1
|
Kim J, Lim CM, Kim N, Kim HG, Hong JT, Yang Y, Yoon DY. Mutated IL-32θ (A94V) inhibits COX2, GM-CSF and CYP1A1 through AhR/ARNT and MAPKs/NF-κB/AP-1 in keratinocytes exposed to PM 10. Sci Rep 2025; 15:1994. [PMID: 39814789 PMCID: PMC11735608 DOI: 10.1038/s41598-024-83159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses. This study revealed that one-point mutated IL-32θ (A94V) plays an important role in attenuating skin inflammation. IL-32θ (A94V) inhibited PM-induced COX-2, a pro-inflammatory cytokine GM-CSF and CYP1A1 in PM-exposed human keratinocytes HaCaT cells. IL-32θ (A94V) modulating effects were mediated via down-regulating ERK/p38/NF-κB/ AP-1 and AhR/ARNT signaling pathways. Our study indicates that PM triggers skin inflammation by upregulating COX-2, GM-CSF and CYP1A1 expression. IL-32θ (A94V) suppresses the expressions of COX-2, GM-CSF, and CYP1A1 by blocking the nuclear translocation of NF-κB and AP-1, as well as inhibiting the activation of the AhR/ARNT signaling pathway. Our findings offer valuable insights into developing therapeutic strategies and potential drugs to mitigate PM-induced skin inflammation by inhibiting the ERK/p38/NF-κB/AP-1 and AhR/ARNT signaling pathways.
Collapse
Affiliation(s)
- Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nahyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hong-Gyum Kim
- Boson Bioscience, Cheongju, 28161, Chungbuk, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Young Yang
- Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2024:10.1038/s41577-024-01088-4. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Mohsen M, Lin C, Abdalla M, Liu S, Yang H. Microplastics in canned, salt-dried, and instant sea cucumbers sold for human consumption. MARINE POLLUTION BULLETIN 2023; 192:115040. [PMID: 37216877 DOI: 10.1016/j.marpolbul.2023.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023]
Abstract
Determining the amount of microplastics (MPs) in food is key to clarifying their potential toxicity to humans. Here, we collected canned, instant, and salt-dried sea cucumbers Apostichopus japonicus, the most valued sea cucumbers, from Chinese markets to determine their content of MPs. Sea cucumbers contained MPs in the range of 0-4 MP individual-1, an average of 1.44 MP individual-1, and 0.081 MP g-1. Accordingly, consuming 3 g of sea cucumbers could result in an exposure risk of an average of 0.51 MPs, 0.135 MPs, and 0.078 MPs day-1 for canned, instant, and salt-dried sea cucumbers, respectively. MPs were in size range of 12-575 μm, and fibrous shape was dominant. Furthermore, among the five polymers identified, polypropylene showed the highest energy binding with two catalysts engaged in organic chemical oxidation. This study extends the knowledge regarding MPs occurrence in food and provides a theoretical basis for MPs toxicity in humans.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, Fujian 361021, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan 250022, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Wu JX, Lau ATY, Xu YM. Indoor Secondary Pollutants Cannot Be Ignored: Third-Hand Smoke. TOXICS 2022; 10:363. [PMID: 35878269 PMCID: PMC9316611 DOI: 10.3390/toxics10070363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023]
Abstract
Smoking has been recognized by the World Health Organization (WHO) as the fifth highest threat to humanity. Smoking, a leading disease promoter, is a major risk factor for non-communicable diseases (NCDs) such as cancer, cardiovascular disease, diabetes, and chronic respiratory diseases. NCDs account for 63% of all deaths worldwide. Passive smoking is also a health risk. Globally, more than a third of all people are regularly exposed to harmful smoke. Air pollution is a common global problem in which pollutants emitted into the atmosphere undergo a series of physical or chemical reactions to produce various oxidation products, which are often referred to as secondary pollutants. Secondary pollutants include ozone (O3), sulfur trioxide (SO3), nitrogen dioxide (NO2), and respirable particulate matter (PM). It is worth mentioning that third-hand smoke (THS), formed by the reaction of nicotine with second-hand smoke (SHS) caused by indoor O3 or nitrous acid (HONO), is a major indoor secondary pollutant that cannot be ignored. As a form of indoor air pollution that is relatively difficult to avoid, THS exists in any corner of the environment where smokers live. In this paper, we summarize the important research progress on the main components, detection, and toxicity of THS and look forward to future research directions. Scientific understanding of THS and its hazards will facilitate smoking bans in indoor and public places and raise public concern for how to prevent and remove THS.
Collapse
Affiliation(s)
- Jia-Xun Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Pan Z, Liu Q, Xu J, Li W, Lin H. Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119163. [PMID: 35305345 DOI: 10.1016/j.envpol.2022.119163] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution has been a considerable concern due to its ubiquity in the environment and its potential to harm human health. Unfortunately, the exact levels of MP in various species of seafood species have not been established. It is also unclear whether or not consuming seafood contaminated with MPs directly jeopardizes human health. Here, eight popular species of seafood in Dongshan Bay, China were investigated to determine the presence of MP pollution and its implications on human health. The abundance, color, size, shape, type, surface morphology, danger of the MPs extracted from the seafood were analyzed. Results showed that the average MP abundance in the shellfish and fish was 1.88 ± 1.44 and 1.98 ± 1.98 items individual-1, respectively. The heavy presence of fibers may be attributed to the shellfish and fish's feeding behaviors as well as their habitat and environment. The sizes of MPs found were below 1.0 mm. The main types of MP found in the shellfish were PES and PET, whereas the main types found in the fish were PS and PES. Risk assessment suggested that MPs in the shellfish (risk Level V) posed a greater and more direct threat to human health if the shellfish is eaten whole. The MPs in the gastrointestinal tracts (GITs) of fish (risk Level IV) have a relatively limited effect on human health since GITs are seldom consumed by humans unless the fish is heavily processed (canned or dried). MPs-induced health risk is predicted using a technique called molecular docking. The results of this study not only establish levels of MP pollution in popular seafood species but also help understand the implications of consuming MP-contaminated seafood on human health.
Collapse
Affiliation(s)
- Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Provincial Station for Field Observation and Research of Island and Costal Zone in Zhangzhou, Zhangzhou, 363216, China; Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Qianlong Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Jing Xu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
6
|
Ephraim-Emmanuel BC, Okokon E, Ordinioha B. Polycyclic Aromatic Hydrocarbons: Evaluation of concentrations in environmental media in Bayelsa State. TOXICOLOGY RESEARCH AND APPLICATION 2022. [DOI: 10.1177/23978473221147176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background and aim Artisanal refining of crude oil is an illegal refining process that contributes to environmental pollution through the release of Polycyclic Aromatic Hydrocarbons (PAHs). PAHs compounds are known for their destructive effects on the environment as well as their harmful effects on human health. This study thus assessed the concentrations of PAHs in water, soil, and fish in communities where artisanal refining of crude oil is practiced in Bayelsa State. Materials and methods This descriptive, comparative study was conducted in Sampou (mildly exposed community), Gbarain, and Nembe (severely exposed communities) in Bayelsa State. Water, fish, and soil samples were collected using pre-existing environmental media collection guidelines and sent to the laboratory for GC-FID determination of the PAH concentrations. The data obtained were analyzed using the Statistical Package for Social Sciences (SPSS) software. Results Mean and (total) PAHs concentration in water samples obtained from Sampou was 3.50 ± 4.51 (59.59) μg/L; Gbarain 1.76 ± 4.35 (29.87) μg/L and Nembe 1.90 ± 4.20 (32.25) μg/L. A significant difference in the concentrations was also identified p-value: of 0.021. The mean concentration of PAHs in soil samples obtained from Sampou was 10.73 ± 15.53 (183.38) μg/kg; Gbarain 12.00 ± 19.57 (204.32) μg/kg and Nembe was 8.49 ± 10.07 (144.48) μg/kg. Finally, the mean concentration in fish samples obtained from Sampou was 5.62 ± 5.92 (95.43) μg/kg; Gbarain 3.81 ± 5.57 (64.75) μg/kg and Nembe 4.61 ± 5.33 (78.35) μg/kg. The difference in these concentrations was however not significant. Source diagnostic ratios of the PAHs in the water included Flt/(Flt + Pyr) ratio of 0.23, 0.16, and 0.21; Ant/(Ant + Phe) ratio of 0.87, 0.76, and 0.87 as well as BaA/(BaA + Chr) ratio of 0.43, 0.51 and 0.66 in Sampou, Gbarain and Nembe respectively. Conclusion Concentrations of total PAHs in water and fish samples obtained from the three communities exceeded the acceptable limits for ƩPAHs of 2.0 μg/L and 2 μg/kg in water and fish respectively stipulated by the United States Environmental Protection Agency and the Nigerian Petroleum Regulatory Authority. ƩPAHs concentrations from the samples obtained from Sampou were also higher than the other two communities. There is a need for regular environmental monitoring of PAH concentrations, especially in oil-producing communities, and a shift of focus toward the elimination of pyrolytic sources of PAH pollution.
Collapse
Affiliation(s)
- Benson C Ephraim-Emmanuel
- Africa Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Choba, Nigeria
| | - Enembe Okokon
- Department of Community Medicine, University of Calabar, Calabar, Nigeria
| | - Best Ordinioha
- Department of Environmental Health, School of Public Health, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
7
|
Pattarachotanant N, Prasansuklab A, Tencomnao T. Momordica charantia L. Extract Protects Hippocampal Neuronal Cells against PAHs-Induced Neurotoxicity: Possible Active Constituents Include Stigmasterol and Vitamin E. Nutrients 2021; 13:nu13072368. [PMID: 34371875 PMCID: PMC8308656 DOI: 10.3390/nu13072368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been recognized to cause neurobehavioral dysfunctions and disorder of cognition and behavioral patterns in childhood. Momordica charantia L. (MC) has been widely known for its nutraceutical and health-promoting properties. To date, the effect of MC for the prevention and handling of PAHs-induced neurotoxicity has not been reported. In the current study, the neuroprotective effects of MC and its underlying mechanisms were investigated in mouse hippocampal neuronal cell line (HT22); moreover, in silico analysis was performed with the phytochemicals MC to decipher their potential function as neuroprotectants. MC was demonstrated to possess neuroprotective effect by reducing reactive oxygen species’ (ROS’) production and down-regulating cyclin D1, p53, and p38 mitogen-activated protein kinase (MAPK) protein expressions, resulting in the inhibition of cell apoptosis and the normalization of cell cycle progression. Additionally, 28 phytochemicals of MC and their competence on inhibiting cytochrome P450 (CYP: CYP1A1, CYP1A2, and CYP1B1) functions were resolved. In silico analysis of vitamin E and stigmasterol revealed that their binding to either CYP1A1 or CYP1A2 was more efficient than the binding of each positive control (alizarin or purpurin). Together, MC is potentially an interesting neuroprotectant including vitamin E and stigmasterol as probable active components for the prevention for PAHs-induced neurotoxicity.
Collapse
Affiliation(s)
- Nattaporn Pattarachotanant
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-218-8048 (A.P.); +66-218-1533 (T.T.)
| |
Collapse
|
8
|
Wang X, Priya Veeraraghavan V, Krishna Mohan S, Lv F. Anticancer and immunomodulatory effect of rhaponticin on Benzo(a)Pyrene-induced lung carcinogenesis and induction of apoptosis in A549 cells. Saudi J Biol Sci 2021; 28:4522-4531. [PMID: 34354438 PMCID: PMC8324936 DOI: 10.1016/j.sjbs.2021.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023] Open
Abstract
In worldwide, one of the most important cancer-related death is lung cancer. Also has the highest mortality rate between various cancer types. The count of lung cancer occurrence is increasing with an increased frequency by smoking. Proficient chemoprevention approaches are needed to prevent the occurrence of lung cancer. Therefore, the aim of this exploration is to determine the therapeutic impact on the immune modulatory effect of rhaponticin on lung tumorigenesis in vivo and in vitro cytotoxicity effect in A549 cells of human lung cancer. Lung cancer tumorigenesis in mice was challenged with benzo(a)pyrene (BaP) with 50 mg/kg bodyweight (b.wt) as oral administration for 6 weeks (two times/week). Rhaponticin were given orally 30 mg/kg b.wt (two times/week) in BaP induced mice from 12 weeks to 18 weeks. After treatment completes, the body weight was measured and then blood, lung tissue was collected for various parameters detection. The results evidenced that BaP induced mice decreased the bodyweight, increased lung weight, increased tumor markers (AHH, CEA and LDH), and increased the proinflammatory cytokines. The enzyme catalase, superoxide dismutase activity was decreased and increased lipid peroxidation in immune comprising cells compared with the control cells. Moreover, rhaponticin treatment improves in chemical assays and also the histopathological alteration of lung tissues. The present findings provide evidence about the therapeutic potentials of rhaponticin against BaP triggered lung tumorigenesis.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Department of Clinical Skills & Simulation and Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Feng Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
- Corresponding author.
| |
Collapse
|
9
|
Rowaiye AB, Onuh OA, Oli AN, Okpalefe OA, Oni S, Nwankwo EJ. The pandemic COVID-19: a tale of viremia, cellular oxidation and immune dysfunction. Pan Afr Med J 2020; 36:188. [PMID: 32952832 PMCID: PMC7467617 DOI: 10.11604/pamj.2020.36.188.23476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2 is a tester of the immune system. While it spares the healthy, it brings severe morbidity and in a few cases, mortality to its victims. This article aims at critically reviewing the key virulence factors of COVID-19 which are the viremia, cellular oxidation and immune dysfunction. The averse economic effect of certain disease control measures such as national lock-downs and social distancing, though beneficial, makes them unsustainable. Worse still is the fact that wild animals and domestic pets are carriers of SARS-CoV-2 suggesting that the disease would take longer than expected to be eradicated globally. A better understanding of the pathological dynamics of COVID-19 would help the general populace to prepare for possible infection by the invisible enemy. While the world prospects for vaccines and therapeutic agents against the SARS-CoV-2, clinicians should also seek to modulate the immune system for optimum performance. Immunoprophylactic and immunomodulatory strategies are recommended for the different strata of stakeholders combating the pandemic with the hope that morbidities and mortalities associated with COVID-19 would be drastically reduced.
Collapse
Affiliation(s)
- Adekunle Babajide Rowaiye
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria.,Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharm Scs, Nnamdi Azikiwe University, Awka, Nigeria
| | - Olukemi Adejoke Onuh
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharm Scs, Nnamdi Azikiwe University, Awka, Nigeria
| | | | - Solomon Oni
- Bioresources Development Centre, Isanlu, National Biotechnology Development Agency, Abuja, Nigeria
| | | |
Collapse
|
10
|
Haque S, Kodidela S, Sinha N, Kumar P, Cory TJ, Kumar S. Differential packaging of inflammatory cytokines/ chemokines and oxidative stress modulators in U937 and U1 macrophages-derived extracellular vesicles upon exposure to tobacco constituents. PLoS One 2020; 15:e0233054. [PMID: 32433651 PMCID: PMC7239484 DOI: 10.1371/journal.pone.0233054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Smoking, which is highly prevalent in HIV-infected populations, has been shown to exacerbate HIV replication, in part via the cytochrome P450 (CYP)-induced oxidative stress pathway. Recently, we have shown that extracellular vesicles (EVs), derived from tobacco- and/or HIV-exposed macrophages, alter HIV replication in macrophages by cell-cell interactions. We hypothesize that cigarette smoke condensate (CSC) and/or HIV-exposed macrophage-derived EVs carry relatively high levels of pro-oxidant and pro-inflammatory cargos and/or low levels of antioxidant and anti-inflammatory cargos, which are key mediators for HIV pathogenesis. Therefore, in this study, we investigated differential packaging of pro- and anti-inflammatory cytokines/chemokines and pro- and anti-oxidant contents in EVs after CSC exposure to myeloid cells (uninfected U937 and HIV-infected U1 cells). Our results showed that relatively long to short exposures with CSC increased the expression of cytokines in EVs isolated from HIV-infected U1 macrophages. Importantly, pro-inflammatory cytokines, especially IL-6, were highly packaged in EVs isolated from HIV-infected U1 macrophages upon both long and short-term CSC exposures. In general, anti-inflammatory cytokines, particularly IL-10, had a lower packaging in EVs, while packaging of chemokines was mostly increased in EVs upon CSC exposure in both HIV-infected U1 and uninfected U937 macrophages. Moreover, we observed higher expression of CYPs (1A1 and 1B1) and lower expression of antioxidant enzymes (SOD-1 and catalase) in EVs from HIV-infected U1 macrophages than in uninfected U937 macrophages. Together, they are expected to increase oxidative stress factors in EVs derived from HIV-infected U1 cells. Taken together, our results suggest packaging of increased level of oxidative stress and inflammatory elements in the EVs upon exposure to tobacco constituents and/or HIV to myeloid cells, which would ultimately enhance HIV replication in macrophages via cell-cell interactions.
Collapse
Affiliation(s)
- Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Prashant Kumar
- Division of Pediatric Nephrology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Theodore J. Cory
- Department of Clinical Pharmacy and Translational Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
11
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Rahman MM, Chirumbolo S, Aaseth J. Depleted uranium and Gulf War Illness: Updates and comments on possible mechanisms behind the syndrome. ENVIRONMENTAL RESEARCH 2020; 181:108927. [PMID: 31796256 DOI: 10.1016/j.envres.2019.108927] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Indications of proximal tubule effects have been observed in recent surveillance study of Gulf War veterans exposed to depleted uranium (DU). This gives some support for the suspicion that DU may represent one of the causes for the so-called Persian Gulf syndrome. Proposed effects may be especially harmful if the toxicity hits the mitochondrial DNA since the mitochondria lack the nucleotide excision repair mechanism, which is needed for repairing bulky adducts that have been associated with DU. It is a plausible working hypothesis that a significant part of the symptoms from various organs, which have been observed among veterans from Gulf War 1 and that have been grouped under the name of the Persian Gulf syndrome, may be explained as a consequence of mitochondrial DNA damage in various cell types and organs. Interpretation of observations, on military personnel and civilians after Gulf War 1, is associated with difficulties because of the abundance of potential confounding factors. The symptoms observed on veterans from Gulf War 1 may be attributed to a multiplicity of substances functioning directly or indirectly as mitochondrial mutagens. A concise analysis of the cascade of toxic effects initiated by DU exposure in the human body is the subject of this article.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yuliya Semenova
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
12
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
13
|
Tryptophan Metabolism Activates Aryl Hydrocarbon Receptor-Mediated Pathway To Promote HIV-1 Infection and Reactivation. mBio 2019; 10:mBio.02591-19. [PMID: 31848275 PMCID: PMC6918076 DOI: 10.1128/mbio.02591-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple cellular metabolic pathways are altered by HIV-1 infection, with an impact on immune activation, inflammation, and acquisition of non-AIDS comorbid diseases. The dysfunction of tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the underlying mechanism remains unknown. In this study, we demonstrated that the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, is activated by Trp metabolites to promote HIV-1 infection and reactivation. AHR directly binds to the HIV-1 5' long terminal repeat (5'-LTR) at the molecular level to activate viral transcription and infection, and AHR activation by Trp metabolites increases its nuclear translocation and association with the HIV 5'-LTR; moreover, the binding of AHR with HIV-1 Tat facilitates the recruitment of positive transcription factors to viral promoters. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.IMPORTANCE Cellular metabolic pathways that are altered by HIV-1 infection may accelerate disease progression. Dysfunction in tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the mechanism responsible was not known. This study demonstrates that Trp metabolites augment the activation of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, to promote HIV-1 infection and transcription. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.
Collapse
|
14
|
Ye Q, Liang C, Chen X, Fang T, Wang Y, Wang H. Molecular characterization of methanogenic microbial communities for degrading various types of polycyclic aromatic hydrocarbon. J Environ Sci (China) 2019; 86:97-106. [PMID: 31787194 DOI: 10.1016/j.jes.2019.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Knowledge on methanogenic microbial communities associated with the degradation of polycyclic aromatic hydrocarbons (PAHs) is crucial to developing strategies for PAHs bioremediation. In this study, the linkage between the type of PAHs and microbial community structure was fully investigated through 16S rRNA gene sequencing on four PAH-degrading cultures. Putative degradation products were also detected. Our results indicated that naphthalene (Nap)/2-methylnaphthalene (2-Nap), phenanthrene (Phe) and anthracene (Ant) sculpted different microbial communities. Among them, Nap and 2-Nap selected for similar degrading bacteria (i.e., Alicycliphilus and Thauera) and methanogens (Methanomethylovorans and Methanobacterium). Nap and 2-Nap were probably activated via carboxylation, producing 2-naphthoic acid. In contrast, Phe and Ant shaped different bacterial and archaeal communities, with Arcobacter and Acinetobacter being Phe-degraders and Thiobacillus Ant-degrader. Methanogenic archaea Methanobacterium and Methanomethylovorans predominated Phe-degrading and Ant-degrading culture, respectively. These findings can improve our understanding of natural PAHs attenuation and provide some guidance for PAHs bioremediation in methanogenic environment.
Collapse
Affiliation(s)
- Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xunwen Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Sarma SN, Kimpe LE, Doyon VC, Blais JM, Chan HM. A metabolomics study on effects of polyaromatic compounds in oil sand extracts on the respiratory, hepatic and nervous systems using three human cell lines. ENVIRONMENTAL RESEARCH 2019; 178:108680. [PMID: 31473503 DOI: 10.1016/j.envres.2019.108680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/17/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Polyaromatic compounds (PACs) are by-products of combustion and are the major pollutants from the oil and gas industry. However, the mechanism of PACs induced toxicity still remains elusive. The aim of this study was to elucidate the effects of a typical mixture of PACs found in oil sand extract (OSE) on the respiratory, hepatic and nervous systems in humans using in vitro cell culture models followed by non-targeted metabolomics analysis. OSE collected from Alberta, Canada was fractionated into PAC and alkane fractions, and their effects after 24 h exposure on the cell viability measured by MTT assay in three human cell lines (A549, HepG2, and SK-N-SH) were studied. The PAC fractions showed significant dose-dependent cytotoxicity. A549 cells showed the highest sensitivity to OSE extracts, followed by SK-N-SH and HepG2. In contrast, the alkane fractions showed no effects on cell viability. The three human cell lines were further exposed with the PACs at 10% and 20% lethal concentration for 24 h. Metabolomics analysis of the cell extracts indicated that PACs treatments showed different disruptions on possible metabolic pathways on the three cell lines. PACs altered the sex steroid hormone metabolism and regulated the levels of leukotrienes metabolites in all three cell types. The amino acids L-cysteine, L-glutamine, L-tyrosine that are known to cause respiratory effects were significantly up-regulated in A549 cells. The PACs treated HepG2 cells showed down-regulation in metabolites responsible for the inflammatory mediation. Treatment of the differentiated SK-N-SH cells showed up-regulated metabolites involved with butanoate, fatty acid, and pyrimidine metabolism. Leukotriene metabolites were found to be significantly increased in all PACs treated cells. In conclusion, our results showed that PACs in OSE can alter the metabolism of the human lung, liver and neuronal cells and may induce toxicity in multiple target organs.
Collapse
Affiliation(s)
- Sailendra N Sarma
- University of Ottawa, Department of Biology, Ottawa, K1N 6N5, ON, Canada
| | - Linda E Kimpe
- University of Ottawa, Department of Biology, Ottawa, K1N 6N5, ON, Canada
| | - Valerie C Doyon
- University of Ottawa, Department of Biology, Ottawa, K1N 6N5, ON, Canada
| | - Jules M Blais
- University of Ottawa, Department of Biology, Ottawa, K1N 6N5, ON, Canada
| | - Hing Man Chan
- University of Ottawa, Department of Biology, Ottawa, K1N 6N5, ON, Canada.
| |
Collapse
|
16
|
Hassan SK, Mousa AM, El-Sammad NM, Abdel-Halim AH, Khalil WK, Elsayed EA, Anwar N, Linscheid MW, Moustafa ES, Hashim AN, Nawwar M. Antitumor activity of Cuphea ignea extract against benzo(a)pyrene-induced lung tumorigenesis in Swiss Albino mice. Toxicol Rep 2019; 6:1071-1085. [PMID: 31660294 PMCID: PMC6807375 DOI: 10.1016/j.toxrep.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has one of the highest mortality rates among various types of cancer and is the most frequent cancer in the world. The incidence of lung cancer is increasing rapidly, in parallel with an increased incidence of smoking. Effective chemoprevention may be an alternative strategy to control the incidence of lung cancer. Thus, the objective of current work was to ascertain the possible preventive and therapeutic efficacies of Cuphea ignea extract in a mouse model of lung tumorigenesis and its cytotoxicity toward the A549 human lung cancer cell line. Lung tumorigenesis was induced by the oral administration of benzo(a)pyrene (50 mg/kg b.w.) twice per week to Swiss albino mice for 4 weeks. Benzo(a)pyrene-treated mice were orally administered C. ignea (300 mg/kg body weight, 5 days/week) for 2 weeks before or 9 weeks after the first benzo(a)pyrene dose, for a total of 21 weeks. At the end of the administration period, various parameters were measured in the serum and lung tissues. The results revealed that the oral administration of benzo(a)pyrene resulted in increases in relative lung weight, serum levels of tumor markers (ADA, AHH, and LDH), and the inflammatory marker NF-κB, and a decreased total antioxidant capacity compared with the control. In addition, decreased levels of enzymatic and non-enzymatic antioxidants, with a concomitant increase in lipid peroxidation, metalloproteinases (MMP-2 and MMP-12), and the angiogenic marker VEGF were detected in lung tissues. Moreover, benzo(a)pyrene administration induced the upregulation of PKCα, COX-2, and Bcl-2 expression, with the downregulation of BAX and caspase-3 expression. C. ignea treatment alleviated all alterations in these parameters, which was further confirmed by the histopathological analysis of lung tissues. The findings of the current work provide the first verification of the preventive and therapeutic potentials of C. ignea extract against benzo(a)pyrene-induced lung tumorigenesis in mice.
Collapse
Affiliation(s)
- Sherien K. Hassan
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Amria M. Mousa
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | | | - Wagdy K.B. Khalil
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Elsayed A. Elsayed
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author at: Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - Nayera Anwar
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Michael W. Linscheid
- Laboratory of Applied Analytical and Environmental Chemistry, Humboldt-University, Berlin, Germany
| | - Eman S. Moustafa
- October University of Modern Sciences and Arts, 6th October City, Egypt
| | - Amani N. Hashim
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| | - Mahmoud Nawwar
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| |
Collapse
|
17
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
18
|
Kueck T, Cassella E, Holler J, Kim B, Bieniasz PD. The aryl hydrocarbon receptor and interferon gamma generate antiviral states via transcriptional repression. eLife 2018; 7:38867. [PMID: 30132758 PMCID: PMC6120754 DOI: 10.7554/elife.38867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor whose activation induces the expression of numerous genes, with many effects on cells. However, AhR activation is not known to affect the replication of viruses. We show that AhR activation in macrophages causes a block to HIV-1 and HSV-1 replication. We find that AhR activation transcriptionally represses cyclin-dependent kinase (CDK)1/2 and their associated cyclins, thereby reducing SAMHD1 phosphorylation, cellular dNTP levels and both HIV-1 and HSV-1 replication. Remarkably, a different antiviral stimulus, interferon gamma (IFN-γ), that induces a largely non-overlapping set of genes, also transcriptionally represses CDK1, CDK2 and their associated cyclins, resulting in similar dNTP depletion and antiviral effects. Concordantly, the SIV Vpx protein provides complete and partial resistance to the antiviral effects of AhR and IFN-γ, respectively. Thus, distinct antiviral signaling pathways converge on CDK/cyclin repression, causing inhibition of viral DNA synthesis and replication.
Collapse
Affiliation(s)
- Tonya Kueck
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Elena Cassella
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Jessica Holler
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, United States
| | - Baek Kim
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, United States.,Department of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
19
|
Benzo(a)pyrene in Cigarette Smoke Enhances HIV-1 Replication through NF-κB Activation via CYP-Mediated Oxidative Stress Pathway. Sci Rep 2018; 8:10394. [PMID: 29991690 PMCID: PMC6039513 DOI: 10.1038/s41598-018-28500-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Smoking aggravates HIV-1 pathogenesis and leads to decreased responses to antiretroviral therapy. In this study, we aim to find a molecular mechanism that would explain smoking-induced HIV-1 replication. Benzo(a)pyrene (BaP), a major carcinogen in cigarette, requires metabolic activation through cytochrome P450s (CYPs) to exert its toxic effects. We hypothesized that CYP-mediated BaP metabolism generates reactive oxygen species (ROS), and the resultant oxidative stress aggravates HIV-1 replication. As expected, we observed ~3 to 4-fold increase in HIV-1 replication in U1 cells and human primary macrophages after chronic BaP exposure. We also observed ~30-fold increase in the expression of CYP1A1 at mRNA level, ~2.5-fold increase in its enzymatic activity as well as elevated ROS and cytotoxicity in U1 cells. The knock-down of the CYP1A1 gene using siRNA and treatment with selective CYP inhibitors and antioxidants significantly reduced HIV-1 replication. Further, we observed a nuclear translocation of NF-κB subunits (p50 and p65) after chronic BaP exposure, which was reduced by treatment with siRNA and antioxidants/CYP inhibitors. Suppression of NF-κB pathway using specific NF-κB inhibitors also significantly reduced HIV-1 replication. Altogether, our results suggest that BaP enhances HIV-1 replication in macrophages by a CYP-mediated oxidative stress pathway followed by the NF-κB pathway.
Collapse
|
20
|
Rao PSS, Ande A, Sinha N, Kumar A, Kumar S. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells. PLoS One 2016; 11:e0155791. [PMID: 27203850 PMCID: PMC4874604 DOI: 10.1371/journal.pone.0155791] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC-treated cells of myeloid lineage. This study warrants a closer examination of the role of CYP1B1 in smoking-mediated enhanced HIV replication.
Collapse
Affiliation(s)
- PSS Rao
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anusha Ande
- Division of pharmacology and toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Namita Sinha
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anil Kumar
- Division of pharmacology and toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Santosh Kumar
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|