1
|
Oyanguren M, Molina E, Mugica M, Ladero-Auñon I, Fuertes M, Fernández M, Benavides J, Elguezabal N. Probiotic bacteria can modulate immune responses to paratuberculosis vaccination. Front Cell Infect Microbiol 2024; 14:1394070. [PMID: 38895731 PMCID: PMC11183331 DOI: 10.3389/fcimb.2024.1394070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) is the etiological agent of paratuberculosis (PTB), a chronic intestinal inflammatory disease that causes high economical losses in dairy livestock worldwide. Due to the absence of widely available preventive or therapeutical treatments, new alternative therapies are needed. In this study, the effect of a probiotic alone or in combination with a commercial vaccine has been evaluated in a rabbit model. Vaccination enhanced the humoral response, exerted a training effect of peripheral polymorphonuclear neutrophils (PMNs) against homologous and heterologous stimuli, stimulated the release of pro-inflammatory cytokines by gut-associated lymphoid tissue (GALT) macrophages, and reduced the bacterial burden in GALT as well. However, the administration of the probiotic after vaccination did not affect the PMN activity, increased metabolic demand, and supressed pro-inflammatory cytokines, although humoral response and bacterial burden decrease in GALT was maintained similar to vaccination alone. The administration of the probiotic alone did not enhance the humoral response or PMN activity, and the bacterial burden in GALT was further increased compared to the only challenged group. In conclusion, the probiotic was able to modulate the immune response hampering the clearance of the infection and was also able to affect the response of innate immune cells after vaccination. This study shows that the administration of a probiotic can modulate the immune response pathways triggered by vaccination and/or infection and even exacerbate the outcome of the disease, bringing forward the importance of verifying treatment combinations in the context of each particular infectious agent.
Collapse
Affiliation(s)
- Maddi Oyanguren
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Elena Molina
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Maitane Mugica
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Iraia Ladero-Auñon
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Miguel Fuertes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Miguel Fernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montana (IGM) Consejo Superior de Investigaciones Científicas-Universidad de León (CSIC-ULE), León, Spain
| | - Natalia Elguezabal
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development- Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
2
|
de Albuquerque TMNC, Campos GZ, d’Ovidio L, Pinto UM, Sobral PJDA, Galvão JA. Unveiling Safety Concerns in Brazilian Artisanal Cheeses: A Call for Enhanced Ripening Protocols and Microbiological Assessments. Foods 2024; 13:1644. [PMID: 38890872 PMCID: PMC11172062 DOI: 10.3390/foods13111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Brazilian artisanal cheeses have recently gained significant commercial prominence and consumer favor, primarily due to their distinctive sensory attributes and cultural and historical appeal. Many of these cheeses are made with raw milk and undergo a relatively short ripening period, sometimes ranging from 4 to 8 days, though it is usually shorter than the period stated by law. Moreover, there is insufficient evidence regarding the efficacy of a short ripening period in reducing certain zoonotic foodborne pathogens, such as Brucella spp., Coxiella burnetiid, and Mycobacterium bovis (as part of the Mycobacterium tuberculosis complex). Additionally, a literature analysis revealed that the usual ripening conditions of Brazilian artisanal cheeses made with raw milk may be inefficient in reducing the levels of some hazardous bacterial, including Brucella spp., Listeria monocytogenes, coagulase-positive Staphylococcus, Salmonella, and Coxiella burnetti, to the acceptable limits established by law, thus failing to ensure product safety for all cheese types. Moreover, the assessment of the microbiological safety for this type of cheese should be broader and should also consider zoonotic pathogens commonly found in bovine herds. Finally, a standardized protocol for evaluating the effectiveness of cheese ripening must be established by considering its peculiarities.
Collapse
Affiliation(s)
| | - Gabriela Zampieri Campos
- Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (G.Z.C.); (L.d.); (U.M.P.)
| | - Loredana d’Ovidio
- Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (G.Z.C.); (L.d.); (U.M.P.)
| | - Uelinton Manoel Pinto
- Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (G.Z.C.); (L.d.); (U.M.P.)
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-220, Brazil;
| | - Paulo José do Amaral Sobral
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-220, Brazil;
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
| | - Julia Arantes Galvão
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba 80060-000, Brazil;
| |
Collapse
|
3
|
Juste RA, Blanco-Vázquez C, Barral M, Prieto JM, Varela-Castro L, Lesellier S, Dave D, Sevilla IA, Martín Ezquerra AB, Adriaensen H, Herrero-García G, Garrido JM, Casais R, Balseiro A. Efficacy of heat-inactivated Mycobacterium bovis vaccine delivered to European badgers ( Meles meles) through edible bait. Heliyon 2023; 9:e19349. [PMID: 37662827 PMCID: PMC10474426 DOI: 10.1016/j.heliyon.2023.e19349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Badgers (Meles meles) are a major tuberculosis (TB) reservoir in Europe, with the potential to transmit infection to cattle. Here we assessed whether a recently described oral tuberculosis vaccine based on heat-inactivated Mycobacterium bovis (HIMB), delivered as edible baits, can protect badgers from infection. Eight badgers were given individually five baits, each one consisting of a ball of peanut butter, natural peanut and oat flakes including a dose of the vaccine containing 5 × 107 colony-forming units. In parallel, a control group of seven badgers did not receive the vaccine. One month and a half later a second dose of the vaccine was offered to the vaccinated group. Ninety-four days after the second dose, all badgers were challenged with M. bovis (103 colony-forming units per animal) delivered endobronchially to the right middle lung lobe. Clinical, immunological, pathological and bacteriological variables were measured throughout the whole study to assess the efficacy of the vaccine. Two vaccinated animals showed high bacterial load of M. bovis and worsening of pathological lesions of TB. Conversely, the other six vaccinated animals showed slight improvement in bacterial load and pathology with respect to the control group. These results suggest that delivering the TB vaccine via food bait can partially protect wild badger populations, although vaccination can lead to either protection or tolerization, likely depending on the animal's immune status and general condition at the time of vaccination. Further optimization of the vaccination trial/strategy is needed to reduce the rate of tolerization, such as altering vaccine dose, number of doses, type of bait, use of adjuvants or route of administration.
Collapse
Affiliation(s)
- Ramón A. Juste
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Cristina Blanco-Vázquez
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Marta Barral
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - José Miguel Prieto
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Lucía Varela-Castro
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), 54220, Malzéville, France
| | - Dipesh Dave
- Bacteriology Department, Animal and Plant Health Agency (APHA, Weybridge), KT15 3NB, Surrey, United Kingdom
| | - Iker A. Sevilla
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Ana Belén Martín Ezquerra
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Hans Adriaensen
- PIXANIM Plateform, Service Imagerie, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR PR China, Val-de-Loire, 37380, Nouzilly, France
| | - Gloria Herrero-García
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Joseba M. Garrido
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), 48160, Derio (Bizkaia), Spain
| | - Rosa Casais
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394, Asturias, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| |
Collapse
|
4
|
Fernández-Veiga L, Fuertes M, Geijo MV, Pérez de Val B, Vidal E, Michelet L, Boschiroli ML, Gómez-Buendía A, Bezos J, Jones GJ, Vordermeier M, Juste RA, Garrido JM, Sevilla IA. Differences in skin test reactions to official and defined antigens in guinea pigs exposed to non-tuberculous and tuberculous bacteria. Sci Rep 2023; 13:2936. [PMID: 36806813 PMCID: PMC9941491 DOI: 10.1038/s41598-023-30147-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The single and comparative intradermal tuberculin tests (SITT and CITT) are official in vivo tests for bovine tuberculosis (TB) diagnosis using bovine and avian purified protein derivatives (PPD-B and PPD-A). Infection with bacteria other than Mycobacterium tuberculosis complex (MTC) can result in nonspecific reactions to these tests. We evaluated the performance of the skin test with PPDs and new defined antigens in the guinea pig model. A standard dose (SD) of Rhodococcus equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis, M. avium subsp. avium, M. avium subsp. hominissuis, M. scrofulaceum, M. persicum, M. microti, M. caprae and M. bovis, and a higher dose (HD) of M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis were tested using PPD-B, PPD-A, P22, ESAT-6-CFP-10-Rv3615c peptide cocktail long (PCL) and fusion protein (FP). The SD of R. equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare and M. avium subsp. paratuberculosis did not cause any reactions. The HD of M. nonchromogenicum, M. monacense, M. intracellulare, and M. avium subsp. paratuberculosis and the SD of M. avium subsp. hominissuis, M. scrofulaceum and M. persicum, caused nonspecific reactions (SIT). A CITT interpretation would have considered M. avium complex and M. scrofulaceum groups negative, but not all individuals from M. nonchromogenicum HD, M. monacense HD and M. persicum SD groups. Only animals exposed to M. bovis and M. caprae reacted to PCL and FP. These results support the advantage of complementing or replacing PPD-B to improve specificity without losing sensitivity.
Collapse
Affiliation(s)
- Leire Fernández-Veiga
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Miguel Fuertes
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - María V. Geijo
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Bernat Pérez de Val
- grid.7080.f0000 0001 2296 0625IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, CReSA, Campus de la UAB, 08193 Bellaterra, Catalonia Spain
| | - Enric Vidal
- grid.7080.f0000 0001 2296 0625IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Unitat Mixta d’investigació IRTA-UAB en Sanitat Animal, CReSA, Campus de la UAB, 08193 Bellaterra, Catalonia Spain
| | - Lorraine Michelet
- grid.410511.00000 0001 2149 7878Laboratoire de Santé Animale, Unité Zoonoses Bactériennes, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail (ANSES), Université Paris-Est, 94701 Maisons-Alfort, France
| | - María Laura Boschiroli
- grid.410511.00000 0001 2149 7878Laboratoire de Santé Animale, Unité Zoonoses Bactériennes, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail (ANSES), Université Paris-Est, 94701 Maisons-Alfort, France
| | - Alberto Gómez-Buendía
- grid.4795.f0000 0001 2157 7667Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Bezos
- grid.4795.f0000 0001 2157 7667Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Gareth J. Jones
- grid.422685.f0000 0004 1765 422XDepartment of Bacteriology, Animal and Plant Health Agency (APHA), Surrey, KT15 3NB UK
| | - Martin Vordermeier
- grid.422685.f0000 0004 1765 422XDepartment of Bacteriology, Animal and Plant Health Agency (APHA), Surrey, KT15 3NB UK
| | - Ramón A. Juste
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Joseba M. Garrido
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| | - Iker A. Sevilla
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia Spain
| |
Collapse
|
5
|
Could the type and severity of gross lesions in pig lymph nodes play a role in the detection of Mycobacterium avium? PLoS One 2022; 17:e0269912. [PMID: 35839172 PMCID: PMC9286258 DOI: 10.1371/journal.pone.0269912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
The Mycobacterium avium complex (MAC) comprises a widespread group of slowly-growing bacteria from the Mycobacteriaceae. These bacteria are responsible for opportunistic infections in humans and animals, including farm animals. The aim of the study was to determine whether it is possible to predict the presence of M. avium in pig lymph nodes based on the size and type of lesions found during post-mortem examination at a slaughterhouse. Lymph nodes were collected from 10,600 pigs subjected to such post-mortem examination. The nodes were classified with regard to their quality, and the number of tuberculosis-like lesions; following this, 86 mandibular lymph nodes with lesions and 113 without visible macroscopic lesions were selected for further study. Cultures were established on Löwenstein-Jensen and Stonebrink media, and a commercial GenoType Mycobacterium CM test was used to identify and differentiate M. avium species. The prevalence of M. avium was 56.98% in the lymph nodes with lesions and 19.47% in the unchanged ones. Statistical analysis indicated that visual assessment of lesions in the mandibular lymph nodes, in particular the number of tuberculous lesions, is a highly-efficient diagnostic tool. Similar results were obtained for estimated percentage area affected by the lesion, i.e. the ratio of the changed area of the lymph node in cross-section to the total cross-sectional area of the lymph node; however, this method is more laborious and its usefulness in slaughterhouse conditions is limited. By incising the lymph nodes and assessing the number of tuberculosis-like lesions, it is possible to limit the inclusion of meat from pigs infected with M. avium into the human food chain.
Collapse
|
6
|
Varela-Castro L, Barral M, Arnal MC, Fernández de Luco D, Gortázar C, Garrido JM, Sevilla IA. Beyond Tuberculosis: Diversity and implications of non-tuberculous mycobacteria at the wildlife-livestock interface. Transbound Emerg Dis 2022; 69:e2978-e2993. [PMID: 35780316 DOI: 10.1111/tbed.14649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Non-tuberculous mycobacteria (NTM) circulate between the environment, animals and humans entailing a double concern: their ability to interfere with tuberculosis diagnosis and their potential to cause infections in their hosts. However, published records on NTM infections in animals are still scarce. The aims of the present study were to describe the diversity of NTM circulating among wild and domestic species from Spain, and to analyse their implications as potential pathogenic microorganisms or as sources of interferences in the diagnosis of bovine tuberculosis. Overall, 293 NTM isolates of 277 animals were obtained from tissue samples collected between 2012 and 2019, and analysed through a multigene approach for mycobacteria identification. Thirty-one species were identified, being M. avium subsp. avium (Maa) and M. avium subsp. hominissuis (Mah), but also M. bouchedurhonense, M. nonchromogenicum and M. lentiflavum, the most abundant ones. Maa and M. lentiflavum were isolated in several animals showing tuberculosis-like lesions. Maa, Mah and M. nonchromogenicum were recovered from many cattle that had reacted to the tuberculin skin test (TST). Other NTM were also associated to these phenomena. These four mycobacterial species were geographically associated between wild boar and other hosts. The findings of the present study suggest that a high diversity of NTM circulates among wildlife and livestock. Wild boar and M. avium seem to play a relevant role in this epidemiological scenario. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lucía Varela-Castro
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, E-48160, Spain
| | - Marta Barral
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, E-48160, Spain
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Christian Gortázar
- Grupo de Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Universidad de Castilla-la Mancha (UCLM), Ciudad Real, 13071, Spain
| | - Joseba M Garrido
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, E-48160, Spain
| | - Iker A Sevilla
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, E-48160, Spain
| |
Collapse
|
7
|
A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl–Neelsen Stain on Tissue. Diagnostics (Basel) 2022; 12:diagnostics12061484. [PMID: 35741294 PMCID: PMC9221616 DOI: 10.3390/diagnostics12061484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared a training dataset of over 260,000 positive and over 700,000,000 negative patches annotated on scans of 510 whole slide images (WSI) of ZN-stained slides (110 positive and 400 negative). Several image augmentation techniques coupled with different custom computer vision architectures were used. WSIs automatic analysis was followed by a report indicating areas more likely to present mycobacteria. Our model performs AI-based diagnosis (the final decision of the diagnosis of WSI belongs to the pathologist). The results were validated internally on a dataset of 286,000 patches and tested in pathology laboratory settings on 60 ZN slides (23 positive and 37 negative). We compared the pathologists’ results obtained by separately evaluating slides and WSIs with the results given by a pathologist aided by automatic analysis of WSIs. Our architecture showed 0.977 area under the receiver operating characteristic curve. The clinical test presented 98.33% accuracy, 95.65% sensitivity, and 100% specificity for the AI-assisted method, outperforming any other AI-based proposed methods for AFB detection.
Collapse
|
8
|
MIRU-VNTR Typing of Atypical Mycobacteria Isolated from the Lymph Nodes of Slaughtered Pigs from Poland. Pathogens 2022; 11:pathogens11050495. [PMID: 35631016 PMCID: PMC9144788 DOI: 10.3390/pathogens11050495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
No regulations currently require the excision of lymph nodes from pig carcasses or the thermal processing of pork before consumption. Therefore, the presence of anatomopathological lesions with signs of coagulation necrosis in lymph nodes from pigs during post-mortem inspection is concerning, as is the increasing incidence of mycobacteriosis in humans. Therefore, the aim of the present study is to verify whether mycobacteria can be isolated from tuberculous-like lesions in mandibular lymph nodes in slaughtered pigs, and whether further molecular analysis based on MIRU-VNRT, used to identify mycobacteria from the Mycobacterium avium complex, can indicate zoonotic potential. Forty of the fifty isolates from the lymph nodes with signs of coagulation necrosis were classified as Mycobacterium avium complex. MIRU-VNTR analysis allowed for the isolation of six strains, one of which was classified as M. avium subsp. paratuberculosis (MAP). Our findings confirm the presence of atypical mycobacteria in the lymph nodes of slaughtered pigs. While the isolated strains (other than MAP) do not pose a significant or direct health risk to consumers, further research and monitoring are necessary. Atypical mycobacteria can cause a wide range of diseases in children and compromised adults, and often show resistance to many classes of antibiotics, including those used to treat tuberculosis.
Collapse
|
9
|
Buschard K. The etiology and pathogenesis of type 1 diabetes - A personal, non-systematic review of possible causes, and interventions. Front Endocrinol (Lausanne) 2022; 13:876470. [PMID: 36093076 PMCID: PMC9452747 DOI: 10.3389/fendo.2022.876470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this review after a lifelong research career, my personal opinion on the development of type 1 diabetes (T1D) from its very start to clinical manifestation will be described. T1D is a disease of an increased intestinal permeability and a reduced pancreas volume. I am convinced that virus might be the initiator and that this virus could persist on strategically significant locations. Furthermore, intake of gluten is important both in foetal life and at later ages. Disturbances in sphingolipid metabolism may also be of crucial importance. During certain stages of T1D, T cells take over resulting in the ultimate destruction of beta cells, which manifests T1D as an autoimmune disease. Several preventive and early treatment strategies are mentioned. All together this review has more new theories than usually, and it might also be more speculative than ordinarily. But without new ideas and theories advancement is difficult, even though everything might not hold true during the continuous discovery of the etiology and pathogenesis of T1D.
Collapse
|
10
|
A long-term survey on Mycobacterium tuberculosis complex in wild mammals from a bovine tuberculosis low prevalence area. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Cutaneous Mycobacterial Infections in Returning Travelers. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-021-00228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Sattar A, Zakaria Z, Abu J, Aziz SA, Rojas-Ponce G. Isolation of Mycobacterium avium and other nontuberculous mycobacteria in chickens and captive birds in peninsular Malaysia. BMC Vet Res 2021; 17:13. [PMID: 33413380 PMCID: PMC7791791 DOI: 10.1186/s12917-020-02695-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Mycobacterium avium complex (MAC) causes a chronic infectious in the birds known as avian mycobacteriosis. Almost all species of the birds are susceptible to MAC which consists of two closely related species of mycobacteria, that is, M. avium and M. intracellulare. This study aimed to determine the occurrence of Mycobacterium avium subsp. avium (MAA) in chickens and captive birds in selected states of Peninsular Malaysia. Results A 300 fecal samples were collected from village chickens (n = 100), layer chickens (n = 100) and captive birds (n = 100). Fecal samples were split into two aliquots for microbiological and molecular detection of MAA. Microbiology detection consisted of microscopy (Ziehl-Neelsen staining) and culture of samples decontaminated with 1% Cetylperidinium chloride and vancomycin, nalidixic acid and amphotericin B (VNA) antibiotic cocktail [vancomycin (VAN) 100 μg/ml, nalidixic acid (NAL) 100 μg/ml and amphotericin B (AMB) 50 μg/ml] onto Löwenstein-Jensen (L-J). Molecular detection (PCR-IS901) was performed to detect MAA DNA from the feces and PCR-16S rRNA and IS901 for identification of genus Mycobacterium and Mycobacterium avium sub species avium isolated onto L-J. All samples (296) were AFB negative smear. M. avium was isolated in 0.3% (1/296) samples by culture and detected in 2.5% (6/242) samples by PCR (IS901). Other mycobacteria were found in 1.7% (5/296) chickens. Of five isolates, two were identified as Mycobacterium terrae and M. engbaekii and remaining isolates were not sequenced. Birds positive for M. avium included White Pelican (n = 1) Black Hornbill (n = 1), Macaw (n = 2), Cockatoo (n = 2) and village chicken (n = 1). Conclusion It is concluded that chickens and birds were infected with M. avium in selected areas of Peninsular Malaysia. Although, PCR is rapid, reliable and cost effective method for detection of M. avium in a subclinical stage, the culture of the avian feces should still be used as a reference test for the diagnosis of avian tuberculosis.
Collapse
Affiliation(s)
- Abdul Sattar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 90150, Pakistan.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Zunita Zakaria
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400-UPM, Serdang, Selangor, Malaysia.
| | - Jalila Abu
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Saleha A Aziz
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Gabriel Rojas-Ponce
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G 2V4, Canada
| |
Collapse
|
13
|
Ali ZI, Hanafy M, Hansen C, Saudi AM, Talaat AM. Genotypic analysis of nontuberculous mycobacteria isolated from raw milk and human cases in Wisconsin. J Dairy Sci 2020; 104:211-220. [PMID: 33162087 DOI: 10.3168/jds.2020-18214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022]
Abstract
Nontuberculous mycobacteria (NTM) compose a group of mycobacteria that do not belong to the Mycobacterium tuberculosis complex group. They are frequently isolated from environmental samples such as water, soil, and, to a lesser extent, food samples. Isolates of NTM represent a major health threat to humans worldwide, especially those who have asthma or are immunocompromised. Human disease is acquired from environmental exposures and through consumption of NTM-contaminated food. The most common clinical manifestation of NTM disease in human is lung disease, but lymphatic, skin and soft tissue, and disseminated disease are also important. The main objective of the current study was to profile the farm-level contamination of cow milk with NTM by examining milk filters and bulk tank milk samples. Five different NTM species were isolated in one dairy herd in Wisconsin, with confirmed 16S rRNA genotypes including Mycobacterium fortuitum, Mycobacterium avium ssp. hominissuis, Mycobacterium abscessus, Mycobacterium simiae, and Mycobacterium avium ssp. paratuberculosis (Mycobacterium paratuberculosis). In tank milk samples, M. fortuitum was the predominant species in 48% of the samples, whereas M. chelonae/abscessus and M. fortuitum were the only 2 species obtained from 77 and 23% of the examined filters, respectively. Surprisingly, M. avium ssp. hominissuis, M. paratuberculosis, and M. simiae were isolated from 16.7, 10.4, and 4% of the examined milk samples, respectively, but not from milk filters. Interestingly, NTM isolates from human clinical cases in Wisconsin clustered very closely with those from milk samples. These findings suggest that the problem of NTM contamination is underestimated in dairy herds and could contribute to human infections with NTM. Overall, the study validates the use of bulk tank samples rather than milk filters to assess contamination of milk with NTM. Nontuberculous mycobacteria represent one type of pathogens that extensively contaminate raw milk at the farm level. The significance of our research is in evaluating the existence of NTM at the farm level and identifying a simple approach to examine the potential milk contamination with NTM members using tank milk or milk filters from dairy operations. In addition, we attempted to examine the potential link between NTM isolates found in the farm to those circulating in humans in Wisconsin.
Collapse
Affiliation(s)
- Zeinab I Ali
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mostafa Hanafy
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706; Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Chungyi Hansen
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706
| | - Adel M Saudi
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706.
| |
Collapse
|
14
|
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020; 8:microorganisms8091380. [PMID: 32916931 PMCID: PMC7563442 DOI: 10.3390/microorganisms8091380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-500-000 (ext. 22461)
| |
Collapse
|
15
|
Asaava LLA, Githui WA, Mwangi M, Mwangi E, Juma E, Moraa R, Halakhe A, Gicheru MM. Isolation, identification and associated risk factors of non-tuberculous mycobacteria infection in humans and dromedary camels in Samburu County, Kenya. Zoonoses Public Health 2020; 67:713-731. [PMID: 32697047 DOI: 10.1111/zph.12754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Non-tuberculous mycobacteria are of public health significance, and zoonotic infection is attributed to the sociocultural practice of consumption of raw milk and the close human-livestock contact in pastoral communities. This study aimed at isolation, identification of mycobacteria from human sputum and camel milk and risk factors assessment in Samburu East, Kenya. Six hundred and twelve camels and 48 people presumed to have tuberculosis (TB) from 86 households in Wamba and Waso regions were screened. Camels were categorized into Somali, Turkana and Rendile breeds. Single intradermal comparative tuberculin test (SICTT) was used as a herd-screening test on lactating camels and a milk sample collected from reactive camels. Sputum samples were collected from eligible members of participating households. A standard questionnaire on possible risk factors for both humans and camels was administered to respective household heads or their representatives. Total camel skin test reactors were 238/612 (38.9%). Milk and sputum samples were analysed at KEMRI/TB research laboratory for microscopy, GeneXpert® , culture and identification. Isolates were identified using 16S rRNA gene sequencing at Inqaba biotec in South Africa. Sixty-four isolates were acid-fast bacilli (AFB) positive of which M. fortuitum (3), M. szulgai (20), M. monacense (5), M. lehmanni (4), M. litorale (4), M. elephantis (3), M. duvalii (3), M. brasiliensis (1), M. arcueilense (1) and M. lentiflavum (1) were from milk; M. fortuitum (1), M. szulgai (2) and M. litorale (1) were from humans. Risk factors included the following: Turkana breed (OR = 3.4; 95% CI: 1.2-9.3), replacements from outside the County (OR = 2.1; 95% CI: 0.3-12.3), presence of other domestic species (small stock; OR = 4.6) and replacement from within the herd (OR = 3.2; 95% CI: 0.7-14.7). Zoonotic risk practices included raw milk consumption, shared housing and handling camels. Monitoring of zoonotic NTM through surveillance and notification systems is required.
Collapse
Affiliation(s)
- Lucas L A Asaava
- School of Pure and Applied Sciences, Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Willie A Githui
- Tuberculosis Research Laboratory, Center for Respiratory Diseases Research (CRDR), Kenya Medical Research Institute (KEMRI), Kenyatta National Hospital Grounds, Nairobi, Kenya
| | - Moses Mwangi
- Center for Public Health Research (CPHR), Kenya Medical Research Institute (KEMRI), Kenyatta National Hospital Grounds, Nairobi, Kenya
| | - Edwin Mwangi
- Tuberculosis Research Laboratory, Center for Respiratory Diseases Research (CRDR), Kenya Medical Research Institute (KEMRI), Kenyatta National Hospital Grounds, Nairobi, Kenya
| | - Ernest Juma
- Tuberculosis Research Laboratory, Center for Respiratory Diseases Research (CRDR), Kenya Medical Research Institute (KEMRI), Kenyatta National Hospital Grounds, Nairobi, Kenya
| | - Ruth Moraa
- Tuberculosis Research Laboratory, Center for Respiratory Diseases Research (CRDR), Kenya Medical Research Institute (KEMRI), Kenyatta National Hospital Grounds, Nairobi, Kenya
| | - Adan Halakhe
- School of Pure and Applied Sciences, Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Michael M Gicheru
- School of Pure and Applied Sciences, Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
16
|
Varela-Castro L, Torrontegi O, Sevilla IA, Barral M. Detection of Wood Mice ( Apodemus sylvaticus) Carrying Non-Tuberculous Mycobacteria Able to Infect Cattle and Interfere with the Diagnosis of Bovine Tuberculosis. Microorganisms 2020; 8:microorganisms8030374. [PMID: 32155849 PMCID: PMC7143357 DOI: 10.3390/microorganisms8030374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
Mycobacterial infections caused by the Mycobacterium tuberculosis complex (MTC) and non-tuberculous mycobacteria (NTM) are of great medical and veterinary relevance. The aim of this research was to study whether small mammals play a role in the epidemiology of mycobacterioses. Four samplings of 100 traps were performed in each of three cattle farms with previous history of tuberculosis or NTM between 2017 and 2018. A total of 108 animals belonging to seven species were trapped, classified, and necropsied, and tissues were submitted to microbiological and molecular methods for mycobacteria identification. The wood mouse (Apodemus sylvaticus) was the most abundant species (87%). No MTC was detected but six different NTM were identified (M. intracellulare, M. avium subsp. paratuberculosis, M. gordonae, M. celatum, M. fortuitum, and a not determined Mycobacterium sp.), showing a prevalence of 6.5%. No significant association was found between mycobacteria prevalence and the analyzed factors. Although a role in the epidemiology of MTC could not be attributed to small mammals, A. sylvaticus carries NTM that could be pathogenic or interfere with the diagnosis of tuberculosis. According to our results, there is a risk of NTM transmission at the wildlife–livestock interface through potential indirect contacts between small mammals and cattle.
Collapse
|
17
|
Sevilla IA, Arnal MC, Fuertes M, Martín E, Comenge J, Elguezabal N, Fernández de Luco D, Garrido JM. Tuberculosis outbreak caused by Mycobacterium caprae in a rabbit farm in Spain. Transbound Emerg Dis 2019; 67:431-441. [PMID: 31539200 DOI: 10.1111/tbed.13366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
Animal tuberculosis remains a great source of socioeconomic and health concern worldwide. Its main causative agents, Mycobacterium bovis and Mycobacterium caprae, have been isolated from many different domestic and wild animals. Naturally, occurring tuberculosis is extremely rare in rabbits, and implication of M. caprae has never been reported earlier. This study describes a severe tuberculosis outbreak caused by M. caprae in a Spanish farm of rabbits raised for meat for human consumption. The disease was first identified in a cachectic dam, and then it was confirmed in ten does with similar clinical signs. Subsequently, a depopulation operation was ordered for public health, animal welfare and environmental reasons. To broaden knowledge of spontaneous tuberculosis in rabbits, a study focused on pathological, epidemiological and diagnostic aspects was carried out on 51 does and 16 kittens after receiving the necessary authorizations. These animals were subjected to a modified intradermal test. After being euthanized, rabbits were examined for the presence of visible tuberculosis-compatible lesions. Lung, kidney, caecal appendix and sacculus rotundus samples underwent microbiological and anatomopathological analysis. Infection was revealed by at least one of the methods used in 71% of dams and in 44% of kittens. The intradermal test was shown to be a good indicator of infection. Lung was the tissue for which more animals were positive but renal and intestinal tissues were also affected in many cases. Apparently, M. caprae spread mainly through the aerogenous route. Infection was pathologically characterized by the absence of evident fibrous capsules surrounding granulomas. A spoligotype (SB0415) frequently found in this area was considered responsible for the outbreak but the source could not be established. Regardless of the exceptional nature of animal tuberculosis in this host, rabbit industry might not escape from its effects and therefore, current biosafety and surveillance strategies should also consider this disease.
Collapse
Affiliation(s)
- Iker A Sevilla
- Departmento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Miguel Fuertes
- Departmento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | | | | | - Natalia Elguezabal
- Departmento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Joseba M Garrido
- Departmento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| |
Collapse
|
18
|
Dorn-In S, Gareis M, Schwaiger K. Differentiation of live and dead Mycobacterium tuberculosis complex in meat samples using PMA qPCR. Food Microbiol 2019; 84:103275. [PMID: 31421753 DOI: 10.1016/j.fm.2019.103275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023]
Abstract
The causative agents of zoonotic bovine tuberculosis (bTB), Mycobacterium bovis and M. caprae, are members of the M. tuberculosis complex (MTC). Wildlife such as red deer infected with bTB are often without pathological findings, thus meat thereof may be classified as safe for human consumption. The culturing of MTC is time consuming and inappropriate to be applied with fresh meat and food. Therefore, a rapid method "PMA qPCR" to differentiate living and dead cells of MTC was developed in this study. By treating with 50 μM PMA™ dye, dead M. bovis BCG (≤104 cells/ml meat suspension) could be completely discriminated and was not detected by specific MTC PCR. The limit of detection of MTC without treatment with PMA™ dye was 10 cells/ml. All 50 venison samples obtained for field study purposes were negative for MTC. However, 40% were slightly PCR positive for non-TBC mycobacteria. By culturing using selective enrichment, one single colony of M. avium was isolated. This is the first report on the isolation of M. avium from venison. Considering the difficulties of diagnosing mycobacteria in various matrices, the developed PMA qPCR is applicable for the differentiation of dead and living cells of MTC in meat samples.
Collapse
Affiliation(s)
- Samart Dorn-In
- Chair of Food Safety, Faculty of Veterinary Medicine, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.
| | - Manfred Gareis
- Chair of Food Safety, Faculty of Veterinary Medicine, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Karin Schwaiger
- Chair of Food Safety, Faculty of Veterinary Medicine, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| |
Collapse
|
19
|
Lorencova A, Babak V, Kralova A, Borilova G. Survival of Mycobacterium avium subsp. paratuberculosis in raw fermented sausages during production and storage. Meat Sci 2019; 155:20-26. [PMID: 31059938 DOI: 10.1016/j.meatsci.2019.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/21/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of paratuberculosis, is considered to be a potential zoonotic pathogen and meat is one of the sources of MAP exposure for humans. MAP has been shown to be relatively resistant to different food processing methods, but there is a lack of information about the effects of ripening and fermentation processes on MAP survival in meat. Our results demonstrate that a short ripening process during teewurst production did not reduce MAP counts and viable mycobacteria were detected even during 4 weeks of storage. Although no viable MAP was recovered during the dry fermented sausage production process, there was no reduction in MAP count detected by real time PCR during production and storage of both sausages. Although the impact of foodborne exposure to viable MAP and/or mycobacterial components has not yet been clearly determined, the consumption of raw fermented meat products may be considered as a possible route of MAP transmission to humans.
Collapse
Affiliation(s)
- Alena Lorencova
- Food and Feed Safety Department, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| | - Vladimir Babak
- Food and Feed Safety Department, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Alena Kralova
- Food and Feed Safety Department, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Gabriela Borilova
- Department of Meat Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
20
|
Gawad J, Bonde C. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1): challenging target for antitubercular drug discovery. Chem Cent J 2018; 12:72. [PMID: 29936616 PMCID: PMC6015584 DOI: 10.1186/s13065-018-0441-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Tuberculosis has proved harmful to the entire history of mankind from past several decades. Decaprenyl-phosphoryl-ribose 2′-epimerase (DprE1) is a recent target which was identified in 2009 but unfortunately it is neither explored nor crossed phase II. In past several decades few targets were identified for effective antitubercular drug discovery. Resistance is the major problem for effective antitubercular drug discovery. Arabinose is constituent of mycobacterium cell wall. Biosynthesis of arabinose is FAD dependant two step epimerisation reaction which is catalysed by DprE1 and DprE2 flavoprotein enzymes. The current review is mainly emphases on DprE1 as a perspective challenge for further research.
Collapse
Affiliation(s)
- Jineetkumar Gawad
- Department of Pharmaceutical Chemistry, SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur Dist, Dhule, Maharashtra, 425 405, India.
| | - Chandrakant Bonde
- Department of Pharmaceutical Chemistry, SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur Dist, Dhule, Maharashtra, 425 405, India
| |
Collapse
|