseline understanding of microbiome markers in URTIs in children for future research, to develop targeted interventions aimed at restoring the microbial balance and reducing the symptoms associated with RTIs.
Collapse
Affiliation(s)
- Kouassi Firmin Missa
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d'Ivoire
| | - Kanny Diallo
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- West African Centre for Cell Biology of Infectious Pathogens, Accra, Ghana
| | - Kouakou Brice Bla
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody, Abidjan, Côte d'Ivoire
| | - Kolotioloman Jérémie Tuo
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Microbiologie, Biotechnologies et Bio-informatique, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Kossia Debia Thérèse Gboko
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Laurent-Simon Tiémélé
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Allassane Foungoye Ouattara
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Biego Guillaume Gragnon
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | | | - Robert J Wilkinson
- Laboratoire National d'Appui au Développement Agricole, Laboratoire Régional de Korhogo, Korhogo, Côte d'Ivoire
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Accra, Ghana
| | - Bassirou Bonfoh
- Direction de la Recherche et du Développement, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
5
|
Yue Y, Zhang B, He Z, Zheng Y, Wang X, Zhang Q. Sputum microbe community alterations induced by long-term inhaled corticosteroid use are associated with airway function in chronic obstructive pulmonary disease patients based on metagenomic next-generation sequencing (mNGS). Front Pharmacol 2024; 15:1323613. [PMID: 38915461 PMCID: PMC11194361 DOI: 10.3389/fphar.2024.1323613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Objective: Inhaled corticosteroids (ICS) are widely used in chronic obstructive pulmonary disease (COPD) patients as a treatment option. However, ICS may also increase the risk of pneumonia and alter the composition of airway microbiota. In clinical application, the overuse of ICS exists pervasively and may potentially lead to adverse effects. Whether the long-term use of ICS confers enough benefit to COPD patients to justify its use so far remains unknown. Therefore, this study employed a single-center retrospective cohort study to compare alterations in airway function and the sputum microbial community structure between COPD patients who had undergone either long-term or short-term treatment with ICS. Methods: Sixty stable COPD patients who had used ICS were recruited and classified into the long-term use group (more than 3 months) and short-term use group (less than 3 months). The demographic features and clinical information of the subjects were investigated and their sputum samples were collected and subjected to metagenomic next-generation sequencing (mNGS). Results: The study found that compared with short-term ICS use, long-term ICS use did not further improve the clinical airway function, decrease the number of acute exacerbations, or decrease hospital readmission. In terms of sputum microbiota, the long-term use of ICS significantly altered the beta diversity of the microbial community structure (p < 0.05) and the top three phyla differed between the two groups. At the genus level, long-term ICS induced higher relative abundances of Abiotrophia, Schaalia, Granulicatella, Mogibacterium, Sphingobium, and Paraeggerthella compared to short-term ICS use. Additionally, alpha diversity was positively associated with clinical airway indicators (pre-bronchodilatory FEV1 and pre-bronchodilatory FVC) in the long-term ICS group. The relative abundances of Rothia, Granulicatella, Schaalia, and Mogibacterium genera had positive correlations with the eosinophil % (of all white blood cells). Conclusion: This study reveals the effect of long-term and short-term ICS use on sputum microbiota among COPD patients and provides a reference for the appropriate application of clinical ICS treatment in COPD patients.
Collapse
Affiliation(s)
- Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baohui Zhang
- Department of Neurobiology, China Medical University, Shenyang, China
- Journal Center, China Medical University, Shenyang, China
| | - Zhong He
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuling Zheng
- Genoxor Medical Science and Technology Inc., Taizhou, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Zhong J, Guo L, Wang Y, Jiang X, Wang C, Xiao Y, Wang Y, Zhou F, Wu C, Chen L, Wang X, Wang J, Cao B, Li M, Ren L. Gut Microbiota Improves Prognostic Prediction in Critically Ill COVID-19 Patients Alongside Immunological and Hematological Indicators. RESEARCH (WASHINGTON, D.C.) 2024; 7:0389. [PMID: 38779486 PMCID: PMC11109594 DOI: 10.34133/research.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
The gut microbiota undergoes substantial changes in COVID-19 patients; yet, the utility of these alterations as prognostic biomarkers at the time of hospital admission, and its correlation with immunological and hematological parameters, remains unclear. The objective of this study is to investigate the gut microbiota's dynamic change in critically ill patients with COVID-19 and evaluate its predictive capability for clinical outcomes alongside immunological and hematological parameters. In this study, anal swabs were consecutively collected from 192 COVID-19 patients (583 samples) upon hospital admission for metagenome sequencing. Simultaneously, blood samples were obtained to measure the concentrations of 27 cytokines and chemokines, along with hematological and biochemical indicators. Our findings indicate a significant correlation between the composition and dynamics of gut microbiota with disease severity and mortality in COVID-19 patients. Recovered patients exhibited a higher abundance of Veillonella and denser interactions among gut commensal bacteria compared to deceased patients. Furthermore, the abundance of gut commensal bacteria exhibited a negative correlation with the concentration of proinflammatory cytokines and organ damage markers. The gut microbiota upon admission showed moderate prognostic prediction ability with an AUC of 0.78, which was less effective compared to predictions based on immunological and hematological parameters (AUC 0.80 and 0.88, respectively). Noteworthy, the integration of these three datasets yielded a higher predictive accuracy (AUC 0.93). Our findings suggest the gut microbiota as an informative biomarker for COVID-19 prognosis, augmenting existing immune and hematological indicators.
Collapse
Affiliation(s)
- Jiaxin Zhong
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Jiang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xiao
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Zhou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chao Wu
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - LiLi Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Kibria MK, Ali MA, Yaseen M, Khan IA, Bhat MA, Islam MA, Mahumud RA, Mollah MNH. Discovery of Bacterial Key Genes from 16S rRNA-Seq Profiles That Are Associated with the Complications of SARS-CoV-2 Infections and Provide Therapeutic Indications. Pharmaceuticals (Basel) 2024; 17:432. [PMID: 38675393 PMCID: PMC11053588 DOI: 10.3390/ph17040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein-protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Md. Kaderi Kibria
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Statistics, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Ahad Ali
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Main Campus, Charbagh 19130, Pakistan;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Md. Ariful Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.K.K.); (M.A.A.); (M.A.I.)
| |
Collapse
|
8
|
Bontempo A, Chirino A, Heidari A, Lugo A, Shindo S, Pastore MR, Antonson SA, Godoy C, Nichols FC, Potempa J, Davey ME, Kawai T, Cayabyab MJ. Inhibition of SARS-CoV-2 infection by Porphyromonas gingivalis and the oral microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582258. [PMID: 38464164 PMCID: PMC10925342 DOI: 10.1101/2024.02.27.582258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The COVID-19 pandemic persists despite the availability of vaccines, and it is therefore crucial to develop new therapeutic and preventive approaches. In this study, we investigated the potential role of the oral microbiome in SARS-CoV-2 infection. Using an in vitro SARS-CoV-2 pseudovirus infection assay, we found a potent inhibitory effect exerted by Porphyromonas gingivalis on SARS-CoV-2 infection mediated by known P. gingivalis compounds such as phosphoglycerol dihydroceramide (PGDHC) and gingipains as well as by unknown bacterial factors. We found that the gingipain-mediated inhibition of infection is likely due to cytotoxicity, while PGDHC inhibited virus infection by an unknown mechanism. Unidentified factors present in P. gingivalis supernatant inhibited SARS-CoV-2 likely via the fusion step of the virus life cycle. We addressed the role of other oral bacteria and found certain periodontal pathogens capable of inhibiting SARS-CoV-2 pseudovirus infection by inducing cytotoxicity on target cells. In the human oral cavity, we observed the modulatory activity of oral microbial communities varied among individuals in that some saliva-based cultures were capable of inhibiting while others were enhancing infection. These findings contribute to our understanding of the complex relationship between the oral microbiome and viral infections, offering potential avenues for innovative therapeutic strategies in combating COVID-19.
Collapse
|
9
|
Brzychczy-Sroka B, Talaga-Ćwiertnia K, Sroka-Oleksiak A, Gurgul A, Zarzecka-Francica E, Ostrowski W, Kąkol J, Drożdż K, Brzychczy-Włoch M, Zarzecka J. Standardization of the protocol for oral cavity examination and collecting of the biological samples for microbiome research using the next-generation sequencing (NGS): own experience with the COVID-19 patients. Sci Rep 2024; 14:3717. [PMID: 38355866 PMCID: PMC10867075 DOI: 10.1038/s41598-024-53992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
To date, publications have shown that compositions of oral microbiota differ depending on their habitats (e.g. tongue, tonsils, pharynx). The absence of set standards for the choice of the areas and conditions of material collection makes the oral microbiome one of the most difficult environments for a comparative analysis with other researchers, which is a meaningful limitation during an assessment of the potential effects of microorganisms as biomarkers in the courses of various human diseases. Therefore, standardisation of basic conditions of a dental examination and collection of material for the next generation sequencing (NGS) is worth attempting. The standardisation of the dental exam and collection of the clinical materials: saliva, swab from the tongue ridge, hard palate, palatine tonsils and oropharynx, supragingival plaque and subgingival plaque. Protocol involved the patients (n = 60), assigned to 3 groups: I-COVID-19 convalescents who received antibiotics, n = 17, II-COVID-19 convalescents, n = 23 and III-healthy individuals, n = 20. The collected biological samples were used to conduct NGS (16S rRNA). The conditions of patient preparation for collecting biological materials as well as the schedule of dental examination, were proposed. Based on the research conducted, we have indicated the dental indicators that best differentiate the group of COVID-19 patients (groups I and II) from healthy people (group III). These include the DMFT, D and BOP indices. The use of alpha and beta diversity analysis provided an overall insight into the diversity of microbial communities between specific niches and patient groups. The most different diversity between the studied group of patients (group II) and healthy people (group III) was noted in relation to the supragingival plaque. The order of activities during the dental exam as well as while collecting and securing clinical materials is particularly important to avoid technical errors and material contamination which may result in erroneous conclusions from the analyses of the results of sensitive tests such as the NGS. It has been shown that the dental indices: DMFT, D number, PI and BOP are the best prognostic parameters to assess the oral health. Based on beta diversity the most sensitive niche and susceptible to changes in the composition of the microbiota is the supragingival plaque. The procedures developed by our team can be applied as ready-to-use forms in studies conducted by other researchers.
Collapse
Affiliation(s)
- Barbara Brzychczy-Sroka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Talaga-Ćwiertnia
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland.
| | - Agnieszka Sroka-Oleksiak
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Kraków, Poland
| | - Elżbieta Zarzecka-Francica
- Department of Prosthodontics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech Ostrowski
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Kąkol
- University Hospital in Cracow, Temporary COVID Ward No. 1, Kraków, Poland
| | - Kamil Drożdż
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
10
|
Ganesan SM, Peter TK, Withanage MHH, Boksa F, Zeng E, Martinez A, Dabdoub SM, Dhingra K, Hernandez-Kapila Y. COVID-19 associated oral and oropharyngeal microbiome: Systematic review and meta-analysis. Periodontol 2000 2024; 94:603-626. [PMID: 37277934 DOI: 10.1111/prd.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 06/07/2023]
Abstract
Three years into the coronavirus disease 2019 (COVID-19) pandemic, there are still growing concerns with the emergence of different variants, unknown long- and short-term effects of the virus, and potential biological mechanisms underlying etiopathogenesis and increased risk for morbidity and mortality. The role of the microbiome in human physiology and the initiation and progression of several oral and systemic diseases have been actively studied in the past decade. With the proof of viral transmission, carriage, and a potential role in etiopathogenesis, saliva and the oral environment have been a focus of COVID-19 research beyond diagnostic purposes. The oral environment hosts diverse microbial communities and contributes to human oral and systemic health. Several investigations have identified disruptions in the oral microbiome in COVID-19 patients. However, all these studies are cross-sectional in nature and present heterogeneity in study design, techniques, and analysis. Therefore, in this undertaking, we (a) systematically reviewed the current literature associating COVID-19 with changes in the microbiome; (b) performed a re-analysis of publicly available data as a means to standardize the analysis, and (c) reported alterations in the microbial characteristics in COVID-19 patients compared to negative controls. Overall, we identified that COVID-19 is associated with oral microbial dysbiosis with significant reduction in diversity. However, alterations in specific bacterial members differed across the study. Re-analysis from our pipeline shed light on Neisseria as the potential key microbial member associated with COVID-19.
Collapse
Affiliation(s)
- Sukirth M Ganesan
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Tabitha K Peter
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Miyuraj H H Withanage
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Frank Boksa
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa, USA
| | - Erliang Zeng
- Iowa Institute for Oral Health Research, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
- Department of Preventive and Community Dentistry, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - April Martinez
- Division of Periodontology, University of California at San Francisco School of Dentistry, San Francisco, California, USA
| | - Shareef M Dabdoub
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, Iowa, USA
| | - Kunaal Dhingra
- Periodontology Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Yvonne Hernandez-Kapila
- Section of Biosystems and Function Periodontics, University of California at Los Angeles School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
11
|
Devi P, Kumari P, Yadav A, Tarai B, Budhiraja S, Shamim U, Pandey R. Longitudinal study across SARS-CoV-2 variants identifies transcriptionally active microbes (TAMs) associated with Delta severity. iScience 2023; 26:107779. [PMID: 37701571 PMCID: PMC10493601 DOI: 10.1016/j.isci.2023.107779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Emergence of new SARS-CoV-2 VOCs jeopardize global vaccine and herd immunity safeguards. VOCs interactions with host microbiota might affect clinical course and outcome. This longitudinal investigation involving Pre-VOC and VOCs (Delta & Omicron) holo-transcriptome based nasopharyngeal microbiome at taxonomic levels followed by metabolic pathway analysis and integrative host-microbiome interaction. VOCs showed enrichment of Proteobacteria with dominance of Pseudomonas. Interestingly, Proteobacteria with superiority of Pseudomonas and Acinetobacter, were highlights of Delta VOC rather than Omicron. Common species comprising the core microbiome across all variants, reiterated the significance of Klebsiella pneumoniae in Delta, and its association with metabolic pathways enhancing inflammation in patients. Microbe-host gene correlation network revealed Acinetobacter baumannii, Pseudomonas stutzeri, and Pseudomonas aeuroginosa modulating immune pathways, which might augment clinical severity in Delta. Importantly, opportunistic species of Acinetobacter, Enterococcus, Prevotella, and Streptococcus were abundant in Delta-mortality. The study establishes a functional association between elevated nasal pathobionts and dysregulated host response, particularly for Delta.
Collapse
Affiliation(s)
- Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallawi Kumari
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Boia ER, Huț AR, Roi A, Luca RE, Munteanu IR, Roi CI, Riviș M, Boia S, Duse AO, Vulcănescu DD, Horhat FG. Associated Bacterial Coinfections in COVID-19-Positive Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1858. [PMID: 37893576 PMCID: PMC10607966 DOI: 10.3390/medicina59101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The aim of this study was to identify specific rhino- and oropharyngeal microbiological pathogens as well as associated comorbidities that favor SARS-CoV-2 infection and corelate them. Materials and Methods: This prospective clinical study enrolled 61 patients (28 COVID-19-positive and 33 controls) who were tested for other comorbidities and co-existence of associated oral pathogenic microbiota. Results: A total of 247 bacterial isolates were identified in the bacterial cultures in both groups. Viral hepatitis type A was more prevalent in the COVID-19-positive group (p = 0.026), as was the presence of oral candidiasis (p = 0.006). In the control group, a moderate direct relationship was observed between the Beta hemolytic streptococcus group G and dermatitis, and strong direct relationships were observed between the Beta hemolytic streptococcus group G and external otitis, Streptococcus pyogenes and dental alveolitis, and Streptococcus pyogenes and chronic lymphocytic leukemia. In the test group, strong direct relationships were observed between Hemophilus influenzae and pulmonary thromboembolism; Staphylococcus aureus and autoimmune thyroiditis; post-viral immunosuppression, chronic coronary syndrome, and hypernatremia; Beta hemolytic streptococcus group C and rheumatoid polyneuropathy; Beta hemolytic streptococcus group G and hyperkalemia, hypothyroidism, secondary anemia, and splenomegaly; and active oral candidiasis and SARS-CoV-2 viral pneumonia. The following relationships were strong, but inverse: Beta hemolytic streptococcus group G and acute respiratory failure, and active oral candidiasis and SARS-CoV-2 viral bronchopneumonia. Conclusions: Briefly, COVID-19-positive patients have the predisposition to build up associated comorbidities and coinfections, which can be the expression of the immune burden that this virus generates to the host.
Collapse
Affiliation(s)
- Eugen Radu Boia
- Department of Ear, Nose and Throat, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Alexandru Romulus Huț
- PhD Researcher, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Alexandra Roi
- Department of Oral Pathology, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Ruxandra Elena Luca
- Department of Oral Rehabilitation and Dental Emergencies, Faculty of Dental Medicine, The Interdisciplinary Center for Dental Medical Research, Lasers and Innovative Technologies, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.E.L.); (I.R.M.)
| | - Ioana Roxana Munteanu
- Department of Oral Rehabilitation and Dental Emergencies, Faculty of Dental Medicine, The Interdisciplinary Center for Dental Medical Research, Lasers and Innovative Technologies, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.E.L.); (I.R.M.)
| | - Ciprian Ioan Roi
- Department of Anesthesiology and Oral Surgery, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.I.R.); (M.R.)
| | - Mircea Riviș
- Department of Anesthesiology and Oral Surgery, Faculty of Dental Medicine, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.I.R.); (M.R.)
| | - Simina Boia
- Department of Periodontology, Faculty of Dental Medicine, Anton Sculean Research Center for Periodontal and Peri-Implant Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Adina Octavia Duse
- Department of Physical Medicine, Balneology and Rheumatology, Faculty of Medicine, Center for the Evaluation of Movement, Functionality and Disability, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Dan Dumitru Vulcănescu
- Department of Microbiology, Faculty of Medicine, Multidiciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
| | - Florin George Horhat
- Department of Microbiology, Faculty of Medicine, Multidiciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.D.V.); (F.G.H.)
| |
Collapse
|
13
|
Brzychczy- Sroka B, Talaga-Ćwiertnia K, Sroka-Oleksiak A, Gurgul A, Zarzecka-Francica E, Ostrowski W, Kąkol J, Zarzecka J, Brzychczy-Włoch M. Oral microbiota study of the patients after hospitalisation for COVID-19, considering selected dental indices and antibiotic therapy using the next generation sequencing method (NGS). J Oral Microbiol 2023; 15:2264591. [PMID: 37840855 PMCID: PMC10569355 DOI: 10.1080/20002297.2023.2264591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Background Poor oral hygiene and the increased incidence and severity of periodontitis may exacerbate SARS-CoV-2 infection. The aim was to evaluate the oral microbiota of 60 participants divided into groups: COVID-19 convalescents who received antibiotics during hospitalization (I), COVID-19 convalescents without antibiotic therapy (II) and healthy individuals (III). Materials and Methods Dental examination was conducted, and oral health status was evaluated using selected dental indexes. Clinical samples (saliva, dorsal swabs, supragingival and subgingival plaque) were collected and used for metagenomic library to the next-generation sequencing (NGS) preparation. Results Each of the clinical materials in particular groups of patients showed a statistically significant and quantitatively different bacterial composition. Patients from group I showed significantly worse oral health, reflected by higher average values of dental indexes and also a higher percentage of Veillonella, Tannerella, Capnocytophaga and Selenomonas genera in comparison to other groups. Additionally, a statistically significant decrease in the amount of Akkermansia type in both groups with COVID-19 was observed for all materials. Conclusions The primary factor affecting the composition of oral microbiota was not the SARS-CoV-2 infection itself, but the use of antibiotic therapy. The increased percentage of pro-inflammatory pathogens observed in COVID-19 patients underscores the importance of preventing periodontal disease and improving oral hygiene in the future.
Collapse
Affiliation(s)
- Barbara Brzychczy- Sroka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Talaga-Ćwiertnia
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Sroka-Oleksiak
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Kraków, Poland
| | - Elżbieta Zarzecka-Francica
- Department of Prosthodontics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech Ostrowski
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
14
|
Taufer CR, Rampelotto PH. The Role of Bifidobacterium in COVID-19: A Systematic Review. Life (Basel) 2023; 13:1847. [PMID: 37763251 PMCID: PMC10532519 DOI: 10.3390/life13091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, mainly causes respiratory and intestinal symptoms and changes in the microbiota of patients. We performed a systematic search in major databases using "Bifidobacterium" and "COVID-19" or "SARS-CoV-2" as key terms to assess the relationship of the genus to COVID-19. After the selection steps, 25 articles were analyzed. Of these, eighteen were observational, and seven were interventional articles that evaluated the use of Bifidobacterium alone or in mix as probiotics for additional treatment of patients with COVID-19. All stages and severities were contemplated, including post-COVID-19 patients. Overall, Bifidobacterium was associated with both protective effects and reduced abundance in relation to the disease. The genus has been found to be abundant in some cases and linked to disease severity. The studies evaluating the use of Bifidobacterium as probiotics have demonstrated the potential of this genus in reducing symptoms, improving pulmonary function, reducing inflammatory markers, alleviating gastrointestinal symptoms, and even contributing to better control of mortality. In summary, Bifidobacterium may offer protection against COVID-19 through its ability to modulate the immune response, reduce inflammation, compete with pathogenic microbes, and maintain gut barrier function. The findings provide valuable insights into the relationship between the disease and the genus Bifidobacterium, highlighting the potential of microbiota modulation in the treatment of COVID-19.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
15
|
Hwang IC, Vasquez R, Song JH, Engstrand L, Valeriano VD, Kang DK. Alterations in the gut microbiome and its metabolites are associated with the immune response to mucosal immunization with Lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 spike epitopes in mice. Front Cell Infect Microbiol 2023; 13:1242681. [PMID: 37705931 PMCID: PMC10495993 DOI: 10.3389/fcimb.2023.1242681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Lactic acid bacteria (LAB) expressing foreign antigens have great potential as mucosal vaccines. Our previous study reported that recombinant Lactiplantibacillus plantarum SK156 displaying SARS-CoV-2 spike S1 epitopes elicited humoral and cell-mediated immune responses in mice. Here, we further examined the effect of the LAB-based mucosal vaccine on gut microbiome composition and function, and gut microbiota-derived metabolites. Forty-nine (49) female BALB/c mice were orally administered L. plantarum SK156-displaying SARS-CoV-2 spike S1 epitopes thrice (at 14-day intervals). Mucosal immunization considerably altered the gut microbiome of mice by enriching the abundance of beneficial gut bacteria, such as Muribaculaceae, Mucispirillum, Ruminococcaceae, Alistipes, Roseburia, and Clostridia vadinBB60. Moreover, the predicted function of the gut microbiome showed increased metabolic pathways for amino acids, energy, carbohydrates, cofactors, and vitamins. The fecal concentration of short-chain fatty acids, especially butyrate, was also altered by mucosal immunization. Notably, alterations in gut microbiome composition, function, and butyrate levels were positively associated with the immune response to the vaccine. Our results suggest that the gut microbiome and its metabolites may have influenced the immunogenicity of the LAB-based SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Robie Vasquez
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
16
|
Reuben RC, Beugnon R, Jurburg SD. COVID-19 alters human microbiomes: a meta-analysis. Front Cell Infect Microbiol 2023; 13:1211348. [PMID: 37600938 PMCID: PMC10433767 DOI: 10.3389/fcimb.2023.1211348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected a substantial portion of the world's population, and novel consequences of COVID-19 on the human body are continuously being uncovered. The human microbiome plays an essential role in host health and well-being, and multiple studies targeting specific populations have reported altered microbiomes in patients infected with SARS-CoV-2. Given the global scale and massive incidence of COVID on the global population, determining whether the effects of COVID-19 on the human microbiome are consistent and generalizable across populations is essential. Methods We performed a synthesis of human microbiome responses to COVID-19. We collected 16S rRNA gene amplicon sequence data from 11 studies sampling the oral and nasopharyngeal or gut microbiome of COVID-19-infected and uninfected subjects. Our synthesis included 1,159 respiratory (oral and nasopharyngeal) microbiome samples and 267 gut microbiome samples from patients in 11 cities across four countries. Results Our reanalyses revealed communitywide alterations in the respiratory and gut microbiomes across human populations. We found significant overall reductions in the gut microbial diversity of COVID-19-infected patients, but not in the respiratory microbiome. Furthermore, we found more consistent community shifts in the gut microbiomes of infected patients than in the respiratory microbiomes, although the microbiomes in both sites exhibited higher host-to-host variation in infected patients. In respiratory microbiomes, COVID-19 infection resulted in an increase in the relative abundance of potentially pathogenic bacteria, including Mycoplasma. Discussion Our findings shed light on the impact of COVID-19 on the human-associated microbiome across populations, and highlight the need for further research into the relationship between long-term effects of COVID-19 and altered microbiota.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Rémy Beugnon
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Leipzig, Germany
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Stephanie D. Jurburg
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
17
|
Islam T, Fatema, Hoque MN, Gupta DR, Mahmud NU, Sakif TI, Sharpe AG. Improvement of growth, yield and associated bacteriome of rice by the application of probiotic Paraburkholderia and Delftia. Front Microbiol 2023; 14:1212505. [PMID: 37520368 PMCID: PMC10375411 DOI: 10.3389/fmicb.2023.1212505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Plant probiotic bacteria enhance growth and yield of crop plants when applied at the appropriate time and dose. Two rice probiotic bacteria, Paraburkholderia fungorum strain BRRh-4 and Delftia sp. strain BTL-M2 promote growth and yield of plants. However, no information is available on application of these two bacteria on growth, yield, and diversity and population of bacteriome in roots and rhizosphere soils of the treated rice plants. This study aimed to assess the effect of BRRh-4 and BTL-M2 application on growth, yield and bacteriome in roots and rhizosphere soil of rice under varying doses of N, P and K fertilizers. Application of BRRh-4 and BTL-M2 strains significantly (p < 0.05) increased seed germination, growth and yield of rice compared to an untreated control. Interestingly, the grain yield of rice by these bacteria with 50% less of the recommended doses of N, P, and K fertilizers were statistically similar to or better than the rice plants treated with 100% doses of these fertilizers. Targeted amplicon (16S rRNA) sequence-based analysis revealed significant differences (PERMANOVA, p = 0.00035) in alpha-diversity between the root (R) and rhizosphere soil (S) samples, showing higher diversity in the microbial ecosystem of root samples. Additionally, the bacteriome diversity in the root of rice plants that received both probiotic bacteria and chemical fertilizers were significantly higher (PERMANOVA, p = 0.0312) compared to the rice plants treated with fertilizers only. Out of 185 bacterial genera detected, Prevotella, an anaerobic and Gram-negative bacterium, was found to be the predominant genus in both rhizosphere soil and root metagenomes. However, the relative abundance of Prevotella remained two-fold higher in the rhizosphere soil metagenome (52.02%) than in the root metagenome (25.04%). The other predominant bacterial genera detected in the rice root metagenome were Bacillus (11.07%), Planctomyces (4.06%), Faecalibacterium (3.91%), Deinococcus (2.97%), Bacteroides (2.61%), and Chryseobacterium (2.30%). On the other hand, rhizosphere soil metagenome had Bacteroides (12.38%), Faecalibacterium (9.50%), Vibrio (5.94%), Roseomonas (3.40%), and Delftia (3.02%). Interestingly, we found the presence and/or abundance of specific genera of bacteria in rice associated with the application of a specific probiotic bacterium. Taken together, our results indicate that improvement of growth and yield of rice by P. fungorum strain BRRh-4 and Delftia sp. strain BTL-M2 is likely linked with modulation of diversity, structures, and signature of bacteriome in roots and rhizosphere soils. This study for the first time demonstrated that application of plant growth promoting bacteria significantly improve growth, yield and increase the diversity of bacterial community in rice.
Collapse
Affiliation(s)
- Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Fatema
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, United States
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Tan L, Zhong MM, Liu Q, Chen Y, Zhao YQ, Zhao J, Dusenge MA, Feng Y, Ye Q, Hu J, Ou-Yang ZY, Zhou YH, Guo Y, Feng YZ. Potential interaction between the oral microbiota and COVID-19: a meta-analysis and bioinformatics prediction. Front Cell Infect Microbiol 2023; 13:1193340. [PMID: 37351182 PMCID: PMC10282655 DOI: 10.3389/fcimb.2023.1193340] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Objectives The purpose of this study was to evaluate available evidence on the association between the human oral microbiota and coronavirus disease 2019 (COVID-19) and summarize relevant data obtained during the pandemic. Methods We searched EMBASE, PubMed, and the Cochrane Library for human studies published up to October 2022. The main outcomes of the study were the differences in the diversity (α and β) and composition of the oral microbiota at the phylum and genus levels between patients with laboratory-confirmed SARS-CoV-2 infection (CPs) and healthy controls (HCs). We used the Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA) database, Protein-protein interaction (PPI) network (STRING) and Gene enrichment analysis (Metascape) to evaluate the expression of dipeptidyl peptidase 4 (DPP4) (which is the cell receptor of SARS CoV-2) in oral tissues and evaluate its correlation with viral genes or changes in the oral microbiota. Results Out of 706 studies, a meta-analysis of 9 studies revealed a significantly lower alpha diversity (Shannon index) in CPs than in HCs (standardized mean difference (SMD): -0.53, 95% confidence intervals (95% CI): -0.97 to -0.09). Subgroup meta-analysis revealed a significantly lower alpha diversity (Shannon index) in older than younger individuals (SMD: -0.54, 95% CI: -0.86 to -0.23/SMD: -0.52, 95% CI: -1.18 to 0.14). At the genus level, the most significant changes were in Streptococcus and Neisseria, which had abundances that were significantly higher and lower in CPs than in HCs based on data obtained from six out of eleven and five out of eleven studies, respectively. DPP4 mRNA expression in the oral salivary gland was significantly lower in elderly individuals than in young individuals. Spearman correlation analysis showed that DPP4 expression was negatively correlated with the expression of viral genes. Gene enrichment analysis showed that DPP4-associated proteins were mainly enriched in biological processes, such as regulation of receptor-mediated endocytosis of viruses by host cells and bacterial invasion of epithelial cells. Conclusion The oral microbial composition in COVID-19 patients was significantly different from that in healthy individuals, especially among elderly individuals. DPP4 may be related to viral infection and dysbiosis of the oral microbiome in elderly individuals.
Collapse
Affiliation(s)
- Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol 2023; 20:323-337. [PMID: 36271144 PMCID: PMC9589856 DOI: 10.1038/s41575-022-00698-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract is involved in coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gut microbiota has important roles in viral entry receptor angiotensin-converting enzyme 2 (ACE2) expression, immune homeostasis, and crosstalk between the gut and lungs, the 'gut-lung axis'. Emerging preclinical and clinical studies indicate that the gut microbiota might contribute to COVID-19 pathogenesis and disease outcomes; SARS-CoV-2 infection was associated with altered intestinal microbiota and correlated with inflammatory and immune responses. Here, we discuss the cutting-edge evidence on the interactions between SARS-CoV-2 infection and the gut microbiota, key microbial changes in relation to COVID-19 severity and host immune dysregulations with the possible underlying mechanisms, and the conceivable consequences of the pandemic on the human microbiome and post-pandemic health. Finally, potential modulatory strategies of the gut microbiota are discussed. These insights could shed light on the development of microbiota-based interventions for COVID-19.
Collapse
Affiliation(s)
- Fen Zhang
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Raphaela I Lau
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qin Liu
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qi Su
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
| |
Collapse
|
20
|
Wu J, Liu W, Zhu L, Li N, Luo G, Gu M, Peng M, Zeng S, Wu S, Zhang S, Chen Q, Cai M, Cao W, Jiang Y, Luo C, Tian D, Shi M, Shu Y, Chang G, Luo H. Dysbiosis of oropharyngeal microbiome and antibiotic resistance in hospitalized COVID-19 patients. J Med Virol 2023; 95:e28727. [PMID: 37185870 DOI: 10.1002/jmv.28727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is ongoing and multiple studies have elucidated its pathogenesis, however, the related- microbiome imbalance caused by SARS-CoV-2 is still not clear. In this study, we have comprehensively compared the microbiome composition and associated function alterations in the oropharyngeal swabs of healthy controls and coronavirus disease 2019 (COVID-19) patients with moderate or severe symptoms by metatranscriptomic sequencing. We did observe a reduced microbiome alpha-diversity but significant enrichment of opportunistic microorganisms in patients with COVID-19 compared with healthy controls, and the microbial homeostasis was rebuilt following the recovery of COVID-19 patients. Correspondingly, less functional genes in multiple biological processes and weakened metabolic pathways such as carbohydrate metabolism, energy metabolism were also observed in COVID-19 patients. We only found higher relative abundance of limited genera such as Lachnoanaerobaculum between severe patients and moderate patients while no worthy-noting microbiome diversity and function alteration were observed. Finally, we noticed that the co-occurrence of antibiotic resistance and virulence was closely related to the microbiome alteration caused by SRAS-CoV-2. Overall, our findings demonstrate that microbial dysbiosis may enhance the pathogenesis of SARS-CoV-2 and the antibiotics treatment should be critically considered.
Collapse
Affiliation(s)
- Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of AIDS and STD Control and Prevention, Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Wei Liu
- Department of Immunology, Center for Disease Prevention and Control of PLA, Beijing, China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Gengyan Luo
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ming Gu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Minwu Peng
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Meiqi Cai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wei Cao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Jiang
- Environment Health Department, Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guohui Chang
- Department of Immunology, Center for Disease Prevention and Control of PLA, Beijing, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
21
|
Trøseid M, Holter JC, Holm K, Vestad B, Sazonova T, Granerud BK, Dyrhol-Riise AM, Holten AR, Tonby K, Kildal AB, Heggelund L, Tveita A, Bøe S, Müller KE, Jenum S, Hov JR, Ueland T. Gut microbiota composition during hospitalization is associated with 60-day mortality after severe COVID-19. Crit Care 2023; 27:69. [PMID: 36814280 PMCID: PMC9946863 DOI: 10.1186/s13054-023-04356-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital, 0424, Oslo, Norway. .,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, 0315, Oslo, Norway.
| | - Jan Cato Holter
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Holm
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Beate Vestad
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Taisiia Sazonova
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Beathe K. Granerud
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Aleksander R. Holten
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Anders Benjamin Kildal
- grid.412244.50000 0004 4689 5540Department of Anesthesiology and Intensive Care, University Hospital of North Norway, 9019 Tromsö, Norway ,grid.10919.300000000122595234Department of Clinical Medicine, Faculty of Health Sciences, UIT – The Arctic University of Norway, 9019 Tromsö, Norway
| | - Lars Heggelund
- grid.470118.b0000 0004 0627 3835Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Anders Tveita
- grid.55325.340000 0004 0389 8485Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway ,grid.414168.e0000 0004 0627 3595Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346 Gjettum, Norway
| | - Simen Bøe
- Department of Anesthesiology and Intensive Care, Hammerfest County Hospital, Hammerfest, Norway
| | - Karl Erik Müller
- grid.470118.b0000 0004 0627 3835Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
| | - Synne Jenum
- grid.55325.340000 0004 0389 8485Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Johannes R. Hov
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway ,grid.55325.340000 0004 0389 8485Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.10919.300000000122595234K.G. Jebsen-Thrombosis Research and Expertise Center (TREC), UIT – The Arctic University of Norway, Tromsö, Norway
| | | |
Collapse
|
22
|
Association between Gut Microbiota and SARS-CoV-2 Infection and Vaccine Immunogenicity. Microorganisms 2023; 11:microorganisms11020452. [PMID: 36838417 PMCID: PMC9961186 DOI: 10.3390/microorganisms11020452] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Gut microbiota is increasingly recognized to play a pivotal role in various human physiological functions and diseases. Amidst the COVID-19 pandemic, research has suggested that dysbiosis of the gut microbiota is also involved in the development and severity of COVID-19 symptoms by regulating SARS-CoV-2 entry and modulating inflammation. Previous studies have also suggested that gut microbiota and their metabolites could have immunomodulatory effects on vaccine immunogenicity, including influenza vaccines and oral rotavirus vaccines. In light of these observations, it is possible that gut microbiota plays a role in influencing the immune responses to COVID-19 vaccinations via similar mechanisms including effects of lipopolysaccharides, flagellin, peptidoglycan, and short-chain fatty acids. In this review, we give an overview of the current understanding on the role of the gut microbiota in COVID-19 manifestations and vaccine immunogenicity. We then discuss the limitations of currently published studies on the associations between gut microbiota and COVID-19 vaccine outcomes. Future research directions shall be focused on the development of microbiota-based interventions on improving immune response to SARS-CoV-2 infection and vaccinations.
Collapse
|
23
|
Kim JG, Zhang A, Rauseo AM, Goss CW, Mudd PA, O'Halloran JA, Wang L. The salivary and nasopharyngeal microbiomes are associated with SARS-CoV-2 infection and disease severity. J Med Virol 2023; 95:e28445. [PMID: 36583481 PMCID: PMC9880756 DOI: 10.1002/jmv.28445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Emerging evidence suggests the oral and upper respiratory microbiota may play important roles in modulating host immune responses to viral infection. As the host microbiome may be involved in the pathophysiology of coronavirus disease 2019 (COVID-19), we investigated associations between the oral and nasopharyngeal microbiome and COVID-19 severity. We collected saliva (n = 78) and nasopharyngeal swab (n = 66) samples from a COVID-19 cohort and characterized the microbiomes using 16S ribosomal RNA gene sequencing. We also examined associations between the salivary and nasopharyngeal microbiome and age, COVID-19 symptoms, and blood cytokines. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection status, but not COVID-19 severity, was associated with community-level differences in the oral and nasopharyngeal microbiomes. Salivary and nasopharyngeal microbiome alpha diversity negatively correlated with age and were associated with fever and diarrhea. Oral Bifidobacterium, Lactobacillus, and Solobacterium were depleted in patients with severe COVID-19. Nasopharyngeal Paracoccus was depleted while nasopharyngeal Proteus, Cupravidus, and Lactobacillus were increased in patients with severe COVID-19. Further analysis revealed that the abundance of oral Bifidobacterium was negatively associated with plasma concentrations of known COVID-19 biomarkers interleukin 17F and monocyte chemoattractant protein-1. Our results suggest COVID-19 disease severity is associated with the relative abundance of certain bacterial taxa.
Collapse
Affiliation(s)
- Josh G. Kim
- Department of Medicine, Division of Allergy and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Ai Zhang
- Department of Medicine, Division of Allergy and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Adriana M. Rauseo
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Charles W. Goss
- Division of BiostatisticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Philip A. Mudd
- Department of Emergency MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Jane A. O'Halloran
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Leyao Wang
- Department of Medicine, Division of Allergy and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
24
|
Yamamoto A, Kambara Y, Fujiwara H. Impact of oral microbiota on pathophysiology of GVHD. Front Immunol 2023; 14:1132983. [PMID: 36969182 PMCID: PMC10033631 DOI: 10.3389/fimmu.2023.1132983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allogeneic transplantation of hematopoietic cells is the only curative therapy for several hematopoietic disease in which patients receive cytotoxic conditioning regimens followed by infusion of hematopoietic stem cells. Although the outcomes have improved over the past decades, graft-versus-host-disease (GVHD), the most common life-threatening complication, remains a major cause of non-relapse morbidity and mortality. Pathophysiology of acute GVHD characterized by host antigen-presenting cells after tissue damage and donor T-cells is well studied, and additionally the importance of recipient microbiota in the intestine is elucidated in the GVHD setting. Oral microbiota is the second most abundant bacterial flora in the body after the intestinal tract, and it is related to chronic inflammation and carcinogenesis. Recently, composition of the oral microbiome in GVHD related to transplantation has been characterized and several common patterns, dysbiosis and enrichment of the specific bacterial groups, have been reported. This review focuses on the role of the oral microbiota in the context of GVHD.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Yui Kambara
- Department of Hematology and Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- *Correspondence: Hideaki Fujiwara,
| |
Collapse
|
25
|
Cheng X, Zhang Y, Li Y, Wu Q, Wu J, Park SK, Guo C, Lu J. Meta-analysis of 16S rRNA microbial data identified alterations of the gut microbiota in COVID-19 patients during the acute and recovery phases. BMC Microbiol 2022; 22:274. [PMID: 36376804 PMCID: PMC9662111 DOI: 10.1186/s12866-022-02686-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Dozens of studies have demonstrated gut dysbiosis in COVID-19 patients during the acute and recovery phases. However, a consensus on the specific COVID-19 associated bacteria is missing. In this study, we performed a meta-analysis to explore whether robust and reproducible alterations in the gut microbiota of COVID-19 patients exist across different populations. METHODS A systematic review was conducted for studies published prior to May 2022 in electronic databases. After review, we included 16 studies that comparing the gut microbiota in COVID-19 patients to those of controls. The 16S rRNA sequence data of these studies were then re-analyzed using a standardized workflow and synthesized by meta-analysis. RESULTS We found that gut bacterial diversity of COVID-19 patients in both the acute and recovery phases was consistently lower than non-COVID-19 individuals. Microbial differential abundance analysis showed depletion of anti-inflammatory butyrate-producing bacteria and enrichment of taxa with pro-inflammatory properties in COVID-19 patients during the acute phase compared to non-COVID-19 individuals. Analysis of microbial communities showed that the gut microbiota of COVID-19 recovered patients were still in unhealthy ecostates. CONCLUSIONS Our results provided a comprehensive synthesis to better understand gut microbial perturbations associated with COVID-19 and identified underlying biomarkers for microbiome-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Xiaomin Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
- Guangzhou Nansha District Center for Disease Control and Prevention, Guangzhou, China
| | - Yali Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Yifan Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Qin Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Jiani Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Soo-Kyung Park
- Division of Gastroenterology, Department of Internal Medicine and Inflammatory Bowel Disease Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China.
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China.
- Key Laboratory for Tropical Disease Control, Ministry of Education, Guangzhou, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, China.
- One Health Research Center, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
26
|
Gregorczyk-Maga I, Fiema M, Kania M, Kędzierska J, Jachowicz E, Romaniszyn D, Wójkowska-Mach J. Cultivable oral bacteriota dysbiosis in mechanically ventilated COVID-19 patients. Front Microbiol 2022; 13:1013559. [PMID: 36386658 PMCID: PMC9651008 DOI: 10.3389/fmicb.2022.1013559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Potential interactions between the SARS-CoV-2 virus and the human oral microbiota are currently investigated widely. Patients with COVID-19 requiring mechanical ventilation in an intensive care unit (ICU) setting are at high risk of developing severe complications, including ventilator-associated pneumonia, thus making oral health management important. The aim of this study was to evaluate the oral health status and assess the dysbiosis of cultivable oral bacteriota in COVID-19 patients hospitalized in an ICU with acute respiratory distress within 36 h following intubation. In this prospective cohort study, we recruited 56 adult COVID-19 patients that qualified for mechanical ventilation in the Temporary ICU for COVID-19 Patients of the University Hospital in Krakow. On admission to the ICU, oral health of patients was assessed using the modified Beck Oral Assessment Score (BOAS). Four oral habitats were sampled, namely the buccal mucosa, tongue, buccal dental surface and gingival pocket. Microorganisms were identified by MALDI/TOF mass spectrometry. The mean age of the study population was 66.5 ± 12.7 years, there were 24 (42.9%) females. All patients included in this study were intubated and ventilated in the ICU, with a corresponding high mortality rate (76.8%). On admission to ICU, 76.8% subjects scored 11–20 on the BOAS scale (median 12 [IQR 10–14]), indicating moderate or severe dysfunction of oral health. Potentially pathogenic bacteria were identified in the oral microbiota samples, including Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli and Klebsiella pneumoniae in 23.2%, 39.3%, 17.9%, and 19.6% of patients, respectively. Lactobacillus spp. were present in 57.1% subjects. The mean CFU counts of all bacteria strains in dental brushes were 9.3E+5 (1.4E+6) and in gingival pockets 7.6E+5 (1.4E+6). The highest CFU counts were observed for Enterococcus spp. and, Lactobacillus spp., although these did not differ significantly from CFU counts of Streptococcus spp. and Staphylococcus spp. In this report we comprehensively characterized the oral health condition and cultivable oral bacteriota in COVID-19 patients hospitalized in an ICU with acute respiratory distress within 36 h following intubation. The oral bacteriota showed significant qualitative and quantitative dysbiosis. Hospitalization in an ICU and mechanical ventilation are important factors leading to oral dysbiosis in SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Iwona Gregorczyk-Maga
- Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Fiema
- Department of Endocrinology, University Hospital, Krakow, Poland
| | - Michal Kania
- Doctoral School of Medicine and Health Sciences, Jagiellonian University Medical College, Krakow, Poland
- Chair of Metabolic Diseases, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- *Correspondence: Michal Kania,
| | | | - Estera Jachowicz
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Romaniszyn
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jadwiga Wójkowska-Mach
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
27
|
Ke S, Weiss ST, Liu YY. Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes. Nat Commun 2022; 13:5235. [PMID: 36068270 PMCID: PMC9446638 DOI: 10.1038/s41467-022-32991-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), primarily a respiratory disease caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is often accompanied by gastrointestinal symptoms. However, little is known about the relation between the human microbiome and COVID-19, largely due to the fact that most previous studies fail to provide high taxonomic resolution to identify microbes that likely interact with SARS-CoV-2 infection. Here we used whole-metagenome shotgun sequencing data together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from 514 COVID-19 related nasopharyngeal and fecal samples in six independent cohorts. We reconstructed a total of 11,584 medium-and high-quality microbial MAGs and obtained 5403 non-redundant MAGs (nrMAGs) with strain-level resolution. We found that there is a significant reduction of strain richness for many species in the gut microbiome of COVID-19 patients. The gut microbiome signatures can accurately distinguish COVID-19 cases from healthy controls and predict the progression of COVID-19. Moreover, we identified a set of nrMAGs with a putative causal role in the clinical manifestations of COVID-19 and revealed their functional pathways that potentially interact with SARS-CoV-2 infection. Finally, we demonstrated that the main findings of our study can be largely validated in three independent cohorts. The presented results highlight the importance of incorporating the human gut microbiome in our understanding of SARS-CoV-2 infection and disease progression.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Callahan N, Hattar M, Barbour T, Adami GR, Kawar N. Oral microbial taxa associated with risk for SARS-CoV-2 infection. FRONTIERS IN ORAL HEALTH 2022; 3:886341. [PMID: 36118052 PMCID: PMC9478458 DOI: 10.3389/froh.2022.886341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothesis and objective The oral and digestive tract microbial ecosystem has sparked interest because of its impact on various systemic diseases and conditions. The oral cavity serves not only as a reservoir for many potentially virulent microbiota but also as an important entry point and portal to the human body system. This is especially significant in the transmissibility of the virulent current pandemic virus SARS-CoV-2. The oral and digestive microbiome influences the inflammatory burden and effectiveness of the immune system and serves as a marker of activity of these host processes. The host immune response plays a role in infection susceptibility, including SARS-CoV-2. The purpose of this study is to investigate the role of specific salivary oral microbiome in susceptibility to SARS-CoV-2 infection. Methods and results One hundred six subjects of known medical and dental history who consented to provide saliva samples between January 2017 and December 2019 were included in this study. Sixteen had become COVID-19 positive based on the PCR test by 3/01/2021. A comparison of oral microbiome bacteria taxa profiles based on 16S rRNA sequencing revealed differences between the two groups in this pilot study. Conclusions These bacteria taxa may be markers of increased susceptibility to SARS-CoV-2 infection in the unvaccinated population.
Collapse
Affiliation(s)
- Nicholas Callahan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Meryana Hattar
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thawab Barbour
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Guy R. Adami
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Guy R. Adami
| | - Nadia Kawar
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Hoque MN, Sarkar MMH, Khan MA, Hossain MA, Hasan MI, Rahman MH, Habib MA, Akter S, Banu TA, Goswami B, Jahan I, Nafisa T, Molla MMA, Soliman ME, Araf Y, Khan MS, Zheng C, Islam T. Differential gene expression profiling reveals potential biomarkers and pharmacological compounds against SARS-CoV-2: Insights from machine learning and bioinformatics approaches. Front Immunol 2022; 13:918692. [PMID: 36059456 PMCID: PMC9429819 DOI: 10.3389/fimmu.2022.918692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created an urgent global situation. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability and disease comorbidities. The pandemic continues to spread worldwide, despite intense efforts to develop multiple vaccines and therapeutic options against COVID-19. However, the precise role of SARS-CoV-2 in the pathophysiology of the nasopharyngeal tract (NT) is still unfathomable. This study utilized machine learning approaches to analyze 22 RNA-seq data from COVID-19 patients (n = 8), recovered individuals (n = 7), and healthy individuals (n = 7) to find disease-related differentially expressed genes (DEGs). We compared dysregulated DEGs to detect critical pathways and gene ontology (GO) connected to COVID-19 comorbidities. We found 1960 and 153 DEG signatures in COVID-19 patients and recovered individuals compared to healthy controls. In COVID-19 patients, the DEG–miRNA, and DEG–transcription factors (TFs) interactions network analysis revealed that E2F1, MAX, EGR1, YY1, and SRF were the highly expressed TFs, whereas hsa-miR-19b, hsa-miR-495, hsa-miR-340, hsa-miR-101, and hsa-miR-19a were the overexpressed miRNAs. Three chemical agents (Valproic Acid, Alfatoxin B1, and Cyclosporine) were abundant in COVID-19 patients and recovered individuals. Mental retardation, mental deficit, intellectual disability, muscle hypotonia, micrognathism, and cleft palate were the significant diseases associated with COVID-19 by sharing DEGs. Finally, the detected DEGs mediated by TFs and miRNA expression indicated that SARS-CoV-2 infection might contribute to various comorbidities. Our results provide the common DEGs between COVID-19 patients and recovered humans, which suggests some crucial insights into the complex interplay between COVID-19 progression and the recovery stage, and offer some suggestions on therapeutic target identification in COVID-19 caused by the SARS-CoV-2.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Md. Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md. Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
| | - Md. Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
| | - Md. Ahashan Habib
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tasnim Nafisa
- National Institute of Laboratory Medicine and Referral Center, Dhaka, Bangladesh
| | | | - Mahmoud E. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - M. Salim Khan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
- *Correspondence: Tofazzal Islam, ; Chunfu Zheng, ; Md. Salim Khan,
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Tofazzal Islam, ; Chunfu Zheng, ; Md. Salim Khan,
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
- *Correspondence: Tofazzal Islam, ; Chunfu Zheng, ; Md. Salim Khan,
| |
Collapse
|
30
|
Klymiuk I, Bilgilier C, Mahnert A, Prokesch A, Heininger C, Brandl I, Sahbegovic H, Singer C, Fuereder T, Steininger C. Chemotherapy-associated oral microbiome changes in breast cancer patients. Front Oncol 2022; 12:949071. [PMID: 36016616 PMCID: PMC9396302 DOI: 10.3389/fonc.2022.949071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cytotoxic chemotherapy with or without a combination of humanized monoclonal antibodies is regarded as the gold standard of personalized medicine for the treatment of breast cancer patients. Significant medication-related side effects are common accompanying phenomena for these patients, such as oral discomfort, mucositis, or even osteonecrosis of the jaw. In this study, we analyze the saliva samples of 20 breast cancer patients at three time points throughout their chemotherapy: at the baseline prior to treatment initiation (T1), after four-to-six cycles of chemotherapy (T2), and 1 year after the start of the treatment (T3) to investigate and characterize the long-term effects of chemotherapy on the oral microbiome. We aimed to characterize changes in the oral bacterial microbiome based on 16S rRNA gene amplicon analysis during chemotherapeutic treatment, as a potential target to treat common oral side effects occurring during therapy. The chemotherapeutic drugs used in our study for patient treatment were trastuzumab, docetaxel, pertuzumab, epirubicin, and cyclophosphamide. We find a significant increase in the relative abundance of potentially pathogenic taxa like Escherichia/Shigella and non-significant trends in the relative abundance of, for example, Actinomyces ssp. In conclusion, the role of microbiota in the oral side effects of chemotherapeutic treatment needs to be considered and should be analyzed in more detail using larger patient cohorts. Oral side effects in breast cancer patients undergoing chemotherapy are a common burden and should be treated for a better tolerability of the therapy.
Collapse
Affiliation(s)
- Ingeborg Klymiuk
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ceren Bilgilier
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christoph Heininger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ingeborg Brandl
- Department of Gynecology, Clinical Department of General Gynecology and Gynecological Oncology. Medical University Vienna, Vienna, Austria
| | - Hanka Sahbegovic
- Department of Gynecology, Clinical Department of General Gynecology and Gynecological Oncology. Medical University Vienna, Vienna, Austria
| | - Christian Singer
- Department of Gynecology, Clinical Department of General Gynecology and Gynecological Oncology. Medical University Vienna, Vienna, Austria
| | - Thorsten Fuereder
- Division of Oncology, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Christoph Steininger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University Vienna, Vienna, Austria
- Karl Landsteiner Institute for Microbiome Research, St. Pölten, Austria
- *Correspondence: Christoph Steininger,
| |
Collapse
|
31
|
Chakraborty C, Sharma AR, Bhattacharya M, Dhama K, Lee SS. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. World J Gastroenterol 2022; 28:2802-2822. [PMID: 35978881 PMCID: PMC9280735 DOI: 10.3748/wjg.v28.i25.2802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/19/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to a severe respiratory illness and alters the gut microbiota, which dynamically interacts with the human immune system. Microbiota alterations include decreased levels of beneficial bacteria and augmentation of opportunistic pathogens. Here, we describe critical factors affecting the microbiota in coronavirus disease 2019 (COVID-19) patients. These include, such as gut microbiota imbalance and gastrointestinal symptoms, the pattern of altered gut microbiota composition in COVID-19 patients, and crosstalk between the microbiome and the gut-lung axis/gut-brain-lung axis. Moreover, we have illustrated the hypoxia state in COVID-19 associated gut microbiota alteration. The role of ACE2 in the digestive system, and control of its expression using the gut microbiota is discussed, highlighting the interactions between the lungs, the gut, and the brain during COVID-19 infection. Similarly, we address the gut microbiota in elderly or co-morbid patients as well as gut microbiota dysbiosis of in severe COVID-19. Several clinical trials to understand the role of probiotics in COVID-19 patients are listed in this review. Augmented inflammation is one of the major driving forces for COVID-19 symptoms and gut microbiome disruption and is associated with disease severity. However, understanding the role of the gut microbiota in immune modulation during SARS-CoV-2 infection may help improve therapeutic strategies for COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| | | | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI), Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University, Chuncheon-si 24252, South Korea
| |
Collapse
|
32
|
Cure MC, Cure E. Prolonged NHE Activation may be both Cause and Outcome of Cytokine Release Syndrome in COVID-19. Curr Pharm Des 2022; 28:1815-1822. [PMID: 35838211 DOI: 10.2174/1381612828666220713121741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The release of cytokines and chemokines such as IL-1β, IL-2, IL-6, IL-7, IL-10, TNF-α, IFN-γ, CCL2, CCL3, and CXCL10 is increased in critically ill patients with COVID-19. Excessive cytokine release during COVID-19 is related to increased morbidity and mortality. Several mechanisms are put forward for cytokine release syndrome during COVID-19. Here we have mentioned novel pathways. SARS-CoV-2 increases angiotensin II levels by rendering ACE2 nonfunctional. Angiotensin II causes cytokine release via AT1 and AT2 receptors. Moreover, angiotensin II potently stimulates the Na+/H+ exchanger (NHE). It is a pump found in the membranes of many cells that pumps Na+ inward and H+ outward. NHE has nine isoforms. NHE1 is the most common isoform found in endothelial cells and many cells. NHE is involved in keeping the intracellular pH within physiological limits. When the intracellular pH is acidic, NHE is activated, bringing the intracellular pH to physiological levels, ending its activity. Sustained NHE activity is highly pathological and causes many problems. Prolonged NHE activation in COVID-19 may cause a decrease in intracellular pH through H+ ion accumulation in the extracellular area and subsequent redox reactions. The activation reduces the intracellular K+ concentration and leads to Na+ and Ca2+ overload. Increased ROS can cause intense cytokine release by stimulating NF-κB and NLRP3 inflammasomes. Cytokines also cause overstimulation of NHE. As the intracellular pH decreases, SARS-CoV-2 rapidly infects new cells, increasing the viral load. This vicious circle increases morbidity and mortality in patients with COVID-19. On the other hand, SARS-CoV-2 interaction with NHE3 in intestinal tissue is different from other tissues. SARS-CoV-2 can trigger CRS via NHE3 inhibition by disrupting the intestinal microbiota. This review aimed to help develop new treatment models against SARS-CoV-2- induced CRS by revealing the possible effects of SARS-CoV-2 on the NHE.
Collapse
Affiliation(s)
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul, Turkey
| |
Collapse
|