1
|
Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification-based systems and lateral flow assays. This review explores state-of-the-art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point-of-care adaptability. Additionally, next-generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end-users are highlighted. An emerging example of these next-generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated proteins (Cas), in combination with integrated point-of-care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.
Collapse
Affiliation(s)
- Gözde Kabay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
- Institute of Functional Interfaces - IFG, Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany
| | - Jonalyn DeCastro
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Alara Altay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Kasey Smith
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Hsiang-Wei Lu
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Maryam Moarefian
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea Bio Inc., San Diego, CA, 92121, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
2
|
Nasrin F, Tsuruga K, Utomo DIS, Chowdhury AD, Park EY. Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses. BIOSENSORS 2021; 11:376. [PMID: 34677332 PMCID: PMC8533959 DOI: 10.3390/bios11100376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022]
Abstract
The treatment for mosquito-borne viral diseases such as dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV) has become difficult due to delayed diagnosis processes. In addition, sharing the same transmission media and similar symptoms at the early stage of infection of these diseases has become more critical for early diagnosis. To overcome this, a common platform that can identify the virus with high sensitivity and selectivity, even for the different serotypes, is in high demand. In this study, we have attempted an electrochemical impedimetric method to detect the ZIKV, DENV, and CHIKV using their corresponding antibody-conjugated sensor electrodes. The significance of this method is emphasized on the fabrication of a common matrix of gold-polyaniline and sulfur, nitrogen-doped graphene quantum dot nanocomposites (Au-PAni-N,S-GQDs), which have a strong impedimetric response based only on the conjugated antibody, resulting in minimum cross-reactivity for the detection of various mosquito-borne viruses, separately. As a result, four serotypes of DENV and ZIKV, and CHIKV have been detected successfully with an LOD of femtogram mL-1.
Collapse
Affiliation(s)
- Fahmida Nasrin
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (F.N.); (A.D.C.)
| | - Kenta Tsuruga
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Doddy Irawan Setyo Utomo
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Ankan Dutta Chowdhury
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (F.N.); (A.D.C.)
| | - Enoch Y. Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (F.N.); (A.D.C.)
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| |
Collapse
|
3
|
Intrinsically conductive polymers hybrid bilayer films for the fluorescence molecular diagnosis of the Zika virus. Colloids Surf B Biointerfaces 2021; 208:112120. [PMID: 34597940 DOI: 10.1016/j.colsurfb.2021.112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022]
Abstract
In 2016, the Zika virus (ZIKV) infection became a major public health problem, after the discovery that an alarming increase in the number of Brazilian newborns with microcephaly could be associated with the occurrence of this viral disease during the pregnancy of their mothers. The urgent need for simple diagnostic methods that allow rapid screening of suspected cases has stimulated the search for low-cost devices capable of detecting specific sequences of nucleic acids. The present work describes the development of nanostructured films formed by bilayers of conjugated polymers for rapid detection of the presence of Zika virus DNA, via fluorescence methods. For this, we initially deposited alternating layers of polyaniline (PANI) and polypyrrole (PPY) on the surface of polyethylene terephthalate (PET) sheets. The films obtained were then characterized by SEM, UV-Vis, ATR-FTIR, and contact angle measurements. For their use as quenchers for the diagnosis of Zika, a single DNA strand-specific for ZIKV was labeled with a fluorophore (FAM-ssDNA). We determined the time required for the saturation of the interaction between probe FAM-ssDNA and the film (180 min) and the time for the maximal hybridization between FAM-ssDNA and target DNA to occur (60 min). The detection limits were estimated as 345 pM and 278 pM for the PET/PPY-PANI and PET/PANI-PPY hybrid films, respectively. The simplicity of the procedure, coupled with the fact that a positive/negative response can be obtained in less than 60 min, suggests that the proposal of using these polymeric bilayer films is a promising methodology for the development of rapid molecular diagnostic tests.
Collapse
|
4
|
|
5
|
Fraiture MA, Coucke W, Pol M, Rousset D, Gourinat AC, Biron A, Broeders S, Vandermassen E, Dupont-Rouzeyrol M, Roosens NHC. Non-Invasive versus Invasive Samples for Zika Virus Surveillance: A Comparative Study in New Caledonia and French Guiana in 2015-2016. Microorganisms 2021; 9:microorganisms9061312. [PMID: 34208593 PMCID: PMC8235784 DOI: 10.3390/microorganisms9061312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Zika virus, an arbovirus responsible for major outbreaks, can cause serious health issues, such as neurological diseases. In the present study, different types of samples (serum, saliva, and urine), collected in 2015–2016 in New Caledonia and French Guiana from 53 patients presenting symptoms and clinical signs triggered by arbovirus infections, were analyzed using a recently developed, and in-house validated, 4-plex RT-qPCR TaqMan method for simultaneous detection and discrimination of the Zika and Chikungunya viruses. Subsequently, statistical analyses were performed in order to potentially establish recommendations regarding the choice of samples type to use for an efficient and early stage Zika infection diagnosis. On this basis, the use of only urine samples presented the highest probability to detect viral RNA from Zika virus. Moreover, such a probability was improved using both urine and saliva samples. Consequently, the added value of non-invasive samples, associated with a higher acceptance level for collection among patients, instead of serum samples, for the detection of Zika infections was illustrated.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
| | - Wim Coucke
- Quality of Laboratories, Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium;
| | - Morgane Pol
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Dominique Rousset
- Laboratoire de Virologie CNR Arbovirus, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, CEDEX, 97306 Cayenne, French Guiana;
| | - Ann-Claire Gourinat
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Antoine Biron
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Sylvia Broeders
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
- Quality of Laboratories, Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium;
| | - Els Vandermassen
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
| | - Myrielle Dupont-Rouzeyrol
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Nancy H. C. Roosens
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
- Correspondence: ; Tel.: +32-(0)-2-642-52-58
| |
Collapse
|
6
|
Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021; 7:2150-2176. [PMID: 33979143 PMCID: PMC8130531 DOI: 10.1021/acsbiomaterials.1c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Human respiratory viral infections are the leading cause of morbidity and mortality around the world. Among the various respiratory viruses, coronaviruses (e.g., SARS-CoV-2) have created the greatest challenge and most frightening health threat worldwide. Human coronaviruses typically infect the upper respiratory tract, causing illnesses that range from common cold-like symptoms to severe acute respiratory infections. Several promising vaccine formulations have become available since the beginning of 2021. Nevertheless, achievement of herd immunity is still far from being realized. Social distancing remains the only effective measure against SARS-CoV-2 infection. Nanobiotechnology enables the design of nanobiosensors. These nanomedical diagnostic devices have opened new vistas for early detection of viral infections. The present review outlines recent research on the effectiveness of nanoplatforms as diagnostic and antiviral tools against coronaviruses. The biological properties of coronavirus and infected host organs are discussed. The challenges and limitations encountered in combating SARS-CoV-2 are highlighted. Potential nanodevices such as nanosensors, nanobased vaccines, and smart nanomedicines are subsequently presented for combating current and future mutated versions of coronaviruses.
Collapse
Affiliation(s)
- Elham Bidram
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Yasaman Esmaeili
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Abbas Amini
- Centre
for Infrastructure Engineering, Western
Sydney University, Locked
Bag 1797, Penrith 2751, New South Wales, Australia
- Department
of Mechanical Engineering, Australian College
of Kuwait, Al Aqsa Mosque
Street, Mishref, Safat 13015, Kuwait
| | - Rossella Sartorius
- Institute
of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, Naples 80131, Italy
| | - Franklin R. Tay
- The
Graduate
School, Augusta University, 1120 15th Street, Augusta, Georgia 30912, United States
| | - Laleh Shariati
- Applied
Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
- Department
of Biomaterials, Nanotechnology and Tissue Engineering, School of
Advanced Technologies in Medicine, Isfahan
University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Pooyan Makvandi
- Centre
for Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
| |
Collapse
|
7
|
Banik S, Melanthota SK, Arbaaz, Vaz JM, Kadambalithaya VM, Hussain I, Dutta S, Mazumder N. Recent trends in smartphone-based detection for biomedical applications: a review. Anal Bioanal Chem 2021; 413:2389-2406. [PMID: 33586007 PMCID: PMC7882471 DOI: 10.1007/s00216-021-03184-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 11/06/2022]
Abstract
Smartphone-based imaging devices (SIDs) have shown to be versatile and have a wide range of biomedical applications. With the increasing demand for high-quality medical services, technological interventions such as portable devices that can be used in remote and resource-less conditions and have an impact on quantity and quality of care. Additionally, smartphone-based devices have shown their application in the field of teleimaging, food technology, education, etc. Depending on the application and imaging capability required, the optical arrangement of the SID varies which enables them to be used in multiple setups like bright-field, fluorescence, dark-field, and multiple arrays with certain changes in their optics and illumination. This comprehensive review discusses the numerous applications and development of SIDs towards histopathological examination, detection of bacteria and viruses, food technology, and routine diagnosis. Smartphone-based devices are complemented with deep learning methods to further increase the efficiency of the devices. Graphical Abstract.
Collapse
Affiliation(s)
- Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arbaaz
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joel Markus Vaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vishak Madhwaraj Kadambalithaya
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Iftak Hussain
- Center for Healthcare Entrepreneurship, Indian Institute of Technology, Hyderabad, Telangana, 502285, India
| | - Sibasish Dutta
- Department of Physics, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj, Assam, 788723, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
9
|
Versiani AF, Martins EMN, Andrade LM, Cox L, Pereira GC, Barbosa-Stancioli EF, Nogueira ML, Ladeira LO, da Fonseca FG. Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections. Sci Rep 2020; 10:11302. [PMID: 32647259 PMCID: PMC7347616 DOI: 10.1038/s41598-020-68357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/22/2020] [Indexed: 01/16/2023] Open
Abstract
The Flaviviridae virus family was named after the Yellow-fever virus, and the latin term flavi means “of golden color”. Dengue, caused by Dengue virus (DENV), is one of the most important infectious diseases worldwide. A sensitive and differential diagnosis is crucial for patient management, especially due to the occurrence of serological cross-reactivity to other co-circulating flaviviruses. This became particularly important with the emergence of Zika virus (ZIKV) in areas were DENV seroprevalence was already high. We developed a sensitive and specific diagnostic test based on gold nanorods (GNR) functionalized with DENV proteins as nanosensors. These were able to detect as little as one picogram of anti-DENV monoclonal antibodies and highly diluted DENV-positive human sera. The nanosensors could differentiate DENV-positive sera from other flavivirus-infected patients, including ZIKV, and were even able to distinguish which DENV serotype infected individual patients. Readouts are obtained in ELISA-plate spectrophotometers without the need of specific devices.
Collapse
Affiliation(s)
- Alice F Versiani
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Estefânia M N Martins
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear-CDTN/CNEN, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lidia M Andrade
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura Cox
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Edel F Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauricio L Nogueira
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Luiz O Ladeira
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio G da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Jorge FA, Thomazella MV, Castro Moreira D, Lopes LDG, Teixeira JJV, Bertolini DA. Evolutions and upcoming on Zika virus diagnosis through an outbreak: A systematic review. Rev Med Virol 2020; 30:e2105. [DOI: 10.1002/rmv.2105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Fernando A. Jorge
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Mateus V. Thomazella
- Medical Research Laboratory, School of MedicineUniversity of São Paulo São Paulo Brazil
| | - Deborah Castro Moreira
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Luciana D. G. Lopes
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Jorge J. V. Teixeira
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| | - Dennis A. Bertolini
- Department of Clinical Analysis and BiomedicineState University of Maringá Maringá Brazil
| |
Collapse
|
11
|
Yoon J, Shin M, Lee T, Choi JW. Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E299. [PMID: 31936530 PMCID: PMC7013709 DOI: 10.3390/ma13020299] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Biosensors are very important for detecting target molecules with high accuracy, selectivity, and signal-to-noise ratio. Biosensors developed using biomolecules such as enzymes or nucleic acids which were used as the probes for detecting the target molecules were studied widely due to their advantages. For example, enzymes can react with certain molecules rapidly and selectively, and nucleic acids can bind to their complementary sequences delicately in nanoscale. In addition, biomolecules can be immobilized and conjugated with other materials by surface modification through the recombination or introduction of chemical linkers. However, these biosensors have some essential limitations because of instability and low signal strength derived from the detector biomolecules. Functional nanomaterials offer a solution to overcome these limitations of biomolecules by hybridization with or replacing the biomolecules. Functional nanomaterials can give advantages for developing biosensors including the increment of electrochemical signals, retention of activity of biomolecules for a long-term period, and extension of investigating tools by using its unique plasmonic and optical properties. Up to now, various nanomaterials were synthesized and reported, from widely used gold nanoparticles to novel nanomaterials that are either carbon-based or transition-metal dichalcogenide (TMD)-based. These nanomaterials were utilized either by themselves or by hybridization with other nanomaterials to develop highly sensitive biosensors. In this review, highly sensitive biosensors developed from excellent novel nanomaterials are discussed through a selective overview of recently reported researches. We also suggest creative breakthroughs for the development of next-generation biosensors using the novel nanomaterials for detecting harmful target molecules with high sensitivity.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea; (J.Y.); (M.S.)
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea; (J.Y.); (M.S.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea;
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea; (J.Y.); (M.S.)
| |
Collapse
|
12
|
Ribeiro JFF, Pereira MIA, Assis LG, Cabral Filho PE, Santos BS, Pereira GAL, Chaves CR, Campos GS, Sardi SI, Pereira G, Fontes A. Quantum dots-based fluoroimmunoassay for anti-Zika virus IgG antibodies detection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:135-139. [PMID: 30954872 DOI: 10.1016/j.jphotobiol.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Zika virus (ZIKV) has been declared a public health emergency of international concern. ZIKV has been associated with some neurological disorders, and their long-term effects are not completely understood. The majority of the methods for ZIKV diagnosis are based on the detection of IgM antibodies, which are the first signs of immunological response. However, the detection of IgG antibodies can be an important approach for ZIKV past infection diagnosis, especially for pregnant women, helping the comprehension/treatment of this disease. There has been a growing interest in applying nanoparticles for efficient ZIKV or antibodies detection. Quantum dots (QD) are unique fluorescent semiconductor nanoparticles, highly versatile for biological applications. In the present study, we explored the special QD optical properties to develop an immunofluorescence assay for anti-ZIKV IgG antibodies detection. Anti-IgG antibodies were successfully conjugated with QDs and applied in a fluorescence sensing nanoplatform. After optimization using IgG antibodies, the conjugates were employed to detect anti-ZIKV IgG antibodies in polystyrene microplates sensitized with ZIKV envelope E protein. The nanoplatform was able to detect anti-ZIKV IgG antibodies in a concentration at least 100-fold lower than the amount expected for protein E immune response. Moreover, conjugates were able to detect the antibodies for at least 4 months. Thus, our results showed that this QDs-based fluoroimmunoplatform can be considered practical, simple and promising to detect Zika past infections and/or monitoring immune response in vaccine trials.
Collapse
Affiliation(s)
- Jéssika F F Ribeiro
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria I A Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Lara G Assis
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Claudilene R Chaves
- Departamento de Ciências da Biointeração, Universidade Federal da Bahia, Bahia, BA, Brazil
| | - Gubio S Campos
- Departamento de Ciências da Biointeração, Universidade Federal da Bahia, Bahia, BA, Brazil
| | - Sílvia I Sardi
- Departamento de Ciências da Biointeração, Universidade Federal da Bahia, Bahia, BA, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
13
|
Development and Validation of Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) for Rapid Detection of ZIKV in Mosquito Samples from Brazil. Sci Rep 2019; 9:4494. [PMID: 30872672 PMCID: PMC6418238 DOI: 10.1038/s41598-019-40960-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
The rapid spread of Zika virus (ZIKV) represents a global public health problem, especially in areas that harbor several mosquito species responsible for virus transmission, such as Brazil. In these areas, improvement in mosquito control needs to be a top priority, but mosquito viral surveillance occurs inefficiently in ZIKV-endemic countries. Quantitative reverse transcription PCR (qRT-PCR) is the gold standard for molecular diagnostic of ZIKV in both human and mosquito samples. However, the technique presents high cost and limitations for Point-of-care (POC) diagnostics, which hampers its application for a large number of samples in entomological surveillance programs. Here, we developed and validated a one-step reverse transcription LAMP (RT-LAMP) platform for detection of ZIKV in mosquito samples. The RT-LAMP assay was highly specific for ZIKV and up to 10,000 times more sensitive than qRT-PCR. Assay validation was performed using 60 samples from Aedes aegypti and Culex quinquefasciatus mosquitoes collected in Pernambuco State, Brazil, which is at the epicenter of the Zika epidemic. The RT-LAMP had a sensitivity of 100%, specificity of 91.18%, and overall accuracy of 95.24%. Thus, our POC diagnostics is a powerful and inexpensive tool to monitor ZIKV in mosquito populations and will allow developing countries to establish better control strategies for this devastating pathogen.
Collapse
|
14
|
Takemura K, Adegoke O, Suzuki T, Park EY. A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus. PLoS One 2019; 14:e0211517. [PMID: 30703161 PMCID: PMC6355018 DOI: 10.1371/journal.pone.0211517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Among the members of flaviviruses, the Zika virus (ZIKV) remains a potent infectious disease agent, with its associated pandemic prompting the World Health Organization (WHO) to declare it a global public health concern. Thus, rapid and accurate diagnosis of the ZIKV is needed. In this study, we report a new immunofluorescence biosensor for the detection of nonstructural protein 1 (NS1) of the ZIKV, which operates using the localized surface plasmon resonance (LSPR) signal from plasmonic gold nanoparticles (AuNPs) to amplify the fluorescence intensity signal of quantum dots (QDs) within an antigen-antibody detection process. The LSPR signal from the AuNPs was used to amplify the fluorescence intensity of the QDs. For ultrasensitive, rapid, and quantitative detection of NS1 of the ZIKV, four different thiol-capped AuNPs were investigated. Our biosensor could detect the ZIKV in a wide concentration range from 10-107 RNA copies/mL, and we found that the limit of detection (LOD) for the ZIKV followed the order Ab-L-cysteine-AuNPs (LOD = 8.2 copies/mL) > Ab-3-mercaptopropionic acid-AuNPs (LOD = 35.0 copies/mL). Immunofluorescence biosensor for NS1 exhibited excellent specificity against other negative control targets and could also detect the ZIKV in human serum.
Collapse
Affiliation(s)
- Kenshin Takemura
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka Japan
| | - Oluwasesan Adegoke
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Handa-yama, Hamamatsu Japan
| | - Enoch Y. Park
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Suruga-ku, Shizuoka Japan
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka Japan
| |
Collapse
|
15
|
Vasileva Wand NI, Bonney LC, Watson RJ, Graham V, Hewson R. Point-of-care diagnostic assay for the detection of Zika virus using the recombinase polymerase amplification method. J Gen Virol 2018; 99:1012-1026. [PMID: 29897329 PMCID: PMC6171711 DOI: 10.1099/jgv.0.001083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/05/2018] [Indexed: 01/25/2023] Open
Abstract
The sudden and explosive expansion of Zika virus (ZIKV) from the African continent through Oceania and culminating in the outbreak in South America has highlighted the importance of new rapid point-of-care diagnostic tools for the control and prevention of transmission. ZIKV infection has devastating consequences, such as neurological congenital malformations in infants born to infected mothers and Guillain-Barré syndrome in adults. Additionally, its potential for transmission through vector bites, as well as from person to person through blood transfusions and sexual contact, are important considerations for prompt diagnosis. Recombinase polymerase amplification (RPA), an isothermal method, was developed as an alternative field-applicable assay to PCR. Here we report the development of a novel ZIKV real-time reverse transcriptase RPA (RT-RPA) assay capable of detecting a range of different ZIKV strains from a variety of geographical locations. The ZIKV RT-RPA was shown to be highly sensitive, being capable of detecting as few as five copies of target nucleic acid per reaction, and suitable for use with a battery-operated portable device. The ZIKV RT-RPA demonstrated 100 % specificity and 83 % sensitivity in clinical samples. Furthermore, we determined that the ZIKV RT-RPA is a versatile assay that can be applied to crude samples, such as saliva and serum, and can be used as a vector surveillance tool on crude mosquito homogenates. Therefore, the developed ZIKV RT-RPA is a useful diagnostic tool that can be transferred to a resource-limited location, eliminating the need for a specialized and sophisticated laboratory environment and highly trained staff.
Collapse
Affiliation(s)
- Nadina I. Vasileva Wand
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Laura C. Bonney
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Robert J. Watson
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
16
|
Cabral-Miranda G, Cardoso AR, Ferreira LCS, Sales MGF, Bachmann MF. Biosensor-based selective detection of Zika virus specific antibodies in infected individuals. Biosens Bioelectron 2018; 113:101-107. [PMID: 29751200 DOI: 10.1016/j.bios.2018.04.058] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 11/27/2022]
Abstract
Zika virus (ZIKV) recently emerged as a global threat subsequent to its global spread because it induces microencephaly and other brain damages in infants born to infected mothers. Epidemiological monitoring of infection has been hampered by the absence of reliable serological tests capable to distinguish between ZIKV and other Flavivirus infections, in particular Dengue virus (DENV). As both viruses are transmitted by the same mosquito-species, their distributions largely overlap and reliable serological distinction between the viruses is essential. Here we develop a novel biosensor which is based on recombinant forms of ZIKV non-structural protein 1 (NS1) and the domain III of the envelope protein (EDIII). Using electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), we demonstrate that in addition to extremely sensitive detection of ZIKV-specific antibodies in serum and saliva, the biosensor promptly distinguished ZIKV and DENV-specific antibodies. Hence, this novel biosensor allows assessing ZIKV antibodies in blood and saliva and results are unaffected by presence of DENV virus-specific antibodies.
Collapse
Affiliation(s)
- Gustavo Cabral-Miranda
- Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford, UK
| | - Ana R Cardoso
- BioMark-Centre of Biological Engineering/ISEP, School of Engineering of the Polytechnique School of Porto, Portugal
| | - Luis C S Ferreira
- Institute of Biomedical Science; University of São Paulo (ICB-USP), Brazil
| | - M Goreti F Sales
- BioMark-Centre of Biological Engineering/ISEP, School of Engineering of the Polytechnique School of Porto, Portugal.
| | - Martin F Bachmann
- Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford, UK; Immunology, RIA, Inselspital, University of Bern, Switzerland.
| |
Collapse
|
17
|
Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol. Sci Rep 2018; 8:5417. [PMID: 29615665 PMCID: PMC5883038 DOI: 10.1038/s41598-018-23641-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile “pocket laboratories”, will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.
Collapse
|
18
|
Abstract
Since the emergence and dissemination of Zika virus (ZIKV) in late 2015, our understanding of the biology, transmission, clinical disease, and potential sequelae associated with infection has markedly expanded. Over the past 2 years, the number of diagnostic assays for ZIKV has increased from none in 2015 to 5 serological assays and 14 molecular assays in 2017, all with emergency use authorization granted through the U.S. Food and Drug Administration. Here we provide an update on ZIKV, addressing what we have collectively learned since the outbreak began, including a summary of currently available diagnostic assays for this virus.
Collapse
|
19
|
Darrigo LG, de Sant'Anna Carvalho AM, Machado CM. Chikungunya, Dengue, and Zika in Immunocompromised Hosts. Curr Infect Dis Rep 2018; 20:5. [PMID: 29551005 PMCID: PMC5857271 DOI: 10.1007/s11908-018-0612-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Describe the characteristics of chikungunya, dengue, and Zika in transplant recipients and immunocompromised hosts. RECENT FINDINGS Stem cell/bone marrow grafts, organs, and blood transfusions can transmit CHIKV/DENV/ZIKV infections, which are clinically similar, resembling influenza-like illness. Laboratory confirmation is necessary. In the acute phase, RT-PCR is preferred. DENV and ZIKV serology may cross-react. Delayed engraftment and extended viruria is observed in ZIKV+/HSCT recipients, while longer viremia is observed in DENV+/HSCT patients. Arbovirus persistence in organ tissues is generally unknown. Vaccine development is in early stages for CHIKV/ZIKV. No data is available to recommend the licensed DENV vaccine in transplant recipients. In endemic areas, the assessment of epidemiological risk is mandatory. Donor deferral for 120 days in suspected or confirmed ZIKV+ has been recommended, while CHIKV+ donors should wait 30 days. No deferral is recommended for DENV+ donors. CHIKV/DENV/ZIKV tests should be included in the differential of febrile neutropenia and other transplant syndromes. Reassessment of DENV serology is urgently needed. Prospective studies are necessary to determine the impact of CHIKV/DENV/ZIKV in this special population.
Collapse
Affiliation(s)
- Luiz Guilherme Darrigo
- Bone Marrow Transplant Unit - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre Machado de Sant'Anna Carvalho
- Virology Laboratory - Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470 - 2nd floor, São Paulo, SP, 05403-000, Brazil
| | - Clarisse Martins Machado
- Virology Laboratory - Institute of Tropical Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470 - 2nd floor, São Paulo, SP, 05403-000, Brazil.
- HSCT Program, Amaral Carvalho Foundation, Jahu, São Paulo, Brazil.
| |
Collapse
|
20
|
Yaren O, Alto BW, Bradley KM, Moussatche P, Glushakova L, Benner SA. Multiplexed Isothermal Amplification Based Diagnostic Platform to Detect Zika, Chikungunya, and Dengue 1. J Vis Exp 2018. [PMID: 29608170 DOI: 10.3791/57051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zika, dengue, and chikungunya viruses are transmitted by mosquitoes, causing diseases with similar patient symptoms. However, they have different downstream patient-to-patient transmission potentials, and require very different patient treatments. Thus, recent Zika outbreaks make it urgent to develop tools that rapidly discriminate these viruses in patients and trapped mosquitoes, to select the correct patient treatment, and to understand and manage their epidemiology in real time. Unfortunately, current diagnostic tests, including those receiving 2016 emergency use authorizations and fast-track status, detect viral RNA by reverse transcription polymerase chain reaction (RT-PCR), which requires instrumentation, trained users, and considerable sample preparation. Thus, they must be sent to "approved" reference laboratories, requiring time. Indeed, in August 2016, the Center for Disease Control (CDC) was asking pregnant women who had been bitten by a mosquito and developed a Zika-indicating rash to wait an unacceptable 2 to 4 weeks before learning whether they were infected. We very much need tests that can be done on site, with few resources, and by trained but not necessarily licensed personnel. This video demonstrates an assay that meets these specifications, working with urine or serum (for patients) or crushed mosquito carcasses (for environmental surveillance), all without much sample preparation. Mosquito carcasses are captured on paper carrying quaternary ammonium groups (Q-paper) followed by ammonia treatment to manage biohazards. These are then directly, without RNA isolation, put into assay tubes containing freeze-dried reagents that need no chain of refrigeration. A modified form of reverse transcription loop-mediated isothermal amplification with target-specific fluorescently tagged displaceable probes produces readout, in 30 min, as a three-color fluorescence signal. This is visualized with a handheld, battery-powered device with an orange filter. Forward contamination is prevented with sealed tubes, and the use of thermolabile uracil DNA glycosylase (UDG) in the presence of dUTP in the amplification mixture.
Collapse
Affiliation(s)
- Ozlem Yaren
- Foundation for Applied Molecular Evolution (FfAME)
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida
| | | | | | | | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME); Firebird Biomolecular Sciences LLC;
| |
Collapse
|
21
|
Song G, Rho HS, Pan J, Ramos P, Yoon KJ, Medina FA, Lee EM, Eichinger D, Ming GL, Muñoz-Jordan JL, Tang H, Pino I, Song H, Qian J, Zhu H. Multiplexed Biomarker Panels Discriminate Zika and Dengue Virus Infection in Humans. Mol Cell Proteomics 2018; 17:349-356. [PMID: 29141913 PMCID: PMC5795396 DOI: 10.1074/mcp.ra117.000310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are closely related flaviviruses that cause widespread, acute febrile illnesses, notably microcephaly for fetuses of infected pregnant women. Detecting the viral cause of these illnesses is paramount to determine risks to patients, counsel pregnant women, and help fight outbreaks. A combined diagnostic algorithm for ZIKV and DENV requires Reverse transcription polymerase chain reaction (RT-PCR) and IgM antibody detection. RT-PCR differentiates between DENV and ZIKV infections during the acute phases of infection, but differentiation based on IgM antibodies is currently nearly impossible in endemic areas. We have developed a ZIKV/DENV protein array and tested it with serum samples collected from ZIKV- and DENV-infected patients and healthy subjects in Puerto Rico. Our analyses reveal a biomarker panel that are capable of discriminating ZIKV and DENV infections with high accuracy, including Capsid protein from African ZIKV strain MR766, and other 5 pair of proteins (NS1, NS2A, NS3, NS4B and NS5) from ZIKV and DENV respectively. Both sensitivity and specificity of the test for ZIKV from DENV are around 90%. We propose that the ZIKV/DENV protein array will be used in future studies to discriminate patients infected with ZIKV from DENV.
Collapse
Affiliation(s)
- Guang Song
- From the ‡Department of Pharmacology & Molecular Sciences; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Hee-Sool Rho
- From the ‡Department of Pharmacology & Molecular Sciences; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Jianbo Pan
- §Department of Ophthalmology; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Pedro Ramos
- ¶CDI Laboratories, Inc. Mayaguez, Puerto Rico 00682
| | - Ki-Jun Yoon
- ‖Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- **Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Freddy A Medina
- ‡‡Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico 00920
| | - Emily M Lee
- §§Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | | | - Guo-Li Ming
- ‖Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- **Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ¶¶The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ‖‖Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- The Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jorge L Muñoz-Jordan
- ‡‡Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico 00920
| | - Hengli Tang
- §§Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Ignacio Pino
- ¶CDI Laboratories, Inc. Mayaguez, Puerto Rico 00682
| | - Hongjun Song
- ‖Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- **Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ¶¶The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- ‖‖Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- The Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jiang Qian
- §Department of Ophthalmology; Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- From the ‡Department of Pharmacology & Molecular Sciences; Johns Hopkins School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
22
|
Singh RK, Dhama K, Karthik K, Tiwari R, Khandia R, Munjal A, Iqbal HMN, Malik YS, Bueno-Marí R. Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update. Front Microbiol 2018; 8:2677. [PMID: 29403448 PMCID: PMC5780406 DOI: 10.3389/fmicb.2017.02677] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) is associated with numerous human health-related disorders, including fetal microcephaly, neurological signs, and autoimmune disorders such as Guillain-Barré syndrome (GBS). Perceiving the ZIKA associated losses, in 2016, the World Health Organization (WHO) declared it as a global public health emergency. In consequence, an upsurge in the research on ZIKV was seen around the globe, with significant attainments over developing several effective diagnostics, drugs, therapies, and vaccines countering this life-threatening virus at an early step. State-of-art tools developed led the researchers to explore virus at the molecular level, and in-depth epidemiological investigations to understand the reason for increased pathogenicity and different clinical manifestations. These days, ZIKV infection is diagnosed based on clinical manifestations, along with serological and molecular detection tools. As, isolation of ZIKV is a tedious task; molecular assays such as reverse transcription-polymerase chain reaction (RT-PCR), real-time qRT-PCR, loop-mediated isothermal amplification (LAMP), lateral flow assays (LFAs), biosensors, nucleic acid sequence-based amplification (NASBA) tests, strand invasion-based amplification tests and immune assays like enzyme-linked immunosorbent assay (ELISA) are in-use to ascertain the ZIKV infection or Zika fever. Herein, this review highlights the recent advances in the diagnosis, surveillance, and monitoring of ZIKV. These new insights gained from the recent advances can aid in the rapid and definitive detection of this virus and/or Zika fever. The summarized information will aid the strategies to design and adopt effective prevention and control strategies to counter this viral pathogen of great public health concern.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Mexico
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| |
Collapse
|
23
|
Shukla S, Haldorai Y, Hwang SK, Bajpai VK, Huh YS, Han YK. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector. Front Microbiol 2017; 8:2398. [PMID: 29259595 PMCID: PMC5723299 DOI: 10.3389/fmicb.2017.02398] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023] Open
Abstract
Safety of food is a noteworthy issue for consumers and the food industry. A number of complex challenges associated with food engineering and food industries, including quality food production and safety of the food through effective and feasible means can be explained by nanotechnology. However, nanoparticles have unique physicochemical properties compared to normal macroparticles of the same composition and thus could interact with living system in surprising ways to induce toxicity. Further, few toxicological/safety assessments have been performed on nanoparticles, thereby necessitating further research on oral exposure risk prior to their application to food. Liposome nanoparticles are viewed as attractive novel materials by the food and medical industries. For example, nanoencapsulation of bioactive food compounds is an emerging application of nanotechnology. In several food industrial practices, liposome nanoparticles have been utilized to improve flavoring and nutritional properties of food, and they have been examined for their capacity to encapsulate natural metabolites that may help to protect the food from spoilage and degradation. This review focuses on ongoing advancements in the application of liposomes for food and pharma sector.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, India
| | - Seung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), World Class Smart Lab (WCSL), Inha University, Incheon, South Korea
| | - Vivek K. Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), World Class Smart Lab (WCSL), Inha University, Incheon, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| |
Collapse
|
24
|
Maslow JN. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus. Hum Vaccin Immunother 2017; 13:2918-2930. [PMID: 28846484 PMCID: PMC5718785 DOI: 10.1080/21645515.2017.1358325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed.
Collapse
|
25
|
Shelby T, Banerjee T, Zegar I, Santra S. Highly Sensitive, Engineered Magnetic Nanosensors to Investigate the Ambiguous Activity of Zika Virus and Binding Receptors. Sci Rep 2017; 7:7377. [PMID: 28785095 PMCID: PMC5547150 DOI: 10.1038/s41598-017-07620-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this research is twofold: 1) to shed light on zika's binding and entry mechanism while 2) demonstrating the effectiveness of our magnetic relaxation platform to achieve this goal. Magnetic relaxation-sensitive nanoparticles (MRNPs) are used in a novel fashion to analyze binding interactions between the zika envelope protein (ZENV) and proposed host cell receptors: AXL, HSP70, and TIM-1. Computational analysis is also utilized to examine these binding interactions for the first time. In addition, the role of crizotinib as a potential binding inhibitor is demonstrated and the possibility of ligand-independent phosphatidylserine-mediated binding is explored. Our findings suggest that while the extracellular domain of AXL has the highest affinity for ZENV; HSP70, TIM-1, and phosphatidylserine might also play active roles in zika tropism, which offers a potential explanation for the variety of zika-associated symptoms. This is, to our knowledge, the first time that MRNPs have been used to examine and quantify host-zika interactions. Our magnetic relaxation platform allows for timely and sensitive analysis of these intricate binding relationships, and it is easily customizable for further examination of additional host-pathogen interactions.
Collapse
Affiliation(s)
- Tyler Shelby
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Irene Zegar
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA.
| |
Collapse
|
26
|
Lum FM, Lin C, Susova OY, Teo TH, Fong SW, Mak TM, Lee LK, Chong CY, Lye DCB, Lin RTP, Merits A, Leo YS, Ng LFP. A Sensitive Method for Detecting Zika Virus Antigen in Patients' Whole-Blood Specimens as an Alternative Diagnostic Approach. J Infect Dis 2017; 216:182-190. [PMID: 28586426 PMCID: PMC5853302 DOI: 10.1093/infdis/jix276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023] Open
Abstract
Background Epidemics caused by the reemergence of Zika virus (ZIKV) warrant the need to develop new diagnostic measures to complement currently used detection methods. In this study, we explored the detection of ZIKV antigen in a defined leukocyte subset from patients' whole-blood specimens. Methods Whole-blood samples were obtained at the acute and early convalescent phases from ZIKV-infected patients during the Singapore outbreak in August-September 2016. Presence of ZIKV antigen was determined by flow cytometry staining for intracellular ZIKV NS3, using a ZIKV-specific polyclonal antibody. The presence of ZIKV antigen was determined in CD45+CD14+ monocytes. Results Data showed that ZIKV NS3 antigen could be detected in CD45+CD14+ monocytes. The levels of detection were further categorized into 3 groups: high (positivity among >40% of monocytes), moderate (positivity among 10%-40%), and low (positivity among <10%). While a majority of patients showed a decrease in the amount of ZIKV antigen detected at later time points, some patients displayed higher levels as the disease progressed. Conclusions Our data highlights an alternative approach in using flow cytometry as a sensitive method for detecting ZIKV antigen in whole blood. Importantly, it further confirms the role of CD14+ monocytes as an important cellular target for ZIKV infection during the viremic phase.
Collapse
Affiliation(s)
- Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research
| | - Cui Lin
- National Public Health Laboratory, Ministry of Health
| | - Olga Y Susova
- Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research
| | - Siew-Wai Fong
- Singapore Immunology Network, Agency for Science, Technology and Research
- Department of Biological Science
| | - Tze-Minn Mak
- National Public Health Laboratory, Ministry of Health
| | - Linda Kay Lee
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital
| | | | - David C B Lye
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital
| | | | - Andres Merits
- Institute of Technology, University of Tartu, Estonia
| | - Yee-Sin Leo
- Saw Swee Hock School of Public Health, National University of Singapore
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research
- Institute of Infection and Global Health, University of Liverpool, United Kingdom
| |
Collapse
|
27
|
A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep 2017; 7:44778. [PMID: 28317856 PMCID: PMC5357913 DOI: 10.1038/srep44778] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable "LAMP box" supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device's utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most.
Collapse
|