1
|
Guowen F, Rong L, Ruixue Z, Qin Z, Jiarui Y, Yabo L, Yueyuan F. Effects of chemokine-binding protein in visceral ovine aphthae on immune regulation response. J Virol Methods 2025; 331:115058. [PMID: 39486522 DOI: 10.1016/j.jviromet.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
ORFV of the family poxvirus,which produces a pustular dermatitis both in humans and animals.,Previous studies have found an fatal case caused by the infection of ORFV in the viscera. However, the mechanisms of ORFV how to infect the viscera remain unknown. Our sequencing results revealed that the CBP of the visceral infection strain lacked a 24-base pair segment at position 217 comparison to the oral infection strain. Subsequently, we successfully packaged the recombinant adenoviruses pAd-CBP-K and pAd-CBP-N in HEK-293A cells and carried it to infect lymphocytes. RT-PCR analysis showed that the CBP protein was expressed in lymphocytes, and pAd-CBP-N group exhibited a significantly higher CBP expression level compared to the pAd-CBP-K group. At 4, 8, and 12 hours post-infection, both pAd-CBP-K and pAd-CBP-N were found to downregulate the expression of MIP-1 and CCL-5 in the supernatant of lymphocytes. However, the expression of IL-2, IL-6, IL-8, IL-12, INF-γ, and TNF-α showed a significant up-regulation. Furthermore, the inflammatory factors relative expression levels of IL-2, IL-6, IL-8, IL-8, IL-12, IFN-γ and TNF-α were significantly up-regulated in the both group. Interestingly, a significant increase in the expression of IL-6, IL-8 and TNF-α were detected in the pAd-CBP-N group at both 8 and 12 hours compared to pAd-CBP-N. Taken together, these findings showed that CBP can regulate the expression of free chemokines and activate the expression of inflammatory factors, and provide a basis for follow-up research.
Collapse
Affiliation(s)
- Fu Guowen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Li Rong
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Zhang Ruixue
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Zeng Qin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Jiarui
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Liu Yabo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fan Yueyuan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Liang S, Long Q, Pang F. Preparation and characterization of a mouse polyclonal antibody against the truncated ORFV113 recombinant protein of Orf virus. Vet J 2024; 308:106265. [PMID: 39521035 DOI: 10.1016/j.tvjl.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Orf is a contagious zoonotic disease caused by Orf virus (ORFV), posing a threat to both animal and human health. The ORFV113 gene, located in the terminal variable region of the ORFV genome, has been demonstrated as a significant virulence gene, but its function remains largely unknown. In the study, we first amplified the truncated version of the ORFV113 gene (ORFV113t) by removing its transmembrane domain at the 5' end. We then constructed the pET-32a-ORFV113t recombinant plasmid and expressed the truncated ORFV113 recombinant protein in Escherichia coli (E.coli). The purified ORFV113t fusion protein was used to immunize mice and generate a polyclonal antibody. This polyclonal antibody was subsequently used to detect the expression and subcellular localization of the ORFV113 protein. Additionally, virus neutralization test was utilized to determine the neutralizing titer of the polyclonal antibody. The results demonstrated that we successfully expressed the ORFV113t recombinant protein in a prokaryotic expression system and generated a mouse-derived polyclonal antibody targeting the ORFV113t recombinant protein with a titer of 1:204,800. This antibody exhibited specificity for detecting the ORFV113 protein expressed in both prokaryotic and eukaryotic cells. The ORFV113 protein was found to be localized in the cytoplasm of infected Lamb testis (LT) cells. Notably, the polyclonal antibody demonstrated neutralizing activity against ORFV in vitro, with a neutralizing titer of 1:32. The prepared mouse anti-ORFV113t protein polyclonal antibody can be utilized for further study on potential functions of the ORFV113 protein in viral pathogenesis.
Collapse
Affiliation(s)
- Shaobo Liang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qinqin Long
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
do Nascimento GM, de Oliveira PSB, Butt SL, Diel DG. Immunogenicity of chimeric hemagglutinins delivered by an orf virus vector platform against swine influenza virus. Front Immunol 2024; 15:1322879. [PMID: 38482020 PMCID: PMC10933025 DOI: 10.3389/fimmu.2024.1322879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Pablo Sebastian Britto de Oliveira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Salman Latif Butt
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Tang X, Xie Y, Li G, Niyazbekova Z, Li S, Chang J, Chen D, Ma W. ORFV entry into host cells via clathrin-mediated endocytosis and macropinocytosis. Vet Microbiol 2023; 284:109831. [PMID: 37480660 DOI: 10.1016/j.vetmic.2023.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Orf virus (ORFV), also known as infectious pustular virus, leads to an acute contagious zoonotic infectious disease. ORFV can directly contact and infect epithelial cells of skin and mucosa, causing damage to tissue cells. So far, the pathway of ORFV entry into cells is unclear. Therefore, finding the internalization pathway of ORFV will help to elucidate the cellular and molecular mechanisms of ORFV infection and invasion, which in turn will provide a certain reference for the prevention and treatment of ORFV. In the present study, chemical inhibitors were used to analyze the mechanism of ORFV entry into target cells. The results showed that the inhibitor of clathrin-mediated endocytosis could inhibit ORFV entry into cells. However, the inhibitor of caveolae-mediated endocytosis cannot inhibit ORFV entry into cells. In addition, inhibition of macropinocytosis pathway also significantly reduced ORFV internalization. Furthermore, the inhibitors of acidification and dynamin also prevented ORFV entry. However, results demonstrated that inhibitors inhibited ORFV entry but did not inhibit ORFV binding. Notably, extracellular trypsin promoted ORFV entry into cells directly, even when the endocytic pathway was inhibited. In conclusion, ORFV enters into its target cells by clathrin-mediated endocytosis and macropinocytosis, while caveolae-dependent endocytosis has little effects on this process. In addition, the entry into target cells by ORFV required an acid environment and the effect of dynamin. Meanwhile, we emphasize that broad-spectrum antiviral inhibitors and extracellular enzyme inhibitors are likely to be effective strategies for the prevention and treatment of ORFV infection.
Collapse
Affiliation(s)
- Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Guanhua Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Zhannur Niyazbekova
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Jianjun Chang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai Province, China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
5
|
Du G, Wu J, Zhang C, Cao X, Li L, He J, Zhang Y, Shang Y. The whole genomic analysis of the Orf virus strains ORFV-SC and ORFV-SC1 from the Sichuan province and their weak pathological response in rabbits. Funct Integr Genomics 2023; 23:163. [PMID: 37188892 DOI: 10.1007/s10142-023-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
The Orf virus (ORFV) is a member of the Parapoxvirus genus of the Poxviridae family and can cause contagious diseases in sheep, goats, and wild ungulates. In the present study, two ORFV isolates (ORFV-SC isolated from Sichuan province and ORFV-SC1 produced by 60 passages of ORFV-SC in cells) were sequenced and compared to multiple ORFVs. The two ORFV sequences had entire genome sizes of 14,0707 bp and 141,154 bp, respectively, containing 130 and 131 genes, with a G + C content of 63% for the ORFV-SC sequence and 63.9% for the ORFV-SC1 sequence. Alignment of ORFV-SC and ORFV-SC1 with five other ORFV isolates revealed that ORFV-SC, ORFV-SC1, and NA1/11 shared > 95% nucleotide identity with 109 genes. Five genes (ORF007, ORF20, ORF080, ORF112, ORF116) have low amino acids identity between ORFV-SC and ORFV-SC1. Mutations in amino acids result in changes in the secondary and tertiary structure of ORF007, ORF020, and ORF112 proteins. The phylogenetic tree based on the complete genome sequence and 37 single genes revealed that the two ORFV isolates originated from sheep. Finally, animal experiments demonstrated that ORFV-SC1 is less harmful to rabbits than ORFV-SC. The exploration of two full-length viral genome sequences provides valuable information in ORFV biology and epidemiology research. Furthermore, ORFV-SC1 demonstrated an acceptable safety profile following animal vaccination, indicating its potential as a live ORFV vaccine.
Collapse
Affiliation(s)
- Guoyu Du
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Cheng Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research (CAAS) Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China.
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
6
|
Shen Z, Liu B, Zhu Z, Du J, Zhou Z, Pan C, Chen Y, Yin C, Luo Y, Li H, Chen X. Construction of a Triple-Gene Deletion Mutant of Orf Virus and Evaluation of Its Safety, Immunogenicity and Protective Efficacy. Vaccines (Basel) 2023; 11:vaccines11050909. [PMID: 37243014 DOI: 10.3390/vaccines11050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Contagious ecthyma is a zoonotic disease caused by the orf virus (ORFV). Since there is no specific therapeutic drug available, vaccine immunization is the main tool to prevent and control the disease. Previously, we have reported the construction of a double-gene deletion mutant of ORFV (rGS14ΔCBPΔGIF) and evaluated it as a vaccine candidate. Building on this previous work, the current study reports the construction of a new vaccine candidate, generated by deleting a third gene (gene 121) to generate ORFV rGS14ΔCBPΔGIFΔ121. The in vitro growth characteristics, as well as the in vivo safety, immunogenicity, and protective efficacy, were evaluated. RESULTS: There was a minor difference in viral replication and proliferation between ORFV rGS14ΔCBPΔGIFΔ121 and the other two strains. ORFV rGS14ΔCBPΔGIFΔ121 induced continuous differentiation of PBMC to CD4+T cells, CD8+T cells and CD80+CD86+ cells and caused mainly Th1-like cell-mediated immunity. By comparing the triple-gene deletion mutant with the parental strain and the double-gene deletion mutant, we found that the safety of both the triple-gene deletion mutant and the double-gene deletion mutant could reach 100% in goats, while the safety of parental virus was only 50% after continually observing immunized animals for 14 days. A virulent field strain of ORFV from an ORF scab was used in the challenge experiment by inoculating the virus to the hairless area of the inner thigh of immunized animals. The result showed that the immune protection rate of triple-gene deletion mutant, double-gene mutant, and the parental virus was 100%, 66.7%, and 28.6%, respectively. In conclusion, the safety, immunogenicity, and immune-protectivity of the triple-gene deletion mutant were greatly improved to 100%, making it an excellent vaccine candidate.
Collapse
Affiliation(s)
- Zhanning Shen
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Bo Liu
- China Institute of Veterinary Drug Control, Beijing 100081, China
- International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Huanrong Li
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
7
|
Recent advances in diagnostic approaches for orf virus. Appl Microbiol Biotechnol 2023; 107:1515-1523. [PMID: 36723701 DOI: 10.1007/s00253-023-12412-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Orf virus (ORFV), the prototype species of the Parapoxvirus genus, is an important zoonotic virus, causing great economic losses in livestock production. At present, there are no effective drugs for orf treatment. Therefore, it is crucial to develop accurate and rapid diagnostic approaches for ORFV. Over decades, various diagnostic methods have been established, including conventional methods such as virus isolation and electron microscopy; serological methods such as virus neutralization test (VNT), immunohistochemistry (IHC) assay, immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA); and molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and recombinase-aided amplification (RAA) assay. This review provides an overview of currently available diagnostic approaches for ORFV and discusses their advantages and limitations and future perspectives, which would be significantly helpful for ORFV early diagnosis and surveillance to prevent outbreak of orf. KEY POINTS: • Orf virus emerged and reemerged in past years • Rapid and efficient diagnostic approaches are needed and critical for ORFV detection • Novel and sensitive diagnostic methods are required for ORFV detection.
Collapse
|
8
|
Deletion of gene OV132 attenuates Orf virus more effectively than gene OV112. Appl Microbiol Biotechnol 2023; 107:835-851. [PMID: 36484827 PMCID: PMC9734686 DOI: 10.1007/s00253-022-12323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Orf virus (ORFV), a Parapoxvirus in Poxviridae, infects sheep and goats resulting in contagious pustular dermatitis. ORFV is regarded as a promising viral vector candidate for vaccine development and oncolytic virotherapy. Owing to their potential clinical application, safety concerns have become increasingly important. Deletion of either the OV132 (encoding vascular endothelial growth factor, VEGF) or OV112 (encoding the chemokine binding protein, CBP) genes reduced ORFV infectivity, which has been independently demonstrated in the NZ2 and NZ7 strains, respectively. This study revealed that the VEGF and CBP gene sequences of the local strain (TW/Hoping) shared a similarity of 47.01% with NZ2 and 90.56% with NZ7. Due to the high sequence divergence of these two immunoregulatory genes among orf viral strains, their contribution to the pathogenicity of Taiwanese ORFV isolates was comparatively characterized. Initially, two ORFV recombinants were generated, in which either the VEGF or CBP gene was deleted and replaced with the reporter gene EGFP. In vitro assays indicated that both the VEGF-deletion mutant ORFV-VEGFΔ-EGFP and the CBP deletion mutant ORFV-CBPΔ-EGFP were attenuated in cells. In particular, ORFV-VEGFΔ-EGFP significantly reduced plaque size and virus yield compared to ORFV-CBPΔ-EGFP and the wild-type control. Similarly, in vivo analysis revealed no virus yield in the goat skin biopsy infected by ORFV-VEGFΔ-EGFP, and significantly reduced the virus yield of ORFV-CBPΔ-EGFP relative to the wild-type control. These results confirmed the loss of virulence of both deletion mutants in the Hoping strain, whereas the VEGF-deletion mutant was more attenuated than the CBP deletion strain in both cell and goat models. KEY POINTS: • VEGF and CBP genes are crucial in ORFV pathogenesis in the TW/Hoping strain • The VEGF-deletion mutant virus was severely attenuated in both cell culture and animal models • Deletion mutant viruses are advantageous vectors for the development of vaccines and therapeutic regimens.
Collapse
|
9
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus ORF116 gene encodes an antagonist of the interferon response. J Gen Virol 2021; 102. [PMID: 34890310 DOI: 10.1099/jgv.0.001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orf virus (ORFV) is the type species of the Parapoxvirus genus of the Poxviridae family. Genetic and functional studies have revealed ORFV has multiple immunomodulatory genes that manipulate innate immune responses, during the early stage of infection. ORF116 is a novel gene of ORFV with hitherto unknown function. Characterization of an ORF116 deletion mutant showed that it replicated in primary lamb testis cells with reduced levels compared to the wild-type and produced a smaller plaque phenotype. ORF116 was shown to be expressed prior to DNA replication. The potential function of ORF116 was investigated by gene-expression microarray analysis in HeLa cells infected with wild-type ORFV or the ORF116 deletion mutant. The analysis of differential cellular gene expression revealed a number of interferon-stimulated genes (ISGs) differentially expressed at either 4 or 6 h post infection. IFI44 showed the greatest differential expression (4.17-fold) between wild-type and knockout virus. Other ISGs that were upregulated in the knockout included RIG-I, IFIT2, MDA5, OAS1, OASL, DDX60, ISG20 and IFIT1 and in addition the inflammatory cytokine IL-8. These findings were validated by infecting HeLa cells with an ORF116 revertant recombinant virus and analysis of transcript expression by quantitative real time-PCR (qRT-PCR). These observations suggested a role for the ORFV gene ORF116 in modulating the IFN response and inflammatory cytokines. This study represents the first functional analysis of ORF116.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Bottari B, Cummins E, Ylivainio K, Muñoz Guajardo I, Ortiz‐Pelaez A, Alvarez‐Ordóñez A. Inactivation of indicator microorganisms and biological hazards by standard and/or alternative processing methods in Category 2 and 3 animal by-products and derived products to be used as organic fertilisers and/or soil improvers. EFSA J 2021; 19:e06932. [PMID: 34900004 PMCID: PMC8638561 DOI: 10.2903/j.efsa.2021.6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The European Commission requested EFSA to assess if different thermal processes achieve a 5 log10 reduction in Enterococcus faecalis or Salmonella Senftenberg (775W) and (if relevant) a 3 log10 reduction in thermoresistant viruses (e.g. Parvovirus) as well as if different chemical processes achieve a 3 log10 reduction of eggs of Ascaris sp., in eight groups of Category 2 and 3 derived products and animal by-products (ABP). These included (1) ash derived from incineration, co-incineration and combustion; (2) glycerine derived from the production of biodiesel and renewable fuels; (3) other materials derived from the production of biodiesel and renewable fuels; (4) hides and skins; (5) wool and hair; (6) feathers and down; (7) pig bristles; and (8) horns, horn products, hooves and hoof products. Data on the presence of viral hazards and on thermal and chemical inactivation of the targeted indicator microorganisms and biological hazards under relevant processing conditions were extracted via extensive literature searches. The evidence was assessed via expert knowledge elicitation. The certainty that the required log10 reductions in the most resistant indicator microorganisms or biological hazards will be achieved for each of the eight groups of materials mentioned above by the thermal and/or chemical processes was (1) 99-100% for the two processes assessed; (2) 98-100% in Category 2 ABP, at least 90-99% in Category 3 ABP; (3) 90-99% in Category 2 ABP; at least 66-90% in Category 3 ABP; (4) 10-66% and 33-66%; (5) 1-33% and 10-50%; (6) 66-90%; (7) 33-66% and 50-95%; (8) 66-95%, respectively. Data generation on the occurrence and reduction of biological hazards by thermal and/or chemical methods in these materials and on the characterisation of the usage pathways of ABP as organic fertilisers/soil improvers is recommended.
Collapse
|
11
|
Kassa T. A Review on Human Orf: A Neglected Viral Zoonosis. Res Rep Trop Med 2021; 12:153-172. [PMID: 34267574 PMCID: PMC8275206 DOI: 10.2147/rrtm.s306446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
Orf virus (ORFV) is the etiologic agent of Orf or ecthyma contagiosum in humans but primarily affects different domestic and wild animals. The disease mostly affects sheep, goats and other small wild ruminants and spreads to humans through direct contact with infected animals or by way of contaminated fomites worldwide. ORFV is taxonomically classified as a member of the genus Parapoxvirus. It is known to have tolerance to inactivation in a drier environment, and it has been recovered from crusts after several months to years. Among immunocompetent people, the lesions usually resolve by its natural course within a maximum of 8 weeks. In immunosuppressed patients, however, it needs the use of various approaches including antiviral, immune modifier or minor surgical excisions. The virus through its association with divergent host ranges helps to develop a mechanism to evade the immune system. The relative emergence of Orf, diagnosed on clinical ground among human cases, in unusual frequencies in southwest Ethiopia between October 2019 and May 2020, was the driver to write this review. The objective was to increase health care providers' diagnostic curiosity and to bring the attentiveness of public health advisors for prevention, control and the development of schemes for surveillance of Orf zoonosis in a similar setting like Ethiopia.
Collapse
Affiliation(s)
- Tesfaye Kassa
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
12
|
Abstract
Contagious ecthyma (CE) is an infectious disease of small ruminants caused by a parapoxvirus of family Poxviridae subfamily Chordopoxvirinae. The disease is obviously distinguished by an establishment of scabby lesions and ulcerative formation on less hairy areas including muzzle, ears, nostril, and sometimes on genitalia. The disease is endemic in sheep and goats. The virus is transmissible to other ruminants and is a public health concern in humans. Although the disease is known as self-limiting, it may cause a significant economic threat and financial losses due to lower productivity in livestock production. Information with regard to the risk of the disease and epidemiology in most parts of the world is underreported. This paper aims to provide relevant information about the epidemiology of CE in selected regions of Europe, South America, North America, Asia, Africa, and Australia. An in-depth comprehension of virus infection, diagnoses, and management of the disease will enable farmers, researchers, veterinarians, abattoir workers, health personnel, and border controllers to improve their measures, skills, and effectiveness toward disease prevention and control, toward reducing unnecessary economic loss among farmers. A herd health program for significant improvement in management and productivity of livestock demands a well planned extension program that ought to encourage farmers to equip themselves with adequate skills for animal healthcare.
Collapse
|
13
|
PANDEY ARUNA, SAXENA SHIKHA, KHAN RAJAISHAQNABI, GANDHAM RAVIKUMAR, RAMTEKE PRAMODW. Expression profiling of host long non-coding RNAs under ORF virus infection. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i3.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aimed at gaining insights into the expression profile of long non-coding RNAs (lncRNAs) and coding genes of Orf virus (ORFV) infected oral mucosal tissues of sheep using RNA-Seq technology. Specifically, an expression profile and lncRNA-mRNA interaction network was inferred from a large-scale gene expression data set of sheep mucosal tissues on 0, 3, 7 and 15 days after ORFV infection. RNA-Seq profiles were obtained from the Gene Expression Omnibus (GEO) database. We found that 45, 64 and 45 lncRNAs and 1796, 2182 and 1550 coding genes were differentially expressed at early (T3), intermediate (T7) and late (T15) stages of ORFV infection in sheep mucosal tissues, respectively. Functional analysis revealed that differentially expressed long non-coding RNAs (DElncRNAs) regulate immune processes by regulating the expression level of differentially expressed coding genes (DEGs) under ORFV infection.
Collapse
|
14
|
Yaron JR, Zhang L, Guo Q, Burgin M, Schutz LN, Awo E, Wise L, Krause KL, Ildefonso CJ, Kwiecien JM, Juby M, Rahman MM, Chen H, Moyer RW, Alcami A, McFadden G, Lucas AR. Deriving Immune Modulating Drugs from Viruses-A New Class of Biologics. J Clin Med 2020; 9:E972. [PMID: 32244484 PMCID: PMC7230489 DOI: 10.3390/jcm9040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Viruses are widely used as a platform for the production of therapeutics. Vaccines containing live, dead and components of viruses, gene therapy vectors and oncolytic viruses are key examples of clinically-approved therapeutic uses for viruses. Despite this, the use of virus-derived proteins as natural sources for immune modulators remains in the early stages of development. Viruses have evolved complex, highly effective approaches for immune evasion. Originally developed for protection against host immune responses, viral immune-modulating proteins are extraordinarily potent, often functioning at picomolar concentrations. These complex viral intracellular parasites have "performed the R&D", developing highly effective immune evasive strategies over millions of years. These proteins provide a new and natural source for immune-modulating therapeutics, similar in many ways to penicillin being developed from mold or streptokinase from bacteria. Virus-derived serine proteinase inhibitors (serpins), chemokine modulating proteins, complement control, inflammasome inhibition, growth factors (e.g., viral vascular endothelial growth factor) and cytokine mimics (e.g., viral interleukin 10) and/or inhibitors (e.g., tumor necrosis factor) have now been identified that target central immunological response pathways. We review here current development of virus-derived immune-modulating biologics with efficacy demonstrated in pre-clinical or clinical studies, focusing on pox and herpesviruses-derived immune-modulating therapeutics.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Michelle Burgin
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Enkidia Awo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lyn Wise
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | - Kurt L. Krause
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | | | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Michael Juby
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China;
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA;
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ 85013, USA
| |
Collapse
|
15
|
Sharif S, Ueda N, Nakatani Y, Wise LM, Clifton S, Lateef Z, Mercer AA, Fleming SB. Chemokine-Binding Proteins Encoded by Parapoxvirus of Red Deer of New Zealand Display Evidence of Gene Duplication and Divergence of Ligand Specificity. Front Microbiol 2019; 10:1421. [PMID: 31293551 PMCID: PMC6603201 DOI: 10.3389/fmicb.2019.01421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Parapoxvirus of red deer in New Zealand (PVNZ) is a species of the Parapoxvirus genus that causes pustular dermatitis. We identified a cluster of genes in PVNZ that encode three unique chemokine-binding proteins (CBPs) namely ORF112.0, ORF112.3 and ORF112.6. Chemokines are a large family of molecules that direct cell trafficking to sites of inflammation and through lymphatic organs. The PVNZ-CBPs were analyzed by surface plasmon resonance against a broad spectrum of CXC, CC, XC and CX3C chemokines and were found to differ in their specificity and binding affinity. ORF112.0 interacted with chemokines from the CXC, CC and XC classes of chemokines with nM affinities. The ORF112.3 showed a preference for CXC chemokines, while ORF112.6 showed pM affinity binding for CC chemokines. Structural modeling analysis showed alterations in the chemokine binding sites of the CBPs, although the core structure containing two ß-sheets and three α-helices being conserved with the other parapoxvirus CBPs. Chemotaxis assays using neutrophils and monocytes revealed inhibitory impact of the CBPs on cell migration. Our results suggest that the PVNZ-CBPs are likely to have evolved through a process of gene duplication and divergence, and may have a role in suppressing inflammation and the anti-viral immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephen B. Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Muhsen M, Protschka M, Schneider LE, Müller U, Köhler G, Magin TM, Büttner M, Alber G, Siegemund S. Orf virus (ORFV) infection in a three-dimensional human skin model: Characteristic cellular alterations and interference with keratinocyte differentiation. PLoS One 2019; 14:e0210504. [PMID: 30699132 PMCID: PMC6353139 DOI: 10.1371/journal.pone.0210504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
ORF virus (ORFV) is the causative agent of contagious ecthyma, a pustular dermatitis of small ruminants and humans. Even though the development of lesions caused by ORFV was extensively studied in animals, only limited knowledge exists about the lesion development in human skin. The aim of the present study was to evaluate a three-dimensional (3D) organotypic culture (OTC) as a human skin model for ORFV infection considering lesion development, replication of the virus, viral gene transcription and modulation of differentiation of human keratinocytes by ORFV. ORFV infection of OTC was performed using the ORFV isolate B029 derived from a human patient. The OTC sections showed a similar structure of stratified epidermal keratinocytes as human foreskin and a similar expression profile of the differentiation markers keratin 1 (K1), K10, and loricrin. Upon ORFV infection, OTCs exhibited histological cytopathic changes including hyperkeratosis and ballooning degeneration of the keratinocytes. ORFV persisted for 10 days and was located in keratinocytes of the outer epidermal layers. ORFV-specific early, intermediate and late genes were transcribed, but limited viral spread and restricted cell infection were noticed. ORFV infection resulted in downregulation of K1, K10, and loricrin at the transcriptional level without affecting proliferation as shown by PCNA or Ki-67 expression. In conclusion, OTC provides a suitable model to study the interaction of virus with human keratinocytes in a similar structural setting as human skin and reveals that ORFV infection downregulates several differentiation markers in the epidermis of the human skin, a hitherto unknown feature of dermal ORFV infection in man.
Collapse
Affiliation(s)
- Mahmod Muhsen
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Martina Protschka
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Laura E. Schneider
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Thomas M. Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany
| | - Mathias Büttner
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sabine Siegemund
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|