1
|
Gozalo AS, Robinson CK, Holdridge J, Mahecha OFL, Elkins WR. Overview of Plasmodium spp. and Animal Models in Malaria Research. Comp Med 2024; 74:205-230. [PMID: 38902006 PMCID: PMC11373680 DOI: 10.30802/aalas-cm-24-000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Malaria is a parasitic disease caused by protozoan species of the genus Plasmodium and transmitted by female mosquitos of the genus Anopheles and other Culicidae. Most of the parasites of the genus Plasmodium are highly species specific with more than 200 species described affecting different species of mammals, birds, and reptiles. Plasmodium species strictly affecting humans are P. falciparum, P. vivax, P. ovale, and P. malariae. More recently, P. knowlesi and other nonhuman primate plasmodia were found to naturally infect humans. Currently, malaria occurs mostly in poor tropical and subtropical areas of the world, and in many of these countries it is the leading cause of illness and death. For more than 100 y, animal models, have played a major role in our understanding of malaria biology. Avian Plasmodium species were the first to be used as models to study human malaria. Malaria parasite biology and immunity were first studied using mainly P. gallinaceum and P. relictum. Rodent malarias, particularly P. berghei and P. yoelii, have been used extensively as models to study malaria in mammals. Several species of Plasmodium from nonhuman primates have been used as surrogate models to study human malaria immunology, pathogenesis, candidate vaccines, and treatments. Plasmodium cynomolgi, P. simiovale, and P. fieldi are important models for studying malaria produced by P. vivax and P. ovale, while P. coatneyi is used as a model for study- ing severe malaria. Other nonhuman primate malarias used in research are P. fragile, P. inui, P. knowlesi, P. simium, and P. brasilianum. Very few nonhuman primate species can develop an infection with human malarias. Macaques in general are resistant to infection with P. falciparum, P. vivax, P. malariae, and P. ovale. Only apes and a few species of New World monkeys can support infection with human malarias. Herein we review the most common, and some less common, avian, reptile, and mammal plasmodia species used as models to study human malaria.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christen K Robinson
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie Holdridge
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Olga Franco L Mahecha
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Maher SP, Bakowski MA, Vantaux A, Flannery EL, Andolina C, Gupta M, Antonova-Koch Y, Argomaniz M, Cabrera-Mora M, Campo B, Chao AT, Chatterjee AK, Cheng WT, Chuenchob E, Cooper CA, Cottier K, Galinski MR, Harupa-Chung A, Ji H, Joseph SB, Lenz T, Lonardi S, Matheson J, Mikolajczak SA, Moeller T, Orban A, Padín-Irizarry V, Pan K, Péneau J, Prudhomme J, Roesch C, Ruberto AA, Sabnis SS, Saney CL, Sattabongkot J, Sereshki S, Suriyakan S, Ubalee R, Wang Y, Wasisakun P, Yin J, Popovici J, McNamara CW, Joyner CJ, Nosten F, Witkowski B, Le Roch KG, Kyle DE. A Drug Repurposing Approach Reveals Targetable Epigenetic Pathways in Plasmodium vivax Hypnozoites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.31.526483. [PMID: 36778461 PMCID: PMC9915689 DOI: 10.1101/2023.01.31.526483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radical cure of Plasmodium vivax malaria must include elimination of quiescent 'hypnozoite' forms in the liver; however, the only FDA-approved treatments are contraindicated in many vulnerable populations. To identify new drugs and drug targets for hypnozoites, we screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library and a collection of epigenetic inhibitors against P. vivax liver stages. From both libraries, we identified inhibitors targeting epigenetics pathways as selectively active against P. vivax and P. cynomolgi hypnozoites. These include DNA methyltransferase (DNMT) inhibitors as well as several inhibitors targeting histone post-translational modifications. Immunofluorescence staining of Plasmodium liver forms showed strong nuclear 5-methylcystosine signal, indicating liver stage parasite DNA is methylated. Using bisulfite sequencing, we mapped genomic DNA methylation in sporozoites, revealing DNA methylation signals in most coding genes. We also demonstrated that methylation level in proximal promoter regions as well as in the first exon of the genes may affect, at least partially, gene expression in P. vivax. The importance of selective inhibitors targeting epigenetic features on hypnozoites was validated using MMV019721, an acetyl-CoA synthetase inhibitor that affects histone acetylation and was previously reported as active against P. falciparum blood stages. In summary, our data indicate that several epigenetic mechanisms are likely modulating hypnozoite formation or persistence and provide an avenue for the discovery and development of improved radical cure antimalarials.
Collapse
Affiliation(s)
- S. P. Maher
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | - M. A. Bakowski
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - A. Vantaux
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - E. L. Flannery
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - C. Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - M. Gupta
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - Y. Antonova-Koch
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - M. Argomaniz
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - M. Cabrera-Mora
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
| | - B. Campo
- Medicines for Malaria Venture (MMV); Geneva, 1215, Switzerland
| | - A. T. Chao
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - A. K. Chatterjee
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - W. T. Cheng
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - E. Chuenchob
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - C. A. Cooper
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | | | - M. R. Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University; Atlanta, GA, 30329, USA
| | - A. Harupa-Chung
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - H. Ji
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - S. B. Joseph
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - T. Lenz
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - S. Lonardi
- Department of Computer Science and Engineering, University of California; Riverside, CA, 92521, USA
| | - J. Matheson
- Department of Microbiology and Immunology, University of Otago; Dunedin, 9016, New Zealand
| | - S. A. Mikolajczak
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | | | - A. Orban
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - V. Padín-Irizarry
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
- School of Sciences, Clayton State University; Morrow, GA, 30260, USA
| | - K. Pan
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - J. Péneau
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - J. Prudhomme
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - C. Roesch
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - A. A. Ruberto
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | - S. S. Sabnis
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - C. L. Saney
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - J. Sattabongkot
- Mahidol Vivax Research Unit, Mahidol University; Bangkok, 10400, Thailand
| | - S. Sereshki
- Department of Computer Science and Engineering, University of California; Riverside, CA, 92521, USA
| | - S. Suriyakan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - R. Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS); Bangkok, 10400, Thailand
| | - Y. Wang
- Department of Chemistry, University of California; Riverside, CA, 92521
- Environmental Toxicology Graduate Program, University of California; Riverside, CA, 92521, USA
| | - P. Wasisakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - J. Yin
- Environmental Toxicology Graduate Program, University of California; Riverside, CA, 92521, USA
| | - J. Popovici
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - C. W. McNamara
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - C. J. Joyner
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
| | - F. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford; Oxford, OX3 7LG, UK
| | - B. Witkowski
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - K. G. Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - D. E. Kyle
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| |
Collapse
|
3
|
Ulloa GM, Greenwood AD, Cornejo OE, Monteiro FOB, Scofield A, Santolalla Robles ML, Lescano AG, Mayor P. Phylogenetic congruence of Plasmodium spp. and wild ungulate hosts in the Peruvian Amazon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105554. [PMID: 38246398 PMCID: PMC11331447 DOI: 10.1016/j.meegid.2024.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Malaria parasites are known to infect a variety of vertebrate hosts, including ungulates. However, ungulates of Amazonia have not been investigated. We report for the first time, the presence of parasite lineages closely related to Plasmodium odocoilei clade 1 and clade 2 in free-ranging South American red-brocket deer (Mazama americana; 44.4%, 4/9) and gray-brocket deer (Mazama nemorivaga; 50.0%, 1/2). We performed PCR-based analysis of blood samples from 47 ungulates of five different species collected during subsistence hunting by an indigenous community in the Peruvian Amazon. We detected Plasmodium malariae/brasilianum lineage in a sample from red-brocket deer. However, no parasite DNA was detected in collared peccary (Pecari tajacu; 0.0%, 0/10), white-lipped peccary (Tayassu pecari; 0.0%, 0/15), and tapir (Tapirus terrestris; 0.0%, 0/11). Concordant phylogenetic analyses suggested a possible co-evolutionary relationship between the Plasmodium lineages found in American deer and their hosts.
Collapse
Affiliation(s)
- Gabriela M Ulloa
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Bellaterra-Barcelona E-08193, Spain; Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil; Grupo de Enfermedades Infecciosas Re-Emergentes, Universidad Científica del Sur (UCSUR), Lima, Peru.
| | - Alex D Greenwood
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany; School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Germany
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Frederico Ozanan Barros Monteiro
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Alessandra Scofield
- Laboratory of Animal Parasitology, Postgraduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Brazil
| | - Meddly L Santolalla Robles
- Emerge, Research Unit on Emerging Diseases and Climate Change, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andres G Lescano
- Emerge, Research Unit on Emerging Diseases and Climate Change, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pedro Mayor
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Bellaterra-Barcelona E-08193, Spain; Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil; Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (COMFAUNA), 332 Malecon Tarapaca, Iquitos, Peru; Museo de Culturas Indígenas Amazónicas, Loreto, Iquitos, Peru.
| |
Collapse
|
4
|
Phasomkusolsil S, Tawong J, Monkanna N, Kornkan T, Jitbantrengphan T, Chaiyasab M, Pongda N, Kamram T, Lindroth EJ. The effects of human and rhesus macaque blood meal sources on mosquito reproduction and adult survival under laboratory conditions. Exp Parasitol 2023; 253:108591. [PMID: 37558194 DOI: 10.1016/j.exppara.2023.108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Mass rearing of mosquitoes as required to fulfil research studies is a technically challenging endeavor. Blood meal source has been recognized as a key consideration in mass rearing of mosquitoes that affects colony health and fecundity. Four species of laboratory-colonized mosquitoes from the Department of Entomology, US Army Medical Directorate - Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS); Anopheles cracens, An. dirus, An. minimus and An. sawadwongporni were fed blood meals from human and rhesus macaque sources using an artificial membrane feeder. The effects of different blood meal sources were evaluated concerning blood-feeding, survival and reproduction (fecundity and hatching rates). Adult survival was monitored at days 7, 14 and 21 post blood-feeding. Although the mosquitoes fed on human blood exhibited higher rates of engorgement, there were no significant differences in blood-feeding rates in An. cracens (P = 0.08) and An. dirus (P = 0.91) between rhesus macaque and human blood sources. Twenty-one days post-feeding, no significant differences were observed in the survival rates of mosquitoes fed on human versus rhesus macaque blood. Except for An. dirus, which had better survival rates with human blood (97.5%) than after feeding on rhesus macaque blood (95.4%). All mosquito species fed on human blood produced significantly more eggs when compared to those fed on rhesus macaque blood. However, there was no statistical difference in hatching rates between blood sources, except for An. dirus, which had better hatching rates with human blood. These results indicate that human and rhesus macaque blood may be a viable alternative for maintaining Anopheles mosquitoes in colony.
Collapse
Affiliation(s)
- Siriporn Phasomkusolsil
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand.
| | - Jaruwan Tawong
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Nantaporn Monkanna
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Tanaporn Kornkan
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Thanin Jitbantrengphan
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Marisa Chaiyasab
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Natchanida Pongda
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Thinadda Kamram
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Erica J Lindroth
- Department of Entomology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| |
Collapse
|
5
|
Voorberg-van der Wel A, Zeeman AM, Kocken CHM. Transfection Models to Investigate Plasmodium vivax-Type Dormant Liver Stage Parasites. Pathogens 2023; 12:1070. [PMID: 37764878 PMCID: PMC10534883 DOI: 10.3390/pathogens12091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Plasmodium vivax causes the second highest number of malaria morbidity and mortality cases in humans. Several biological traits of this parasite species, including the formation of dormant stages (hypnozoites) that persist inside the liver for prolonged periods of time, present an obstacle for intervention measures and create a barrier for the elimination of malaria. Research into the biology of hypnozoites requires efficient systems for parasite transmission, liver stage cultivation and genetic modification. However, P. vivax research is hampered by the lack of an in vitro blood stage culture system, rendering it reliant on in vivo-derived, mainly patient, material for transmission and liver stage culture. This has also resulted in limited capability for genetic modification, creating a bottleneck in investigations into the mechanisms underlying the persistence of the parasite inside the liver. This bottleneck can be overcome through optimal use of the closely related and experimentally more amenable nonhuman primate (NHP) parasite, Plasmodium cynomolgi, as a model system. In this review, we discuss the genetic modification tools and liver stage cultivation platforms available for studying P. vivax persistent stages and highlight how their combined use may advance our understanding of hypnozoite biology.
Collapse
Affiliation(s)
- Annemarie Voorberg-van der Wel
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.-M.Z.); (C.H.M.K.)
| | | | | |
Collapse
|
6
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
7
|
DeBarry JD, Nural MV, Pakala SB, Nayak V, Warrenfeltz S, Humphrey J, Lapp SA, Cabrera-Mora M, Brito CFA, Jiang J, Saney CL, Hankus A, Stealey HM, DeBarry MB, Lackman N, Legall N, Lee K, Tang Y, Gupta A, Trippe ED, Bridger RR, Weatherly DB, Peterson MS, Jiang X, Tran V, Uppal K, Fonseca LL, Joyner CJ, Karpuzoglu E, Cordy RJ, Meyer EVS, Wells LL, Ory DS, Lee FEH, Tirouvanziam R, Gutiérrez JB, Ibegbu C, Lamb TJ, Pohl J, Pruett ST, Jones DP, Styczynski MP, Voit EO, Moreno A, Galinski MR, Kissinger JC. MaHPIC malaria systems biology data from Plasmodium cynomolgi sporozoite longitudinal infections in macaques. Sci Data 2022; 9:722. [PMID: 36433985 PMCID: PMC9700667 DOI: 10.1038/s41597-022-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.
Collapse
Affiliation(s)
- Jeremy D DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Mustafa V Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Suman B Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vishal Nayak
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Cancer Data Science Initiatives, Frederick National Laboratory for Cancer Research, Post Office Box B, Frederick, MD, 21702, USA
| | - Susanne Warrenfeltz
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Jay Humphrey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Cristiana F A Brito
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Laboratório de Malária, Instituto René Rachou/Fiocruz Minas, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190 009, Brazil
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia L Saney
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30605, USA
| | - Allison Hankus
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Senior Public Health Informaticist, MITRE Corp, Atlanta, GA, 30345, USA
| | - Hannah M Stealey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Megan B DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Nicolas Lackman
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Noah Legall
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, Institute of Bioinformatics, Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Kevin Lee
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yan Tang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Valted Seq, 704 Quince Orchard Rd, Gaithersburg, MD, 20878, USA
| | - Elizabeth D Trippe
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Federal Drug Administration, Silver Spring, MD, 20993, USA
| | - Robert R Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Brent Weatherly
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Mariko S Peterson
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Xuntian Jiang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32603, USA
| | - Chester J Joyner
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ebru Karpuzoglu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Regina J Cordy
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biology, Wake Forest University, Winston Salem, NC, 27103, USA
| | - Esmeralda V S Meyer
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Institutional Animal Care and Use Committee, Research Compliance and Research Integrity Office, Emory University, Atlanta, GA, 30322, USA
| | - Lance L Wells
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel S Ory
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Casma Therapeutics, Cambridge, MA, 02139, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Juan B Gutiérrez
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chris Ibegbu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tracey J Lamb
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Sarah T Pruett
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- University of Tennessee, Knoxville, TN, 37996, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Alberto Moreno
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jessica C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Sterile protection against relapsing malaria with a single-shot vaccine. NPJ Vaccines 2022; 7:126. [PMID: 36302860 DOI: 10.1038/s41541-022-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Vaccine development for Plasmodium vivax, an important human relapsing malaria, is lagging behind. In the case of the most deadly human malaria P. falciparum, unprecedented high levels of protection have been obtained by immunization with live sporozoites under accompanying chemoprophylaxis, which prevents the onset of blood-stage malaria. Such an approach has not been fully evaluated for relapsing malaria. Here, in the P. cynomolgi-rhesus macaque model for relapsing malaria, we employ the parasites' natural relapsing phenotype to self-boost the immune response against liver-stage parasites, following a single-shot high-dose live sporozoite vaccination. This approach resulted in sterile protection against homologous sporozoite challenge in three out of four animals in the group that was also exposed for several days to blood stages during primary infection and relapses. One out of four animals in the group that received continuous chemoprophylaxis to abort blood-stage exposure was also protected from sporozoite challenge. Although obtained in a small number of animals as part of a Proof-of-Concept study, these results suggest that limited blood-stage parasite exposure may augment protection in this model. We anticipate our data are a starting point for further research into correlates of protection and extrapolation of the single-shot approach to develop efficacious malaria vaccines against relapsing human malaria.
Collapse
|
9
|
Vantaux A, Péneau J, Cooper CA, Kyle DE, Witkowski B, Maher SP. Liver-stage fate determination in Plasmodium vivax parasites: Characterization of schizont growth and hypnozoite fating from patient isolates. Front Microbiol 2022; 13:976606. [PMID: 36212849 PMCID: PMC9539820 DOI: 10.3389/fmicb.2022.976606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax, one species of parasite causing human malaria, forms a dormant liver stage, termed the hypnozoite, which activate weeks, months or years after the primary infection, causing relapse episodes. Relapses significantly contribute to the vivax malaria burden and are only killed with drugs of the 8-aminoquinoline class, which are contraindicated in many vulnerable populations. Development of new therapies targeting hypnozoites is hindered, in part, by the lack of robust methods to continuously culture and characterize this parasite. As a result, the determinants of relapse periodicity and the molecular processes that drive hypnozoite formation, persistence, and activation are largely unknown. While previous reports have described vastly different liver-stage growth metrics attributable to which hepatocyte donor lot is used to initiate culture, a comprehensive assessment of how different P. vivax patient isolates behave in the same lots at the same time is logistically challenging. Using our primary human hepatocyte-based P. vivax liver-stage culture platform, we aimed to simultaneously test the effects of how hepatocyte donor lot and P. vivax patient isolate influence the fate of sporozoites and growth of liver schizonts. We found that, while environmental factors such as hepatocyte donor lot can modulate hypnozoite formation rate, the P. vivax case is also an important determinant of the proportion of hypnozoites observed in culture. In addition, we found schizont growth to be mostly influenced by hepatocyte donor lot. These results suggest that, while host hepatocytes harbor characteristics making them more- or less-supportive of a quiescent versus growing intracellular parasite, sporozoite fating toward hypnozoites is isolate-specific. Future studies involving these host–parasite interactions, including characterization of individual P. vivax strains, should consider the impact of culture conditions on hypnozoite formation, in order to better understand this important part of the parasite’s lifecycle.
Collapse
Affiliation(s)
- Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- *Correspondence: Amélie Vantaux,
| | - Julie Péneau
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Caitlin A. Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Dennis E. Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven P. Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Steven P. Maher,
| |
Collapse
|
10
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology 2022; 149:1-22. [PMID: 35357277 PMCID: PMC9378029 DOI: 10.1017/s0031182021002134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Infection by malaria parasites (Plasmodium spp.) remains one of the leading causes of morbidity and mortality, especially in tropical regions of the world. Despite the availability of malaria control tools such as integrated vector management and effective therapeutics, these measures have been continuously undermined by the emergence of vector resistance to insecticides or parasite resistance to frontline antimalarial drugs. Whilst the recent pilot implementation of the RTS,S malaria vaccine is indeed a remarkable feat, highly effective vaccines against malaria remain elusive. The barriers to effective vaccines result from the complexity of both the malaria parasite lifecycle and the parasite as an organism itself with consequent major gaps in our understanding of their biology. Historically and due to the practical and ethical difficulties of working with human malaria infections, research into malaria parasite biology has been extensively facilitated by animal models. Animals have been used to study disease pathogenesis, host immune responses and their (dys)regulation and further disease processes such as transmission. Moreover, animal models remain at the forefront of pre-clinical evaluations of antimalarial drugs (drug efficacy, mode of action, mode of resistance) and vaccines. In this review, we discuss commonly used animal models of malaria, the parasite species used and their advantages and limitations which hinder their extrapolation to actual human disease. We also place into this context the most recent developments such as organoid technologies and humanized mice.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Gupta A, Galinski MR, Voit EO. Dynamic Control Balancing Cell Proliferation and Inflammation is Crucial for an Effective Immune Response to Malaria. Front Mol Biosci 2022; 8:800721. [PMID: 35242812 PMCID: PMC8886244 DOI: 10.3389/fmolb.2021.800721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria has a complex pathology with varying manifestations and symptoms, effects on host tissues, and different degrees of severity and ultimate outcome, depending on the causative Plasmodium pathogen and host species. Previously, we compared the peripheral blood transcriptomes of two macaque species (Macaca mulatta and Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi. Although these two species are very closely related, the infection in M. mulatta is fatal, unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable infection in the blood. As a reason for this stark difference, our analysis suggests delayed pathogen detection in M. mulatta followed by extended inflammation that eventually overwhelms this monkey’s immune response. By contrast, the natural host M. fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M. fascicularis limits cell proliferation pathways during the log phase of infection, presumably in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-mediated adaptive immune response. Here, we focus on molecular mechanisms underlying the key differences in the host and parasite responses and their coordination. SICAvar Type 1 surface antigens are highly correlated with pattern recognition receptor signaling and important inflammatory genes for both hosts. Analysis of pathogen detection pathways reveals a similar signaling mechanism, but with important differences in the glutamate G-protein coupled receptor (GPCR) signaling pathway. Furthermore, differences in inflammasome assembly processes suggests an important role of S100 proteins in balancing inflammation and cell proliferation. Both differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic modeling provides a functional method for evaluating these changes and understanding downstream changes in NAD metabolism and aryl hydrocarbon receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be established due to complicated regulatory feedback mechanisms associated with the AhR repressor (AhRR). A complete understanding of the exact dynamics of the immune response is difficult to achieve. Nonetheless, our comparative analysis provides clear suggestions of processes that underlie an effective immune response. Thus, our study identifies multiple points of intervention that are apparently responsible for a balanced and effective immune response and thereby paves the way toward future immune strategies for treating malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Eberhard O. Voit,
| |
Collapse
|
13
|
Gupta A, Styczynski MP, Galinski MR, Voit EO, Fonseca LL. Dramatic transcriptomic differences in Macaca mulatta and Macaca fascicularis with Plasmodium knowlesi infections. Sci Rep 2021; 11:19519. [PMID: 34593836 PMCID: PMC8484567 DOI: 10.1038/s41598-021-98024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Plasmodium knowlesi, a model malaria parasite, is responsible for a significant portion of zoonotic malaria cases in Southeast Asia and must be controlled to avoid disease severity and fatalities. However, little is known about the host-parasite interactions and molecular mechanisms in play during the course of P. knowlesi malaria infections, which also may be relevant across Plasmodium species. Here we contrast P. knowlesi sporozoite-initiated infections in Macaca mulatta and Macaca fascicularis using whole blood RNA-sequencing and transcriptomic analysis. These macaque hosts are evolutionarily close, yet malaria-naïve M. mulatta will succumb to blood-stage infection without treatment, whereas malaria-naïve M. fascicularis controls parasitemia without treatment. This comparative analysis reveals transcriptomic differences as early as the liver phase of infection, in the form of signaling pathways that are activated in M. fascicularis, but not M. mulatta. Additionally, while most immune responses are initially similar during the acute stage of the blood infection, significant differences arise subsequently. The observed differences point to prolonged inflammation and anti-inflammatory effects of IL10 in M. mulatta, while M. fascicularis undergoes a transcriptional makeover towards cell proliferation, consistent with its recovery. Together, these findings suggest that timely detection of P. knowlesi in M. fascicularis, coupled with control of inflammation while initiating the replenishment of key cell populations, helps contain the infection. Overall, this study points to specific genes and pathways that could be investigated as a basis for new drug targets that support recovery from acute malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
15
|
Pasini EM, Kocken CHM. Parasite-Host Interaction and Pathophysiology Studies of the Human Relapsing Malarias Plasmodium vivax and Plasmodium ovale Infections in Non-Human Primates. Front Cell Infect Microbiol 2021; 10:614122. [PMID: 33680982 PMCID: PMC7925837 DOI: 10.3389/fcimb.2020.614122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria remains a serious health concern across the globe. Historically neglected, non-Falciparum human malarias were put back on the agenda by a paradigm shift in the fight against malaria from malaria control to malaria eradication. Here, we review the modeling of the relapsing parasites Plasmodium vivax (P. vivax) and Plasmodium ovale (P. ovale) in non-human primates with a specific focus on the contribution of these models to our current understanding of the factors that govern parasite-host interactions in P. vivax and P. ovale parasite biology and pathophysiology.
Collapse
Affiliation(s)
- Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
16
|
Voorberg-van der Wel A, Kocken CHM, Zeeman AM. Modeling Relapsing Malaria: Emerging Technologies to Study Parasite-Host Interactions in the Liver. Front Cell Infect Microbiol 2021; 10:606033. [PMID: 33585277 PMCID: PMC7878928 DOI: 10.3389/fcimb.2020.606033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies of liver stage malaria parasite-host interactions have provided exciting new insights on the cross-talk between parasite and its mammalian (predominantly rodent) host. We review the latest state of the art and and zoom in on new technologies that will provide the tools necessary to investigate host-parasite interactions of relapsing parasites. Interactions between hypnozoites and hepatocytes are particularly interesting because the parasite can remain in a quiescent state for prolonged periods of time and triggers for reactivation have not been irrefutably identified. If we learn more about the cross-talk between hypnozoite and host we may be able to identify factors that encourage waking up these dormant parasite reservoirs and help to achieve the total eradication of malaria.
Collapse
Affiliation(s)
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
17
|
Schäfer C, Roobsoong W, Kangwanrangsan N, Bardelli M, Rawlinson TA, Dambrauskas N, Trakhimets O, Parthiban C, Goswami D, Reynolds LM, Kennedy SY, Flannery EL, Murphy SC, Sather DN, Draper SJ, Sattabongkot J, Mikolajczak SA, Kappe SHI. A Humanized Mouse Model for Plasmodium vivax to Test Interventions that Block Liver Stage to Blood Stage Transition and Blood Stage Infection. iScience 2020; 23:101381. [PMID: 32739836 PMCID: PMC7399188 DOI: 10.1016/j.isci.2020.101381] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The human malaria parasite Plasmodium vivax remains vastly understudied, mainly due to the lack of suitable laboratory models. Here, we report a humanized mouse model to test interventions that block P. vivax parasite transition from liver stage infection to blood stage infection. Human liver-chimeric FRGN huHep mice infected with P. vivax sporozoites were infused with human reticulocytes, allowing transition of exo-erythrocytic merozoites to reticulocyte infection and development into all erythrocytic forms, including gametocytes, in vivo. In order to test the utility of this model for preclinical assessment of interventions, the invasion blocking potential of a monoclonal antibody targeting the essential interaction of the P. vivax Duffy Binding Protein with the Duffy antigen receptor was tested by passive immunization. This antibody inhibited invasion by over 95%, providing unprecedented in vivo evidence that PvDBP constitutes a promising blood stage vaccine candidate and proving our model highly suitable to test blood stage interventions.
Collapse
Affiliation(s)
- Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Olesya Trakhimets
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Chaitra Parthiban
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura M Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Erika L Flannery
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Sean C Murphy
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
18
|
Galinski MR. Functional genomics of simian malaria parasites and host-parasite interactions. Brief Funct Genomics 2020; 18:270-280. [PMID: 31241151 PMCID: PMC6859816 DOI: 10.1093/bfgp/elz013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/21/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Two simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served for decades as sources of knowledge on the biology, genetics and evolution of Plasmodium, and the diverse ramifications and outcomes of malaria in their monkey hosts. Experimental analysis of these species can help to fill gaps in knowledge beyond what may be possible studying the human malaria parasites or rodent parasite species. The genome sequences for these simian malaria parasite species were reported during the last decade, and functional genomics research has since been pursued. Here research on the functional genomics analysis involving these species is summarized and their importance is stressed, particularly for understanding host–parasite interactions, and potentially testing novel interventions. Importantly, while Plasmodium falciparum and Plasmodium vivax can be studied in small New World monkeys, the simian malaria parasites can be studied more effectively in the larger Old World monkey macaque hosts, which are more closely related to humans. In addition to ex vivo analyses, experimental scenarios can include passage through Anopheline mosquito hosts and longitudinal infections in monkeys to study acute and chronic infections, as well as relapses, all in the context of the in vivo host environment. Such experiments provide opportunities for understanding functional genomic elements that govern host–parasite interactions, immunity and pathogenesis in-depth, addressing hypotheses not possible from in vitro cultures or cross-sectional clinical studies with humans.
Collapse
Affiliation(s)
- Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Kawai S, Annoura T, Araki T, Shiogama Y, Soma S, Takano JI, Sato MO, Kaneko O, Yasutomi Y, Chigusa Y. Development of an effective alternative model for in vivo hypnozoite-induced relapse infection: A Japanese macaque (Macaca fuscata) model experimentally infected with Plasmodium cynomolgi. Parasitol Int 2020; 76:102096. [PMID: 32114084 DOI: 10.1016/j.parint.2020.102096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
In the present study, we demonstrate that the Japanese macaque (Macaca fuscata) can be used as an effective alternative in vivo model for investigating hypnozoite-induced relapsing infection caused by Plasmodium cynomolgi B strain, and that this model is comparable to the rhesus macaque model. Two female Japanese macaques (JM-1 and JM-2; aged 5 years; weighing about 4.0 kg) were used for the experiment. To produce sporozoites in mosquitoes, blood infected with P. cynomolgi B strain was collected from the donor monkey JM-1 and fed to approximately 200 mosquitoes using the standard artificial membrane feeding method. The isolated sporozoites (2 × 105) were intravenously inoculated into the JM-2 monkey, and the blood stage of the parasite was detected on day 8 after the infection. Chloroquine sulfate (CQ) was intramuscularly administered at a dosage of 6.0 mg/kg into the JM-2 monkey for 6 consecutive days from day 12 onward, after which the parasites disappeared from the peripheral blood. The first relapse occurred on day 26, which was treated again with CQ. Then, the second relapse occurred on day 44, which was cured by CQ treatment followed by the administration of primaquine phosphate (PQ) at a dosage of 1.0 mg/kg/day for 15 days. The JM-2 monkey was observed until 69 days after PQ administration, and there was no relapse during the entire follow-up period. We propose that the Japanese macaque model could contribute not only to drug screening for anti-hypnozoite activity, but could also be used as a powerful tool for investigating hypnozoite biology.
Collapse
Affiliation(s)
- Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan.
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Shogo Soma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Jun-Ichiro Takano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Marcello Otake Sato
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Yuichi Chigusa
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
20
|
Kronstein-Wiedemann R, Klop O, Thiel J, Milanov P, Ruhland C, Vermaat L, Kocken CHM, Tonn T, Pasini EM. K562 erythroleukemia line as a possible reticulocyte source to culture Plasmodium vivax and its surrogates. Exp Hematol 2020; 82:8-23. [PMID: 32007479 PMCID: PMC7097847 DOI: 10.1016/j.exphem.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/03/2022]
Abstract
miR-26a and miR-30a knockdowns promote differentiation in Fy-transduced K562 cell lines. miR-26a and miR-30a knockdowns promote enucleation in Fy-transduced K562 cell lines. Data denote an interplay in the mode of action of miR-26a and miR-30a in erythropoiesis. Plasmodium cynomolgi and P. knowlesi invade, albeit inefficiently, Fy-transduced K562 cells.
Establishing an in vitro “red blood cell matrix” that would allow uninterrupted access to a stable, homogeneous reticulocyte population would facilitate the establishment of continuous, long-term in vitro Plasmodium vivax blood stage cultures. In this study, we have explored the suitability of the erythroleukemia K562 cell line as a continuous source of such reticulocytes and have investigated regulatory factors behind the terminal differentiation (and enucleation, in particular) of this cell line that can be used to drive the reticulocyte production process. The Duffy blood group antigen receptor (Fy), essential for P. vivax invasion, was stably introduced into K562 cells by lentiviral gene transfer. miRNA-26a-5p and miRNA-30a-5p were downregulated to promote erythroid differentiation and enucleation, resulting in a tenfold increase in the production of reticulocytes after stimulation with an induction cocktail compared with controls. Our results suggest an interplay in the mechanisms of action of miRNA-26a-5p and miRNA-30a-5p, which makes it necessary to downregulate both miRNAs to achieve a stable enucleation rate and Fy receptor expression. In the context of establishing P. vivax-permissive, stable, and reproducible reticulocytes, a higher enucleation rate may be desirable, which may be achieved by the targeting of further regulatory mechanisms in Fy-K562 cells; promoting the shift in hemoglobin production from fetal to adult may also be necessary. Despite the fact that K562 erythroleukemia cell lines are of neoplastic origin, this cell line offers a versatile model system to research the regulatory mechanisms underlying erythropoiesis.
Collapse
MESH Headings
- Cell Differentiation
- Duffy Blood-Group System/biosynthesis
- Duffy Blood-Group System/genetics
- Gene Expression Regulation, Leukemic
- Humans
- K562 Cells
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/parasitology
- Leukemia, Erythroblastic, Acute/pathology
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Plasmodium vivax/growth & development
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Reticulocytes/metabolism
- Reticulocytes/parasitology
- Reticulocytes/pathology
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische, Universität Dresden, Dresden, Germany
| | - Onny Klop
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jessica Thiel
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische, Universität Dresden, Dresden, Germany
| | - Peter Milanov
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische, Universität Dresden, Dresden, Germany
| | - Claudia Ruhland
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische, Universität Dresden, Dresden, Germany
| | - Lars Vermaat
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Torsten Tonn
- Department of Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische, Universität Dresden, Dresden, Germany; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North East, Dresden, Germany.
| | - Erica M Pasini
- Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| |
Collapse
|
21
|
Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: Chronological advancements and future challenges. Med Res Rev 2020; 40:1220-1275. [PMID: 31930540 DOI: 10.1002/med.21657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
According to WHO World Malaria Report (2018), nearly 219 million new cases of malaria occurred and a total no. of 435 000 people died in 2017 due to this infectious disease. This is due to the rapid spread of parasite-resistant strains. Artemisinin (ART), a sesquiterpene lactone endoperoxide isolated from traditional Chinese herb Artemisia annua, has been recognized as a novel class of antimalarial drugs. The 2015 "Nobel Prize in Physiology or Medicine" was given to Prof Dr Tu Youyou for the discovery of ART. Hence, ART is termed as "Nobel medicine." The present review article accommodates insights from the chronological advancements and direct statistics witnessed during the past 48 years (1971-2019) in the medicinal chemistry of ART-derived antimalarial endoperoxides, and their clinical utility in malaria chemotherapy and drug discovery.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
22
|
Humoral immunity prevents clinical malaria during Plasmodium relapses without eliminating gametocytes. PLoS Pathog 2019; 15:e1007974. [PMID: 31536608 PMCID: PMC6752766 DOI: 10.1371/journal.ppat.1007974] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify ‘bona fide’ relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi–rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes. Plasmodium vivax contributes significantly to global malaria morbidity and remains a major obstacle for malaria elimination due to its ability to form dormant stages in the liver. These forms can become activated to cause relapsing blood-stage infections. Relapses remain poorly understood because it is difficult to verify whether P. vivax blood-stage infections in patients are due to new infections or relapses in most cases. Here, we use a nonhuman primate model of Plasmodium vivax malaria in concert with state-of-the-art immunological and molecular techniques to assess pathogenesis, host responses, and circulating gametocyte levels during relapses. We found that relapses were clinically silent compared to initial infections, and they were associated with a robust memory B cell response. This response resulted in the production of antibodies that were able to mediate clearance of asexual parasites. Despite this rapid immune protection, the sexual-stage gametocytes continued to circulate. Our study provides mechanistic insights into the host-parasite interface during Plasmodium relapse infections and demonstrates that clinically silent relapses can harbor gametocytes that may be infectious to mosquitoes.
Collapse
|
23
|
Goh YS, McGuire D, Rénia L. Vaccination With Sporozoites: Models and Correlates of Protection. Front Immunol 2019; 10:1227. [PMID: 31231377 PMCID: PMC6560154 DOI: 10.3389/fimmu.2019.01227] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Despite continuous efforts, the century-old goal of eradicating malaria still remains. Multiple control interventions need to be in place simultaneously to achieve this goal. In addition to effective control measures, drug therapies and insecticides, vaccines are critical to reduce mortality and morbidity. Hence, there are numerous studies investigating various malaria vaccine candidates. Most of the malaria vaccine candidates are subunit vaccines. However, they have shown limited efficacy in Phase II and III studies. To date, only whole parasite formulations have been shown to induce sterile immunity in human. In this article, we review and discuss the recent developments in vaccination with sporozoites and the mechanisms of protection involved.
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| | - Daniel McGuire
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Fonseca LL, Joyner CJ, Saney CL, Moreno A, Barnwell JW, Galinski MR, Voit EO. Analysis of erythrocyte dynamics in Rhesus macaque monkeys during infection with Plasmodium cynomolgi. Malar J 2018; 17:410. [PMID: 30400896 PMCID: PMC6219197 DOI: 10.1186/s12936-018-2560-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Malaria is a major mosquito transmitted, blood-borne parasitic disease that afflicts humans. The disease causes anaemia and other clinical complications, which can lead to death. Plasmodium vivax is known for its reticulocyte host cell specificity, but many gaps in disease details remain. Much less is known about the closely related species, Plasmodium cynomolgi, although it is naturally acquired and causes zoonotic malaria. Here, a computational model is developed based on longitudinal analyses of P. cynomolgi infections in nonhuman primates to investigate the erythrocyte dynamics that is pertinent to understanding both P. cynomolgi and P. vivax malaria in humans. METHODS A cohort of five P. cynomolgi infected Rhesus macaques (Macaca mulatta) is studied, with individuals exhibiting a plethora of clinical outcomes, including varying levels of anaemia. A discrete recursive model with age structure is developed to replicate the dynamics of P. cynomolgi blood-stage infections. The model allows for parasitic reticulocyte preference and assumes an age preference among the mature RBCs. RBC senescence is modelled using a hazard function, according to which RBCs have a mean lifespan of 98 ± 21 days. RESULTS Based on in vivo data from three cohorts of macaques, the computational model is used to characterize the reticulocyte lifespan in circulation as 24 ± 5 h (n = 15) and the rate of RBC production as 2727 ± 209 cells/h/µL (n = 15). Analysis of the host responses reveals a pre-patency increase in the number of reticulocytes. It also allows the quantification of RBC removal through the bystander effect. CONCLUSIONS The evident pre-patency increase in reticulocytes is due to a shift towards the release of younger reticulocytes, which could result from a parasite-induced factor meant to increase reticulocyte availability and satisfy the parasite's tropism, which has an average value of 32:1 in this cohort. The number of RBCs lost due to the bystander effect relative to infection-induced RBC losses is 62% for P. cynomolgi infections, which is substantially lower than the value of 95% previously determined for another simian species, Plasmodium coatneyi.
Collapse
Affiliation(s)
- Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332-2000, USA.
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA.
| | - Chester J Joyner
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Celia L Saney
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Alberto Moreno
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - John W Barnwell
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30322, USA
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332-2000, USA
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
25
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Figueiredo MAP, Di Santi SM, Manrique WG, André MR, Machado RZ. Serological and molecular techniques applied for identification of Plasmodium spp. in blood samples from nonhuman primates. ACTA ACUST UNITED AC 2018; 27:363-376. [PMID: 30066720 DOI: 10.1590/s1984-296120180043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 11/22/2022]
Abstract
The aim of this study was to identify Plasmodium spp. in blood samples from nonhuman primates (NHPs) in the state of Maranhão, using classical and alternative techniques for examination of human malaria. A total of 161 blood samples from NHPs were analyzed: 141 from captive animals at a Wildlife Screening Center (CETAS) and 20 from free-living animals in a private reserve. The techniques used were microscopy, rapid diagnostic test (RDT), Indirect fluorescent antibody test (IFAT) and molecular techniques (semi-nested PCR, quantitative real-time PCR and LAMP). Two serological methods (dot-ELISA and indirect ELISA) were also standardized with rhoptry protein-soluble antigen of P. falciparum and P. berghei. Trophozoite forms of Plasmodium sp. were identified on slides from five different animals. No samples were positive through RDT and LAMP. Four samples were seropositive for P. malariae through IFAT. The samples showed low reactivity to ELISA. Plasmodium sp. was detected in 34.16% (55/161) of the samples using qPCR based on the 18S rRNA gene. After sequencing, two samples showed 100% identityl to P. malariae, one showed 97% identity to Plasmodium sp. ZOOBH and one showed 99% identity to P. falciparum . PCR was shown to be the most sensitive technique for diagnosing Plasmodium in NHP samples.
Collapse
Affiliation(s)
- Mayra Araguaia Pereira Figueiredo
- Laboratório de Parasitologia Animal, Curso de Medicina Veterinária, Universidade Federal de Rondônia - UNIR, Rolim de Moura, RO, Brasil
| | - Silvia Maria Di Santi
- Centro de Estudos da Malária, Superintendência de Controle de Endemias - SUCEN, São Paulo, SP, Brasil.,Departamento de Saúde do Estado de São Paulo, Instituto de Medicina Tropical de São Paulo - IMTSP, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Wilson Gómez Manrique
- Laboratório de Patologia Veterinária, Curso de Medicina Veterinária, Universidade Federal de Rondônia - UNIR, Rolim de Moura, RO, Brasil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| |
Collapse
|
27
|
Obaldia N, Meibalan E, Sa JM, Ma S, Clark MA, Mejia P, Moraes Barros RR, Otero W, Ferreira MU, Mitchell JR, Milner DA, Huttenhower C, Wirth DF, Duraisingh MT, Wellems TE, Marti M. Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. mBio 2018; 9:e00625-18. [PMID: 29739900 PMCID: PMC5941073 DOI: 10.1128/mbio.00625-18] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Plasmodium vivax causes heavy burdens of disease across malarious regions worldwide. Mature P. vivax asexual and transmissive gametocyte stages occur in the blood circulation, and it is often assumed that accumulation/sequestration in tissues is not an important phase in their development. Here, we present a systematic study of P. vivax stage distributions in infected tissues of nonhuman primate (NHP) malaria models as well as in blood from human infections. In a comparative analysis of the transcriptomes of P. vivax and Plasmodium falciparum blood-stage parasites, we found a conserved cascade of stage-specific gene expression despite the greatly different gametocyte maturity times of these two species. Using this knowledge, we validated a set of conserved asexual- and gametocyte-stage markers both by quantitative real-time PCR and by antibody assays of peripheral blood samples from infected patients and NHP (Aotus sp.). Histological analyses of P. vivax parasites in organs of 13 infected NHP (Aotus and Saimiri species) demonstrated a major fraction of immature gametocytes in the parenchyma of the bone marrow, while asexual schizont forms were enriched to a somewhat lesser extent in this region of the bone marrow as well as in sinusoids of the liver. These findings suggest that the bone marrow is an important reservoir for gametocyte development and proliferation of malaria parasites.IMPORTANCEPlasmodium vivax malaria continues to cause major public health burdens worldwide. Yet, significant knowledge gaps in the basic biology and epidemiology of P. vivax malaria remain, largely due to limited available tools for research and diagnostics. Here, we present a systematic examination of tissue sequestration during P. vivax infection. Studies of nonhuman primates and malaria patients revealed enrichment of developing sexual stages (gametocytes) and mature replicative stages (schizonts) in the bone marrow and liver, relative to those present in peripheral blood. Identification of the bone marrow as a major P. vivax tissue reservoir has important implications for parasite diagnosis and treatment.
Collapse
Affiliation(s)
- Nicanor Obaldia
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Tropical Medicine Research, Panama City, Panama
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juliana M Sa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Siyuan Ma
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Pedro Mejia
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - William Otero
- Tropical Medicine Research, Panama City, Panama
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Minkah NK, Schafer C, Kappe SHI. Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity. Front Immunol 2018; 9:807. [PMID: 29725334 PMCID: PMC5917005 DOI: 10.3389/fimmu.2018.00807] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Malaria parasite infection continues to inflict extensive morbidity and mortality in resource-poor countries. The insufficiently understood parasite biology, continuously evolving drug resistance and the lack of an effective vaccine necessitate intensive research on human malaria parasites that can inform the development of new intervention tools. Humanized mouse models have been greatly improved over the last decade and enable the direct study of human malaria parasites in vivo in the laboratory. Nevertheless, no small animal model developed so far is capable of maintaining the complete life cycle of Plasmodium parasites that infect humans. The ultimate goal is to develop humanized mouse systems in which a Plasmodium infection closely reproduces all stages of a parasite infection in humans, including pre-erythrocytic infection, blood stage infection and its associated pathology, transmission as well as the human immune response to infection. Here, we discuss current humanized mouse models and the future directions that should be taken to develop next-generation models for human malaria parasite research.
Collapse
Affiliation(s)
- Nana K Minkah
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Carola Schafer
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
29
|
Armistead JS, Adams JH. Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017; 34:114-126. [PMID: 29153587 DOI: 10.1016/j.pt.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Malaria prevalence has declined in the past 10 years, especially outside of sub-Saharan Africa. However, the proportion of cases due to Plasmodium vivax is increasing, accounting for up to 90-100% of the malaria burden in endemic regions. Nonetheless, investments in malaria research and control still prioritize Plasmodium falciparum while largely neglecting P. vivax. Specific biological features of P. vivax, particularly invasion of reticulocytes, occurrence of dormant liver forms of the parasite, and the potential for transmission of sexual-stage parasites prior to onset of clinical illness, promote its persistence and hinder development of research tools and interventions. This review discusses recent advances in P. vivax research, current knowledge of its unique biology, and proposes priorities for P. vivax research and control efforts.
Collapse
Affiliation(s)
- Jennifer S Armistead
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
30
|
Tang Y, Joyner CJ, Cabrera-Mora M, Saney CL, Lapp SA, Nural MV, Pakala SB, DeBarry JD, Soderberg S, Kissinger JC, Lamb TJ, Galinski MR, Styczynski MP. Integrative analysis associates monocytes with insufficient erythropoiesis during acute Plasmodium cynomolgi malaria in rhesus macaques. Malar J 2017; 16:384. [PMID: 28938907 PMCID: PMC5610412 DOI: 10.1186/s12936-017-2029-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background Mild to severe anaemia is a common complication of malaria that is caused in part by insufficient erythropoiesis in the bone marrow. This study used systems biology to evaluate the transcriptional and alterations in cell populations in the bone marrow during Plasmodium cynomolgi infection of rhesus macaques (a model of Plasmodium vivax malaria) that may affect erythropoiesis. Results An appropriate erythropoietic response did not occur to compensate for anaemia during acute cynomolgi malaria despite an increase in erythropoietin levels. During this period, there were significant perturbations in the bone marrow transcriptome. In contrast, relapses did not induce anaemia and minimal changes in the bone marrow transcriptome were detected. The differentially expressed genes during acute infection were primarily related to ongoing inflammatory responses with significant contributions from Type I and Type II Interferon transcriptional signatures. These were associated with increased frequency of intermediate and non-classical monocytes. Recruitment and/or expansion of these populations was correlated with a decrease in the erythroid progenitor population during acute infection, suggesting that monocyte-associated inflammation may have contributed to anaemia. The decrease in erythroid progenitors was associated with downregulation of genes regulated by GATA1 and GATA2, two master regulators of erythropoiesis, providing a potential molecular basis for these findings. Conclusions These data suggest the possibility that malarial anaemia may be driven by monocyte-associated disruption of GATA1/GATA2 function in erythroid progenitors resulting in insufficient erythropoiesis during acute infection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2029-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Tang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Chester J Joyner
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Monica Cabrera-Mora
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Celia L Saney
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Stacey A Lapp
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mustafa V Nural
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA.,Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Suman B Pakala
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jeremy D DeBarry
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Stephanie Soderberg
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jessica C Kissinger
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA.,Department of Genetics, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Tracey J Lamb
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
31
|
Fonseca LL, Joyner CJ, Galinski MR, Voit EO. A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta. Malar J 2017; 16:375. [PMID: 28923058 PMCID: PMC5608162 DOI: 10.1186/s12936-017-2008-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/02/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Plasmodium vivax can cause severe malaria. The total parasite biomass during infections is correlated with the severity of disease but not necessarily quantified accurately by microscopy. This finding has raised the question whether there could be sub-populations of parasites that are not observed in peripheral blood smears but continue to contribute to the increase in parasite numbers that drive pathogenesis. Non-human primate infection models utilizing the closely related simian malaria parasite Plasmodium cynomolgi hold the potential for quantifying the magnitude of possibly unobserved infected red blood cell (iRBC) populations and determining how the presence of this hidden reservoir correlates with disease severity. METHODS Time series data tracking the longitudinal development of parasitaemia in five Macaca mulatta infected with P. cynomolgi were used to design a computational model quantifying iRBCs that circulate in the blood versus those that are not detectable and are termed here as 'concealed'. This terminology is proposed to distinguish such observations from the deep vascular and widespread 'sequestration' of Plasmodium falciparum iRBCs, which is governed by distinctly different molecular mechanisms. RESULTS The computational model presented here clearly demonstrates that the observed growth data of iRBC populations are not consistent with the known biology and blood-stage cycle of P. cynomolgi. However, the discrepancies can be resolved when a sub-population of concealed iRBCs is taken into account. The model suggests that the early growth of a hidden parasite sub-population has the potential to drive disease. As an alternative, the data could be explained by the sequential release of merozoites from the liver over a number of days, but this scenario seems less likely. CONCLUSIONS Concealment of a non-circulating iRBC sub-population during P. cynomolgi infection of M. mulatta is an important aspect of this successful host-pathogen relationship. The data also support the likelihood that a sub-population of iRBCs of P. vivax has a comparable means to become withdrawn from the peripheral circulation. This inference has implications for understanding vivax biology and pathogenesis and stresses the importance of considering a concealed parasite reservoir with regard to vivax epidemiology and the quantification and treatment of P. vivax infections.
Collapse
Affiliation(s)
- Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Chester J Joyner
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | | | - Mary R Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA. .,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA.
| |
Collapse
|
32
|
J Joyner C, Consortium TM, Wood JS, Moreno A, Garcia A, Galinski MR. Case Report: Severe and Complicated Cynomolgi Malaria in a Rhesus Macaque Resulted in Similar Histopathological Changes as Those Seen in Human Malaria. Am J Trop Med Hyg 2017; 97:548-555. [PMID: 28829738 DOI: 10.4269/ajtmh.16-0742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Histopathological data collected from patients with severe malaria have been instrumental for studying malaria pathogenesis. Animal models of malaria are critical to complement such studies. Here, the histopathological changes observed in a rhesus macaque with severe and complicated Plasmodium cynomolgi malaria are reported. The animal presented with thrombocytopenia, severe anemia, and hyperparasitemia during the acute infection. The macaque was given subcurative antimalarial treatment, fluid support, and a blood transfusion to treat the clinical complications, but at the time of transfusion, kidney function was compromised. These interventions did not restore kidney function, and the animal was euthanized due to irreversible renal failure. Gross pathological and histological examinations revealed that the lungs, kidneys, liver, spleen, and bone marrow exhibited abnormalities similar to those described in patients with malaria. Overall, this case report illustrates the similarities in the pathophysiological complications that can occur in human malaria and cynomolgi malaria in rhesus macaques.
Collapse
Affiliation(s)
- Chester J Joyner
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - The MaHPIC Consortium
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Jennifer S Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Alberto Moreno
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia.,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Anapatricia Garcia
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
33
|
Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci U S A 2016; 113:E8096-E8105. [PMID: 27911780 DOI: 10.1073/pnas.1608828113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P vivax and 80 P falciparum isolates collected between 2009 and 2013. We found that although P falciparum has undergone population fracturing, the coendemic P vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P falciparum, P vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P vivax and P falciparum parasites. Although population substructuring in P falciparum has resulted in clonal outgrowths of resistant parasites, P vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P vivax's resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P vivax and achieve malaria elimination.
Collapse
|
34
|
Tham WH, Beeson JG, Rayner JC. Plasmodium vivax vaccine research - we've only just begun. Int J Parasitol 2016; 47:111-118. [PMID: 27899329 DOI: 10.1016/j.ijpara.2016.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 10/25/2022]
Abstract
Plasmodium vivax parasites cause the majority of malaria cases outside Africa, and are increasingly being acknowledged as a cause of severe disease. The unique attributes of P. vivax biology, particularly the capacity of the dormant liver stage, the hypnozoite, to maintain blood-stage infections even in the absence of active transmission, make blood-stage vaccines particularly attractive for this species. However, P. vivax vaccine development remains resolutely in first gear, with only a single blood-stage candidate having been evaluated in any depth. Experience with Plasmodium falciparum suggests that a much broader search for new candidates and a deeper understanding of high priority targets will be required to make significant advances. This review discusses some of the particular challenges of P. vivax blood-stage vaccine development, highlighting both recent advances and key remaining barriers to overcome in order to move development forward.
Collapse
Affiliation(s)
- Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James G Beeson
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
35
|
Steel RW, Kappe SH, Sack BK. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials. Future Microbiol 2016; 11:1563-1579. [PMID: 27855488 DOI: 10.2217/fmb-2016-0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts.
Collapse
Affiliation(s)
- Ryan Wj Steel
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Stefan Hi Kappe
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Brandon K Sack
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
36
|
Abstract
SUMMARYThe study of malaria in the laboratory relies on either thein vitroculture of human parasites, or the use of non-human malaria parasites in laboratory animals. In this review, we address the use of non-human primate malaria parasite species (NHPMPs) in laboratory research. We describe the features of the most commonly used NHPMPs, review their contribution to our understanding of malaria to date, and discuss their potential contribution to future studies.
Collapse
|
37
|
Severe malaria: what's new on the pathogenesis front? Int J Parasitol 2016; 47:145-152. [PMID: 27670365 DOI: 10.1016/j.ijpara.2016.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
Plasmodium falciparum causes the most severe and fatal form of malaria in humans with over half a million deaths each year. Cerebral malaria, a complex neurological syndrome of severe falciparum malaria, is often fatal and represents a major public health burden. Despite vigorous efforts, the pathophysiology of cerebral malaria remains to be elucidated, thereby hindering the development of adjunctive therapies. In recent years, multidisciplinary and collaborative approaches have led to groundbreaking progress both in the laboratory and in the field. Here we review the latest breakthroughs in severe malaria pathogenesis, with a specific focus on new pathogenetic mechanisms leading to cerebral malaria. The most recent findings point towards specific parasite phenotypes targeting brain microvasculature, endothelial dysfunction and subsequent oedema-induced brain swelling.
Collapse
|
38
|
Joyner C, Moreno A, Meyer EVS, Cabrera-Mora M, Kissinger JC, Barnwell JW, Galinski MR. Plasmodium cynomolgi infections in rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malar J 2016; 15:451. [PMID: 27590312 PMCID: PMC5010691 DOI: 10.1186/s12936-016-1480-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium vivax infections in humans or in new world monkeys pose research challenges that necessitate the use of alternative model systems. Plasmodium cynomolgi is a closely related species that shares genetic and biological characteristics with P. vivax, including relapses. Here, the haematological dynamics and clinical presentation of sporozoite-initiated P. cynomolgi infections in Macaca mulatta (rhesus macaques) are evaluated over a 100-day period. Methods Five M. mulatta were inoculated with 2000 P. cynomolgi B strain sporozoites. Parasitological and haematological data were collected daily to study the clinical presentations of primary infections and relapses. Peripheral blood and bone marrow aspirates were collected at specific time points during infection for future and retrospective systems biology analyses. Results Patent infections were observed between days 10 and 12, and the acute, primary infection consisted of parasitaemias ranging from 269,962 to 1,214,842 parasites/µl (4.42–19.5 % parasitaemia). All animals presented with anaemia, ranging from moderate (7–10 g/dl) to severe (<7 g/dl), based on peripheral haemoglobin concentrations. Minimum haemoglobin levels coincided with the clearance of parasites and peripheral reticulocytosis was evident at this time. Mild thrombocytopaenia (<150,000 platelets/µl) was observed in all animals, but unlike haemoglobin, platelets were lowest whenever peripheral parasitaemia peaked. The animals’ conditions were classified as non-severe, severe or lethal (in one case) based upon their clinical presentation. The lethal phenotype presented uniquely with an exceptionally high parasitaemia (19.5 %) and lack of a modest reticulocyte release, which was observed in the other animals prior to acute manifestations. One or two relapses were observed in the four surviving animals, and these were characterized by significantly lower parasitaemias and minimal changes in clinical parameters compared to pre-infection values. Conclusions Rhesus macaque infections initiated by P. cynomolgi B strain sporozoites recapitulated pathology of human malaria, including anaemia and thrombocytopaenia, with inter-individual differences in disease severity. Importantly, this study provides an in-depth assessment of clinical and parasitological data, and shows that unlike the primary infections, the relapses did not cause clinical malaria. Notably, this body of research has provided experimental plans, large accessible datasets, and blood and bone marrow samples pertinent for ongoing and iterative systems biology investigations. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1480-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chester Joyner
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Alberto Moreno
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Esmeralda V S Meyer
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Monica Cabrera-Mora
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | | | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - John W Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Mary R Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA. .,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA. .,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA.
| |
Collapse
|
39
|
Monteiro WM, Alexandre MA, Siqueira A, Melo G, Romero GAS, d'Ávila E, Benzecry SG, Leite HP, Lacerda MVG. Could Plasmodium vivax malaria trigger malnutrition? Revisiting the Bradford Hill criteria to assess a causal relationship between two neglected problems. Rev Soc Bras Med Trop 2016; 49:274-8. [PMID: 27384822 DOI: 10.1590/0037-8682-0397-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/13/2016] [Indexed: 02/02/2023] Open
Abstract
The benign characteristics formerly attributed to Plasmodium vivax infections have recently changed owing to the increasing number of reports of severe vivax malaria resulting in a broad spectrum of clinical complications, probably including undernutrition. Causal inference is a complex process, and arriving at a tentative inference of the causal or non-causal nature of an association is a subjective process limited by the existing evidence. Applying classical epidemiology principles, such as the Bradford Hill criteria, may help foster an understanding of causality and lead to appropriate interventions being proposed that may improve quality of life and decrease morbidity in neglected populations. Here, we examined these criteria in the context of the available data suggesting that vivax malaria may substantially contribute to childhood malnutrition. We found the data supported a role for P. vivax in the etiology of undernutrition in endemic areas. Thus, the application of modern causal inference tools, in future studies, may be useful in determining causation.
Collapse
Affiliation(s)
- Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | - Márcia Araújo Alexandre
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | - André Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gisely Melo
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | | | - Efrem d'Ávila
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | - Silvana Gomes Benzecry
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil.,Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, São Paulo, Brasil
| | - Heitor Pons Leite
- Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, São Paulo, Brasil
| | - Marcus Vinícius Guimarães Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brasil
| |
Collapse
|
40
|
Noulin F. Malaria modeling: In vitro stem cells vs in vivo models. World J Stem Cells 2016; 8:88-100. [PMID: 27022439 PMCID: PMC4807312 DOI: 10.4252/wjsc.v8.i3.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/07/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The recent development of stem cell research and the possibility of generating cells that can be stably and permanently modified in their genome open a broad horizon in the world of in vitro modeling. The malaria field is gaining new opportunities from this important breakthrough and novel tools were adapted and opened new frontiers for malaria research. In addition to the new in vitro systems, in recent years there were also significant advances in the development of new animal models that allows studying the entire cell cycle of human malaria. In this paper, we review the different protocols available to study human Plasmodium species either by using stem cell or alternative animal models.
Collapse
|
41
|
From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015; 270:143-55. [PMID: 26474512 DOI: 10.1016/j.mbs.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on numerous intricate interactions between parasites and hosts, and while we have learned much about these interactions, many details are still obscure. It is evident that the combined host-parasite dynamics constitutes a complex system that involves components and processes at multiple scales of time, space, and biological organization. At one end of this hierarchy we know of individual molecules that play crucial roles for the survival of a parasite or for the response and survival of its host. At the other end, one realizes that the spread of infectious diseases by far exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, can quickly reach global proportions. The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-level disease and used quite different computational approaches. This restriction to a molecular, physiological, or epidemiological level was prudent, as it has produced solid pillars of a foundation from which it might eventually be possible to launch comprehensive, multi-scale modeling efforts that make full use of the recent advances in biology and, in particular, the various high-throughput methodologies accompanying the emerging -omics revolution. This special issue contains contributions from biologists and modelers, most of whom presented and discussed their work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. These contributions highlight some of the forays into a deeper understanding of the dynamics between parasites and their hosts, and the consequences of this dynamics for the spread and treatment of infectious diseases.
Collapse
|
42
|
Yin W, Garimalla S, Moreno A, Galinski MR, Styczynski MP. A tree-like Bayesian structure learning algorithm for small-sample datasets from complex biological model systems. BMC SYSTEMS BIOLOGY 2015; 9:49. [PMID: 26310492 PMCID: PMC4551520 DOI: 10.1186/s12918-015-0194-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022]
Abstract
Background There are increasing efforts to bring high-throughput systems biology techniques to bear on complex animal model systems, often with a goal of learning about underlying regulatory network structures (e.g., gene regulatory networks). However, complex animal model systems typically have significant limitations on cohort sizes, number of samples, and the ability to perform follow-up and validation experiments. These constraints are particularly problematic for many current network learning approaches, which require large numbers of samples and may predict many more regulatory relationships than actually exist. Results Here, we test the idea that by leveraging the accuracy and efficiency of classifiers, we can construct high-quality networks that capture important interactions between variables in datasets with few samples. We start from a previously-developed tree-like Bayesian classifier and generalize its network learning approach to allow for arbitrary depth and complexity of tree-like networks. Using four diverse sample networks, we demonstrate that this approach performs consistently better at low sample sizes than the Sparse Candidate Algorithm, a representative approach for comparison because it is known to generate Bayesian networks with high positive predictive value. We develop and demonstrate a resampling-based approach to enable the identification of a viable root for the learned tree-like network, important for cases where the root of a network is not known a priori. We also develop and demonstrate an integrated resampling-based approach to the reduction of variable space for the learning of the network. Finally, we demonstrate the utility of this approach via the analysis of a transcriptional dataset of a malaria challenge in a non-human primate model system, Macaca mulatta, suggesting the potential to capture indicators of the earliest stages of cellular differentiation during leukopoiesis. Conclusions We demonstrate that by starting from effective and efficient approaches for creating classifiers, we can identify interesting tree-like network structures with significant ability to capture the relationships in the training data. This approach represents a promising strategy for inferring networks with high positive predictive value under the constraint of small numbers of samples, meeting a need that will only continue to grow as more high-throughput studies are applied to complex model systems. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0194-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiwei Yin
- Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China. .,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332-0100, USA.
| | - Swetha Garimalla
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Alberto Moreno
- Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
| | - Mary R Galinski
- Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332-0100, USA.
| |
Collapse
|
43
|
Frevert U, Krzych U, Richie TL. Editorial: Breaking the cycle: attacking the malaria parasite in the liver. Front Microbiol 2015; 6:810. [PMID: 26300873 PMCID: PMC4528169 DOI: 10.3389/fmicb.2015.00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 01/29/2023] Open
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine New York, NY, USA
| | - Urszula Krzych
- Cellular Immunology, Walter Reed Army Institute of Research Silver Spring, MD, USA
| | | |
Collapse
|
44
|
Moreno A, Joyner C. Malaria vaccine clinical trials: what's on the horizon. Curr Opin Immunol 2015; 35:98-106. [PMID: 26172291 DOI: 10.1016/j.coi.2015.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Significant progress toward a malaria vaccine, specifically for Plasmodium falciparum, has been made in the past few years with the completion of numerous clinical trials. Each trial has utilized a unique combination of antigens, delivery platforms, and adjuvants, which has provided the research community with a wealth of critical information to apply towards the development of next generation malaria vaccines. Despite the progress toward a P. falciparum vaccine, P. vivax vaccine research requires more momentum and additional investigations to identify novel vaccine candidates. In this review, recently completed and ongoing malaria vaccine clinical trials as well as vaccine candidates that are in the development pipeline are reviewed. Perspectives for future research using post-genomic mining, nonhuman primate models, and systems biology are also discussed.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University, 69 Jesse Hill, Jr. Drive, SE, Atlanta, GA 30303, USA.
| | - Chester Joyner
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| |
Collapse
|
45
|
Gutierrez JB, Galinski MR, Cantrell S, Voit EO. WITHDRAWN: From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015:S0025-5564(15)00085-1. [PMID: 25890102 DOI: 10.1016/j.mbs.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Juan B Gutierrez
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States .
| | - Mary R Galinski
- Emory University School of Medicine, Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States .
| | - Stephen Cantrell
- Department of Mathematics, University of Miami, Coral Gables, FL 33124, United States .
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States .
| |
Collapse
|