1
|
Xu H, Pei Y, Zhang H, Hou H. Long-lasting and controlled-release borate as a biocide against microbial breeding in a recirculating cooling water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178344. [PMID: 39808897 DOI: 10.1016/j.scitotenv.2024.178344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS. Our results showed that the inhibition rates of CRB on bacteria and algae reached 80.4-84.0 % and 55.0 %, respectively. CRB achieved a complete release of antibacterial factor, boron, within 20 days in the simulated RCS. The number of heterotrophic bacteria (HB) was reduced to 3.8 × 103 CFU/mL (day 30), which met the requirement of the Chinese standard (GB/T 50050-2017). 16S/18S rRNA gene sequencing showed that CRB achieved a significant reduction of the predominant phyla, including Pseudomonadota and Chlorophyta. Flow cytometry analysis demonstrated that the algae-inhibiting behavior of CRB was mainly reflected in the inhibition of nucleic acid synthesis and photosystem II activity. Metatranscriptomic analysis revealed that the downregulated key genes were primarily annotated in the "photosynthesis-antenna proteins" and "large/small subunit ribosomal protein" pathways. It indicated that CRB might deteriorate microbial photosynthetic activity and protein synthesis, interfering with microbial growth. Additionally, CRB was associated with negative effects on reactive oxygen species metabolism and regulation of cell size. Moreover, CRB exhibited excellent scaling and corrosion inhibition properties. The determination of the biocidal mechanism of CRB will help enhance the practical application of multi-functional water treatment agents in the RCS.
Collapse
Affiliation(s)
- Haiqing Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hao Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haixu Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Touchette D, Mateu MG, Michoud G, Deluigi N, Marasco R, Daffonchio D, Peter H, Battin T. Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms. FEMS Microbiol Ecol 2025; 101:fiae163. [PMID: 39674808 PMCID: PMC11705997 DOI: 10.1093/femsec/fiae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024] Open
Abstract
Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change. Treatments comprised four flow (natural, intermittent, stochastic, and constant) and two temperature (ambient streamwater and warming of +2°C) regimes. We monitored microbial biomass, diversity, community composition, and metabolic diversity in biofilms over 3 months. We found that community composition was largely influenced by successional dynamics independent of the treatments. While stochastic and constant flow regimes did not significantly affect community composition, droughts altered their composition in the intermittent regime, favouring drought-adapted bacteria and decreasing algal biomass. Concomitantly, warming decreased algal biomass and the abundance of some typical glacier-fed stream bacteria and eukaryotes, and stimulated heterotrophic metabolism overall. Our study provides experimental evidence towards potential and hitherto poorly considered impacts of climate change on benthic biofilms in glacier-fed streams.
Collapse
Affiliation(s)
- David Touchette
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland
| | - Martina Gonzalez Mateu
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland
| | - Nicola Deluigi
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland
| | - Tom Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland
| |
Collapse
|
3
|
Foulquier A, Datry T, Corti R, von Schiller D, Tockner K, Stubbington R, Gessner MO, Boyer F, Ohlmann M, Thuiller W, Rioux D, Miquel C, Albariño R, Allen DC, Altermatt F, Arce MI, Arnon S, Banas D, Banegas-Medina A, Beller E, Blanchette ML, Blessing J, Boëchat IG, Boersma K, Bogan M, Bonada N, Bond N, Brintrup K, Bruder A, Burrows R, Cancellario T, Canhoto C, Carlson S, Cid N, Cornut J, Danger M, de Freitas Terra B, De Girolamo AM, Del Campo R, Díaz Villanueva V, Dyer F, Elosegi A, Febria C, Figueroa Jara R, Four B, Gafny S, Gómez R, Gómez-Gener L, Guareschi S, Gücker B, Hwan J, Jones JI, Kubheka PS, Laini A, Langhans SD, Launay B, Le Goff G, Leigh C, Little C, Lorenz S, Marshall J, Martin Sanz EJ, McIntosh A, Mendoza-Lera C, Meyer EI, Miliša M, Mlambo MC, Morais M, Moya N, Negus P, Niyogi D, Pagán I, Papatheodoulou A, Pappagallo G, Pardo I, Pařil P, Pauls SU, Polášek M, Rodríguez-Lozano P, Rolls RJ, Sánchez-Montoya MM, Savić A, Shumilova O, Sridhar KR, Steward A, Taleb A, Uzan A, Valladares Y, Vander Vorste R, Waltham NJ, Zak DH, Zoppini A. Unravelling large-scale patterns and drivers of biodiversity in dry rivers. Nat Commun 2024; 15:7233. [PMID: 39174521 PMCID: PMC11341732 DOI: 10.1038/s41467-024-50873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
More than half of the world's rivers dry up periodically, but our understanding of the biological communities in dry riverbeds remains limited. Specifically, the roles of dispersal, environmental filtering and biotic interactions in driving biodiversity in dry rivers are poorly understood. Here, we conduct a large-scale coordinated survey of patterns and drivers of biodiversity in dry riverbeds. We focus on eight major taxa, including microorganisms, invertebrates and plants: Algae, Archaea, Bacteria, Fungi, Protozoa, Arthropods, Nematodes and Streptophyta. We use environmental DNA metabarcoding to assess biodiversity in dry sediments collected over a 1-year period from 84 non-perennial rivers across 19 countries on four continents. Both direct factors, such as nutrient and carbon availability, and indirect factors such as climate influence the local biodiversity of most taxa. Limited resource availability and prolonged dry phases favor oligotrophic microbial taxa. Co-variation among taxa, particularly Bacteria, Fungi, Algae and Protozoa, explain more spatial variation in community composition than dispersal or environmental gradients. This finding suggests that biotic interactions or unmeasured ecological and evolutionary factors may strongly influence communities during dry phases, altering biodiversity responses to global changes.
Collapse
Affiliation(s)
- Arnaud Foulquier
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.
| | - Thibault Datry
- INRAE, UR RiverLY, Centre de Lyon-Villeurbanne, Villeurbanne Cedex, France
| | - Roland Corti
- INRAE, UR RiverLY, Centre de Lyon-Villeurbanne, Villeurbanne Cedex, France
| | - Daniel von Schiller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Klement Tockner
- Goethe Universität Frankfurt, Department of BioSciences, Frankfurt aM, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt aM, Germany
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mark O Gessner
- Berlin Institute of Technology (TU Berlin), Berlin, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, Stechlin, Germany
| | - Frédéric Boyer
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marc Ohlmann
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Delphine Rioux
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Christian Miquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | - Daniel C Allen
- The Pennsylvania State University, Department of Ecosystem Science and Management, University Park, USA
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Maria Isabel Arce
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, Stechlin, Germany
- University of Murcia, Department of Ecology and Hydrology, Murcia, Spain
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Negev, Israel
| | - Damien Banas
- Université de Lorraine, INRAE, URAFPA, Nancy, France
| | - Andy Banegas-Medina
- Universidad Nacional Autónoma de Honduras-Tecnológico Danli, Laboratory of Biology, Department of Sciences, Carretera Panamericana, frente Hospital Regional, El Paraíso, Danlí, Honduras
| | - Erin Beller
- Real Estate and Workplace Services Sustainability Team, Google, Mountain View, CA, USA
| | - Melanie L Blanchette
- Mine Water and Environment Research Centre (MiWER), Edith Cowan University, Joondalup, WA, Australia
| | - Joanna Blessing
- Queensland Government, Department of Environment, Science and Innovation, Brisbane, QLD, Australia
| | - Iola Gonçalves Boëchat
- Department of Geosciences, Campus Tancredo Neves, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Kate Boersma
- University of San Diego, Department of Biology, San Diego, CA, USA
| | - Michael Bogan
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda Diagonal 643, Barcelona, Spain
| | - Nick Bond
- Centre for Freshwater Ecosystems, School of Agriculture, Biomedicine and Environment, La Trobe University, Wodonga, VIC, Australia
| | - Katherine Brintrup
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | - Andreas Bruder
- SUPSI, Institute of Microbiology, Mendrisio, Switzerland
| | - Ryan Burrows
- The School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley Campus, Victoria, Australia
| | - Tommaso Cancellario
- Balearic Biodiversity Centre, Department of Biology, University of the Balearic Islands, Palma, Spain
| | - Cristina Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Núria Cid
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda Diagonal 643, Barcelona, Spain
- IRTA Marine and Continental Waters Programme, La Ràpita, Catalonia, Spain
| | - Julien Cornut
- Université de Lorraine, LIEC UMR CNRS 7360, Metz, France
| | - Michael Danger
- Université de Lorraine, LIEC UMR CNRS 7360, Metz, France
| | - Bianca de Freitas Terra
- Universidade Estadual Vale do Acaraú, Centro de Ciências Agrárias e Biológicas, Campus Betânia, Brazil
| | - Anna Maria De Girolamo
- Water Research Institute, National Research Council (IRSA-CNR), Area della Ricerca RM1, via Salaria km 29.300, Monterotondo, Rome, Italy
| | - Rubén Del Campo
- University of Innsbruck, Department of Ecology, Innsbruck, Austria
| | | | - Fiona Dyer
- University of Canberra, Centre for Applied Water Science, Canberra, ACT, Australia
| | - Arturo Elosegi
- University of the Basque Country (UPV, EHU), Department of Plant Biology and Ecology, Bilbao, Spain
| | - Catherine Febria
- Great Lakes Institute for Environmental Research and Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Ricardo Figueroa Jara
- Universidad de Concepción, Facultad de Ciencias Ambientales, Centro EULA, Barrio Universitario, Centro EULA, Concepción, Chile
| | - Brian Four
- Université de Corse, UAR 3514 CNRS Stella Mare, Biguglia, France
| | - Sarig Gafny
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Rosa Gómez
- University of Murcia, Department of Ecology and Hydrology, Murcia, Spain
| | - Lluís Gómez-Gener
- Centre for Research on Ecology and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Simone Guareschi
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Björn Gücker
- Department of Geosciences, Campus Tancredo Neves, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Jason Hwan
- California Department of Fish and Wildlife, Ontario, CA, USA
| | | | | | - Alex Laini
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | | | - Bertrand Launay
- INRAE, UR RiverLY, Centre de Lyon-Villeurbanne, Villeurbanne Cedex, France
| | - Guillaume Le Goff
- INRAE, UR RiverLY, Centre de Lyon-Villeurbanne, Villeurbanne Cedex, France
| | - Catherine Leigh
- Biosciences and Food Technology Discipline, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Chelsea Little
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Simon Fraser University, Burnaby, BC, Canada
| | - Stefan Lorenz
- Julius-Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, Berlin, Germany
| | - Jonathan Marshall
- Queensland Government, Department of Environment, Science and Innovation, Brisbane, QLD, Australia
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Eduardo J Martin Sanz
- Swiss Federal Institute for Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Angus McIntosh
- University of Canterbury, School of Biological Sciences, Christchurch, New Zealand
| | - Clara Mendoza-Lera
- iES, RPTU,University of Kaiserslautern-Landau, Forstrstr. 7, Landau, Germany
| | - Elisabeth I Meyer
- University of Münster, Institute for Evolution and Biodiversity, Münster, Germany
| | - Marko Miliša
- Division of Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Musa C Mlambo
- Department of Freshwater Invertebrates, Albany Museum, Makhanda (Grahamstown), Makhanda, South Africa
| | - Manuela Morais
- Water Laboratory, University of Évora, P.I.T.E, Rua da Barba Rala No. 1, 7005-345, Évora, Portugal
| | - Nabor Moya
- Instituto Experimental de Biología, Universidad San Francisco Xavier, Calle Dalence N° 235, Sucre, Bolivia
| | - Peter Negus
- Queensland Government, Department of Environment, Science and Innovation, Brisbane, QLD, Australia
| | - Dev Niyogi
- Missouri University of Science and Technology, Rolla, MO, USA
| | - Iluminada Pagán
- Asociación Meles, Plaza de las Américas, 13, 2B, Alhama de Murcia, Spain
| | | | - Giuseppe Pappagallo
- Water Research Institute, National Research Council (IRSA-CNR), Area della Ricerca RM1, via Salaria km 29.300, Monterotondo, Rome, Italy
| | - Isabel Pardo
- Department of Ecology and Animal Biology, University of Vigo, Vigo, Spain
| | - Petr Pařil
- Masaryk University, Faculty of Science, Department of Botany and Zoology, Brno, Czech Republic
| | - Steffen U Pauls
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, Frankfurt am Main, Germany
| | - Marek Polášek
- Masaryk University, Faculty of Science, Department of Botany and Zoology, Brno, Czech Republic
| | | | - Robert J Rolls
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Maria Mar Sánchez-Montoya
- Complutense University of Madrid, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Madrid, Spain
| | - Ana Savić
- University of Niš, Faculty of Science and Mathematics, Department of Biology and Ecology, Niš, Serbia
| | - Oleksandra Shumilova
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Kandikere R Sridhar
- Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| | - Alisha Steward
- Queensland Government, Department of Environment, Science and Innovation, Brisbane, QLD, Australia
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | | | - Avi Uzan
- Israel Nature and Parks Authority, Jerusalem, Israel
| | - Yefrin Valladares
- Universidad Nacional Autónoma de Honduras, Facultad de Ciencias, Escuela de Biología, Departamento de Ecología y Recursos Naturales, Boulevard Suyapa, Tegucigalpa, Honduras
| | - Ross Vander Vorste
- University of Wisconsin-La Crosse, Biology Department, La Crosse, WI, USA
| | - Nathan J Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Bebegu Yumba Campus, Townsville, QLD, Australia
| | - Dominik H Zak
- Department of Ecoscience, Aarhus University, Aarhus C, Denmark
| | - Annamaria Zoppini
- Water Research Institute, National Research Council (IRSA-CNR), Area della Ricerca RM1, via Salaria km 29.300, Monterotondo, Rome, Italy
| |
Collapse
|
4
|
Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. ENVIRONMENTAL MICROBIOME 2024; 19:31. [PMID: 38720385 PMCID: PMC11080224 DOI: 10.1186/s40793-024-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Římov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses. RESULTS Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow. CONCLUSIONS Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| | - Vesna Grujčić
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Michaela M Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Petr Znachor
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Jaromír Seďa
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Pavel Rychtecký
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Tanja Shabarova
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
5
|
Jeevannavar A, Narwani A, Matthews B, Spaak P, Brantschen J, Mächler E, Altermatt F, Tamminen M. Foundation species stabilize an alternative eutrophic state in nutrient-disturbed ponds via selection on microbial community. Front Microbiol 2024; 15:1310374. [PMID: 38628870 PMCID: PMC11019512 DOI: 10.3389/fmicb.2024.1310374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Eutrophication due to nutrient addition can result in major alterations in aquatic ecosystem productivity. Foundation species, individually and interactively, whether present as invasive species or as instruments of ecosystem management and restoration, can have unwanted effects like stabilizing turbid eutrophic states. In this study, we used whole-pond experimental manipulations to investigate the impacts of disturbance by nutrient additions in the presence and absence of two foundation species: Dreissena polymorpha (a freshwater mussel) and Myriophyllum spicatum (a macrophyte). We tracked how nutrient additions to ponds changed the prokaryotic and eukaryotic communities, using 16S, 18S, and COI amplicon sequencing. The nutrient disturbance and foundation species imposed strong selection on the prokaryotic communities, but not on the microbial eukaryotic communities. The prokaryotic communities changed increasingly over time as the nutrient disturbance intensified. Post-disturbance, the foundation species stabilized the prokaryotic communities as observed by the reduced rate of change in community composition. Our analysis suggests that prokaryotic community change contributed both directly and indirectly to major changes in ecosystem properties, including pH and dissolved oxygen. Our work shows that nutrient disturbance and foundation species strongly affect the prokaryotic community composition and stability, and that the presence of foundation species can, in some cases, promote the emergence and persistence of a turbid eutrophic ecosystem state.
Collapse
Affiliation(s)
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Kastanienbaum, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Elvira Mächler
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Manu Tamminen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Li C, Miao L, Adyel TM, Wu J, Hou J. Transformation of Biofilm to Carbon Sinks after Prolonged Droughts Linked with Algal Biodiversity Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15487-15498. [PMID: 37807898 DOI: 10.1021/acs.est.3c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Global climate change significantly increased the duration of droughts in intermittent rivers, impacting benthic microbial-mediated biogeochemical processes. However, the impact of prolonged droughts on the carbon contribution of intermittent rivers remains poorly understood. In this study, we investigated the potential effects of varying drought gradients (ranging from 20 to 130 days) on benthic biofilms community structure (algae, bacteria, and fungi) and their carbon metabolism functions (ecosystem metabolism and carbon dioxide (CO2) emission fluxes) using mesocosm experiments. Our findings indicate that longer drought durations lead to reduced alpha diversity and community heterogeneity, tighter interdomain networks, and an increased role of stochastic processes in community assembly, with a discernible threshold at around 60 days. Concurrently, the biofilm transforms into a carbon sink following a drought period of 60 days, as evidenced by the transformation of CO2 emission fluxes from 633.25 ± 194.69 to -349.61 ± 277.79 mg m-2 h-1. Additionally, the partial least-squares path model revealed that the resilience of algal communities and network stability may drive biofilm's transformation into a carbon sink, primarily through the heightened resilience of autotrophic metabolism. This study underscores the significance of the carbon contribution from intermittent rivers, as the shift in carbon metabolism functions with increasing droughts could lead to skewed estimations of current riverine carbon fluxes.
Collapse
Affiliation(s)
- Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes 5095, SA, Australia
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
7
|
Li C, Miao L, Adyel TM, Huang W, Wang J, Wu J, Hou J, Wang Z. Eukaryotes contribute more than bacteria to the recovery of freshwater ecosystem functions under different drought durations. Environ Microbiol 2023. [PMID: 36916068 DOI: 10.1111/1462-2920.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Global climate change mostly impacts river ecosystems by affecting microbial biodiversity and ecological functions. Considering the high functional redundancy of microorganisms, the unknown relationship between biodiversity and ecosystem functions obstructs river ecological research, especially under the influence of increasing weather extremes, such as in intermittent rivers and ephemeral streams (IRES). Herein, dry-wet alternation experiments were conducted in artificial stream channels for 25 and 90 days of drought, both followed by 20 days of rewetting. The dynamic recovery of microbial biodiversity and ecosystem functions (represented by ecosystem metabolism and denitrification rate) were determined to analyse biodiversity-ecosystem-function (BEF) relationships after different drought durations. There was a significant difference between bacterial and eukaryotic biodiversity recovery after drought. Eukaryotic biodiversity was more sensitive to drought duration than bacterial, and the eukaryotic network was more stable under dry-wet alternations. Based on the establishment of partial least squares path models, we found that eukaryotic biodiversity has a stronger effect on ecosystem functions than bacteria after long-term drought. Indeed, this work represents a significant step forward for further research on the ecosystem functions of IRES, especially emphasizing the importance of eukaryotic biodiversity in the BEF relationship.
Collapse
Affiliation(s)
- Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
- STEM, University of South Australia, Mawson Lakes Campus, 5095, Mawson, Australia
| | - Wei Huang
- China Institute of Water Resources and Hydropower Research, 100038, Beijing, People's Republic of China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, 210029, Nanjing, China
| |
Collapse
|
8
|
Yuan H, Zhang W, Yin H, Zhang R, Wang J. Taxonomic dependency of beta diversity for bacteria, archaea, and fungi in a semi-arid lake. Front Microbiol 2022; 13:998496. [PMID: 36406397 PMCID: PMC9670189 DOI: 10.3389/fmicb.2022.998496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 10/28/2023] Open
Abstract
Microbial beta diversity has been recently studied along the water depth in aquatic ecosystems, however its turnover and nestedness components remain elusive especially for multiple taxonomic groups. Based on the beta diversity partitioning developed by Baselga and Local Contributions to Beta Diversity (LCBD) partitioning by Legendre, we examined the water-depth variations in beta diversity components of bacteria, archaea and fungi in surface sediments of Hulun Lake, a semi-arid lake in northern China, and further explored the relative importance of environmental drivers underlying their patterns. We found that the relative abundances of Proteobacteria, Chloroflexi, Euryarchaeota, and Rozellomycota increased toward deep water, while Acidobacteria, Parvarchaeota, and Chytridiomycota decreased. For bacteria and archaea, there were significant (p < 0.05) decreasing water-depth patterns for LCBD and LCBDRepl (i.e., species replacement), while increasing patterns for total beta diversity and turnover, implying that total beta diversity and LCBD were dominated by species turnover or LCBDRepl. Further, bacteria showed a strong correlation with archaea regarding LCBD, total beta diversity and turnover. Such parallel patterns among bacteria and archaea were underpinned by similar ecological processes like environmental selection. Total beta diversity and turnover were largely affected by sediment total nitrogen, while LCBD and LCBDRepl were mainly constrained by water NO2 --N and NO3 --N. For fungal community variation, no significant patterns were observed, which may be due to different drivers like water nitrogen or phosphorus. Taken together, our findings provide compelling evidences for disentangling the underlying mechanisms of community variation in multiple aquatic microbial taxonomic groups.
Collapse
Affiliation(s)
- Haijun Yuan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Weizhen Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Runyu Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Fermani P, Metz S, Balagué V, Descy JP, Morana C, Logares R, Massana R, Sarmento H. Microbial eukaryotes assemblages and potential novel diversity in four tropical East-African Great Lakes. FEMS Microbiol Ecol 2021; 97:6335480. [PMID: 34338764 DOI: 10.1093/femsec/fiab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
East-African Great Lakes are old and unique natural resources heavily utilized by their bordering countries. In those lakes, ecosystem functioning is dominated by pelagic processes, where microorganisms are key components, however protistan diversity is barely known. We investigated the community composition of small eukaryotes (< 10 µm) in surface waters of four African Lakes (Kivu, Edward, Albert and Victoria) by sequencing the 18S rRNA gene. Moreover, in the meromictic Lake Kivu, two stations were vertically studied. We found high protistan diversity distributed in 779 operational taxonomic units (OTUs), spanning in eleven high-rank lineages, being Alveolata (31%), Opisthokonta (20%) and Stramenopiles (17%) the most represented supergroups. Surface protistan assemblage were associated to conductivity and productivity gradients; whereas depth, had a strong effect on protistan community in Kivu, with higher contribution of heterotrophic organisms. Approximately 40% of OTUs had low similarity (< 90%) with reported sequences in public databases, these were mostly coming from deep anoxic waters of Kivu, suggesting a high extent of novel diversity. We also detected several taxa so far considered exclusive of marine ecosystems. Our results unveiled a complex and largely undescribed protistan community, in which several lineages have adapted to different niches after crossing the salinity boundary.
Collapse
Affiliation(s)
- Paulina Fermani
- Laboratorio de Ecología Acuática. Instituto Tecnológico de Chascomús (UNSAM-CONICET) Chascomús, Buenos Aires, Argentina
| | - Sebastián Metz
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Vanessa Balagué
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | | | - Cédric Morana
- Unit of Chemical Oceanography, University of Liège, Liège, Belgium
| | - Ramiro Logares
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - Ramon Massana
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain
| | - Hugo Sarmento
- Departamento de Hidrobiologia (DHb), Universidade Federal de São Carlos, São Carlos - SP, Brazil
| |
Collapse
|
10
|
Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol Mol Biol Rev 2021; 85:85/2/e00026-20. [PMID: 33789927 DOI: 10.1128/mmbr.00026-20] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of ecosystems to withstand disturbances and maintain their functions is being increasingly tested as rates of change intensify due to climate change and other human activities. Microorganisms are crucial players underpinning ecosystem functions, and the recovery of microbial communities from disturbances is therefore a key part of the complex processes determining the fate of ecosystem functioning. However, despite global environmental change consisting of numerous pressures, it is unclear and controversial how multiple disturbances affect microbial community stability and what consequences this has for ecosystem functions. This is particularly the case for those multiple or compounded disturbances that occur more frequently than the normal recovery time. The aim of this review is to provide an overview of the mechanisms that can govern the responses of microbes to multiple disturbances across aquatic and terrestrial ecosystems. We first summarize and discuss properties and mechanisms that influence resilience in aquatic and soil biomes to determine whether there are generally applicable principles. Following, we focus on interactions resulting from inherent characteristics of compounded disturbances, such as the nature of the disturbance, timing, and chronology that can lead to complex and nonadditive effects that are modulating the response of microorganisms.
Collapse
|
11
|
Gumińska N, Łukomska-Kowalczyk M, Chaber K, Zakryś B, Milanowski R. Evaluation of V2 18S rDNA barcode marker and assessment of sample collection and DNA extraction methods for metabarcoding of autotrophic euglenids. Environ Microbiol 2021; 23:2992-3008. [PMID: 33830624 PMCID: PMC8359987 DOI: 10.1111/1462-2920.15495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Even though the interest in metabarcoding in environmental studies is growing, euglenids are still underrepresented in both sea and freshwater bodies researches. The reason for this situation could be the unsuitability of universal eukaryotic DNA barcodes and primers as well as the lack of a verified protocol, suitable to assess euglenid diversity. In this study, using specific primers for the V2 hypervariable region of 18S rDNA for metabarcoding resulted in obtaining a high fraction (85%) of euglenid reads and species‐level identification of almost 90% of them. Fifty species were detected by the metabarcoding method, including almost all species observed using a light microscope. We investigated three biomass harvesting methods (filtering, centrifugation and scraping the side of a collection vessel) and determined that centrifugation and filtration outperformed scrapes, but the choice between them is not crucial for the reliability of the analysis. In addition, eight DNA extraction methods were evaluated. We compared five commercially available DNA isolation kits, two CTAB‐based protocols and a chelating resin. For this purpose, the efficiency of extraction, quality of obtained DNA, preparation time and generated costs were taken into consideration. After examination of the aforementioned criteria, we chose the GeneMATRIX Soil DNA Purification Kit as the most suitable for DNA isolation.
Collapse
Affiliation(s)
- Natalia Gumińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, PL-02-089, Warsaw, Poland
| | - Maja Łukomska-Kowalczyk
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, PL-02-089, Warsaw, Poland
| | - Katarzyna Chaber
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, PL-02-089, Warsaw, Poland
| | - Bożena Zakryś
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, PL-02-089, Warsaw, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, PL-02-089, Warsaw, Poland
| |
Collapse
|
12
|
David GM, López-García P, Moreira D, Alric B, Deschamps P, Bertolino P, Restoux G, Rochelle-Newall E, Thébault E, Simon M, Jardillier L. Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol Ecol 2021; 30:2162-2177. [PMID: 33639035 DOI: 10.1111/mec.15864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022]
Abstract
Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.
Collapse
Affiliation(s)
- Gwendoline M David
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | | | - David Moreira
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Benjamin Alric
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Philippe Deschamps
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Paola Bertolino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Gwendal Restoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emma Rochelle-Newall
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Elisa Thébault
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Marianne Simon
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Ludwig Jardillier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
13
|
Trench-Fiol S, Fink P. Metatranscriptomics From a Small Aquatic System: Microeukaryotic Community Functions Through the Diurnal Cycle. Front Microbiol 2020; 11:1006. [PMID: 32523568 PMCID: PMC7261829 DOI: 10.3389/fmicb.2020.01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Light is an important factor for the growth of planktonic organisms, and many of them depend on the diurnal light/dark cycle to regulate key metabolic processes. So far, most of the diel responses were only studied in single species or marine and large lake communities. Yet, we lack information on whether these processes are regulated similarly in small aquatic systems such as ponds. Here, we investigated the activity of a microeukaryotic community from a temperate, small freshwater pond in response to the diurnal cycle. For this, we took samples at midday and night during the Central European summer. We extracted pigments and RNA from samples and the sequencing of eukaryotic transcripts allowed us to obtain day and night metatranscriptomes. Differentially expressed transcripts primarily corresponded to photosynthesis-related and translational processes, and were found to be upregulated at midday with high light conditions compared to darkness. Unique gene ontology classes were found at each respective condition. During the day, ontology classes including photoreception for photosynthesis, defense, and stress mechanisms dominated, while motility, ribosomal assembly and other large, energy-consuming processes were restricted to the night. Euglenophyta and Chlorophyta dominated the active phototrophic community, as shown by the pigment composition analysis. Regarding the gene expression patterns, we could confirm that the pond community appears to follow similar diurnal dynamics as those described for larger aquatic ecosystems. Overall, combining pigment analyses, metatranscriptomics, and data on physicochemical factors yielded considerably more insight into the metabolic processes performed by the microeukaryotic community of a small freshwater ecosystem.
Collapse
Affiliation(s)
- Stephanie Trench-Fiol
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Patrick Fink
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, Cologne, Germany
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
- Department River Ecology, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
| |
Collapse
|
14
|
Velasco-González I, Sanchez-Jimenez A, Singer D, Murciano A, Díez-Hermano S, Lara E, Martín-Cereceda M. Rain-Fed Granite Rock Basins Accumulate a High Diversity of Dormant Microbial Eukaryotes. MICROBIAL ECOLOGY 2020; 79:882-897. [PMID: 31796996 DOI: 10.1007/s00248-019-01463-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Rain fed granite rock basins are ancient geological landforms of worldwide distribution and structural simplicity. They support habitats that can switch quickly from terrestrial to aquatic along the year. Diversity of animals and plants, and the connexion between communities in different basins have been widely explored in these habitats, but hardly any research has been carried out on microorganisms. The aim of this study is to provide the first insights on the diversity of eukaryotic microbial communities from these environments. Due to the ephemeral nature of these aquatic environments, we predict that the granitic basins should host a high proportion of dormant microeukaryotes. Based on an environmental DNA diversity survey, we reveal diverse communities with representatives of all major eukaryotic taxonomic supergroups, mainly composed of a diverse pool of low abundance OTUs. Basin communities were very distinctive, with alpha and beta diversity patterns non-related to basin size or spatial distance respectively. Dissimilarity between basins was mainly characterised by turnover of OTUs. The strong microbial eukaryotic heterogeneity observed among the basins may be explained by a complex combination of deterministic factors (diverging environment in the basins), spatial constraints, and randomness including founder effects. Most interestingly, communities contain organisms that cannot coexist at the same time because of incompatible metabolic requirements, thus suggesting the existence of a pool of dormant organisms whose activity varies along with the changing environment. These organisms accumulate in the pools, which turns granitic rock into high biodiversity microbial islands whose conservation and study deserve further attention.
Collapse
Affiliation(s)
- Ismael Velasco-González
- Departamento de Genética, Fisiología y Microbiología. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid (UCM), C/ José Antonio Novais 12, 28040, Madrid, Spain
| | - Abel Sanchez-Jimenez
- Departamento de Biodiversidad, Ecología y Evolución. Facultad de Ciencias Biológicas, UCM, Madrid, Spain
| | - David Singer
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Antonio Murciano
- Departamento de Biodiversidad, Ecología y Evolución. Facultad de Ciencias Biológicas, UCM, Madrid, Spain
| | - Sergio Díez-Hermano
- Departamento de Biodiversidad, Ecología y Evolución. Facultad de Ciencias Biológicas, UCM, Madrid, Spain
| | - Enrique Lara
- Real Jardín Botánico, CSIC Plaza de Murillo 2, 28014, Madrid, Spain
| | - Mercedes Martín-Cereceda
- Departamento de Genética, Fisiología y Microbiología. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid (UCM), C/ José Antonio Novais 12, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Gionchetta G, Oliva F, Romaní AM, Bañeras L. Hydrological variations shape diversity and functional responses of streambed microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136838. [PMID: 32018979 DOI: 10.1016/j.scitotenv.2020.136838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Microbiota inhabiting the intermittent streambeds mediates several in-stream processes that are essential for ecosystem function. Reduced stream discharge caused by the strengthened intermittency and increased duration of the dry phase is a spreading global response to changes in climate. Here, the impacts of a 5-month desiccation, one-week rewetting and punctual storms, which interrupted the dry period, were examined. The genomic composition of total (DNA) and active (RNA) diversity, and the community level physiological profiles (CLPP) were considered as proxies for functional diversity to describe both prokaryotes and eukaryotes inhabiting the surface and hyporheic streambeds. Comparisons between the genomic and potential functional responses helped to understand how and whether the microbial diversity was sensitive to the environmental conditions and resource acquisition, such as water stress and extracellular enzyme activities, respectively. RNA expression showed the strongest relationship with the environmental conditions and resource acquisition, being more responsive to changing conditions compared to DNA diversity, especially in the case of prokaryotes. The DNA results presumably reflected the legacy of the treatments because inactive, dormant, or dead cells were included, suggesting a slow microbial biomass turnover or responses of the microbial communities to changes mainly through physiological acclimation. On the other hand, microbial functional diversity was largely explained by resources acquisition, such as metrics of extracellular enzymes, and appeared vulnerable to the hydrological changes and duration of desiccation. The data highlight the need to improve the functional assessment of stream ecosystems with the application of complementary metrics to better describe the streambed microbial dynamics under dry-rewet stress.
Collapse
Affiliation(s)
- G Gionchetta
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain.
| | - F Oliva
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - A M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| | - L Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| |
Collapse
|
16
|
Huang Y, Huang J. Coupled effects of land use pattern and hydrological regime on composition and diversity of riverine eukaryotic community in a coastal watershed of Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:787-798. [PMID: 30743964 DOI: 10.1016/j.scitotenv.2019.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The coupled effects of land use pattern and hydrological regime on composition and diversity of riverine eukaryotic community are needed for understanding riverine ecosystem health and algal blooming mechanism. In-situ monitoring and 18S rRNA gene sequencing were used to investigate spatiotemporal variations of eukaryotic community in three types of watershed with different dominant land use type (i.e. urban, forest, and natural) during three seasons (i.e. dry, transition, and wet seasons) in a coastal watershed of Southeast China. Results showed that agricultural and urban watersheds had significantly higher diversity in dry and transition seasons, and higher richness in transition and wet seasons than those in forest watershed. The non-metric multidimensional scaling analysis further verified great spatiotemporal variations of eukaryotic community. Stramenopiles, Alveolata, Animalia, and Eukaryota, dominated the sequences reads for all sampling sites in three seasons. Agricultural watershed had the highest relative abundant of Animalia, whereas Eukaryota was the most abundant in urban watershed and forest watershed had the highest relative abundance of Stramenopiles and Alveolata. The RDA ordination showed that Builtup and streamflow were two most important factors for moderate taxa and abundant taxa, respectively. Variation partitioning revealed that land use pattern and hydrological regime together explained 54.4%, 61% and 67.2% variances of the composition of eukaryotic community. Among three sampling seasons, the relative contribution of land use pattern was higher than that of hydrological regime. The results of this investigation demonstrated how land use pattern and hydrological regime affected the composition and diversity of riverine eukaryotic community. The findings can provide a useful insight into the riverine eukaryotic communities and their underlying ecological mechanisms in coastal China watersheds.
Collapse
Affiliation(s)
- Yaling Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Jinliang Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Oprei A, Zlatanović S, Mutz M. Grazers superimpose humidity effect on stream biofilm resistance and resilience to dry-rewet stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:841-850. [PMID: 31096414 DOI: 10.1016/j.scitotenv.2018.12.316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Temperate low order streams increasingly experience intermittency and drying due to climate change. In comparison to well-studied Mediterranean streams, drying events in canopied temperate streams occur under higher ambient humidity which probably affects the metabolic response to drying. Previous work on drying sediments (in temperate streams) did not consider the interactions of trophic levels. We hypothesized that preservation of sediment moisture due to high humidity increases resistance to drying in temperate streambed biofilms and fast resilience of biofilm activity after flow resumption. We also expected the presence of macroinvertebrate grazers to modulate the biofilm response to dry-rewet stress. Following a two-level factorial design in 24 microcosms, we tested the effect of drying intensity (moderate and intense) and grazer presence and absence (P. antipodarum) on the activity of biofilm colonizing shallow hyporheic sediment. We measured the community respiration over a drying period of 27 days, a single rewetting event and a follow-up of three days. Grazer presence stimulated biofilm community respiration (CRmic) in the permanently wet control, but decreased biofilm resistance to desiccation (<0.2% of pre-disturbed activity), regardless of drying intensity. In the absence of grazers, higher atmospheric humidity in moderately drying microcosms resulted in maintaining a film of adhesive water and low CRmic (29% of pre-disturbed respiration) until the end of the drying period. After flow resumption, the CRmic increased within 8 h, achieving 79-83% of pre-disturbed respiration (no grazers) and 15-41% (with grazers), respectively. Results show that short dry periods in temperate streams, even under high humidity, impact the streambed biofilm community negatively. The complex response and strong effect of grazer presence indicates that experiments including interactions of trophic levels and settings mimicking environmental factors during dry-rewet stress are needed.
Collapse
Affiliation(s)
- Anna Oprei
- Department of Freshwater Conservation, BTU-Cottbus Senftenberg, 15526 Bad Saarow, Germany.
| | - Sanja Zlatanović
- Department of Freshwater Conservation, BTU-Cottbus Senftenberg, 15526 Bad Saarow, Germany
| | - Michael Mutz
- Department of Freshwater Conservation, BTU-Cottbus Senftenberg, 15526 Bad Saarow, Germany
| |
Collapse
|
18
|
Cahoon AB, Huffman AG, Krager MM, Crowell RM. A meta-barcoding census of freshwater planktonic protists in Appalachia – Natural Tunnel State Park, Virginia, USA. METABARCODING AND METAGENOMICS 2018. [DOI: 10.3897/mbmg.2.26939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The purpose of our study was to survey the freshwater planktonic protists within an inland natural preserve in the Ridge and Valley physiographic province of the Appalachian Region using metabarcoding. Microbial eukaryotes are essential primary producers and predators in small freshwater ecosystems, yet they are often overlooked due to the difficulty of identification. This has been remedied, in part, by the cost reduction of high throughput DNA sequencing and the growth of barcode databases, making the identification and analysis of microorganisms by way of metabarcoding surveys in complex ecosystems increasingly feasible. Water samples were collected from five sites at the Natural Tunnel State Park in Scott County, VA (USA), representing three common bodies of water found in this region. Samples were initially collected during a Bioblitz event in April 2016 and then seven and fourteen weeks afterwards. Metabarcode analysis of the 23S and 18S genes identified 3663 OTUs representing 213 family level and 332 genus level taxa. This study provides an initial barcode census within a region that has a reputation as a temperate biodiversity “hotspot”. The overall protist diversity was comparably high to other temperate systems, but not unusually high; the microalgal diversity, however, was higher than that reported for other temperate regions. The three types of water bodies had their own distinctive protist biomes despite close proximity.
Collapse
|
19
|
Boscaro V, Santoferrara LF, Zhang Q, Gentekaki E, Syberg-Olsen MJ, Del Campo J, Keeling PJ. EukRef-Ciliophora: a manually curated, phylogeny-based database of small subunit rRNA gene sequences of ciliates. Environ Microbiol 2018; 20:2218-2230. [PMID: 29727060 DOI: 10.1111/1462-2920.14264] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 01/01/2023]
Abstract
High-throughput sequencing (HTS) surveys, among the most common approaches currently used in environmental microbiology, require reliable reference databases to be correctly interpreted. The EukRef Initiative (eukref.org) is a community effort to manually screen available small subunit (SSU) rRNA gene sequences and produce a public, high-quality and informative framework of phylogeny-based taxonomic annotations. In the context of EukRef, we present a database for the monophyletic phylum Ciliophora, one of the most complex, diverse and ubiquitous protist groups. We retrieved more than 11 500 sequences of ciliates present in GenBank (28% from identified isolates and 72% from environmental surveys). Our approach included the inference of phylogenetic trees for every ciliate lineage and produced the largest SSU rRNA tree of the phylum Ciliophora to date. We flagged approximately 750 chimeric or low-quality sequences, improved the classification of 70% of GenBank entries and enriched environmental and literature metadata by 30%. The performance of EukRef-Ciliophora is superior to the current SILVA database in classifying HTS reads from a global marine survey. Comprehensive outputs are publicly available to make the new tool a useful guide for non-specialists and a quick reference for experts.
Collapse
Affiliation(s)
- Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Luciana F Santoferrara
- Department of Marine Sciences, University of Connecticut, Stamford, CT, USA.,Department of Ecology and Evolutionary Biology, University of Connecticut, Stamford, CT, USA
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Cryptophyta as major bacterivores in freshwater summer plankton. ISME JOURNAL 2018; 12:1668-1681. [PMID: 29463895 PMCID: PMC6018765 DOI: 10.1038/s41396-018-0057-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Small bacterivorous eukaryotes play a cardinal role in aquatic food webs and their taxonomic classification is currently a hot topic in aquatic microbial ecology. Despite increasing interest in their diversity, core questions regarding predator–prey specificity remain largely unanswered, e.g., which heterotrophic nanoflagellates (HNFs) are the main bacterivores in freshwaters and which prokaryotes support the growth of small HNFs. To answer these questions, we fed natural communities of HNFs from Římov reservoir (Czech Republic) with five different bacterial strains of the ubiquitous betaproteobacterial genera Polynucleobacter and Limnohabitans. We combined amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting eukaryotic 18 S rRNA genes to track specific responses of the natural HNF community to prey amendments. While amplicon sequencing provided valuable qualitative data and a basis for designing specific probes, the number of reads was insufficient to accurately quantify certain eukaryotic groups. We also applied a double-hybridization technique that allows simultaneous phylogenetic identification of both predator and prey. Our results show that community composition of HNFs is strongly dependent upon prey type. Surprisingly, Cryptophyta were the most abundant bacterivores, although this phylum has been so far assumed to be mainly autotrophic. Moreover, the growth of a small lineage of Cryptophyta (CRY1 clade) was strongly stimulated by one Limnohabitans strain in our experiment. Thus, our study is the first report that colorless Cryptophyta are major bacterivores in summer plankton samples and can play a key role in the carbon transfer from prokaryotes to higher trophic levels.
Collapse
|
21
|
Schiaffino MR, Lara E, Fernández LD, Balagué V, Singer D, Seppey CCW, Massana R, Izaguirre I. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ Microbiol 2016; 18:5249-5264. [DOI: 10.1111/1462-2920.13566] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/30/2016] [Indexed: 01/16/2023]
Affiliation(s)
- M. Romina Schiaffino
- Centro de Investigaciones y transferencia del Noroeste de la Provincia de Buenos Aires; CONICET, UNNOBA; Junín 6000 Argentina
| | - Enrique Lara
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
| | - Leonardo D. Fernández
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Barrio Universitario s/n Concepción Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción; Chacabuco 539 Concepción Chile
| | - Vanessa Balagué
- Institut de Ciències del Mar, CSIC; Passeig Marítim de la Barceloneta 37-49 Barcelona Catalonia 08003 Spain
| | - David Singer
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
| | - Christophe C. W. Seppey
- Laboratory of Soil Biodiversity; University of Neuchâtel; Rue Emile Argand 11 Neuchâtel CH-2000 Switzerland
| | - Ramon Massana
- Institut de Ciències del Mar, CSIC; Passeig Marítim de la Barceloneta 37-49 Barcelona Catalonia 08003 Spain
| | - Irina Izaguirre
- Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires. Ciudad Universitaria; Buenos Aires C1428EHA Argentina
| |
Collapse
|