1
|
Pipes SE, Lovell CR, Kathrein KL. In vivo examination of pathogenicity and virulence in environmentally isolated Vibrio vulnificus. Microbiologyopen 2024; 13:e1427. [PMID: 39041461 PMCID: PMC11264103 DOI: 10.1002/mbo3.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Human exposure to Vibrio vulnificus, a gram-negative, halophilic environmental pathogen, is increasing. Despite this, the mechanisms of its pathogenicity and virulence remain largely unknown. Each year, hundreds of infections related to V. vulnificus occur, leading to hospitalization in 92% of cases and a mortality rate of 35%. The infection is severe, typically contracted through the consumption of contaminated food or exposure of an open wound to contaminated water. This can result in necrotizing fasciitis and the need for amputation of the infected tissue. Although several genes (rtxA1, vvpE, and vvhA) have been implicated in the pathogenicity of this organism, a defined mechanism has not been discovered. In this study, we examine environmentally isolated V. vulnificus strains using a zebrafish model (Danio rerio) to investigate their virulence capabilities. We found significant variation in virulence between individual strains. The commonly used marker gene of disease-causing strains, vcgC, did not accurately predict the more virulent strains. Notably, the least virulent strain in the study, V. vulnificus Sept WR1-BW6, which tested positive for vcgC, vvhA, and rtxA1, did not cause severe disease in the fish and was the only strain that did not result in any mortality. Our study demonstrates that virulence varies greatly among different environmental strains and cannot be accurately predicted based solely on genotype.
Collapse
Affiliation(s)
- Shannon E. Pipes
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Charles R. Lovell
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
2
|
Zheng C, Zhai Y, Qiu J, Wang M, Xu Z, Chen X, Zhou X, Jiao X. ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus. Gut Microbes 2024; 16:2327377. [PMID: 38466137 PMCID: PMC10936601 DOI: 10.1080/19490976.2024.2327377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
Although metals are essential for life, they are toxic to bacteria in excessive amounts. Therefore, the maintenance of metal homeostasis is critical for bacterial physiology and pathogenesis. Vibrio parahaemolyticus is a significant food-borne pathogen that mainly causes acute gastroenteritis in humans and acute hepatopancreatic necrosis disease in shrimp. Herein, we report that ZntA functions as a zinc (Zn) and cadmium (Cd) homeostasis mechanism and contributes to oxidative stress resistance and virulence in V. parahaemolyticus. zntA is remarkably induced by Zn, copper, cobalt, nickel (Ni), and Cd, while ZntA promotes V. parahaemolyticus growth under excess Zn/Ni and Cd conditions via maintaining Zn and Cd homeostasis, respectively. The growth of ΔzntA was inhibited under iron (Fe)-restricted conditions, and the inhibition was associated with Zn homeostasis disturbance. Ferrous iron supplementation improved the growth of ΔzntA under excess Zn, Ni or Cd conditions. The resistance of ΔzntA to H2O2-induced oxidative stress also decreased, and its virulence was attenuated in zebrafish models. Quantitative real-time PCR, mutagenesis, and β-galactosidase activity assays revealed that ZntR positively regulates zntA expression by binding to its promoter. Collectively, the ZntR-regulated ZntA is crucial for Zn and Cd homeostasis and contributes to oxidative stress resistance and virulence in V. parahaemolyticus.
Collapse
Affiliation(s)
- Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yimeng Zhai
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Mengxian Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaohui Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Vandeputte M, Verhaeghe M, Willocx L, Bossier P, Vanrompay D. Bovine Lactoferrin and Hen Ovotransferrin Affect Virulence Factors of Acute Hepatopancreatic Necrosis Disease (AHPND)-Inducing Vibrio parahaemolyticus Strains. Microorganisms 2023; 11:2912. [PMID: 38138056 PMCID: PMC10745944 DOI: 10.3390/microorganisms11122912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Acute Hepatopancreatic Necrosis Disease (AHPND), a highly destructive shrimp disease, has inflicted severe setbacks on the shrimp farming industry worldwide. As the use of antibiotics is discouraged due to emerging antibiotic-resistant bacteria and the pollution of ecosystems, there is a pressing demand for novel, sustainable alternatives. Hence, the influence of bovine lactoferrin (bLF) and hen ovotransferrin (OT), two natural antimicrobial proteins, on the growth of three AHPND-causing Vibrio parahaemolyticus (Vp) strains (M0904, TW01 and PV1) was examined. Additionally, we explored their potential to affect selected Vp virulence factors such as biofilm formation, swimming and swarming, cell surface hydrophobicity, and activity of released lipases and caseinases. Lag phases of all bacterial growth curves were significantly prolonged in the presence of bLF or OT (1, 5 and 10 mg/mL), and bLF (5 and 10 mg/mL) completely inhibited growth of all strains. In addition, bLF or OT significantly reduced biofilm formation (all tested bLF and OT concentrations for Vp M0904 and Vp PV1), bacterial swimming motility (0.5 mg/mL bLF and OT for Vp M0904 and Vp TW01; 1 mg/mL bLF and OT for all strains), cell surface hydrophobicity (for all strains, all bLF and OT concentrations tested except for 0.125 mg/mL OT for Vp PV1) and lipase activity (1 mg/mL bLF and OT for all strains and 0.5 mg/mL bLF and OT for Vp PV1). These promising in vitro results suggest that bLF and/or OT might be used as novel agents for combating AHPND and warrant further research to elucidate the underlying mechanisms of action to fully unlock their potential for AHPND disease management.
Collapse
Affiliation(s)
- Marieke Vandeputte
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.V.); (M.V.); (L.W.)
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Margaux Verhaeghe
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.V.); (M.V.); (L.W.)
| | - Lukas Willocx
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.V.); (M.V.); (L.W.)
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.V.); (M.V.); (L.W.)
| |
Collapse
|
4
|
Zheng C, Qiu J, Zhai Y, Wei M, Zhou X, Jiao X. ZrgA contributes to zinc acquisition in Vibrio parahaemolyticus. Virulence 2023; 14:2156196. [PMID: 36482737 PMCID: PMC9817125 DOI: 10.1080/21505594.2022.2156196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metals are nutrients essential for almost all lifeforms. Bacteria have evolved several mechanisms to overcome the metal restrictions imposed by the host. Vibrio parahaemolyticus causes severe threats to public health and significant economic losses in shrimp aquaculture. Herein, we report that ZrgA contributes to zinc acquisition in this pathogen. The operon VP_RS01455 to VP_RS01475 of V. parahaemolyticus encodes the putative Zn transporter ZrgABCDE, whose homologs are widely distributed in Vibrionaceae. RNA sequencing analysis revealed that V. parahaemolyticus modulates the transcriptome in response to Zn limitation. Genes in the Zinc uptake regulator (Zur) regulon are upregulated during Zn limitation, including three genes annotated to encode Zn-binding proteins. Significant upregulation of these three genes during Zn limitation was also confirmed by quantitative real-time PCR (qRT-PCR) analysis. However, only the mutants containing a VP_RS01470 (zrgA) deletion exhibited impaired growth under Zn-deficient conditions, indicating that VP_RS01470 plays the predominant role in V. parahaemolyticus Zn acquisition. The VP_RS01470 deletion mutant displayed a false appearance of decreased swimming motility under Zn-deficient conditions, as revealed by the fact that the polar flagellar-related genes were not downregulated in the mutant. Moreover, VP_RS01470 deletion produced no noticeable impact on the swarming motility and virulence in mice. qRT-PCR analysis and β-galactosidase activity assays indicated that Zur negatively regulates VP_RS01470 expression in V. parahaemolyticus. Collectively, our findings suggest that ZrgA is required for Zn acquisition in V. parahaemolyticus and highlight the importance of detecting the expression of flagellar genes during analysis of motility of a mutant deficient in growth.
Collapse
Affiliation(s)
- Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yimeng Zhai
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Man Wei
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaohui Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, P.R. China,CONTACT Xiaohui Zhou
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China,Xinan Jiao
| |
Collapse
|
5
|
Falco A, Villaquirán-Muriel MÁ, Gallo Pérez JD, Mondragón-Quiguanas A, Aranaga C, Correa A. Identification of Vibrio metschnikovii and Vibrio injensis Isolated from Leachate Ponds: Characterization of Their Antibiotic Resistance and Virulence-Associated Genes. Antibiotics (Basel) 2023; 12:1571. [PMID: 37998773 PMCID: PMC10668802 DOI: 10.3390/antibiotics12111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to evaluate the antibiotic resistance of 22 environmental Vibrio metschnikovii isolates and 1 Vibrio injensis isolate from landfill leachates in southwestern Colombia. Isolates were identified by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF), and 16S ribosomal RNA gene sequencing. Analysis of the susceptibility to six antibacterial agents by the Kirby-Bauer method showed susceptibility of all the isolates to ciprofloxacin and imipenem. We recorded resistance to beta-lactams and aminoglycosides, but no multidrug resistance was observed. The genome of one of the isolates was sequenced to determine the pathogenic potential of V. injensis. Genes associated with virulence were identified, including for flagellar synthesis, biofilm formation, and hemolysins, among others. These results demonstrate that landfill leachates are potential reservoirs of antibiotic-resistant and pathogenic bacteria and highlight the importance of monitoring Vibrio species in different aquatic environments.
Collapse
Affiliation(s)
- Aura Falco
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Miguel Ángel Villaquirán-Muriel
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - José David Gallo Pérez
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Alejandra Mondragón-Quiguanas
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Carlos Aranaga
- Chemistry and Biotechnology Research Group (QUIBIO), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia;
| | - Adriana Correa
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| |
Collapse
|
6
|
Yang H, Song H, Zhang J, Li W, Han Q, Zhang W. Proteomic analysis reveals the adaptation of Vibrio splendidus to an iron deprivation condition. Appl Microbiol Biotechnol 2023; 107:2533-2546. [PMID: 36922441 DOI: 10.1007/s00253-023-12460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Vibrio splendidus is a ubiquitous Gram-negative marine bacterium that causes diseases within a wide range of marine cultured animals. Since iron deprivation is the frequent situation that the bacteria usually encounter, we aimed to explore the effect of iron deprivation on the proteomic profile of V. splendidus in the present study. There were 425 differentially expressed proteins (DEPs) responded to the iron deprivation condition. When the cells were grown under iron deprivation condition, the oxidation‒reduction processes, single-organism metabolic processes, the catalytic activity, and binding activity were downregulated, while the transport process, membrane cell component, and ion binding activity were upregulated, apart from the iron uptake processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that various metabolism pathways, biosynthesis pathways, energy generation pathways of tricarboxylic acid cycle, and oxidative phosphorylation were downregulated, while various degradation pathways and several special metabolism pathways were upregulated. The proteomic profiles of cells at a OD600 ≈ 0.4 grown under iron deprivation condition showed high similarity to that of the cells at a OD600 ≈ 0.8 grown without iron chelator 2,2'-bipyridine. Correspondingly, the protease activity, the activity of autoinducer 2 (AI-2), and indole content separately catalyzed by LuxS and TnaA, were measured to verify the proteomic data. Our present study gives basic information on the global protein profiles of V. splendidus grown under iron deprivation condition and suggests that the iron deprivation condition cause the cell growth enter a state of higher cell density earlier. KEY POINTS: • Adaptation of V. splendidus to iron deprivation was explored by proteomic analysis. • GO and KEGG of DEPs under different iron levels or cell densities were determined. • Iron deprivation caused the cell enter a state of higher cell density earlier.
Collapse
Affiliation(s)
- Huirong Yang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Huimin Song
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Jinxia Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weisheng Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
7
|
Tan X, Qiao J, Li H, Huang D, Hu X, Wang X. Global metabolic regulation in Vibrio parahaemolyticus under polymyxin B stimulation. Microb Pathog 2021; 161:105260. [PMID: 34688850 DOI: 10.1016/j.micpath.2021.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
Vibrio parahaemolyticus is responsible for infection diseases of people who consume the contaminated seafood, but its metabolic regulation profile in response to colistin, the last treatment option for multidrug-resistant Gram-negative bacteria, remains unclear. In this study, the metabolic regulation profile of V. parahaemolyticus ATCC33846 under polymyxin B stimulation has been investigated. V. parahaemolyticus exposed to polymyxin B resulted in 4597 differentially transcribed genes, including 673 significantly up-regulated genes and 569 significantly down-regulated genes. In V. parahaemolyticus under polymyxin B stimulation, the cellular antioxidant systems to prevent bacteria from oxidant stress was activated, the synthesis of some nonessential macromolecules was reduced, and the assembly and modification of lipopolysaccharide and peptidoglycan to resist the attack from other antibiotics were promoted. These findings provide new insights into polymyxin B-related stress response in V. parahaemolyticus which should be useful for developing novel drugs for infection.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Huang B, Zhang X, Wang C, Bai C, Li C, Li C, Xin L. Isolation and Characterization of Vibrio kanaloae as a Major Pathogen Associated with Mass Mortalities of Ark Clam, Scapharca broughtonii, in Cold Season. Microorganisms 2021; 9:2161. [PMID: 34683482 PMCID: PMC8541523 DOI: 10.3390/microorganisms9102161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
High temperature is a risk factor for vibriosis outbreaks. Most vibrios are opportunistic pathogens that cause the mortality of aquatic animals at the vibrio optimal growth temperature (~25 °C), whereas a dominant Vibrio kanaloae strain SbA1-1 is isolated from natural diseased ark clams (Scapharca broughtonii) during cold seasons in this study. Consistent symptoms and histopathological features reappeared under an immersion infection with SbA1-1 performed at 15 °C. The pathogenicity difference of SbA1-1 was assessed under different temperatures (15 °C and 25 °C). The cumulative mortality rates of ark clams were significantly higher at the low temperature (15 °C) than at the high temperature (25 °C); up to 98% on 16th day post SbA1-1 infection. While the growth ratio of SbA1-1 was retarded at the low temperature, the hemolytic activity and siderophores productivity of SbA1-1 were increased. This study constitutes the first isolation of V. kanaloae from the natural diseased ark clams (S. broughtonii) in cold seasons and the exposition of the dissimilar pathogenicity of SbA1-1 at a different temperature. All the above indicates that V. kanaloae constitutes a threat to ark clam culture, especially in cold seasons.
Collapse
Affiliation(s)
- Bowen Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Xiang Zhang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chongming Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Changming Bai
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chen Li
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Lusheng Xin
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| |
Collapse
|
9
|
Millar JA, Raghavan R. Modulation of Bacterial Fitness and Virulence Through Antisense RNAs. Front Cell Infect Microbiol 2021; 10:596277. [PMID: 33747974 PMCID: PMC7968456 DOI: 10.3389/fcimb.2020.596277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge is helping to inform current efforts to develop new therapeutics.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
10
|
Berg K, Pedersen HL, Leiros I. Biochemical characterization of ferric uptake regulator (Fur) from Aliivibrio salmonicida. Mapping the DNA sequence specificity through binding studies and structural modelling. Biometals 2020; 33:169-185. [PMID: 32648080 PMCID: PMC7536154 DOI: 10.1007/s10534-020-00240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 06/28/2020] [Indexed: 11/25/2022]
Abstract
Iron is an essential nutrient for bacteria, however its propensity to form toxic hydroxyl radicals at high intracellular concentrations, requires its acquisition to be tightly regulated. Ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as a transcriptional regulator in maintaining iron metabolism in bacteria and is a highly interesting target in the design of new antibacterial drugs. Fur mutants have been shown to exhibit decreased virulence in infection models. The protein interacts specifically with DNA at binding sites designated as 'Fur boxes'. In the present study, we have investigated the interaction between Fur from the fish pathogen Aliivibrio salmonicida (AsFur) and its target DNA using a combination of biochemical and in silico methods. A series of target DNA oligomers were designed based on analyses of Fur boxes from other species, and affinities assessed using electrophoretic mobility shift assay. Binding strengths were interpreted in the context of homology models of AsFur to gain molecular-level insight into binding specificity.
Collapse
Affiliation(s)
- Kristel Berg
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT the Arctic University of Norway, 9037, Tromsø, Norway
| | - Hege Lynum Pedersen
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT the Arctic University of Norway, 9037, Tromsø, Norway
| | - Ingar Leiros
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT the Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
11
|
Ndraha N, Wong HC, Hsiao HI. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr Rev Food Sci Food Saf 2020; 19:1187-1217. [PMID: 33331689 DOI: 10.1111/1541-4337.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium that is naturally present in the marine environment. Oysters, which are water filter feeders, may accumulate this pathogen in their soft tissues, thus increasing the risk of V. parahaemolyticus infection among people who consume oysters. In this review, factors affecting V. parahaemolyticus accumulation in oysters, the route of the pathogen from primary production to consumption, and the potential effects of climate change were discussed. In addition, intervention strategies for reducing accumulation of V. parahaemolyticus in oysters were presented. A literature review revealed the following information relevant to the present study: (a) managing the safety of oysters (for human consumption) from primary production to consumption remains a challenge, (b) there are multiple factors that influence the concentration of V. parahaemolyticus in oysters from primary production to consumption, (c) climate change could possibly affect the safety of oysters, both directly and indirectly, placing public health at risk, (d) many intervention strategies have been developed to control and/or reduce the concentration of V. parahaemolyticus in oysters to acceptable levels, but most of them are mainly focused on the downstream steps of the oyster supply chain, and (c) although available regulation and/or guidelines governing the safety of oyster consumption are mostly available in developed countries, limited food safety information is available in developing countries. The information provided in this review may serve as an early warning for managing the future effects of climate change on the safety of oyster consumption.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.).,Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| |
Collapse
|
12
|
Zhang Y, Liu H, Gu D, Lu X, Zhou X, Xia X. Transcriptomic analysis of PhoR reveals its role in regulation of swarming motility and T3SS expression in Vibrio parahaemolyticus. Microbiol Res 2020; 235:126448. [PMID: 32114363 DOI: 10.1016/j.micres.2020.126448] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/14/2023]
Abstract
Vibrio parahaemolyticus is a common foodborne pathogen in seafood and represents a major threat to human health worldwide. In this study, we identified that PhoR, a histidine kinase, is involved in the regulation of swarming and flagella assembly. RNA sequencing analysis showed that 1122 genes were differentially expressed in PhoR mutant, including 394 upregulated and 728 downregulated genes. KEGG enrichment and heatmap analysis demonstrated that the bacterial secretion system, flagella assembly and chemotaxis pathways were significantly downregulated in PhoR mutant, while the microbial metabolism in diverse environments and carbon metabolism pathways were upregulated in PhoR mutant. qRT-PCR further confirmed that genes responsible for the type III secretion system (T3SS), swarming and the thermostable direct hemolysin were positively regulated by PhoR. Phosphorylation assays suggested that PhoR was highly activated in BHI medium compared to LB medium. Taken together, these data suggested that activated PhoR contributes to the expression of swarming motility and secretion system genes in Vibrio parahaemolyticus.
Collapse
Affiliation(s)
- Yibei Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA
| | - Huanhuan Liu
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xingxu Lu
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA.
| | - Xiaodong Xia
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034 China.
| |
Collapse
|
13
|
|
14
|
Li L, Meng H, Gu D, Li Y, Jia M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 2019; 222:43-51. [PMID: 30928029 DOI: 10.1016/j.micres.2019.03.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is mainly distributed in the seafood such as fish, shrimps and shellfish throughout the world. V. parahaemolyticus can cause diseases in marine aquaculture, leading to huge economic losses to the aquaculture industry. More importantly, it is also the leading cause of seafood-borne diarrheal disease in humans worldwide. With the development of animal model, next-generation sequencing as well as biochemical and cell biological technologies, deeper understanding of the virulence factors and pathogenic mechanisms of V. parahaemolyticus has been gained. As a globally transmitted pathogen, the pathogenicity of V. parahaemolyticus is closely related to a variety of virulence factors. This article comprehensively reviewed the molecular mechanisms of eight types of virulence factors: hemolysin, type III secretion system, type VI secretion system, adhesion factor, iron uptake system, lipopolysaccharide, protease and outer membrane proteins. This review comprehensively summarized our current understanding of the virulence factors in V. parahaemolyticus, which are potentially new targets for the development of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hongmei Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengdie Jia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
15
|
Latorre M, Quenti D, Travisany D, Singh KV, Murray BE, Maass A, Cambiazo V. The Role of Fur in the Transcriptional and Iron Homeostatic Response of Enterococcus faecalis. Front Microbiol 2018; 9:1580. [PMID: 30065712 PMCID: PMC6056675 DOI: 10.3389/fmicb.2018.01580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023] Open
Abstract
The ferric uptake regulator (Fur) plays a major role in controlling the expression of iron homeostasis genes in bacterial organisms. In this work, we fully characterized the capacity of Fur to reconfigure the global transcriptional network and influence iron homeostasis in Enterococcus faecalis. The characterization of the Fur regulon from E. faecalis indicated that this protein (Fur) regulated the expression of genes involved in iron uptake systems, conferring to the system a high level of efficiency and specificity to respond under different iron exposure conditions. An RNAseq assay coupled with a systems biology approach allowed us to identify the first global transcriptional network activated by different iron treatments (excess and limited), with and without the presence of Fur. The results showed that changes in iron availability activated a complex network of transcriptional factors in E. faecalis, among them global regulators such as LysR, ArgR, GalRS, and local regulators, LexA and CopY, which were also stimulated by copper and zinc treatments. The deletion of Fur impacted the expression of genes encoding for ABC transporters, energy production and [Fe-S] proteins, which optimized detoxification and iron uptake under iron excess and limitation, respectively. Finally, considering the close relationship between iron homeostasis and pathogenesis, our data showed that the absence of Fur increased the internal concentration of iron in the bacterium and also affected its ability to produce biofilm. These results open new alternatives in the field of infection mechanisms of E. faecalis.
Collapse
Affiliation(s)
- Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Daniela Quenti
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Regulation of Thermostable Direct Hemolysin and Biofilm Formation of Vibrio parahaemolyticus by Quorum-Sensing Genes luxM and luxS. Curr Microbiol 2018; 75:1190-1197. [PMID: 29785633 DOI: 10.1007/s00284-018-1508-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/12/2018] [Indexed: 01/15/2023]
Abstract
Vibrio parahaemolyticus is a seafood opportunistic pathogen. There are evidences suggesting that virulence skills, including hemolytic activity and biofilm formation, are regulated by the luxM/luxS-dependent quorum-sensing system in V. parahaemolyticus, and their regulatory mechanism is not well understood. To better understand the virulence regulatory mechanism of V. parahaemolyticus, the luxM deletion (△luxM) and luxS deletion (△luxS) mutants were constructed and their impacts on growth, hemolysin activity, and biofilm were investigated. Results show that both luxM and luxS are involved in the adaptation to environmental conditions in early adaptive-log phase growth of V. parahaemolyticus. Thermostable direct hemolysin gene (tdh) was negatively regulated by luxM and positively regulated by luxS. The biofilm formation was negatively regulated by both luxS and luxM. This study provides an insight into some aspects of V. parahaemolyticus virulence regulation by luxM/luxS-dependent quorum-sensing system.
Collapse
|
17
|
Mechri B, Monastiri A, Medhioub A, Medhioub MN, Aouni M. Molecular characterization and phylogenetic analysis of highly pathogenic Vibrio alginolyticus strains isolated during mortality outbreaks in cultured Ruditapes decussatus juvenile. Microb Pathog 2017; 111:487-496. [PMID: 28923608 DOI: 10.1016/j.micpath.2017.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
In the summer of 2008 and 2009, a series of mortalities in growing out seeds of R. decussatus juveniles were occurred in the eastern Tunisian littoral. Nine predominant bacterial strains were isolated from dead and moribund juveniles and characterized as Vibrio alginolyticus. These isolates were subjected to biochemical and molecular characterization. All the Vibrio strains were tested for their susceptibility against the most widely used antibiotic in aquaculture as well as, the assessment of the presence of erythromycin (emrB) and tetracycline (tetS) resistance genes among the tested bacteria. The degree of genetic relatedness between V. alginolyticus strains was evaluated on the basis of the Entero-Bacterial Repetitive Intergenic Consensus (ERIC) and the Random Amplification of Polymorphic DNA-PCR (RAPD-PCR) approaches. We also looked for siderophore activity and the ability to grow under iron limitation. Furthermore, the pathogenic potential of the tested isolates was evaluated using R. decussatus larva and juveniles as infection models. On antimicrobial susceptibility test, Vibrio strains exhibited total resistance to at least four antibiotics. The MICs data revealed that flumequine and oxolinic acid were the most effective antibiotics to control the studied bacteria. Results also showed that studied antibiotics resistance genes were widely disseminated in the genome of V. alginolyticus strains. Both ERIC and RAPD-PCR fingerprinting showed the presence of genetic variation among Vibrio isolates. However, RAPD typing exhibited a higher discriminative potential than ERIC-PCR. Besides, we reported here for the first time the co-production of catechol and hydroxamte by V. alginolyticus species. The challenge experiment showed that most of Vibrio isolates caused high mortality rates for both larva and juveniles at 48-h post-exposure to a bacterial concentration of 106 CFU/ml.
Collapse
Affiliation(s)
- Badreddine Mechri
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives, Université de Monastir, Faculté de Pharmacie, Rue Avicenne, 5000 Monastir, Tunisia; Laboratoire d'Aquaculture - Institut National des Sciences et Technologies de la Mer, Route de Khniss, B.P. 59, 5000 Monastir, Tunisia.
| | - Abir Monastiri
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives, Université de Monastir, Faculté de Pharmacie, Rue Avicenne, 5000 Monastir, Tunisia
| | - Amel Medhioub
- Laboratoire d'Aquaculture - Institut National des Sciences et Technologies de la Mer, Route de Khniss, B.P. 59, 5000 Monastir, Tunisia
| | - Mohamed Nejib Medhioub
- Laboratoire d'Aquaculture - Institut National des Sciences et Technologies de la Mer, Route de Khniss, B.P. 59, 5000 Monastir, Tunisia
| | - Mahjoub Aouni
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives, Université de Monastir, Faculté de Pharmacie, Rue Avicenne, 5000 Monastir, Tunisia
| |
Collapse
|
18
|
Ghenem L, Elhadi N, Alzahrani F, Nishibuchi M. Vibrio Parahaemolyticus: A Review on Distribution, Pathogenesis, Virulence Determinants and Epidemiology. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2017; 5:93-103. [PMID: 30787765 PMCID: PMC6298368 DOI: 10.4103/sjmms.sjmms_30_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium isolated from marine environments globally. After the consumption of contaminated seafood, V. parahaemolyticus causes acute gastroenteritis. To initiate infection, a wide range of virulence factors are required. A complex group of genes is known to participate in the pathogenicity of V. parahaemolyticus; however, to understand the full mechanism of infection, extensive research is yet required. V. parahaemolyticus has become the leading cause of seafood-related gastroenteritis in Japan, the United States and several other parts of the world. In addition, outbreaks caused by the pandemic clone of this organism are escalating and spreading universally. To minimize the risk of V. parahaemolyticus infection and warrant the safety of seafood, collaboration between governments and scientists is required. We herein provide an updated review of the pathogenicity determinants and distribution of V. parahaemolyticus to deliver a better understanding of the significance of V. parahaemolyticus and its host-pathogen interactions.
Collapse
Affiliation(s)
- Lubna Ghenem
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Faisal Alzahrani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Mitsuaki Nishibuchi
- Center for Southeast Asian Studies, Kyoto University, 46 Shomoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Embaby AM, Heshmat Y, Hussein A. Unusual non-fluorescent broad spectrum siderophore activity (SID EGYII) by Pseudomonas aeruginosa strain EGYII DSM 101801 and a new insight towards simple siderophore bioassay. AMB Express 2016; 6:26. [PMID: 27015845 PMCID: PMC4808072 DOI: 10.1186/s13568-016-0192-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/08/2016] [Indexed: 01/12/2023] Open
Abstract
Present study highlights an unusual non-fluorescent hydroxamate broad spectrum siderophore (SID EGYII) activity from Pseudomonas aeruginosa strain EGYII DSM 101801, a soil bacterial isolate, along with simple low cost effective siderophore bioassay. Detection of SID EGYII activity qualitatively was proved by masking this activity against Erwinia amylovora strain EGY1 DSM 101800, an indicator strain, in well-cut diffusion assay containing 100 µM FeCl3. SID EGYII activity was expressed quantitatively as arbitrary units [Siderophore arbitrary units (SAU)] 380 SAU/mL against E. amylovora strain EGY1 DSM 101800. Maximal SID EGYII activity was achieved upon growing P. aeruginosa strain EGYII DSM 101801 in PYB broth at 180 rpm for 24 h. SID EGYII displayed a broad spectrum antimicrobial activity against some human pathogens (i.e., Gram-positive bacteria, Gram-negative bacteria and yeasts) and a fireblight plant pathogen. Interestingly, transformants of Escherichia coli JM109 (DE3)pSID/EGYII harboring P. aeruginosa strain EGYII DSM 101801 plasmid demonstrated a perceivable antimicrobial activity against E. amylovora strain EGY1 DSM 101800. The broad spectrum antimicrobial activity of the unusual non-fluorescent SID EGYII would underpin its high potential in targeting bacterial pathogens posing probable threats to human health and agricultural economy. The present simple low cost effective bioassay is a new insight towards an alternative to the expensive cumbersome siderophore Chrome Azurol S assay.
Collapse
Affiliation(s)
- Amira M. Embaby
- />Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, 163 Horreya Avenue, Chatby, P.O. Box 832, Alexandria, 21526 Egypt
| | - Yasmin Heshmat
- />Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, 163 Horreya Avenue, Chatby, P.O. Box 832, Alexandria, 21526 Egypt
| | - Ahmed Hussein
- />Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, 163 Horreya Avenue, Chatby, P.O. Box 832, Alexandria, 21526 Egypt
- />Department of Chemistry and Biochemistry, Texas Tech University, TX Lubbock, USA
| |
Collapse
|