1
|
Christensen MH, Jakobsen TH, Lichtenberg M, Hertz FB, Dahl B, Bjarnsholt T. Antimicrobial susceptibility testing of bone and joint pathogens using isothermal microcalorimetry. APMIS 2024; 132:814-823. [PMID: 39301971 DOI: 10.1111/apm.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The rise in osteomyelitis and periprosthetic joint infections, in combination with increasing life expectancy and the prevalence of diabetes, underscores the urgent need for rapid and accurate diagnostic tools. Conventional culture-based methods are often time-consuming and prone to false-negatives, leading to prolonged and inappropriate antibiotic treatments. This study aims to improve osteomyelitis diagnostics by decreasing the time to detection and the time to an antibiotic susceptibility result to enable a targeted treatment using isothermal microcalorimetry (IMC). IMC measures heat flow in real-time, providing insights into bacterial metabolism without the need for labeling. Using clinical isolates from bone infections, assessing their response to antibiotics through IMC, we demonstrated that IMC could detect bacteria within 4 h and determine antimicrobial susceptibility profiles within 2-22 h (median 4.85, range 1.28-21.78). This is significantly faster than traditional methods. A decision tree, based on antibiotic susceptibility, accurately categorized pathogens, achieving high accuracy (74-100%), sensitivity (100%), and specificity (65-100%). These findings suggest that IMC could redefine diagnostics of bone and joint infections and potentially infections in general, offering timely and precise treatment guidance, thereby improving patient outcomes and reducing health care burdens. Further optimization and clinical validation are needed to fully integrate IMC into routine diagnostics.
Collapse
Affiliation(s)
- Mads H Christensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Tim H Jakobsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Frederik B Hertz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Benny Dahl
- Department of Orthopedics Surgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Zhong Y, Guo J, Zheng Y, Lin H, Su Y. Metabolomics analysis of the lactobacillus plantarum ATCC 14917 response to antibiotic stress. BMC Microbiol 2024; 24:229. [PMID: 38943061 PMCID: PMC11212188 DOI: 10.1186/s12866-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Huale Lin
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Kim D, Bhat A, Kim SK, Lee S, Ryu CM. Small RNA-modulated anaerobic respiration allows bacteria to survive under antibiotic stress conditions. Front Cell Infect Microbiol 2024; 14:1287557. [PMID: 38577619 PMCID: PMC10993149 DOI: 10.3389/fcimb.2024.1287557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Despite extensive knowledge of antibiotic-targeted bacterial cell death, deeper understanding of antibiotic tolerance mechanisms is necessary to combat multi-drug resistance in the global healthcare settings. Regulatory RNAs in bacteria control important cellular processes such as cell division, cellular respiration, metabolism, and virulence. Here, we investigated how exposing Escherichia coli to the moderately effective first-generation antibiotic cephalothin alters transcriptional and post-transcriptional dynamics. Bacteria switched from active aerobic respiration to anaerobic adaptation via an FnrS and Tp2 small RNA-mediated post-transcriptional regulatory circuit. From the early hours of antibiotic exposure, FnrS was involved in regulating reactive oxygen species levels, and delayed oxygen consumption in bacteria. We demonstrated that bacteria strive to maintain cellular homeostasis via sRNA-mediated sudden respiratory changes upon sublethal antibiotic exposure.
Collapse
Affiliation(s)
- Dajeong Kim
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Abhayprasad Bhat
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Seon-Kyu Kim
- Personalised Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Pediatrics School of Medicine, University of California at San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Yaeger LN, French S, Brown ED, Côté JP, Burrows LL. Central metabolism is a key player in E. coli biofilm stimulation by sub-MIC antibiotics. PLoS Genet 2023; 19:e1011013. [PMID: 37917668 PMCID: PMC10645362 DOI: 10.1371/journal.pgen.1011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/14/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Exposure of Escherichia coli to sub-inhibitory antibiotics stimulates biofilm formation through poorly characterized mechanisms. Using a high-throughput Congo Red binding assay to report on biofilm matrix production, we screened ~4000 E. coli K12 deletion mutants for deficiencies in this biofilm stimulation response. We screened using three different antibiotics to identify core components of the biofilm stimulation response. Mutants lacking acnA, nuoE, or lpdA failed to respond to sub-MIC cefixime and novobiocin, implicating central metabolism and aerobic respiration in biofilm stimulation. These genes are members of the ArcA/B regulon-controlled by a respiration-sensitive two-component system. Mutants of arcA and arcB had a 'pre-activated' phenotype, where biofilm formation was already high relative to wild type in vehicle control conditions, and failed to increase further with the addition of sub-MIC cefixime. Using a tetrazolium dye and an in vivo NADH sensor, we showed spatial co-localization of increased metabolic activity with sub-lethal concentrations of the bactericidal antibiotics cefixime and novobiocin. Supporting a role for respiratory stress, the biofilm stimulation response to cefixime and novobiocin was inhibited when nitrate was provided as an alternative electron acceptor. Deletion of a gene encoding part of the machinery for respiring nitrate abolished its ameliorating effects, and nitrate respiration increased during growth with sub-MIC cefixime. Finally, in probing the generalizability of biofilm stimulation, we found that the stimulation response to translation inhibitors, unlike other antibiotic classes, was minimally affected by nitrate supplementation, suggesting that targeting the ribosome stimulates biofilm formation in distinct ways. By characterizing the biofilm stimulation response to sub-MIC antibiotics at a systems level, we identified multiple avenues for design of therapeutics that impair bacterial stress management.
Collapse
Affiliation(s)
- Luke N. Yaeger
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jean Philippe Côté
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Wee GN, Lyou ES, Hong JK, No JH, Kim SB, Lee TK. Phenotypic convergence of bacterial adaption to sub-lethal antibiotic treatment. Front Cell Infect Microbiol 2022; 12:913415. [PMID: 36467735 PMCID: PMC9714565 DOI: 10.3389/fcimb.2022.913415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/05/2022] [Indexed: 01/01/2024] Open
Abstract
Microorganisms can adapt quickly to changes in their environment, leading to various phenotypes. The dynamic for phenotypic plasticity caused by environmental variations has not yet been fully investigated. In this study, we analyzed the time-series of phenotypic changes in Staphylococcus cells during adaptive process to antibiotics stresses using flow cytometry and Raman spectroscopy. The nine antibiotics with four different mode of actions were treated in bacterial cells at a sub-lethal concentration to give adaptable stress. Although the growth rate initially varied depending on the type of antibiotic, most samples reached the maximum growth comparable to the control through the short-term adaptation after 24 h. The phenotypic diversity, which showed remarkable changes depending on antibiotic treatment, converged identical to the control over time. In addition, the phenotype with cellular biomolecules converted into a bacterial cell that enhance tolerance to antibiotic stress with increases in cytochrome and lipid. Our findings demonstrated that the convergence into the phenotypes that enhance antibiotic tolerance in a short period when treated with sub-lethal concentrations, and highlight the feasibility of phenotypic approaches in the advanced antibiotic treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, South Korea
| |
Collapse
|
7
|
Labitt RN, Ren J, Marquis H. Emergence of phenotypic and genotypic resistance in the intestinal microbiota of rainbow trout (Oncorhynchus mykiss) exposed long-term to sub-inhibitory concentrations of sulfamethoxazole. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2043-2054. [PMID: 34545508 DOI: 10.1007/s10646-021-02480-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Natural waters are contaminated globally with pharmaceuticals including many antibiotics. In this study, we assessed the acquisition of antimicrobial resistance in the culturable intestinal microbiota of rainbow trout (Oncorhynchus mykiss) exposed for 6 months to sub-inhibitory concentrations of sulfamethoxazole (SMX), one of the most prevalent antibiotics in natural waters. SMX was tested at three concentrations: 3000 µg/L, a concentration that had no observed effect (NOEC) on the in vitro growth of fish intestinal microbiota; 3 µg/L, a theoretical predicted no effect concentration (PNEC) for long-term studies in natural environments; and 0.3 µg/L, a concentration detected in many surveys of surface waters from various countries including the USA. In two independent experiments, the emergence of phenotypic resistance and an increased prevalence of bacteria carrying a sulfonamide-resistance gene (sul1) were observed in SMX-exposed fish. The emergence of phenotypic resistance to1000 mg/L SMX was significant in fish exposed to 3 µg/L SMX and was in large part independent of sul resistance genes. The prevalence of bacteria carrying the sul1 resistance gene increased significantly in the culturable intestinal microbiota of SMX-exposed fish, but the sul1-positive population was in large part susceptible to 1000 mg/L SMX, suggesting that the gene confers a lower resistance level or a growth advantage. The increased prevalence of sul1 bacteria was observed in all groups of SMX-exposed fish. Overall, this study suggests that fish exposed long-term to waters contaminated with low levels of antibiotics serve as reservoir of antimicrobial resistant genes and of resistant bacteria, a potential threat to public health.
Collapse
Affiliation(s)
- Rachael N Labitt
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennifer Ren
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Hélène Marquis
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Li R, Zhou M, Lu J, Wei J. Antibiofilm Effects of Epigallocatechin Gallate Against Proteus mirabilis Wild-Type and Ampicillin-Induced Strains. Foodborne Pathog Dis 2021; 19:136-142. [PMID: 34726503 DOI: 10.1089/fpd.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen associated with nosocomial infections and foodborne diseases. The resistance and biofilm formation of P. mirabilis have been a great concern. In this study a multidrug-resistant P. mirabilis strain 012 was exposed to a lethal dose of ampicillin (10 mg/mL, 2.5-fold minimal bactericidal concentration) for 24 h at 37°C. After resuscitation and isolation, five variant isolates were selected and subjected to ampicillin induction by repeatedly streaking on ampicillin-containing plates (10 mg/mL) for at least three times. In biofilm formation assays by using crystal violet staining, we found that the variant strains had enhanced biofilm-forming abilities. (-)-epigallocatechin-3-gallate (EGCG) at a minimum inhibitory concentration (MIC) (256 μg/mL) significantly reduced the biofilm formation of all variant strains and the wild-type strain (p < 0.01). Sub-MIC of EGCG (128 μg/mL) suppressed the biofilms of wild-type and two variants. However, it stimulated the biofilms of the other three variants. The antibiofilm effects of EGCG against the wild-type strain were further confirmed by confocal laser scanning microscopy. Scanning electron microscopy revealed that EGCG induced variants to form more fibrous structures. Our results revealed that a lethal dose of antibiotic exposure increased antibiotic resistance and biofilm formation of P. mirabilis. EGCG may be used as a promising antibiofilm agent to prevent the P. mirabilis biofilm formation in the food industry. However, the sub-MIC of EGCG is not effective and will not be applied.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jieyuan Lu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jiajun Wei
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
He Y, Zhao X, Chen L, Zhao L, Yang H. Effect of electrolysed water generated by sodium chloride combined with sodium bicarbonate solution against Listeria innocua in broth and on shrimp. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108134] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Neculai-Valeanu AS, Ariton AM, Mădescu BM, Rîmbu CM, Creangă Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals (Basel) 2021; 11:1625. [PMID: 34072849 PMCID: PMC8229472 DOI: 10.3390/ani11061625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomaterials have been used for diagnosis and therapy in the human medical field, while their application in veterinary medicine and animal production is still relatively new. Nanotechnology, however, is a rapidly growing field, offering the possibility of manufacturing new materials at the nanoscale level, with the formidable potential to revolutionize the agri-food sector by offering novel treatment options for prevalent and expensive illnesses such as bovine mastitis. Since current treatments are becoming progressively more ineffective in resistant bacteria, the development of innovative products based on both nanotechnology and phytotherapy may directly address a major global problem, antimicrobial resistance, while providing a sustainable animal health solution that supports the production of safe and high-quality food products. This review summarizes the challenges encountered presently in the treatment of bovine mastitis, emphasizing the possibility of using new-generation nanomaterials (e.g., biological synthesized nanoparticles and graphene) and essential oils, as candidates for developing novel treatment options for bovine mastitis.
Collapse
Affiliation(s)
- Andra Sabina Neculai-Valeanu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
| | - Adina Mirela Ariton
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Bianca Maria Mădescu
- Research and Development Station for Cattle Breeding Dancu, Sos. Iasi-Ungheni no. 9, 707252 Dancu, Romania; (A.M.A.); (B.M.M.)
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Şteofil Creangă
- Department of Fundamental Sciences in Animal Husbandry, Faculty of Food and Animal Sciences, Iasi University of Life Sciences (IULS), Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| |
Collapse
|
11
|
Antibody- and nucleic acid-based lateral flow immunoassay for Listeria monocytogenes detection. Anal Bioanal Chem 2021; 413:4161-4180. [PMID: 34041576 DOI: 10.1007/s00216-021-03402-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Listeria monocytogenes is an invasive opportunistic foodborne pathogen and its routine surveillance is critical for protecting the food supply and public health. The traditional detection methods are time-consuming and require trained personnel. Lateral flow immunoassay (LFIA), on the other hand, is an easy-to-perform, rapid point-of-care test and has been widely used as an inexpensive surveillance tool. In recent times, nucleic acid-based lateral flow immunoassays (NALFIA) are also developed to improve sensitivity and specificity. A significant improvement in lateral flow-based assays has been reported in recent years, especially the ligands (antibodies, nucleic acids, aptamers, bacteriophage), labeling molecules, and overall assay configurations to improve detection sensitivity, specificity, and automated interpretation of results. In most commercial applications, LFIA has been used with enriched food/environmental samples to ensure detection of live cells thus prolonging the assay time to 24-48 h; however, with the recent improvement in LFIA sensitivity, results can be obtained in less than 8 h with shortened and improved enrichment practices. Incorporation of surface-enhanced Raman spectroscopy and/or immunomagnetic separation could significantly improve LFIA sensitivity for near-real-time point-of-care detection of L. monocytogenes for food safety and public health applications.
Collapse
|
12
|
Effect of sub-lethal doses of nisin on Staphylococcus aureus toxin production and biofilm formation. Toxicon 2021; 197:1-5. [PMID: 33838179 DOI: 10.1016/j.toxicon.2021.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is one of the commonest food-borne pathogens that can cause gastroenteritis owing to having several enterotoxins. Also, biofilm formation can complicate infections caused by this microorganism. Nisin is a safe food bio preservative which is usually used as an agent to prevent pathogen growth; however, it is important to identify the exact impact of nisin on the growth of S. aureus and to determine the suitable concentration needed for elimination of this pathogen in food. In this study, after MIC determination of nisin against S. aureus ATCC 29213, this strain was treated with sub-MIC (1/2) of nisin (4 μg/ml) and transcript levels of toxin-encoding (hla, SEA, SEB, and SED) and biofilm-associated (fnb, ebpS, eno, and icaA) genes were determined using Quantitative Real-time PCR at 2, 8, and 24 h post exposure. All toxin genes were down-regulated following exposure to sub-MIC of nisin, whereas biofilm-associated genes were up-regulated. The expression levels of fnb and icaA in S. aureus were highest after 8 h (4.5-fold and 6.8-fold increase, respectively), while the expression levels of eno and ebpS genes were highest after 2 h (3.3 and 4.5-fold increase, respectively). According to these results, although transcriptional levels of toxin genes were reduced, sub-MIC concentrations of nisin could trigger the expression of biofilm-associated genes in S. aureus. This can further lead to bacteriocin tolerance such that even its higher concentrations cannot kill bacterial cells after exposure to sub-lethal doses. Therefore, it is pivotal to add appropriate concentrations of nisin to food products for preservation purposes.
Collapse
|
13
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|
14
|
Pinilla CMB, Stincone P, Brandelli A. Proteomic analysis reveals differential responses of Listeria monocytogenes to free and nanoencapsulated nisin. Int J Food Microbiol 2021; 346:109170. [PMID: 33770680 DOI: 10.1016/j.ijfoodmicro.2021.109170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
The ability of Listeria monocytogenes grow on ready-to-eat food is a major concern in food safety. Natural antimicrobials, such as nisin, can be used to control this pathogen, but the increasing reports of nisin tolerance and resistance make necessary novel approaches to increase its effectiveness, such as encapsulation. The goal of this study was to investigate how L. monocytogenes ATCC7644 regulates and shapes its proteome in response to sublethal doses of nisin and nisin-loaded phosphatidylcholine liposomes (lipo-nisin), compared to untreated cells growing under optimal conditions. Total proteins were extracted from L. monocytogenes cells treated for 1 h with free and lipo-nisin. As result, of 803 proteins that were initially identified, 64 and 53 proteins were differentially upregulated and downregulated respectively, in the treatments with nisin and lipo-nisin. Changes of Listeria proteome in response to treatments containing nisin were mainly related to ATP-binding cassette (ABC) transporter systems, transmembrane proteins, RNA-binding proteins and diverse stress response proteins. Some of the proteins uniquely detected in samples treated with free nisin were the membrane proteins SecD, Lmo1539 and the YfhO enzyme, which are related to translocation of L. monocytogenes virulence factors, activation of the LiaR-mediated stress defense and glycosylation of wall teichoic acid, respectively. The L. monocytogenes treated with liposome encapsulated nisin showed no expression of some stress response factors as compared with the free nisin, suggesting a reduction of stress mediated response and production of nisin-resistance factors by exposure to encapsulated nisin.
Collapse
Affiliation(s)
| | - Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
15
|
Pishchany G, Kolter R. On the possible ecological roles of antimicrobials. Mol Microbiol 2020; 113:580-587. [PMID: 31975454 DOI: 10.1111/mmi.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
The Introduction of antibiotics into the clinical use in the middle of the 20th century had a profound impact on modern medicine and human wellbeing. The contribution of these wonder molecules to public health and science is hard to overestimate. Much research has informed our understanding of antibiotic mechanisms of action and resistance at inhibitory concentrations in the lab and in the clinic. Antibiotics, however, are not a human invention as most of them are either natural products produced by soil microorganisms or semisynthetic derivatives of natural products. Because we use antibiotics to inhibit the bacterial growth, it is generally assumed that growth inhibition is also their primary ecological function in the environment. Nevertheless, multiple studies point to diverse nonlethal effects that are exhibited at lower levels of antibiotics. Here we review accumulating evidence of antibiosis and of alternative functions of antibiotics exhibited at subinhibitory concentrations. We also speculate on how these effects might alter phenotypes, fitness, and community composition of microbes in the context of the environment and suggest directions for future research.
Collapse
Affiliation(s)
- Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Desbois AP, Cook KJ, Buba E. Antibiotics modulate biofilm formation in fish pathogenic isolates of atypical Aeromonas salmonicida. JOURNAL OF FISH DISEASES 2020; 43:1373-1379. [PMID: 32856330 DOI: 10.1111/jfd.13232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Atypical Aeromonas salmonicida causes furunculosis infections of non-salmonid fish, which requires antibiotic therapy. However, antibiotics may induce biofilm in some bacteria, which protects them against hostile conditions while allowing them to persist on surfaces, thus forming a reservoir for infection. The aim of this study was to determine whether atypical isolates of A. salmonicida increased biofilm in the presence of two antibiotics, florfenicol and oxytetracycline. A microtitre plate assay was used to quantify biofilm in the presence and absence of each antibiotic. Fifteen of 28 isolates formed biofilms under control conditions, while 23 of 28 isolates increased biofilm formation in the presence of at least one concentration of at least one antibiotic. For oxytetracycline, the most effective concentration causing biofilm to increase was one-quarter of that preventing visible bacterial growth, whereas for florfenicol it was one-half of this value. This is the first study to demonstrate that a bacterial pathogen of fish increases biofilm in response to antibiotics. Biofilm formation may increase the risk of re-infection in culture systems and this lifestyle favours the transmission of genetic material, which has implications for the dissemination of antibiotic-resistance genes and demonstrates the need for enhanced disease prevention measures against atypical A. salmonicida.
Collapse
Affiliation(s)
- Andrew P Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Kira J Cook
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Elizabeth Buba
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
17
|
Los A, Ziuzina D, Boehm D, Han L, O'Sullivan D, O'Neill L, Bourke P. Efficacy of Cold Plasma for Direct Deposition of Antibiotics as a Novel Approach for Localized Delivery and Retention of Effect. Front Cell Infect Microbiol 2019; 9:428. [PMID: 31921704 PMCID: PMC6932951 DOI: 10.3389/fcimb.2019.00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial coating of medical devices has emerged as a potentially effective tool to prevent or ameliorate device-related infections. In this study the plasma deposition process for direct deposition of pharmaceutical drugs on to a range of surfaces and the retention of structure function relationship and antimicrobial efficacy against mono-species biofilms were investigated. Two selected sample antibiotics-ampicillin and gentamicin, were deposited onto two types of surfaces-polystyrene microtiter plates and stainless steel coupons. The antimicrobial efficacy of the antibiotic-coated surfaces was tested against challenge populations of both planktonic and sessile Escherichia coli and Pseudomonas aeruginosa, with responses monitored for up to 14 days. The plasma deposition process bonded the antibiotic to the surfaces, with localized retention of antibiotic activity. The antibiotics deposited on the test surfaces retained a good efficacy against planktonic cells, and importantly prevented biofilm formation of attached cells for up to 96 h. The antibiotic rapidly eluted from the surface of antibiotic-coated surfaces to the surrounding medium, with retention of effect in this surrounding milieu for up to 2 weeks. Control experiments established that there was no independent antimicrobial or growth promoting effect of the plasma deposition process, where there was no antibiotic in the helium plasma assisted delivery stream. Apart from the flexibility offered through deposition on material surfaces, there was no additive or destructive effect associated with the helium assisted plasma deposition process on the antibiotic. The plasma assisted process was a viable mean of coating clinically relevant materials and developing innovative functional materials with retention of antibiotic activity, without employing a linker or plasma modified polymer, thus minimizing bio-compatibility issues for medical device materials. This offers potential to prevent or control instrumented or non-permanent device associated infection localized to the surgical or implant site.
Collapse
Affiliation(s)
- Agata Los
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Lu Han
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Denis O'Sullivan
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.,TheraDep, Questum Centre, Clonmel, Ireland
| | | | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland.,School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
18
|
Torres-Barceló C, Gurney J, Gougat-Barberá C, Vasse M, Hochberg ME. Transient negative effects of antibiotics on phages do not jeopardise the advantages of combination therapies. FEMS Microbiol Ecol 2019; 94:5033398. [PMID: 29878184 DOI: 10.1093/femsec/fiy107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/01/2018] [Indexed: 11/14/2022] Open
Abstract
Phages, the viruses of bacteria, have been proposed as antibacterial agents to complement or replace antibiotics due to the growing problem of resistance. In nature and in the clinic, antibiotics are ubiquitous and may affect phages indirectly via impacts on bacterial hosts. Even if the synergistic association of phages and antibiotics has been shown in several studies, the focus is often on bacteria with little known about the impact on phages. Evolutionary studies have demonstrated that time scale is an important factor in understanding the consequences of antimicrobial strategies, but this perspective is generally overlooked in phage-antibiotic combination studies. Here, we explore the effects of antibiotics on phages targeting the opportunistic pathogen Pseudomonas aeruginosa. We go beyond previous studies by testing the interaction between several types of antibiotics and phages, and evaluate the effects on several important phage parameters during 8 days of experimental co-evolution with bacteria. Our study reveals that antibiotics had a negative effect on phage density and efficacy early on, but not in the later stages of the experiment. The results indicate that antibiotics can affect phage adaptation, but that phages can nevertheless contribute to managing antibiotic resistance levels.
Collapse
Affiliation(s)
- Clara Torres-Barceló
- University of Reunion Island, UMR PVBMT, 7 chemin de l'Irat, F-97410 Saint-Pierre, La Réunion, France.,Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - James Gurney
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - Claire Gougat-Barberá
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - Marie Vasse
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, Université Montpellier, Place E Bataillon 34095, Montpellier, France.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
19
|
Dos Santos PT, Larsen PT, Menendez-Gil P, Lillebæk EMS, Kallipolitis BH. Listeria monocytogenes Relies on the Heme-Regulated Transporter hrtAB to Resist Heme Toxicity and Uses Heme as a Signal to Induce Transcription of lmo1634, Encoding Listeria Adhesion Protein. Front Microbiol 2018; 9:3090. [PMID: 30619169 PMCID: PMC6305404 DOI: 10.3389/fmicb.2018.03090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/29/2018] [Indexed: 01/29/2023] Open
Abstract
For pathogenic bacteria, host-derived heme represents an important metabolic cofactor and a source for iron. However, high levels of heme are toxic to bacteria. We have previously shown that excess heme has a growth-inhibitory effect on the Gram-positive foodborne pathogen Listeria monocytogenes, and we have learned that the LhrC1-5 family of small RNAs, together with the two-component system (TCS) LisRK, play a role in the adaptation of L. monocytogenes to heme stress conditions. However, a broader knowledge on how this pathogen responds to heme toxicity is still lacking. Here, we analyzed the global transcriptomic response of L. monocytogenes to heme stress. We found that the response of L. monocytogenes to excess heme is multifaceted, involving various strategies acting to minimize the toxic effects of heme. For example, heme exposure triggers the SOS response that deals with DNA damage. In parallel, L. monocytogenes shuts down the transcription of genes involved in heme/iron uptake and utilization. Furthermore, heme stress resulted in a massive increase in the transcription of a putative heme detoxification system, hrtAB, which is highly conserved in Gram-positive bacteria. As expected, we found that the TCS HssRS is required for heme-mediated induction of hrtAB and that a functional heme efflux system is essential for L. monocytogenes to resist heme toxicity. Curiously, the most highly up-regulated gene upon heme stress was lmo1634, encoding the Listeria adhesion protein, LAP, which acts to promote the translocation of L. monocytogenes across the intestinal barrier. Additionally, LAP is predicted to act as a bifunctional acetaldehyde-CoA/alcohol dehydrogenase. Surprisingly, a mutant lacking lmo1634 grows well under heme stress conditions, showing that LAP is not required for L. monocytogenes to resist heme toxicity. Likewise, a functional ResDE TCS, which contributes to heme-mediated expression of lmo1634, is not required for the adaptation of L. monocytogenes to heme stress conditions. Collectively, this study provides novel insights into the strategies employed by L. monocytogenes to resist heme toxicity. Our findings indicate that L. monocytogenes is using heme as a host-derived signaling molecule to control the expression of its virulence genes, as exemplified by lmo1634.
Collapse
Affiliation(s)
| | - Pernille Tholund Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pilar Menendez-Gil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
20
|
Association of Anoxybacillus sp. with acid off-flavor development in a spoiled, boiled, rice dish. Int J Food Microbiol 2018; 286:111-119. [PMID: 30059888 DOI: 10.1016/j.ijfoodmicro.2018.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 07/21/2018] [Indexed: 11/21/2022]
Abstract
Off-flavor is one of the most common food complaints. In this study, we demonstrated that acetic acid produced by Anoxybacillus sp. contamination of takikomi-gohan (boiled rice with sweet potato mixed in advance) was considered the causative agent of acid off-flavor development. First, we conducted whole genome sequencing of the bacterial strain (S1674) isolated from the remains of the contaminated takikomi-gohan, and phylogenetic analysis of k-mer diversity demonstrated that S1674 belongs to the Anoxybacillus genus. Gene expression analysis of S1674 RNA sequencing (RNA-seq) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the genes encoding enzymes responsible for acetic acid formation, namely ackA1, eutD, pflA, pflB, and pykA, were upregulated in high-temperature cultures in Thermus medium supplemented with soluble starch. Additionally, we succeeded in reproducing the acid off-flavor by adding S1674 to boiled rice stored at 37 °C, 45 °C, and 60 °C. The most strongly detected organic acid was acetic acid, at the odor threshold value or more in both the air and condensation samples. Our findings suggest that some Anoxybacillus sp. produce acetic acid as a byproduct of carbohydrate metabolism, potentially causing the complaint of acid off-flavor even under high-temperature conditions in which other bacteria cannot survive.
Collapse
|
21
|
Martínez-Servat S, Yero D, Huedo P, Marquez R, Molina G, Daura X, Gibert I. Heterogeneous Colistin-Resistance Phenotypes Coexisting in Stenotrophomonas maltophilia Isolates Influence Colistin Susceptibility Testing. Front Microbiol 2018; 9:2871. [PMID: 30524420 PMCID: PMC6262003 DOI: 10.3389/fmicb.2018.02871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
The polymyxin antibiotic colistin shows in vitro activity against Stenotrophomonas maltophilia. However, an increased incidence of colistin-resistant isolates has been recently observed. In addition, in vitro evaluation of colistin susceptibility for this organism has been problematic. The aims of this study were to investigate the colistin-resistance phenotypes displayed by S. maltophilia and their potential association with the challenging determination of colistin susceptibilities for this organism by even the recommended method. Colistin-resistance phenotypes were inferred by use of the recommended broth microdilution method in different clinical isolates of S. maltophilia. Most of the strains showed non-interpretable minimum inhibitory concentrations (MICs) for colistin due to an incomplete growth inhibition in wells of the microdilution plate. In addition, the subpopulation of bacteria resistant to colistin showed an increased ability to form biofilms on the plastic surface of MIC plates. The observed incomplete growth inhibition in the microdilution plates is compatible with a progressive adaptation to colistin or a heterogeneous susceptibility to this antibiotic. Therefore, to determine the existence of heteroresistance or adaptive resistance, four colistin-resistant clinical isolates were subjected to serial Etest assays, growth rate analyses, and the population analysis profile test. The experiments indicated that these S. maltophilia isolates display a colistin-resistant sub-population that survives and multiplies in the presence of the antibiotic. Interestingly, this phenomenon might not be explainable by the natural background mutation rate alone since the development of a resistant sub-population occurred upon the contact with the antibiotic and it was reversible. This complex colistin-resistance phenotype is exhibited differently by the different isolates and significantly affected colistin susceptibility testing. Furthermore, it can coexist with adaptive resistance to colistin as response to pre-incubation with sub-inhibitory concentrations of the antibiotic. Overall, the combined action of heterogeneous colistin-resistance mechanisms in S. maltophilia isolates, including colistin-induced biofilm formation, may hamper the correct interpretation of colistin susceptibility tests, thus having potentially serious implications on antimicrobial-therapy decision making.
Collapse
Affiliation(s)
- Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roser Marquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gara Molina
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infect 2018; 7:168. [PMID: 30302018 PMCID: PMC6177407 DOI: 10.1038/s41426-018-0169-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Abstract
Faced with the crisis of multidrug-resistant bacteria, bacteriophages, viruses that infect and replicate within bacteria, have been reported to have both beneficial and detrimental effects with respect to disease management. Bacteriophages (phages) have important ecological and evolutionary impacts on their bacterial hosts and have been associated with therapeutic use to kill bacterial pathogens, but can lead to the transmission of antibiotic resistance. Although the process known as transduction has been reported for many bacterial species by classic and modern genetic approaches, its contribution to the spread of antibiotic resistance in nature remains unclear. In addition, detailed molecular studies have identified phages residing in bacterial genomes, revealing unexpected interactions between phages and their bacterial hosts. Importantly, antibiotics can induce the production of phages and phage-encoded products, disseminating these viruses and virulence-related genes, which have dangerous consequences for disease severity. These unwanted side-effects of antibiotics cast doubt on the suitability of some antimicrobial treatments and may require new strategies to prevent and limit the selection for virulence. Foremost among these treatments is phage therapy, which could be used to treat many bacterial infectious diseases and confront the pressing problem of antibiotic resistance in pathogenic bacteria. This review discusses the interactions between bacteriophages, antibiotics, and bacteria and provides an integrated perspective that aims to inspire the development of successful antibacterial therapies.
Collapse
|
23
|
Horn N, Bhunia AK. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection. Front Microbiol 2018; 9:1962. [PMID: 30190712 PMCID: PMC6115488 DOI: 10.3389/fmicb.2018.01962] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of foodborne outbreaks and product recalls is on the rise. The ability of the pathogen to adapt and survive under stressful environments of food processing and the host gastrointestinal tract may contribute to increasing foodborne illnesses. In the host, multiple factors such as bacteriolytic enzymes, acidic pH, bile, resident microflora, antimicrobial peptides, and innate and adaptive immune responses are essential in eliminating pathogens. Likewise, food processing and preservation techniques are employed to eliminate or reduce human pathogens load in food. However, sub-lethal processing or preservation treatments may evoke bacterial coping mechanisms that alter gene expression, specifically and broadly, resulting in resistance to the bactericidal insults. Furthermore, environmentally cued changes in gene expression can lead to changes in bacterial adhesion, colonization, invasion, and toxin production that contribute to pathogen virulence. The shared microenvironment between the food preservation techniques and the host gastrointestinal tract drives microbes to adapt to the stressful environment, resulting in enhanced virulence and infectivity during a foodborne illness episode.
Collapse
Affiliation(s)
- Nathan Horn
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
24
|
Ranieri MR, Whitchurch CB, Burrows LL. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr Opin Microbiol 2018; 45:164-169. [PMID: 30053750 DOI: 10.1016/j.mib.2018.07.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
Biofilms are a typical mode of growth for most microorganisms and provide them with a variety of survival benefits. Biofilms can pose medical and industrial challenges due to their increased tolerance of antimicrobials and disinfectants. Exposure of bacteria to subinhibitory concentrations of those compounds can further exacerbate the problem, as they provoke physiological changes that lead to increased biofilm production and potential therapeutic failure. The protected niche of a biofilm provides conditions that promote selection for persisters and resistant mutants. In this review we discuss our current understanding of the mechanisms underlying biofilm stimulation in response to subinhibitory antimicrobials, and how we might exploit this 'anti-antibiotic' phenotype to treat biofilm-related infections and discover new compounds.
Collapse
Affiliation(s)
- Michael Rm Ranieri
- Dept. of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Canada
| | | | - Lori L Burrows
- Dept. of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Canada.
| |
Collapse
|
25
|
Mack SG, Turner RL, Dwyer DJ. Achieving a Predictive Understanding of Antimicrobial Stress Physiology through Systems Biology. Trends Microbiol 2018. [PMID: 29530606 DOI: 10.1016/j.tim.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dramatic spread and diversity of antibiotic-resistant pathogens has significantly reduced the efficacy of essentially all antibiotic classes, bringing us ever closer to a postantibiotic era. Exacerbating this issue, our understanding of the multiscale physiological impact of antimicrobial challenge on bacterial pathogens remains incomplete. Concerns over resistance and the need for new antibiotics have motivated the collection of omics measurements to provide systems-level insights into antimicrobial stress responses for nearly 20 years. Although technological advances have markedly improved the types and resolution of such measurements, continued development of mathematical frameworks aimed at providing a predictive understanding of complex antimicrobial-associated phenotypes is critical to maximize the utility of multiscale data. Here we highlight recent efforts utilizing systems biology to enhance our knowledge of antimicrobial stress physiology. We provide a brief historical perspective of antibiotic-focused omics measurements, highlight new measurement discoveries and trends, discuss examples and opportunities for integrating measurements with mathematical models, and describe future challenges for the field.
Collapse
Affiliation(s)
- Sean G Mack
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Randi L Turner
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel J Dwyer
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Sciences & Technology, University of Maryland, College Park, MD 20742, USA; Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Curtis TD, Takeuchi I, Gram L, Knudsen GM. The Influence of the Toxin/Antitoxin mazEF on Growth and Survival of Listeria monocytogenes under Stress. Toxins (Basel) 2017; 9:E31. [PMID: 28098783 PMCID: PMC5308263 DOI: 10.3390/toxins9010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/31/2016] [Accepted: 01/07/2017] [Indexed: 12/11/2022] Open
Abstract
A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (σB). Type II Toxin/Antitoxin (TA) systems are also known to have a role in the bacterial stress response upon activation via the ClpP or Lon proteases. Directly upstream of the σB operon in L. monocytogenes is the TA system mazEF, which can cleave mRNA at UACMU sites. In this study, we showed that the mazEF TA locus does not affect the level of persister formation during treatment with antibiotics in lethal doses, but exerts different effects according to the sub-inhibitory stress added. Growth of a ΔmazEF mutant was enhanced relative to the wildtype in the presence of sub-inhibitory norfloxacin and at 42 °C, but was decreased when challenged with ampicillin and gentamicin. In contrast to studies in Staphylococcus aureus, we found that the mazEF locus did not affect transcription of genes within the σB operon, but MazEF effected the expression of the σB-dependent genes opuCA and lmo0880, with a 0.22 and 0.05 fold change, respectively, compared to the wildtype under sub-inhibitory norfloxacin conditions. How exactly this system operates remains an open question, however, our data indicates it is not analogous to the system of S. aureus, suggesting a novel mode of action for MazEF in L. monocytogenes.
Collapse
Affiliation(s)
- Thomas D Curtis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| | - Ippei Takeuchi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| | - Gitte M Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
27
|
Van Acker H, Coenye T. The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria. Trends Microbiol 2017; 25:456-466. [PMID: 28089288 DOI: 10.1016/j.tim.2016.12.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/26/2022]
Abstract
Recently, it was proposed that there is a common mechanism behind the activity of bactericidal antibiotics, involving the production of reactive oxygen species (ROS). However, the involvement of ROS in antibiotic-mediated killing has become the subject of much debate. In the present review, we provide an overview of the data supporting the ROS hypothesis; we also present data that explain the contradictory results often obtained when studying antibiotic-induced ROS production. For this latter aspect we will focus on the importance of taking the experimental setup into consideration and on the importance of some technical aspects of the assays typically used. Finally, we discuss the link between ROS production and toxin-antitoxin modules, and present an overview of implications for treatment.
Collapse
Affiliation(s)
- Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|