1
|
García-Rodríguez J, Saro C, Mateos I, Carro MD, Ranilla MJ. Effects of Garlic Oil and Cinnamaldehyde on Sheep Rumen Fermentation and Microbial Populations in Rusitec Fermenters in Two Different Sampling Periods. Animals (Basel) 2024; 14:1067. [PMID: 38612306 PMCID: PMC11011117 DOI: 10.3390/ani14071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Garlic oil (GO) and cinnamaldehyde (CIN) have shown potential to modify rumen fermentation. The aim of this study was to assess the effects of GO and CIN on rumen fermentation, microbial protein synthesis (MPS), and microbial populations in Rusitec fermenters fed a mixed diet (50:50 forage/concentrate), as well as whether these effects were maintained over time. Six fermenters were used in two 15-day incubation runs. Within each run, two fermenters received no additive, 180 mg/L of GO, or 180 mg/L of CIN. Rumen fermentation parameters were assessed in two periods (P1 and P2), and microbial populations were studied after each of these periods. Garlic oil reduced the acetate/propionate ratio and methane production (p < 0.001) in P1 and P2 and decreased protozoal DNA concentration and the relative abundance of fungi and archaea after P1 (p < 0.05). Cinnamaldehyde increased bacterial diversity (p < 0.01) and modified the structure of bacterial communities after P1, decreased bacterial DNA concentration after P2 (p < 0.05), and increased MPS (p < 0.001). The results of this study indicate that 180 mg/L of GO and CIN promoted a more efficient rumen fermentation and increased the protein supply to the animal, respectively, although an apparent adaptive response of microbial populations to GO was observed.
Collapse
Affiliation(s)
- Jairo García-Rodríguez
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - Cristina Saro
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - Iván Mateos
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - María José Ranilla
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| |
Collapse
|
2
|
Hodge I, Quille P, O’Connell S. A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle. Animals (Basel) 2024; 14:568. [PMID: 38396536 PMCID: PMC10885959 DOI: 10.3390/ani14040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Collapse
Affiliation(s)
- Ian Hodge
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
- Research and Development Biotechnology Centre, Marigot Ltd., Shanbally, P43 E409 Ringaskiddy, Cork, Ireland
| | - Patrick Quille
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
| | - Shane O’Connell
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
- Research and Development Biotechnology Centre, Marigot Ltd., Shanbally, P43 E409 Ringaskiddy, Cork, Ireland
| |
Collapse
|
3
|
Vadroňová M, Šťovíček A, Jochová K, Výborná A, Tyrolová Y, Tichá D, Homolka P, Joch M. Combined effects of nitrate and medium-chain fatty acids on methane production, rumen fermentation, and rumen bacterial populations in vitro. Sci Rep 2023; 13:21961. [PMID: 38081855 PMCID: PMC10713576 DOI: 10.1038/s41598-023-49138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
This study investigated the combined effects of nitrate (NT) and medium-chain fatty acids (MCFA), including C8, C10, C12, and C14, on methane (CH4) production, rumen fermentation characteristics, and rumen bacteria using a 24 h batch incubation technique. Four types of treatments were used: control (no nitrate, no MCFA), NT (nitrate at 3.65 mM), NT + MCFA (nitrate at 3.65 mM + one of the four MCFA at 500 mg/L), and NT + MCFA/MCFA (nitrate at 3.65 mM + a binary combination of MCFA at 250 and 250 mg/L). All treatments decreased (P < 0.001) methanogenesis (mL/g dry matter incubated) compared with the control, but their efficiency was dependent on the MCFA type. The most efficient CH4 inhibitor was the NT + C10 treatment (- 40%). The combinations containing C10 and C12 had the greatest effect on bacterial alpha and beta diversity and relative microbial abundance (P < 0.001). Next-generation sequencing showed that the family Succinivibrionaceae was favored in treatments with the greatest CH4 inhibition at the expense of Prevotella and Ruminococcaceae. Furthermore, the relative abundance of Archaea decreased (P < 0.05) in the NT + C10 and NT + C10/C12 treatments. These results confirm that the combination of NT with MCFA (C10 and C12 in particular) may effectively reduce CH4 production.
Collapse
Affiliation(s)
- Mariana Vadroňová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Adam Šťovíček
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Kateřina Jochová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Alena Výborná
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Yvona Tyrolová
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Denisa Tichá
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Petr Homolka
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Miroslav Joch
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic.
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic.
| |
Collapse
|
4
|
Patra AK, Puchala R. Methane mitigation in ruminants with structural analogues and other chemical compounds targeting archaeal methanogenesis pathways. Biotechnol Adv 2023; 69:108268. [PMID: 37793598 DOI: 10.1016/j.biotechadv.2023.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Ruminants are responsible for enteric methane production contributing significantly to the anthropogenic greenhouse gases in the atmosphere. Moreover, dietary energy is lost as methane gas without being available for animal use. Therefore, many mitigation strategies aiming at interventions at animals, diet, and microbiota have been explored by researchers. Specific chemical analogues targeting the enzymes of the methanogenic pathway appear to be more effective in specifically inhibiting the growth of methane-producing archaea without hampering another microbiome, particularly, cellulolytic microbiota. The targets of methanogenesis reactions that have been mainly investigated in ruminal fluid include methyl coenzyme M reductase (halogenated sulfonate and nitrooxy compounds), corrinoid enzymes (halogenated aliphatic compounds), formate dehydrogenase (nitro compounds, e.g., nitroethane and 2-nitroethanol), and deazaflavin (F420) (pterin and statin compounds). Many other potential metabolic reaction targets in methanogenic archaea have not been evaluated properly. The analogues are specifically effective inhibitors of methanogens, but their efficacy to lower methanogenesis over time reduces due to the metabolism of the compounds by other microbiota or the development of resistance mechanisms by methanogens. In this short review, methanogen populations inhabited in the rumen, methanogenesis pathways and methane analogues, and other chemical compounds specifically targeting the metabolic reactions in the pathways and methane production in ruminants have been discussed. Although many methane inhibitors have been evaluated in lowering methane emission in ruminants, advancement in unravelling the molecular mechanisms of specific methane inhibitors targeting the metabolic pathways in methanogens is very limited.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA.
| | - Ryszard Puchala
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA; Applied Physiology Unit, Military Institute of Hygiene and Epidemiology, Kozielska 4, Warsaw, Poland
| |
Collapse
|
5
|
Khurana R, Brand T, Tapio I, Bayat AR. Effect of a garlic and citrus extract supplement on performance, rumen fermentation, methane production, and rumen microbiome of dairy cows. J Dairy Sci 2023:S0022-0302(23)00273-4. [PMID: 37225588 DOI: 10.3168/jds.2022-22838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 05/26/2023]
Abstract
The aim of this trial was to determine the effect of a garlic and citrus extract supplement (GCE) on the performance, rumen fermentation, methane emissions, and rumen microbiome of dairy cows. Fourteen multiparous Nordic Red cows in mid-lactation from the research herd of Luke (Jokioinen, Finland) were allocated to 7 blocks in a complete randomized block design based on body weight, days in milk, dry matter intake (DMI), and milk yield. Animals within each block were randomly allocated to a diet with or without GCE. The experimental period for each block of cows (one for each of the control and GCE groups) consisted of 14 d of adaptation followed by 4 d of methane measurements inside the open circuit respiration chambers, with the first day being considered as acclimatization. Data were analyzed using the GLM procedure of SAS (SAS Institute Inc.). Methane production (g/d) and methane intensity (g/kg of energy-corrected milk) were lower by 10.3 and 11.7%, respectively, and methane yield (g/kg of DMI) tended to be lower by 9.7% in cows fed GCE compared with the control. Dry matter intake, milk production, and milk composition were similar between treatments. Rumen pH and total volatile fatty acid concentrations in rumen fluid were similar, whereas GCE tended to increase molar propionate concentration and decrease the molar ratio of acetate to propionate. Supplementation with GCE resulted in greater abundance of Succinivibrionaceae, which was associated with reduced methane. The relative abundance of the strict anaerobic Methanobrevibacter genus was reduced by GCE. The change in microbial community and rumen propionate proportion may explain the decrease in enteric methane emissions. In conclusion, feeding GCE to dairy cows for 18 d modified rumen fermentation and microbiota, leading to reduced methane production and intensity without compromising DMI or milk production in dairy cows. This could be an effective strategy for enteric methane mitigation of dairy cows.
Collapse
Affiliation(s)
| | | | - Ilma Tapio
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen 31600, Finland
| | - Ali-Reza Bayat
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen 31600, Finland
| |
Collapse
|
6
|
Elghandour MMMY, Acosta-Lozano N, Alvarado TD, Castillo-Lopez E, Cipriano-Salazar M, Barros-Rodríguez M, Inyang UA, Purba RAP, Salem AZM. Influence of Azadirachta indica and Cnidoscolus angustidens aqueous extract on cattle ruminal gas production and degradability in vitro. Front Vet Sci 2023; 10:1090729. [PMID: 37266386 PMCID: PMC10230098 DOI: 10.3389/fvets.2023.1090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Mitigation of ruminant greenhouse gas (GHG) emissions is crucial for more appropriate livestock production. Thus, there is a need of further research evaluating feed supplementation strategies to mitigate enteric GHG emissions and other gases produced within the rumen. Methods This study was conducted as a completely randomized experimental design to determine the effectiveness of liquid extracts from A. indica (AZI), C. angustidens (CNA), or their combination (Mix. 1:1) at dosages of 0, 36, 72, and 108 mg of liquid extract/g DM substrate incubated in reducing GHG production in vitro, particularly methane (CH4), from the diet of steers during anaerobic incubation in rumen fluid. Total gas production, CH4, CO, H2S, and fermentative characteristics were all measured in vitro. Results Treatment AZI at a dose of 108 mg of liquid extract/g DM substrate produced the highest (P < 0.05) gas volume at 6 h, whereas CNA at a dose of 72 mg of liquid extract/ g DM substrate produced the least (P < 0.05) at 6 and 24 h, and Mix. at a dose of 72 mg of liquid extract/g DM substrate produced the least (P < 0.05) at 48 h. In addition, CH4 levels at 6 and 24 h of incubation (36 mg/g DM substrate) were highest (P < 0.05) for CNA, and lowest (P < 0.05) for AZI, whereas this variable was lowest (P < 0.05) at 72 mg of liquid extract for CNA at 24 and 48 h. At 6 and 24 h, CO volume was highest (P < 0.05) for AZI at 108 mg of liquid extract and lowest (P < 0.05) for Mix. at 72 mg of liquid extract. Treatment Mix. had a high (P < 0.05) concentration of short chain fatty acids at 72 mg of liquid extract/g DM of substrate. Discussion In general, herbaceous perennial plants, such as AZI and CNA, could be considered suitable for mitigating enteric GHG emissions from animals. Specifically, the treatment Mix. achieved a greater sustainable reduction of 67.6% in CH4 and 47.5% in H2S production when compared to either AZI. This reduction in CH4 might suggest the potential of the combination of both plant extracts for mitigating the production of GHG from ruminants.
Collapse
Affiliation(s)
- Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Néstor Acosta-Lozano
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, Santa Elena, Ecuador
| | - Tonantzin Díaz Alvarado
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Ezequias Castillo-Lopez
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan, Mexico
- Department of Farm Animals and Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Moises Cipriano-Salazar
- Facultad de Medicina Veterinaria y Zootecnia No. 1, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Marcos Barros-Rodríguez
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a Quero, Cevallos, Ambato, Ecuador
| | - Udoh Akpan Inyang
- Department of Animal Science, Faculty of Agriculture, University of Uyo, Uyo, Nigeria
| | - Rayudika Aprilia Patindra Purba
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
7
|
Dai Z, Wang H, Liu J, Zhang H, Li Q, Yu X, Zhang R, Yang C. Comparison of the Effects of Yucca saponin, Yucca schidigera, and Quillaja saponaria on Growth Performance, Immunity, Antioxidant Capability, and Intestinal Flora in Broilers. Animals (Basel) 2023; 13:ani13091447. [PMID: 37174484 PMCID: PMC10177514 DOI: 10.3390/ani13091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The purpose of this study is to investigate the effects of Yucca saponin (YSa), Yucca schidigera (YS), and Quillaja Saponaria (QS) on growth performance, nitrogen metabolism, immune ability, antioxidant capability, and intestinal flora of yellow-feather broilers. This study randomly divided a total of 480 1-day yellow-feather broilers into 4 treatment groups. Factors in the 4 groups included CON group (basic diet), YSa group (basic diet mixed with 500 mg/kg YSa), YS group (basic diet mixed with 500 mg/kg YS), and QS group (basic diet mixed with 500 mg/kg QS). Throughout the 56-day study period, YSa, YS, and QS groups had higher average daily gain in broilers than the CON group (p < 0.01). The YS group had a lower feed gain ratio (F: G) in broilers than the CON group (p < 0.05). YSa, YS, and QS showed increased serum immunoglobin A (IgA), immunoglobin Y (IgY), immunoglobin M (IgM), and total antioxidant capacity (T-AOC) levels; enhanced acetic acid, butyric acid, and valeric acid levels of cecal content; and reduced contents of ammonia nitrogen, urea nitrogen, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) in serum in broilers (p < 0.05). The relative abundance of Lachnoclostridium in the QS group was decreased compared with that in the CON group (p < 0.05). Higher IgA and IgY sera contents were observed in the YS group compared to the YSa and QS groups (p < 0.05). In contrast with the QS group, the serum IL-6 concentration of the YS group was reduced (p < 0.05). In conclusion, YSa, YS, and QS promoted growth performance, nitrogen metabolism, immunity, antioxidant capability, and intestinal flora in broilers. Through the comparison of YSa, YS, and QS, it was found that YS is more suitable as a feed additive to ameliorate the healthy growth of broilers.
Collapse
Affiliation(s)
- Zhenglie Dai
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Huixian Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Jinsong Liu
- Key Agricultural Research Institute of Veagmax Green Animal Health Products of Zhejiang Province, Anji 313300, China
| | - Haoran Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Qing Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Xiaorong Yu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| |
Collapse
|
8
|
Guo Y, Fan Z, Li M, Xie H, Peng L, Yang C. Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes. Microorganisms 2023; 11:675. [PMID: 36985248 PMCID: PMC10057408 DOI: 10.3390/microorganisms11030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino acid composition, and rumen microbial communities in lactating buffaloes. Forty mid-lactation multiparous Murrah buffaloes within the initial days in milk (DIM) = 180.83 ± 56.78 d, milk yield = 7.63 ± 0.19 kg, body weight = 645 ± 25 kg were selected and randomly allocated into four groups (N = 10). All of animals received the same total mixed ratio (TMR) diet. Furthermore, the groups were divided into the control group (CON), 70 g/d sodium nitrate group (SN), 15 g/d palmitate coated L-methionine group (MET), and 70 g/d sodium nitrate +15 g/d palmitate coated L-methionine group (SN+MET). The experiment lasted for six weeks, including two weeks of adaption. The results showed that most rumen-free amino acids, total essential amino acids, and total amino acids in Group SN increased (p < 0.05), while the dry matter intake (DMI) and rumen acetate, propionate, valerate, and total volatile fatty acids (TVFA) in Group MET decreased (p < 0.05). However, there was no significant difference in milk yield, milk protein, milk fat, lactose, total solid content, and sodium nitrate residue in milk among groups (p > 0.05). Group SN+MET had a decreased rumen propionate and valerate (p < 0.05), while increasing the Ace, Chao, and Simpson indices of alpha diversity of rumen bacteria. Proteobacteria and Actinobacteriota were significantly increased (p < 0.05) in Group SN+MET, but Bacteroidota, and Spirochaetota were decreased (p < 0.05). In addition, Group SN+MET also increased the relative abundance of Acinetobacter, Lactococcus, Microbacterium, Chryseobacterium, and Klebsiella, which were positively correlated with cysteine and negatively correlated with rumen acetate, propionate, valerate, and TVFA. Rikenellaceae_RC9_gut_group was identified as a biomarker in Group SN. Norank_f__UCG-011 was identified as a biomarker in Group MET. Acinetobacter, Kurthia, Bacillus, and Corynebacterium were identified as biomarkers in Group SN+MET. In conclusion, sodium nitrate increased rumen free amino acids, while methionine decreased dry matter intake (DMI) and rumen volatile fatty acids. The combined use of sodium nitrate and methionine enriched the species abundance of microorganisms in the rumen and affected the composition of microorganisms in the rumen. However, sodium nitrate, methionine, and their combination had no significant effect on the milk yield and milk composition. It was suggested that the combined use of sodium nitrate and methionine in buffalo production was more beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
9
|
Capric and lauric acid mixture decreased rumen methane production, while combination with nitrate had no further benefit in methane reduction. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
This study aimed to evaluate the methane-reducing potential of individual and combined treatments of low levels of nitrate (NIT) and a mixture of capric/lauric acid (CL) in dairy cows. Both in vitro and in vivo experiments were conducted. In the in vitro experiment, the anti-methanogenic effects of NIT (1.825 mmol/l) and CL (250 mg/l; capric acid, 125 mg/l + lauric acid, 125 mg/l) were evaluated in a 2 × 2 factorial design using consecutive batch incubations with rumen fluid. The NIT and CL reduced (P<0.05) methane production by 9.2% and by 21.3%, respectively. However, combining NIT with CL did not show (P>0.05) any benefit in methane reduction compared to the use of CL alone. In in vivo experiment, eight multiparous dry Holstein cows were fed two diets in a crossover design for two 21-day periods (14 days of adaptation and 7 days of sampling). The treatments were: 1) silage-based basal diet + 100 g stearic acid per cow/d (CON) and 2) silage-based basal diet + 50 g capric acid + 50 g lauric acid per cow/d (CL). Gas emissions were measured using open-circuit respiration chambers. Methane production (g/d) was reduced (by 11.5%; P = 0.012) when the diet was supplemented with CL. However, supplementation with CL increased ruminal ammonia-N concentration (by 28.5%; P = 0.015) and gas ammonia production (g/d; by 37.2%; P = 0.005). Ruminal pH, protozoa count, and total and individual volatile fatty acid concentrations (VFA) did not differ (P>0.05) between the treatments. Treatment did not affect the intake and total tract apparent digestibility (P>0.05). In conclusion, our results suggest that low CL levels have anti-methanogenic potential. However, low levels of CL may compromise nitrogen use efficiency.
Collapse
|
10
|
Shilwant S, Hundal JS, Singla M, Patra AK. Ruminal fermentation and methane production in vitro, milk production, nutrient utilization, blood profile, and immune responses of lactating goats fed polyphenolic and saponin-rich plant extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10901-10913. [PMID: 36087183 DOI: 10.1007/s11356-022-22931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to evaluate the effect of a composite plant extract (CPE) rich in polyphenolics and saponins from seeds of Dolichos biflorus (horse gram), root of Asparagus racemosus (shatavari), bark of Amoora rohituka (rohitaka), and peel of Punica granatum (pomegranate) on ruminal fermentation and methanogenesis in vitro, milk production, nutrient digestibility, immune response, and blood profiles in lactating Beetal goats fed CPE at 20 g/kg diet. Dose effect of CPE was assessed using different doses (0, 10, 20, 30, and 40 g/kg substrate) to find out an optimum dose for the in vivo study. The in vivo experiment lasted 70 days including a 10-day adaptation period. In the in vitro study, dry matter (DM) and fiber degradability increased linearly (P < 0.05) and methane production and ammonia concentration decreased linearly (P < 0.05) with increasing doses of CPE. Concentrations of total VFA and proportion of propionate increased (P < 0.001) linearly, whereas proportion of acetate and acetate to propionate ratio decreased with a linear effect. Dietary CPE increased milk yield (P = 0.017) and concentrations of protein and lactose (P = 0.045) by CPE, but concentrations of fat and solid not fat in milk were not affected (P > 0.10). Somatic cell counts in milk reduced (P = 0.045) in the CPE-fed goats. Apparent digestibility of DM (P = 0.037) increased significantly and NDF (P = 0.066) tended to increase due to supplementation of CPE. Blood glucose (P = 0.028) and albumin (P = 0.007) concentrations increased, while other liver-marker metabolites and enzyme activities and superoxide dismutase activity were not altered in goats due to feeding of CPE. Concentrations of total amino acids (P = 0.010), total essential amino acids (P = 0.012), and total ketogenic amino acids (P < 0.001) were greater in the CPE-fed goats than the control goats. Cell-mediated immune response improved due to CPE feeding. This study suggests that the CPE rich in both phenolics and saponins could improve ruminal fermentation, milk production, and nutrient utilization in lactating goats with better health status while decreasing methane emission.
Collapse
Affiliation(s)
- Sandip Shilwant
- Department of Animal Nutrition, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Jaspal Singh Hundal
- Department of Animal Nutrition, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Mandeep Singla
- Goat Farm, Directorate of Livestock Farm, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India.
| |
Collapse
|
11
|
Effects of Neem ( Azadirachta indica) Leaf Powder Supplementation on Rumen Fermentation, Feed Intake, Apparent Digestibility and Performance in Omani Sheep. Animals (Basel) 2022; 12:ani12223146. [PMID: 36428374 PMCID: PMC9687045 DOI: 10.3390/ani12223146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to evaluate the potential of the dietary addition of neem (Azadirachta indica) leaf powder (NLP) when compared to monensin (MON) on ruminal fermentation, feed intake, digestibility, and performance of growing lambs. Eighteen Omani lambs (22.8 ± 2.18 kg of body weight (BW)) were equally divided into three groups (n = 6 lambs/group) for 90 days. Animals were fed an ad lib basal diet consisting of Rhodes grass (Chloris gayana) hay (600 g/kg) and a concentrated mixture (400 g/kg) offered twice daily. Experimental treatments were control (basal diet without supplements); MON (control plus 35 mg/kg DM as a positive control); and NLP (control plus 40 g/kg DM). Lambs fed NLP had reduced ruminal ammonia nitrogen concentrations, protozoal counts, total volatile fatty acid, and blood urea nitrogen concentrations compared to the control. Compared to MON, lambs fed NLP had increased ruminal acetate and decreased propionate proportions. Inclusion of NLP in the diet increased blood total protein, globulin, and liver enzyme concentrations in comparison with the control, which was similar to MON. The lamb's final BW and average BW gain were also increased with the NLP relative to the control. Further, adding NLP to the diet increased the digestibility of crude protein compared to the control diet. In conclusion, adding NLP to the diet with 40 g/kg DM could be used as a promising phytogenic supplement for growing lambs with no detrimental effects on the ruminal fermentation profile, nutrient intake, or digestibility.
Collapse
|
12
|
Sari NF, Ray P, Rymer C, Kliem KE, Stergiadis S. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition. Animals (Basel) 2022; 12:2998. [PMID: 36359121 PMCID: PMC9654579 DOI: 10.3390/ani12212998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Methane (CH4) emission from enteric fermentation of ruminant livestock is a source of greenhouse gases (GHG) and has become a significant concern for global warming. Enteric methane emission is also associated with poor feed efficiency. Therefore, research has focused on identifying dietary mitigation strategies to decrease CH4 emissions from ruminants. In recent years, plant-derived bioactive compounds have been investigated for their potential to reduce CH4 emissions from ruminant livestock. The organosulphur compounds of garlic have been observed to decrease CH4 emission and increase propionate concentration in anaerobic fermentations (in vitro) and in the rumen (in vivo). However, the mode of action of CH4 reduction is not completely clear, and the response in vivo is inconsistent. It might be affected by variations in the concentration and effect of individual substances in garlic. The composition of the diet that is being fed to the animal may also contribute to these differences. This review provides a summary of the effect of garlic and its bioactive compounds on CH4 emissions by ruminants. Additionally, this review aims to provide insight into garlic and its bioactive compounds in terms of enteric CH4 mitigation efficacy, consistency in afficacy, possible mode of action, and safety deriving data from both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Nurul Fitri Sari
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong 16911, West Java, Indonesia
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- The Nature Conservancy, Arlington, VA 22203, USA
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Kirsty E. Kliem
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| |
Collapse
|
13
|
Verma S, Wolffram S, Salminen JP, Hasler M, Susenbeth A, Blank R, Taube F, Kluß C, Malisch CS. Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests. Sci Rep 2022; 12:10454. [PMID: 35729249 PMCID: PMC9213545 DOI: 10.1038/s41598-022-14424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
An in vitro Hohenheim gas test was conducted to analyze the fermentation end-products from 17 cultivars of eight polyphenol containing forage species. The polyphenol composition and proanthocyanidin (PA) structural features of all the cultivars were analyzed with UPLC-MS/MS in leaves of vegetative or generative plants. The samples were incubated with and without polyethylene glycol (PEG, a tannin-binding agent) to separate the tannin-effect on methane (CH4, ml/200 mg DM) production from that of forage quality. Sulla and big trefoil, two particularly PA rich species, were found to have the highest CH4 reduction potential of up to 47% when compared to the samples without PEG. However, concomitant reduction in gas production (GP, ml/200 mg DM) of up to 44% was also observed. An increase in both GP and CH4 production under PEG treatments, confirms the role of tannins in CH4 reduction. Moreover, PA structural features and concentration were found to be an important source of variation for CH4 production from PA containing species. Despite having low polyphenol concentrations, chicory and plantain were found to reduce CH4 production without reducing GP. Additionally, interspecies variability was found to be higher than intraspecies variability, and these results were consistent across growth stages, indicating the findings' representativeness.
Collapse
Affiliation(s)
- Supriya Verma
- Institute of Plant Production and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University (CAU), 24118, Kiel, Germany.
| | - Siegfried Wolffram
- Institute of Animal Nutrition and Physiology, Kiel University (CAU), 24118, Kiel, Germany
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014, Turku, Finland
| | - Mario Hasler
- Department of Statistics, Kiel University (CAU), 24118, Kiel, Germany
| | - Andreas Susenbeth
- Institute of Animal Nutrition and Physiology, Kiel University (CAU), 24118, Kiel, Germany
| | - Ralf Blank
- Institute of Animal Nutrition and Physiology, Kiel University (CAU), 24118, Kiel, Germany
| | - Friedhelm Taube
- Institute of Plant Production and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University (CAU), 24118, Kiel, Germany
- Grass Based Dairy Systems, Animal Production Systems Group, Wageningen University (WUR), 6700, Wageningen, The Netherlands
| | - Christof Kluß
- Institute of Plant Production and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University (CAU), 24118, Kiel, Germany
| | - Carsten Stefan Malisch
- Institute of Plant Production and Plant Breeding, Grass and Forage Science/Organic Agriculture, Kiel University (CAU), 24118, Kiel, Germany
- Department of Agroecology, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
14
|
Ahmed Soltan Y, Kumar Patra A. Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants. Vet Med Sci 2022. [DOI: 10.5772/intechopen.101582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The rumen is an integrated dynamic microbial ecosystem composed of enormous populations of bacteria, protozoa, fungi, archaea, and bacteriophages. These microbes ferment feed organic matter consumed by ruminants to produce beneficial products such as microbial biomass and short-chain fatty acids, which form the major metabolic fuels for ruminants. The fermentation process also involves inefficient end product formation for both host animals and the environment, such as ammonia, methane, and carbon dioxide production. In typical conditions of ruminal fermentation, microbiota does not produce an optimal mixture of enzymes to maximize plant cell wall degradation or synthesize maximum microbial protein. Well-functioning rumen can be achieved through microbial manipulation by alteration of rumen microbiome composition to enhance specific beneficial fermentation pathways while minimizing or altering inefficient fermentation pathways. Therefore, manipulating ruminal fermentation is useful to improve feed conversion efficiency, animal productivity, and product quality. Understanding rumen microbial diversity and dynamics is crucial to maximize animal production efficiency and mitigate the emission of greenhouse gases from ruminants. This chapter discusses genetic and nongenetic rumen manipulation methods to achieve better rumen microbial fermentation including improvement of fibrolytic activity, inhibition of methanogenesis, prevention of acidosis, and balancing rumen ammonia concentration for optimal microbial protein synthesis.
Collapse
|
15
|
Kumar Patra A. Introductory Chapter: Animal Feed Science and Nutrition - Production, Health and Environment. Vet Med Sci 2022. [DOI: 10.5772/intechopen.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Suong NTM, Paengkoum S, Salem AZM, Paengkoum P, Purba RAP. Silage Fermentation Quality, Anthocyanin Stability, and in vitro Rumen Fermentation Characteristic of Ferrous Sulfate Heptahydrate-Treated Black Cane (Saccharum sinensis R.). Front Vet Sci 2022; 9:896270. [PMID: 35656174 PMCID: PMC9152447 DOI: 10.3389/fvets.2022.896270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pretreatment of lignocellulose agricultural biomass with iron prior to ensiling is required to accelerate biomass breakdown during fermentation, which could result in functional microorganisms and chemicals that reduce nutrition loss, harmful substances, and improve animal performance. The objective of this study was to investigate the effects of increasing dilutions of ferrous sulfate heptahydrate (FS) pretreatment at fresh matter concentrations of 0, 0.015, and 0.030% on the fermentation quality of black cane (BC) silage, anthocyanin stability, ruminal biogas, rumen fermentation profile, and microbial community. Pre-ensiled and silage materials were evaluated. High moisture, fiber, anthocyanin, and lignification of biomass, as well as undesirable ensiling microorganisms, were found in BC' pre-ensiled form. Increasing dilutions of FS incorporated into silages were observed to linearly decrease dry matter, anthocyanin, and nutritive value losses. The lignin values decreased linearly as the percentage of FS increased up to 0.030%. Given that the ruminants were fed pre-ensiled materials, BC silage treated with 0.030% FS dilution had comparable results to pre-ensiled BC in terms of increasing in vitro volatile fatty acid concentrations, maintaining total gas production, and reducing methane production, when compared to other FS-treated silages. In addition, BC silage treated with a 0.030% FS dilution inhibited methanogenic bacteria and regulated cellulolytic bacteria in rumen fluid. Overall, the anthocyanin content of BC remained constant throughout the rumen fermentation process after increasing dilutions of FS, indicating that BC is a viable ruminant feedstock and that pretreatment of BC with dilute FS-assisted ensiling at 0.030% could be used to generate ruminant diets.
Collapse
Affiliation(s)
- Ngo Thi Minh Suong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Department of Agriculture, School of Animal Sciences, Can Tho University, Can Tho, Vietnam
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | | | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- *Correspondence: Pramote Paengkoum
| | - Rayudika Aprilia Patindra Purba
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Department of Health, Faculty of Vocational Studies, Airlangga University, Surabaya, Indonesia
- Rayudika Aprilia Patindra Purba ;
| |
Collapse
|
17
|
Singh S, Hundal JS, Patra AK, Sethi RS, Sharma A. A composite polyphenol-rich extract improved growth performance, ruminal fermentation and immunity, while decreasing methanogenesis and excretion of nitrogen and phosphorus in growing buffaloes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24757-24773. [PMID: 34826082 DOI: 10.1007/s11356-021-17674-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The effects of a composite polyphenolic-rich extract (CPRE) on ruminal fermentation, nutrient utilisation, growth performance, excretion of nitrogen and phosphorus and methane emission were studied in growing buffaloes. Four herbal dry extracts prepared from Acacia arabica (babul; bark), Acacia catechu (cutch; bark), Punica granatum (pomegranate; peel) and Eugenia jambolana (Indian blackberry; seeds) were mixed in an equal proportion (1:1:1:1) to prepare the CPRE that contained mainly phenolic compounds (146 g/kg), flavonoids (41.7 g/kg) and saponins (40.5 g/kg). First, in vitro tests were performed for ruminal fermentation and feed degradability using ruminal fluid as inocula and CPRE at 0 to 40 g/kg substrate to decide an optimal dose of CPRE for an in vivo study on buffaloes. In the animal study, 20 buffaloes were randomly assigned to two groups (n = 10)-a control diet and a CPRE diet (control diet added with extra 20 g/kg of CPRE). The in vitro tests suggested that addition of CPRE at 20 g/kg substrate increased degradability of substrate, short-chain fatty acid concentration and propionate proportion, and reduced methane production, acetate proportion, acetate:propionate ratio and ammonia concentration in fermentation media, which were also noted in the rumen of buffaloes. Feeding CRPE to buffaloes did not affect feed intake, but increased daily body weight gain, dry matter and crude protein digestibility and nitrogen and phosphorus retention in the body. Total bacteria, methanogens and protozoal numbers were similar between two groups, but Fibrobacter succinogenes increased in the rumen of buffaloes fed CPRE. Concentrations of total, essential, non-essential and glucogenic amino acids were greater in the plasma of CPRE-fed buffaloes. Cell-mediated immune response improved in the CPRE-fed buffaloes compared with the control group. Estimated methane production and excretion of nitrogen and phosphorus per unit of body weight gain decreased in the CPRE group. The comprehensive results of this study clearly suggested that the composite polyphenol-rich feed additive at 20 g/kg diet improved growth performance, ruminal fermentation, immunity and plasma amino acids profile, whereas it reduced indicators of environmental impacts of buffalo production.
Collapse
Affiliation(s)
- Snehdeep Singh
- Department of Animal Nutrition, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences, Ludhiana, 141004, Punjab, India
| | - Jaspal Singh Hundal
- Department of Animal Nutrition, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences, Ludhiana, 141004, Punjab, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India.
| | - Ram S Sethi
- Department of Animal Biotechnology, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Amit Sharma
- Department of Animal Nutrition, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences, Ludhiana, 141004, Punjab, India
| |
Collapse
|
18
|
Brede J, Peukert M, Egert B, Breves G, Brede M. Long-Term Mootral Application Impacts Methane Production and the Microbial Community in the Rumen Simulation Technique System. Front Microbiol 2021; 12:691502. [PMID: 34690944 PMCID: PMC8531547 DOI: 10.3389/fmicb.2021.691502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022] Open
Abstract
Methane emissions by ruminants contribute to global warming and result in a loss of dietary energy for the animals. One possibility of reducing methane emissions is by dietary strategies. In the present trial, we investigated the long-term effects of Mootral, a feed additive consisting of garlic powder (Allium sativum) and bitter orange extracts (Citrus aurantium), on fermentation parameters and the microbial community in the rumen simulation technique (RUSITEC) system. The experiment lasted 38 days and was divided into three phases: an equilibration period of 7 days, a baseline period (BL) of 3 days, and experimental period (EP) of 28 days. Twelve fermentation vessels were divided into three groups (n = 4): control (CON), short-term (ST), and long-term (LT) application. From day 11 to day 27, 1.7 g of Mootral was added to the ST vessels; LT vessels received 1.7 g of Mootral daily for the entire EP. With the onset of Mootral application, methane production was significantly reduced in both groups until day 18. Thereafter, the production rate returned to the initial quantity. Furthermore, the short chain fatty acid fermentation profile was significantly altered by Mootral application; the molar proportion of acetate decreased, while the proportions of propionate and butyrate increased. Metabolomic analysis revealed further changes in metabolite concentrations associated with the Mootral supplementation period. The methyl coenzyme-M reductase gene copy number was reduced in the liquid and solid phase, whereas the treatment did not affect the abundance of bacteria. At the end of the BL, Methanomicrobia was the most abundant archaeal class. Mootral supplementation induced an increase in the relative abundance of Methanomassiliicoccales and a reduction in the relative abundance of Methanomicrobia, however, this effect was transient. Abundances of bacterial families were only marginally altered by the treatment. In conclusion, Mootral has the transient ability to reduce methane production significantly due to a selective effect on archaea numbers and archaeal community composition with little effect on the bacterial community.
Collapse
Affiliation(s)
- Johanna Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manuela Peukert
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Melanie Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
19
|
Puchalska J, Szumacher-Strabel M, Patra AK, Ślusarczyk S, Gao M, Petrič D, Nabzdyk M, Cieślak A. The Effect of Different Concentrations of Total Polyphenols from Paulownia Hybrid Leaves on Ruminal Fermentation, Methane Production and Microorganisms. Animals (Basel) 2021; 11:ani11102843. [PMID: 34679864 PMCID: PMC8532658 DOI: 10.3390/ani11102843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
This experiment was conducted to study the effects of different concentrations of polyphenols of Paulownia Clon In Vitro 112® leaves or their particular parts on in vitro ruminal fermentation, methane production and microbial population. Paulownia leaves with high (PLH; 31.35 mg/g dry matter (DM)), medium (PLM; 26.94 mg/g DM), and low level of polyphenols (PLL; 11.90 mg/g DM) were used from three plantation areas. Lamina (PLLA; 33.63 mg/g DM) and twigs (PLT; 2.53 mg/g DM) of leaves were also collected from the PLM plantation. The chemical analyses of Paulownia leaves indicated that the content of the most basic nutrients (e.g., crude protein concentration of 185 g/kg of DM) were similar to dehydrated alfalfa. The in vitro results showed that the use of Paulownia leaves with the highest content of total polyphenols (PLH and PLLA) decreased methane production, methanogens numbers, and acetate to propionate ratio. In PLT, lowered methane production was followed by reduced substrate degradability and volatile fatty acid (VFA) concentration along with higher acetate to propionate ratio. Therefore, reduction of methane production in PLH and PLLA was attributed to the lowered methanogen population, whereas in PLT it was caused by decreased substrate degradability with the resultant of limited hydrogen availability to the methanogens.
Collapse
Affiliation(s)
- Julia Puchalska
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolyńska 33, 60-637 Poznan, Poland; (J.P.); (M.S.-S.); (M.G.)
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolyńska 33, 60-637 Poznan, Poland; (J.P.); (M.S.-S.); (M.G.)
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata 700037, West Bengal, India;
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Botany, Wrocław Medical University, 50-556 Wrocław, Poland;
| | - Min Gao
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolyńska 33, 60-637 Poznan, Poland; (J.P.); (M.S.-S.); (M.G.)
| | - Daniel Petrič
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Šoltésovej 4-6, 040-01 Košice, Slovakia;
| | - Maria Nabzdyk
- Department of Animal Physiology, Biochemistry and Biostructure, Laboratory of Animal Anatomy, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | - Adam Cieślak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolyńska 33, 60-637 Poznan, Poland; (J.P.); (M.S.-S.); (M.G.)
- Correspondence: ; Tel.: +48-61-8487538
| |
Collapse
|
20
|
Ahmed E, Fukuma N, Hanada M, Nishida T. The Efficacy of Plant-Based Bioactives Supplementation to Different Proportion of Concentrate Diets on Methane Production and Rumen Fermentation Characteristics In Vitro. Animals (Basel) 2021; 11:1029. [PMID: 33916481 PMCID: PMC8067416 DOI: 10.3390/ani11041029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/15/2023] Open
Abstract
This In Vitro study was conducted to investigate the impact of plant-bioactives extract (PE), a combination of garlic powder and bitter orange extract, on methane production, rumen fermentation, and digestibility in different feeding models. The dietary treatments were 1000 g grass/kg ration + 0 g concentrate/kg ration (100:0), 80:20, 60:40, 40:60, and 20:80. The PE was supplemented at 200 g/kg of the feed. Each group consisted of 6 replicates. The experiment was performed as an In Vitro batch culture for 24 h at 39 °C. This procedure was repeated in three consecutive runs. The results of this experiment showed that supplementation with PE strongly reduced methane production in all kinds of feeding models (p < 0.001). Its efficacy in reducing methane/digestible dry matter was 44% in the 100:0 diet, and this reduction power increased up to a 69.2% with the inclusion of concentrate in the 20:80 diet. The PE application significantly increased gas and carbon dioxide production and the concentration of ammonia-nitrogen, but decreased the pH (p < 0.001). In contrast, it did not interfere with organic matter and fiber digestibility. Supplementation with PE was effective in altering rumen fermentation toward less acetate and more propionate and butyrate (p < 0.001). Additionally, it improved the production of total volatile fatty acids in all feeding models (p < 0.001). In conclusion, the PE combination showed effective methane reduction by improving rumen fermentation characteristics without exhibiting adverse effects on fiber digestibility. Thus, PE could be used with all kinds of feeding models to effectively mitigate methane emissions from ruminants.
Collapse
Affiliation(s)
- Eslam Ahmed
- Graduate School of Animal Husbandry, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Japan;
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Naoki Fukuma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Japan; (N.F.); (M.H.)
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Japan
| | - Masaaki Hanada
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Japan; (N.F.); (M.H.)
| | - Takehiro Nishida
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Japan; (N.F.); (M.H.)
| |
Collapse
|
21
|
Petrič D, Mravčáková D, Kucková K, Kišidayová S, Cieslak A, Szumacher-Strabel M, Huang H, Kolodziejski P, Lukomska A, Slusarczyk S, Čobanová K, Váradyová Z. Impact of Zinc and/or Herbal Mixture on Ruminal Fermentation, Microbiota, and Histopathology in Lambs. Front Vet Sci 2021; 8:630971. [PMID: 33585621 PMCID: PMC7876273 DOI: 10.3389/fvets.2021.630971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of diets containing organic zinc and a mixture of medicinal herbs on ruminal microbial fermentation and histopathology in lambs. Twenty-eight lambs were divided into four groups: unsupplemented animals (Control), animals supplemented with organic zinc (Zn, 70 mg Zn/kg diet), animals supplemented with a mixture of dry medicinal herbs (Herbs, 100 g dry matter (DM)/d) and animals supplemented with both zinc and herbs (Zn+Herbs). Each lamb was fed a basal diet composed of meadow hay (700 g DM/d) and barley (300 g DM/d). The herbs Fumaria officinalis L. (FO), Malva sylvestris L. (MS), Artemisia absinthium L. (AA) and Matricaria chamomilla L. (MC) were mixed in equal proportions. The lambs were slaughtered after 70 d. The ruminal contents were used to determine the parameters of fermentation in vitro and in vivo and to quantify the microbes by molecular and microscopic methods. Samples of fresh ruminal tissue were used for histopathological evaluation. Quantitative analyses of the bioactive compounds in FO, MS, AA, and MC identified 3.961, 0.654, 6.482, and 12.084 g/kg DM phenolic acids and 12.211, 6.479, 0.349, and 2.442 g/kg DM flavonoids, respectively. The alkaloid content in FO was 6.015 g/kg DM. The diets affected the levels of total gas, methane and n-butyrate in vitro (P < 0.046, < 0.001, and < 0.001, respectively). Relative quantification by real-time PCR indicated a lower total ruminal bacterial population in the lambs in the Zn and Zn+Herbs groups than the Control group (P < 0.05). The relative abundances of Ruminococcus albus, R. flavefaciens, Streptococcus bovis, and Butyrivibrio proteoclasticus shifted in the Zn group. Morphological observation found a focally mixed infiltration of inflammatory cells in the lamina propria of the rumen in the Zn+Herbs group. The effect of the organic zinc and the herbal mixture on the parameters of ruminal fermentation in vitro was not confirmed in vivo, perhaps because the ruminal microbiota of the lambs adapted to the zinc-supplemented diets. Long-term supplementation of a diet combining zinc and medicinal herbs, however, may negatively affect the health of the ruminal epithelium of lambs.
Collapse
Affiliation(s)
- Daniel Petrič
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Dominika Mravčáková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Katarína Kucková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Svetlana Kišidayová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | | | - Haihao Huang
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Pawel Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Lukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Poznan, Poland
| | - Sylwester Slusarczyk
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Wroclaw, Poland
| | - Klaudia Čobanová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| | - Zora Váradyová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
22
|
Ahmed E, Yano R, Fujimori M, Kand D, Hanada M, Nishida T, Fukuma N. Impacts of Mootral on Methane Production, Rumen Fermentation, and Microbial Community in an in vitro Study. Front Vet Sci 2021; 7:623817. [PMID: 33553288 PMCID: PMC7863759 DOI: 10.3389/fvets.2020.623817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Methane mitigation strategies have a two-sided benefit for both environment and efficient livestock production. This preliminary short-term in vitro trial using Mootral (garlic and citrus extracts), a novel natural feed supplement, was conducted to evaluate its efficacy on rumen fermentation characteristics, methane production, and the bacterial and archaeal community. The experiment was performed as a batch culture using rumen fluid collected from sheep, and Mootral was supplemented in three concentrations: 0% (Control), 10%, and 20% of the substrate (50% Grass:50% Concentrate). The rumen fermentation data and alpha diversity of microbial community were analyzed by ordinary one-way analysis of variance. The relative abundance and statistical significance of families and operational taxonomic units (OTUs) among the groups were compared by Kruskal–Wallis H test using Calypso software. After 24-h incubation at 39°C, Mootral in a dose-dependent manner improved the production of total volatile fatty acids and propionate while it reduced the acetate proportion and acetate/propionate ratio. The total produced gas was two times higher in the Mootral-supplemented groups than control (P < 0.01), while the proportion of methane in the produced gas was reduced by 22% (P < 0.05) and 54% (P < 0.01) for 10 and 20% Mootral, respectively. Mootral did not change pH, digestibility, and ammonia-nitrogen. Microbial community analyses showed that Mootral effectively changed the ruminal microbiome. The bacterial community showed an increase of the relative abundance of the propionate-producing family such as Prevotellaceae (P = 0.014) and Veillonellaceae (P = 0.030), while there was a decrease in the relative abundance of some hydrogen-producing bacteria by Mootral supplementation. In the archaeal community, Methanobacteriaceae was decreased by Mootral supplementation compared with control (P = 0.032), while the Methanomassiliicoccaceae family increased in a dose-dependent effect (P = 0.038). The results of the study showed the efficacy of the new mixture to alter the ruminal microbial community, produce more propionate, and reduce microbial groups associated with methane production, thus suggesting that Mootral is a promising natural mixture for methane reduction from ruminants.
Collapse
Affiliation(s)
- Eslam Ahmed
- Graduate School of Animal Husbandry, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Animal Behavior and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Rintaro Yano
- Graduate School of Animal Husbandry, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Miho Fujimori
- Graduate School of Animal Husbandry, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | - Masaaki Hanada
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Takehiro Nishida
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoki Fukuma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
23
|
Szulc P, Mravčáková D, Szumacher-Strabel M, Váradyová Z, Várady M, Čobanová K, Syahrulawal L, Patra AK, Cieslak A. Ruminal fermentation, microbial population and lipid metabolism in gastrointestinal nematode-infected lambs fed a diet supplemented with herbal mixtures. PLoS One 2020; 15:e0231516. [PMID: 32298315 PMCID: PMC7161954 DOI: 10.1371/journal.pone.0231516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the effects of medicinal herbal mixtures rich in phenolic, flavonoid and alkaloid compounds on ruminal fermentation and microbial populations, and fatty acid (FA) concentrations and lipid oxidation in tissues of lambs infected with the gastrointestinal nematode (GIN) parasite (Haemonchus contortus). Parallel in vitro and in vivo studies were performed using two different herbal mixtures (Mix1 and Mix2). The in vitro study was conducted in a 2 (infection status; non-infected versus infected) × 3 (diets; control, Mix1 and Mix2) factorial design. In the in vivo study, 24 lambs were equally divided into four treatments: non-infected lambs fed a control diet, infected lambs fed the control diet, infected lambs fed a diet with Mix1 and infected lambs fed a diet with Mix2. Herbal mixtures (100 g dry matter (DM)/d) were added to the basal diets of meadow hay (ad libitum) and a commercial concentrate (500 g DM/d). The experimental period lasted for 70 days. Ruminal fermentation characteristics and methane production were not affected by infection in vivo or in vitro. Both herbal mixture supplementation increased total volatile fatty acid (VFA) concentrations (P < 0.01) and DM digestibility (P < 0.01) in vitro. Archaea population was slightly diminished by both herbal mixtures (P < 0.05), but they did not lower methane production in vitro or in vivo (P > 0.05). Infection of H. contortus or herbal mixtures modulated FA proportion mainly in the liver, especially the long chain FA proportion. Concentrations of thiobarbituric acid reactive substances (TBARS) in serum were significantly higher after 70 days post-infection in the infected lambs. Herbal Mix1 supplementation reduced TBARS concentrations in meat after seven days of storage. In conclusion, supplementing of herbal mixtures to the diets of GIN parasite infected lambs did not affect the basic ruminal fermentation parameters. Herbal mixtures may improve few FA proportions mainly in liver as well as decrease lipid oxidation in meat.
Collapse
Affiliation(s)
- Paulina Szulc
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Dominika Mravčáková
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Košice, Slovak Republic
| | | | - Zora Váradyová
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Košice, Slovak Republic
| | - Marián Várady
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Klaudia Čobanová
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Košice, Slovak Republic
| | | | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|
24
|
Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, Zhang L, Wei S. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci 2020; 103:2303-2314. [PMID: 31954586 DOI: 10.3168/jds.2019-16611] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Different inclusion rates of oregano essential oil (OEO) were investigated for their effects on ruminal in vitro fermentation parameters, total gas, methane production, and bacterial communities. Treatments were (1) control, 0 mg/L of OEO (CON); 13 mg/L (OEO1); 52 mg/L (OEO2); 91 mg/L (OEO3); and 130 mg/L (OEO4), each incubated with 150 mL of buffered rumen fluid and 1,200 mg of substrate for 24 h using the Ankom in vitro gas production system (Ankom Technology Corp., Fairport, NY). Treatment responses were statistically analyzed using polynomial contrasts. Digestibility of DM, NDF, and ADF increased quadratically with increasing OEO inclusion rates. Digestibility of DM and NDF were highest for OEO2, whereas ADF digestibility was highest for OEO3, compared with CON, with the remaining treatments being intermediate and similar. Ammonia nitrogen concentrations decreased from CON at a quadratic rate with increasing OEO inclusion rates, and OEO2 had the lowest concentration compared with the other groups. Total VFA, acetate, propionate, butyrate, valerate, and isovalerate concentrations linearly decreased with increasing OEO inclusion rates. Total gas production levels by CON and OEO4 were greater than those of OEO1, OEO2, and OEO3 in a quadratic response, and methane production linearly decreased from CON, compared with OEO4, at a decreasing rate with OEO inclusion rates. As determined by 16S rRNA sequencing, the α biodiversity of ruminal bacteria was similar among OEO inclusion rates. Increasing OEO inclusion rates linearly increased the relative abundance of Prevotella and Dialister bacteria. Several bacteria demonstrated different polynomial responses, whereas several bacteria were similar among increasing OEO inclusion rates. These results suggested that OEO supplementation can modify ruminal fermentation to alter VFA concentrations and reduce methane emissions by extensively altering the ruminal bacterial community, suggesting an optimal feeding rate for future animal studies of approximately 52 mg/L for mature ruminants.
Collapse
Affiliation(s)
- Rui Zhou
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070
| | - Jianping Wu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070.
| | - Xia Lang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuan Village Anning, Lanzhou, Gansu, People's Republic of China, 730030
| | - Lishan Liu
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuan Village Anning, Lanzhou, Gansu, People's Republic of China, 730030
| | - David P Casper
- Casper's Calf Ranch, 4890 West Lily Creek Road, Freeport, IL 61032
| | - Cailian Wang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuan Village Anning, Lanzhou, Gansu, People's Republic of China, 730030
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070
| | - Sheng Wei
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070
| |
Collapse
|
25
|
Rebelo LR, Luna IC, Messana JD, Araujo RC, Simioni TA, Granja-Salcedo YT, Vito ES, Lee C, Teixeira IA, Rooke JA, Berchielli TT. Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
El-Zaiat HM, Abdalla AL. Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30220-30228. [PMID: 31422537 DOI: 10.1007/s11356-019-06198-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The effects of patchouli essential oil (PEO) as an alternative to antibiotics on ruminal methanogenesis, feed degradability, and enzyme activities were evaluated. The basal substrate was incubated without additives (control, CTL) and with monensin (MON, 6 μM/g DM) or patchouli essential oil (PEO, 90 μg/g DM) for 24 h. In three different runs, the gas production (GP) was recorded at 2, 4, 8, 12, and 24 h of incubation using a semi-automatic system. The results revealed that MON had decreased (P < 0.05) the net GP and CH4 production and digestible and metabolizable energy relative to PEO supplementation. The in vitro truly degraded organic matter was not influenced by PEO application, while was reduced (P = 0.027) with MON. Both PEO and MON had similar reducing effect on the activity of carboxymethylcellulase (P = 0.030), in vitro truly degraded neutral detergent fiber (P = 0.010), NH3-N concentrations (P = 0.012), acetate proportion (C2, P = 0.046), C2 to C3 ratio (P = 0.023), and total protozoal count (P = 0.017). Both additives recorded similar elevating potential on the α-amylase activity (P = 0.012), propionate (C3) proportion (P = 0.011), and microbial protein (P = 0.034) compared with CTL. Effects of MON and PEO on ruminal feed degradability, microbial enzyme activities, and total protozoa counts may be responsible for modifying rumen fermentation ecology. Addition of PEO may act as a desirable alternative rumen modifier for MON in ruminant diets.
Collapse
Affiliation(s)
- Hani M El-Zaiat
- Animal Production Department, Faculty of Agriculture, University of Alexandria, Aflaton St., El-Shatby, P.O Box 21545, Alexandria, Egypt.
| | - Adibe L Abdalla
- Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
27
|
Patra AK, Park T, Braun HS, Geiger S, Pieper R, Yu Z, Aschenbach JR. Dietary Bioactive Lipid Compounds Rich in Menthol Alter Interactions Among Members of Ruminal Microbiota in Sheep. Front Microbiol 2019; 10:2038. [PMID: 31551974 PMCID: PMC6738200 DOI: 10.3389/fmicb.2019.02038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the effects of two practically relevant doses of menthol-rich plant bioactive lipid compounds (PBLC) on fermentation, microbial community composition, and their interactions in sheep rumen. Twenty-four growing Suffolk sheep were divided into three treatments and were fed hay ad libitum plus 600 g/d of concentrate containing no PBLC (Control) or PBLC at low dose (80 mg/d; PBLC-L) or high dose (160 mg/d; PBLC-H). After 4 weeks on the diets, samples of ruminal digesta were collected and analyzed for short-chain fatty acid (SCFA), ammonia, and microbiota; microbiota being analyzed in the solid and the liquid digesta fractions separately. Ruminal SCFA and ammonia concentrations were not affected by the PBLC treatments. The microbiota in the solid fraction was more diverse than that in the liquid fraction, and the relative abundance of most taxa differed between these two fractions. In the solid fraction, phylogenetic diversity increased linearly with increased PBLC doses, whereas evenness (lowest in PBLC-L) and Simpson diversity index (greatest in PBLC-H) changed quadratically. In the liquid fraction, however, the PBLC supplementation did not affect any of the microbial diversity measurements. Among phyla, Chloroflexi (highest in PBLC-L) and unclassified_bacteria (lowest in PBLC-L) were altered quadratically by PBLC. Lachnospiraceae, Bacteroidaceae (increased linearly), BS11 (increased in PBLC-L), Christensenellaceae (decreased in PBLC treatments), and Porphyromonadaceae (increased in PBLC treatments) were affected at the family level. Among genera, Butyrivibrio increased linearly in the solid fraction, YRC22 increased linearly in the liquid fraction, whereas Paludibacter increased and BF311 increased linearly with increasing doses of PBLC in both fractions. The PBLC treatments also lowered methanogens within the classes Thermoplasmata and Euryarchaeota. Correlation network analysis revealed positive and negative correlations among many microbial taxa. Differential network analysis showed that PBLC supplementation changed the correlation between some microbial taxa and SCFA. The majority of the predicted functional features were different between the solid and the liquid digesta fractions, whereas the PBLC treatments altered few of the predicted functional gene categories. Overall, dietary PBLC treatments had little influence on the ruminal fermentation and microbiota but affected the associations among some microbial taxa and SCFA.
Collapse
Affiliation(s)
- Amlan K. Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | | | - Sebastian Geiger
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Islam M, Lee SS. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:122-137. [PMID: 31333869 PMCID: PMC6582924 DOI: 10.5187/jast.2019.61.3.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022]
Abstract
Methane, one of the important greenhouse gas, has a higher global warming
potential than that of carbon dioxide. Agriculture, especially livestock, is
considered as the biggest sector in producing anthropogenic methane. Among
livestock, ruminants are the highest emitters of enteric methane.
Methanogenesis, a continuous process in the rumen, carried out by archaea either
with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to
methane or with methylotrophic pathway, which the substrate for methanogenesis
is methyl groups. For accurate estimation of methane from ruminants, three
methods have been successfully used in various experiments under different
environmental conditions such as respiration chamber, sulfur hexafluoride tracer
technique, and the automated head-chamber or GreenFeed system. Methane
production and emission from ruminants are increasing day by day with an
increase of ruminants which help to meet up the nutrient demands of the
increasing human population throughout the world. Several mitigation strategies
have been taken separately for methane abatement from ruminant productions such
as animal intervention, diet selection, dietary feed additives, probiotics,
defaunation, supplementation of fats, oils, organic acids, plant secondary
metabolites, etc. However, sustainable mitigation strategies are not established
yet. A cumulative approach of accurate enteric methane measurement and existing
mitigation strategies with more focusing on the biological reduction of methane
emission by direct-fed microbials could be the sustainable methane mitigation
approaches.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
29
|
Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil) – A Review of Ten-Year Studies. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A wide range of plant secondary metabolites (PSM) have been shown to have the potential to modulate the fermentation process in the rumen. The use of plants and plant extracts as natural feed additives has become an interesting topic not only among nutritionists but also other scientists. Although a large number of phytochemicals (e.g. saponins, tannins and essential oils) have recently been investigated for their methane (CH4) reduction potential, there have not yet been major breakthroughs that could be applied in practice. However, the effectiveness of these PSM depends on the source, type and the level of their presence in plant products. The aim of the present review was to assess ruminal CH4 emission through a comparison of integrating related studies from published papers, which described various levels of different PSM sources being added to ruminant feed. Apart from CH4, other related rumen fermentation parameters were also included in this review.
Collapse
|
30
|
Soltan Y, Natel A, Araujo R, Morsy A, Abdalla A. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Soltan Y, Hashem N, Morsy A, El-Azrak K, El-Din AN, Sallam S. Comparative effects of Moringa oleifera root bark and monensin supplementations on ruminal fermentation, nutrient digestibility and growth performance of growing lambs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2017.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 2017; 8:13. [PMID: 28149512 PMCID: PMC5270371 DOI: 10.1186/s40104-017-0145-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022] Open
Abstract
Methanogenic archaea reside primarily in the rumen and the lower segments of the intestines of ruminants, where they utilize the reducing equivalents derived from rumen fermentation to reduce carbon dioxide, formic acid, or methylamines to methane (CH4). Research on methanogens in the rumen has attracted great interest in the last decade because CH4 emission from ruminants contributes to global greenhouse gas emission and represents a loss of feed energy. Some DNA-based phylogenetic studies have depicted a diverse and dynamic community of methanogens in the rumen. In the past decade, researchers have focused on elucidating the underpinning that determines and affects the diversity, composition, structure, and dynamics of methanogen community of the rumen. Concurrently, many researchers have attempted to develop and evaluate interventions to mitigate enteric CH4 emission. Although much work has been done using plant secondary metabolites, other approaches such as using nitrate and 3-nitrooxy propanol have also yielded promising results. Most of these antimethanogenic compounds or substances often show inconsistent results among studies and also lead to adverse effects on feed intake and digestion and other aspects of rumen fermentation when fed at doses high enough to achieve effective mitigation. This review provides a brief overview of the rumen methanogens and then an appraisal of most of the antimethanogenic compounds and substances that have been evaluated both in vitro and in vivo. Knowledge gaps and future research needs are also discussed with a focus on methanogens and methane mitigation.
Collapse
Affiliation(s)
- Amlan Patra
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Road, Columbus, OH 43210 USA.,Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Belgachia, Kolkata, 700037 India
| | - Tansol Park
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Road, Columbus, OH 43210 USA
| | - Minseok Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju, 55365 Republic of Korea
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Road, Columbus, OH 43210 USA
| |
Collapse
|
33
|
Patra AK. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Front Vet Sci 2016; 3:39. [PMID: 27243027 PMCID: PMC4873495 DOI: 10.3389/fvets.2016.00039] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents recent developments and critical analysis on different measurements and dietary mitigation of enteric CH4 emissions technologies.
Collapse
Affiliation(s)
- Amlan K. Patra
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
34
|
Cobellis G, Yu Z, Forte C, Acuti G, Trabalza-Marinucci M. Dietary supplementation of Rosmarinus officinalis L. leaves in sheep affects the abundance of rumen methanogens and other microbial populations. J Anim Sci Biotechnol 2016; 7:27. [PMID: 27123239 PMCID: PMC4847361 DOI: 10.1186/s40104-016-0086-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/17/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Rumen microbiome has a great influence on ruminant health and productivity. Different plant extracts have been tested for their ability to modulate the rumen microbiome to improve feed digestion and fermentation. Among the evaluated plant extracts, essential oils, tannins, and saponins appeared to have positive effects on rumen protein metabolism, volatile fatty acids production, and methane and ammonia production. METHODS The objective of this study was to evaluate the effect of rosemary (Rosmarinus officinalis L.) leaves and essential oils on rumen microbial populations. Four ruminally cannulated sheep were used in a 4×4 Latin square design fed (21 d/period): 1) a control diet composed of alfalfa hay and concentrate pellet (CTR), 2) CTR supplemented with 7 g/d/sheep of rosemary essential oil adsorbed on an inert support (EO), 3) CTR with 10 g/d/sheep of dried and ground rosemary leaves (RL), and 4) CTR with 10 g/d of dried and ground rosemary leaves pelleted into concentrate (RL pellet). Abundance of total bacteria, archaea, protozoa, and some select bacterial species or groups was quantified using qPCR, while the community of bacteria and archaea was profiled using denaturing gradient gel electrophoresis. RESULTS No difference in abundance was noted for total bacteria, protozoa, or Ruminococcus flavefaciens between the control and the treatments, but the rosemary leaves, either in loose form or in pellet, decreased the abundance of archaea and the genus Prevotella (P < 0.001). The rosemary leaves in loose form also decreased (P < 0.001) the abundance of Ruminococcus albus and Clostridium aminophilum, while the EO increased (P < 0.001) the abundance of Fibrobacter succinogenes. The community of bacteria and archaea was not affected by any of the supplements. CONCLUSIONS Being able to affect the abundance of several groups of rumen microbes that are known to be involved in degradation of protein and fiber and production of methane and ammonia, rosemary leaves may be used to modulate rumen microbiome and its function.
Collapse
Affiliation(s)
- Gabriella Cobellis
- Department of Veterinary Medicine, University of Perugia, via S. Costanzo 4, 06126 Perugia, Italy ; Department of Animal Sciences, The Ohio State University, 2029 Fyffe Road, Columbus, OH 43210 USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Road, Columbus, OH 43210 USA
| | - Claudio Forte
- Department of Veterinary Medicine, University of Perugia, via S. Costanzo 4, 06126 Perugia, Italy
| | - Gabriele Acuti
- Department of Veterinary Medicine, University of Perugia, via S. Costanzo 4, 06126 Perugia, Italy
| | | |
Collapse
|