1
|
Brestovičová S, Kisková J, Nosáľová L, Piknová M, Kolesárová M, Pristaš P. Comparative genomic analysis of two putative novel Idiomarina species from hypersaline miocene deposits. BMC Genomics 2024; 25:1007. [PMID: 39468450 PMCID: PMC11514770 DOI: 10.1186/s12864-024-10900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Hypersaline habitats, as extreme environments, are a great source of well-adapted organisms with unique properties as they have evolved various strategies to cope with these extreme conditions. Bioinformatics and genomic mining may shed light on evolutionary relationships among them. Therefore, the aim of this study was to assess the biodiversity and especially the strategies evolved within the Idiomarina genus, with the primary focus on the taxonomy and genomic adaptations of two novel strains affiliated with Idiomarina genus isolated from unique environment - brines of two Early Miocene salt deposits. RESULTS Both analyzed species belonged to the Idiomarina loihiensis cluster with similarity levels of 16S rRNA gene sequences as high as 99.5% and showed a significant genome size reduction, known characteristic of Idiomarina genomes, though within the genome of Sol25 strain the lowest extent of the carbohydrate utilization genes reduction was observed t among the Idiomarina species. Moreover, the comparative genome analyses indicated that despite both strains being isolated from geographically and geologically similar environments (brines from at least 12 Ma), the species showed higher relatedness to other Idiomarina species than to each other. CONCLUSION The present findings highlighted the importance of genomic data in resolving taxonomic uncertainties and understanding of adaptation strategies of extremophiles. Geographic isolation likely contributed to population divergence of the Idiomarina genus, and the recent study offered insights into biogeographic patterns and allopatric speciation of this bacterial group.
Collapse
Grants
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
Collapse
Affiliation(s)
- Soňa Brestovičová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia.
| | - Lea Nosáľová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
- Institute of Ecology and Environmental Sciences - Paris, iEES Paris, CNRS, INRAE, IRD, Université de Paris, UPEC, UMR 7618, Sorbonne Universitè, Tour 44-45, 4 place, Jussieu, Paris, 75005, France
| | - Mária Piknová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Mariana Kolesárová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, Košice, 04001, Slovakia
| |
Collapse
|
2
|
Fu CX, Chen C, Xiang Q, Wang YF, Wang L, Qi FY, Zhu D, Li HZ, Cui L, Hong WL, Rillig MC, Zhu YG, Qiao M. Antibiotic resistance at environmental multi-media interfaces through integrated genotype and phenotype analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136160. [PMID: 39413517 DOI: 10.1016/j.jhazmat.2024.136160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Antibiotic resistance is currently an unfolding global crisis threatening human health worldwide. While antibiotic resistance genes (ARGs) are known to be pervasive in environmental media, the occurrence of antibiotic resistance at interfaces between two or more adjacent media is largely unknown. Here, we designed a microcosm study to simulate plastic pollution in paddy soil and used a novel method, stimulated Raman scattering coupled with deuterium oxide (D2O) labelling, to compare the antibiotic resistance in a single medium with that at the interface of multiple environmental media (plastic, soil, water). Results revealed that the involvement of more types of environmental media at interfaces led to a higher proportion of active resistant bacteria. Genotypic analysis showed that ARGs (especially high-risk ARGs) and mobile genetic elements (MGEs) were all highly enriched at the interfaces. This enrichment was further enhanced by the co-stress of heavy metal (arsenic) and antibiotic (ciprofloxacin). Our study is the first to apply stimulated Raman scattering to elucidate antibiotic resistance at environmental interfaces and reveals novel pathway of antibiotic resistance dissemination in the environment and overlooked risks to human health.
Collapse
Affiliation(s)
- Chen-Xi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chen Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Lu Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Feng-Yuan Qi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei-Li Hong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Yang J, Chen YZ, Zhang GC. The impact of carvacrol on the larval gut bacterial structure and function of Lymantria dispar. Front Microbiol 2024; 15:1417598. [PMID: 39360327 PMCID: PMC11446217 DOI: 10.3389/fmicb.2024.1417598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction The gut bacteria of insects play an important role in regulating their metabolism, immune system and metabolizing pesticides. Our previous results indicate that carvacrol has certain gastric toxic activity on Lymantria dispar larvae and affects their detoxification metabolism at the mRNA level. However, the impact of carvacrol on the gut bacteria of L. dispar larvae has been unclear. Methods In this study, the 16S rRNA sequencing technology was used to sequence and analyze the gut bacteria of the larvae which were exposed with sublethal concentration (0.297 mg/mL) and median lethal concentration (1.120 mg/mL), respectively. Results A total of 10 phyla, 16 classes, 47 orders, 72 families, 103 genera, and 135 species were obtained by using a 97% similarity cutoff level. The dominant bacterial phyla in the gut of the L. dispar larvae are Firmicutes and Proteobacteria. The treatment with carvacrol can significantly affect the structure of gut bacteria in the larvae of the L. dispar. At both doses, carvacrol can shift the dominant gut bacteria of the larvae from Proteobacteria to Firmicutes. At the genus level, two doses of carvacrol can significantly enhance the relative abundance of probiotic Lactobacillus in the gut of L. dispar larvae (p ≤ 0.01). Additionally, significant differences were observed among the five bacterial genera Burkholderia-Caballeronia-Paraburkholderia, Anoxybacillus, Pelomonas, Mesorhizobium (p ≤ 0.05). The analysis of α-diversity and β-diversity indicates that the treatment with carvacrol at two doses significantly affect the bacterial richness and diversity in the larvae. However, the results of functional classification prediction (PICRUSt) indicate that carvacrol significantly down-regulate 7 functions, including Energy metabolism, Cell growth and death, and up-regulate 2 functions, including Carbohydrate metabolism and Membrane transport. The network analysis indicates that the correlation between gut bacteria also has been changed. In addition, the insecticidal activity results of carvacrol against L. dispar larvae with gut bacteria elimination showed that gut bacteria can reduce the insecticidal activity of carvacrol against L. dispar larvae. Discussion This study provides a theoretical foundation for understanding the role of gut bacteria in detoxifying plant toxins and conferring pesticide resistance.
Collapse
Affiliation(s)
- Jing Yang
- College of Forestry, Guizhou University, Guiyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Yun-Ze Chen
- College of Biological Sciences, Guizhou Education University, Guiyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Guo-Cai Zhang
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Sang Y, Ren K, Chen Y, Wang B, Meng Y, Zhou W, Jiang Y, Xu J. Integration of soil microbiology and metabolomics to elucidate the mechanism of the accelerated infestation of tobacco by the root-knot nematode. Front Microbiol 2024; 15:1455880. [PMID: 39247692 PMCID: PMC11377229 DOI: 10.3389/fmicb.2024.1455880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Tobacco root-knot nematode (TRKN) disease is a soil-borne disease that presents a major hazard to the cultivation of tobacco, causing significant reduction in crop quality and yield, and affecting soil microbial diversity and metabolites. However, differences in rhizosphere soil microbial communities and metabolites between healthy tobacco soils and tobacco soils with varying degrees of TRKN infection remain unclear. Methods In this study, diseased rhizosphere soils of tobacco infected with different degrees of TRKN [severally diseased (DH) soils, moderately diseased (DM) soils, and mildly diseased (DL) soils] and healthy (H) rhizosphere soils were collected. Here, we combined microbiology with metabolomics to investigate changes in rhizosphere microbial communities and metabolism in healthy and TRKN-infected tobacco using high-throughput sequencing and LC-MS/MS platforms. Results The results showed that the Chao1 and Shannon indices of bacterial communities in moderately and mildly diseased soils were significantly higher than healthy soils. The Proteobacteria, Actinobacteria, Ascomycota, Burkholderia, Bradyrhizobium and Dyella were enriched in the rhizosphere soil of healthy tobacco. Basidiomycota, Agaricales, Pseudeurotiaceae and Ralstonia were enriched in severally diseased soils. Besides, healthy soils exhibited a relatively complex and interconnected network of bacterial molecular ecologies, while in severally and moderately diseased soils the fungal molecular networks are relatively complex. Redundancy analysis showed that total nitrogen, nitrate nitrogen, available phosphorus, significantly affected the changes in microbial communities. In addition, metabolomics results indicated that rhizosphere soil metabolites were significantly altered after tobacco plants were infected with TRKNs. The relative abundance of organic acids was higher in severally diseased soils. Spearman's analyses showed that oleic acid, C16 sphinganine, 16-hydroxyhexadecanoic acid, D-erythro-3-methylmalate were positively correlated with Basidiomycota, Agaricales, Ralstonia. Discussion In conclusion, this study revealed the relationship between different levels of TRKN invasion of tobacco root systems with bacteria, fungi, metabolites and soil environmental factors, and provides a theoretical basis for the biological control of TRKN disease.
Collapse
Affiliation(s)
- Yinghua Sang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Ke Ren
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Bin Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yufang Meng
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Wenbing Zhou
- Yuxi Branch of Yunnan Provincial Tobacco Company, Yuxi, Yunnan, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, China
| | - Junju Xu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Guo H, Liu W, Xie Y, Wang Z, Huang C, Yi J, Yang Z, Zhao J, Yu X, Sibirina LA. Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica. Front Microbiol 2024; 15:1361117. [PMID: 38601932 PMCID: PMC11004381 DOI: 10.3389/fmicb.2024.1361117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.
Collapse
Affiliation(s)
- Hongbo Guo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
- Primorye State Agricultural Academy, Ussuriysk, Russia
| | - Weiye Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yuqi Xie
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Zhenyu Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Chentong Huang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Jingfang Yi
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Zhaoqian Yang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Jiachen Zhao
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaodan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Lidiya Alekseevna Sibirina
- Primorye State Agricultural Academy, Ussuriysk, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
6
|
Kim B, Han SR, Lee H, Oh TJ. Insights into group-specific pattern of secondary metabolite gene cluster in Burkholderia genus. Front Microbiol 2024; 14:1302236. [PMID: 38293557 PMCID: PMC10826400 DOI: 10.3389/fmicb.2023.1302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Burkholderia is a versatile strain that has expanded into several genera. It has been steadily reported that the genome features of Burkholderia exhibit activities ranging from plant growth promotion to pathogenicity across various isolation areas. The objective of this study was to investigate the secondary metabolite patterns of 366 Burkholderia species through comparative genomics. Samples were selected based on assembly quality assessment and similarity below 80% in average nucleotide identity. Duplicate samples were excluded. Samples were divided into two groups using FastANI analysis. Group A included B. pseudomallei complex. Group B included B. cepacia complex. The limitations of MLST were proposed. The detection of genes was performed, including environmental and virulence-related genes. In the pan-genome analysis, each complex possessed a similar pattern of cluster for orthologous groups. Group A (n = 185) had 14,066 cloud genes, 2,465 shell genes, 682 soft-core genes, and 2,553 strict-core genes. Group B (n = 181) had 39,867 cloud genes, 4,986 shell genes, 324 soft-core genes, 222 core genes, and 2,949 strict-core genes. AntiSMASH was employed to analyze the biosynthetic gene cluster (BGC). The results were then utilized for network analysis using BiG-SCAPE and CORASON. Principal component analysis was conducted and a table was constructed using the results obtained from antiSMASH. The results were divided into Group A and Group B. We expected the various species to show similar patterns of secondary metabolite gene clusters. For in-depth analysis, a network analysis of secondary metabolite gene clusters was conducted, exemplified by BiG-SCAPE analysis. Depending on the species and complex, Burkholderia possessed several kinds of siderophore. Among them, ornibactin was possessed in most Burkholderia and was clustered into 4,062 clans. There was a similar pattern of gene clusters depending on the species. NRPS_04014 belonged to siderophore BGCs including ornibactin and indigoidine. However, it was observed that each family included a similar species. This suggests that, besides siderophores being species-specific, the ornibactin gene cluster itself might also be species-specific. The results suggest that siderophores are associated with environmental adaptation, possessing a similar pattern of siderophore gene clusters among species, which could provide another perspective on species-specific environmental adaptation mechanisms.
Collapse
Affiliation(s)
- Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
| | - Hyun Lee
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Division of Computer Science and Engineering, SunMoon University, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
7
|
Jia J, Lu SE. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024; 12:100. [PMID: 38257926 PMCID: PMC10821513 DOI: 10.3390/microorganisms12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.
Collapse
Affiliation(s)
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
8
|
Mannaa M, Han G, Jeong T, Kang M, Lee D, Jung H, Seo YS. Taxonomy-guided selection of Paraburkholderia busanensis sp. nov.: a versatile biocontrol agent with mycophagy against Colletotrichum scovillei causing pepper anthracnose. Microbiol Spectr 2023; 11:e0242623. [PMID: 37861313 PMCID: PMC10715207 DOI: 10.1128/spectrum.02426-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Traditional control methods for postharvest diseases rely on fungicides, which cause human health and environmental concerns. This study introduces a taxonomy-guided strategy for selecting biocontrol agents. By focusing on Paraburkholderia group, which harbors diverse plant-beneficial strains, the inadvertent selection of harmful strains was circumvented, thereby obviating the need for laborious in vitro screening assays. A highly promising candidate, strain P39, has been identified, exhibiting remarkable biocontrol activity against Colletotrichum scovillei. Through comprehensive genomic, physiological, and biochemical analyses, P39 was characterized as a novel species within the Paraburkholderia genus and designated Paraburkholderia busanensis. Moreover, these findings deepen our understanding of bacterial-fungal interactions, as they elucidate a potential pathway for the utilization of fungal chitin, thereby enhancing our understanding of bacterial mycophagy. P. busanensis is a promising source of antifungal volatiles and putative novel secondary metabolites.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Gil Han
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Taeho Jeong
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Minhee Kang
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Duyoung Lee
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyejung Jung
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
9
|
Michalik A, Bauer E, Szklarzewicz T, Kaltenpoth M. Nutrient supplementation by genome-eroded Burkholderia symbionts of scale insects. THE ISME JOURNAL 2023; 17:2221-2231. [PMID: 37833524 PMCID: PMC10689751 DOI: 10.1038/s41396-023-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Hemipterans are known as hosts to bacterial or fungal symbionts that supplement their unbalanced diet with essential nutrients. Among them, scale insects (Coccomorpha) are characterized by a particularly large diversity of symbiotic systems. Here, using microscopic and genomic approaches, we functionally characterized the symbionts of two scale insects belonging to the Eriococcidae family, Acanthococcus aceris and Gossyparia spuria. These species host Burkholderia bacteria that are localized in the cytoplasm of the fat body cells. Metagenome sequencing revealed very similar and highly reduced genomes (<900KBp) with a low GC content (~38%), making them the smallest and most AT-biased Burkholderia genomes yet sequenced. In their eroded genomes, both symbionts retain biosynthetic pathways for the essential amino acids leucine, isoleucine, valine, threonine, lysine, arginine, histidine, phenylalanine, and precursors for the semi-essential amino acid tyrosine, as well as the cobalamin-dependent methionine synthase MetH. A tryptophan biosynthesis pathway is conserved in the symbiont of G. spuria, but appeared pseudogenized in A. aceris, suggesting differential availability of tryptophan in the two host species' diets. In addition to the pathways for essential amino acid biosynthesis, both symbionts maintain biosynthetic pathways for multiple cofactors, including riboflavin, cobalamin, thiamine, and folate. The localization of Burkholderia symbionts and their genome traits indicate that the symbiosis between Burkholderia and eriococcids is younger than other hemipteran symbioses, but is functionally convergent. Our results add to the emerging picture of dynamic symbiont replacements in sap-sucking Hemiptera and highlight Burkholderia as widespread and versatile intra- and extracellular symbionts of animals, plants, and fungi.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Eugen Bauer
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
10
|
Tan KY, Deng S, Tan TK, Hari R, Sitam FT, Othman RY, Wong KT, Mohidin TBM, Choo SW. Genome sequence analysis of Malayan pangolin ( Manis javanica) forensic samples reveals the presence of Paraburkholderia fungorum sequences. PeerJ 2023; 11:e16002. [PMID: 37810781 PMCID: PMC10559893 DOI: 10.7717/peerj.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Malayan pangolin (Manis javanica) is a placental mammal and is listed as Critically Endangered on the IUCN Red List of Threatened Species. Most previous attempts to breed pangolins in captivity have met with little success because of dietary issues, infections, and other complications, although a previous study reported breeding pangolins in captivity to the third generation. In our previous pangolin genome sequencing data analysis, we obtained a considerable amount of bacterial DNA from a pregnant female Malayan pangolin (named "UM3"), which was likely infected by Paraburkholderia fungorum-an agent of biodegradation and bioremediation in agriculture. Methodology Here, we further confirmed and characterized this bacterial species using PCR, histological staining, whole-genome sequencing, and bioinformatics approaches. PCR assays with in-house designed primer sets and 16S universal primers showed clear positive bands in the cerebrum, cerebellum, lung, and blood of UM3 suggesting that UM3 might have developed septicaemia. Histological staining showed the presence of Gram-negative rod-shaped bacteria in the pangolin brain and lungs, indicating the colonization of the bacteria in these two organs. In addition, PCR screening of UM3's fetal tissues revealed the presence of P. fungorum in the gastrocnemius muscle, but not in other tissues that we examined. We also sequenced and reconstructed the genome of pangolin P. fungorum, which has a genome size of 7.7 Mbps. Conclusion Our study is the first to present detailed evidence of the presence of P. fungorum in a pangolin and her fetus (although preliminary results were presented in our previous article). Here, we raise the concern that P. fungorum may potentially infect humans, especially YOPI (young, old, pregnant, and immunocompromised) people. Therefore, caution should be exercised when using this bacterial species as biodegradation or bioremediation agents in agriculture.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Siwei Deng
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ranjeev Hari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Frankie Thomas Sitam
- National Wildlife Forensic Laboratory, Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
D'Accolti M, Soffritti I, Bini F, Mazziga E, Cason C, Comar M, Volta A, Bisi M, Fumagalli D, Mazzacane S, Caselli E. Shaping the subway microbiome through probiotic-based sanitation during the COVID-19 emergency: a pre-post case-control study. MICROBIOME 2023; 11:64. [PMID: 36991513 PMCID: PMC10060134 DOI: 10.1186/s40168-023-01512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/07/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND The COVID-19 pandemic has highlighted the extent to which the public transportation environment, such as in subways, may be important for the transmission of potential pathogenic microbes among humans, with the possibility of rapidly impacting large numbers of people. For these reasons, sanitation procedures, including massive use of chemical disinfection, were mandatorily introduced during the emergency and remain in place. However, most chemical disinfectants have temporary action and a high environmental impact, potentially enhancing antimicrobial resistance (AMR) of the treated microbes. By contrast, a biological and eco-sustainable probiotic-based sanitation (PBS) procedure was recently shown to stably shape the microbiome of treated environments, providing effective and long-term control of pathogens and AMR spread in addition to activity against SARS-CoV-2, the causative agent of COVID-19. Our study aims to assess the applicability and impact of PBS compared with chemical disinfectants based on their effects on the surface microbiome of a subway environment. RESULTS The train microbiome was characterized by both culture-based and culture-independent molecular methods, including 16S rRNA NGS and real-time qPCR microarray, for profiling the train bacteriome and its resistome and to identify and quantify specific human pathogens. SARS-CoV-2 presence was also assessed in parallel using digital droplet PCR. The results showed a clear and significant decrease in bacterial and fungal pathogens (p < 0.001) as well as of SARS-CoV-2 presence (p < 0.01), in the PBS-treated train compared with the chemically disinfected control train. In addition, NGS profiling evidenced diverse clusters in the population of air vs. surface while demonstrating the specific action of PBS against pathogens rather than the entire train bacteriome. CONCLUSIONS The data presented here provide the first direct assessment of the impact of different sanitation procedures on the subway microbiome, allowing a better understanding of its composition and dynamics and showing that a biological sanitation approach may be highly effective in counteracting pathogens and AMR spread in our increasingly urbanized and interconnected environment. Video Abstract.
Collapse
Affiliation(s)
- Maria D'Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Carolina Cason
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Antonella Volta
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Matteo Bisi
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Daniele Fumagalli
- Facility Management Unit, Azienda Trasporti Milanesi S.P.A, 20121, Milan, Italy
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy.
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy.
| |
Collapse
|
12
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
13
|
Qin L, Qi J, Shen G, Qin D, Wu J, Song Y, Cao Y, Zhao P, Xia Q. Effects of Microbial Transfer during Food-Gut-Feces Circulation on the Health of Bombyx mori. Microbiol Spectr 2022; 10:e0235722. [PMID: 36318051 PMCID: PMC9769633 DOI: 10.1128/spectrum.02357-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Change in habitual diet may negatively affect health. The domestic silkworm (Bombyx mori) is an economically important oligophagous insect that feeds on mulberry leaves. The growth, development, and immune-disease resistance of silkworms have declined under artificial dietary conditions. In this study, we used B. mori as a model insect to explore the relationship between changes in diet and balance of intestinal microbes due to its simpler guts compared with those of mammals. We found that artificial diets reduced the intestinal bacterial diversity in silkworms and resulted in a simple intestinal microbial structure. By analyzing the correlations among food, gut, and fecal microbial diversity, we found that an artificial diet was more easily fermented and enriched the lactic acid bacteria in the gut of the silkworms. This diet caused intestinal acidification and microbial imbalance (dysbiosis). When combined with the artificial diet, Enterococcus mundtii, a colonizing opportunistic pathogen, caused dysbiosis and allowed the frequent outbreak of bacterial diseases in the silkworms. This study provides further systematic indicators and technical references for future investigations of the relationship between diet-based environmental changes and intestinal microbial balance. IMPORTANCE The body often appears unwell after habitual dietary changes. The domestic silkworm (Bombyx mori) raised on artificial diets is a good model to explore the relationship between dietary changes and the balance of intestinal microbes. In this study, the food-gut-feces microbial model was established, and some potential key genera that could regulate the balance of intestinal microbiota were screened out. Our findings will provide a reference for future research to further our understanding of healthy silkworm development and may even be useful for similar research on other animals.
Collapse
Affiliation(s)
- Lijun Qin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Junpeng Qi
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Daoyuan Qin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yuwei Song
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Abstract
The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into “actin tails” propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Clare L Moran
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Justine Bendo
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
15
|
Genome-based Reclassification of Paraburkholderia insulsa as a Later Heterotypic Synonym of Paraburkholderia fungorum and Proposal of Paraburkholderia terrae subsp. terrae subsp. nov. and Paraburkholderia terrae subsp. steynii subsp. nov. Curr Microbiol 2022; 79:358. [PMID: 36251082 DOI: 10.1007/s00284-022-03058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022]
Abstract
Based on the 16S rRNA gene sequences similarity of > 99.8%, the phylogeny of 88 Paraburkholderia strains was reconstructed. Further, they were subjected to overall genome-related indices (OGRI), which resulted in the identification of distinct pairs of species that were closely related. A pair consist of the type strains of Paraburkholderia insulsa and Paraburkholderia fungorum possessed a dDDH value of 87.9%, correspondingly, and the average nucleotide identity (ANI) value was 98.5%. Based on the phylogenetic analysis, OGRI and phenotypical evidence, P. insulsa was proposed as a later heterotypic synonym of P. fungorum. Furthermore, a pair comprising type strains of Paraburkholderia terrae and Paraburkholderia steynii possessed dDDH and ANI values of 71.2% and 96.6%, respectively, and difference in phenotypic traits, which supports a subspecies proposal within these taxa. Thus, the recently described Paraburkholderia steynii was proposed into two subspecies namely Paraburkholderia terrae subsp terrae subsp. nov and as Paraburkholderia terrae subsp. steynii subsp. nov.
Collapse
|
16
|
Ishigami K, Jang S, Itoh H, Kikuchi Y. Obligate Gut Symbiotic Association with Caballeronia in the Mulberry Seed Bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02117-2. [PMID: 36178538 DOI: 10.1007/s00248-022-02117-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Many insects possess symbiotic bacteria in their bodies, and microbial symbionts play pivotal metabolic roles for their hosts. Members of the heteropteran superfamilies Coreoidea and Lygaeoidea stinkbugs harbor symbionts of the genus Caballeronia in their intestinal tracts. Compared with symbiotic associations in Coreoidea, those in Lygaeoidea insects are still less understood. Here, we investigated a symbiotic relationship involving the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae) using histological observations, cultivation of the symbiont, 16S rRNA gene amplicon sequencing, and infection testing of cultured symbionts. Histological observations and cultivation revealed that P. dissimilis harbors Caballeronia symbionts in the crypts of its posterior midgut. 16S rRNA gene amplicon sequencing of field-collected P. dissimilis confirmed that the genus Caballeronia is dominant in the midgut of natural populations of P. dissimilis. In addition, PCR diagnostics showed that the eggs were free of symbiotic bacteria, and hatchlings horizontally acquired the symbionts from ambient soil. Infection and rearing experiments revealed that symbiont-free aposymbiotic individuals had abnormal body color, small body size, and, strikingly, a low survival rate, wherein no individuals reached adulthood, indicating an obligate cooperative mutualism between the mulberry seed bug and Caballeronia symbionts.
Collapse
Affiliation(s)
- Kota Ishigami
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan.
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| |
Collapse
|
17
|
Ohbayashi T, Cossard R, Lextrait G, Hosokawa T, Lesieur V, Takeshita K, Tago K, Mergaert P, Kikuchi Y. Intercontinental Diversity of Caballeronia Gut Symbionts in the Conifer Pest Bug Leptoglossus occidentalis. Microbes Environ 2022; 37. [PMID: 35965097 PMCID: PMC9530724 DOI: 10.1264/jsme2.me22042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Many stinkbugs in the superfamily Coreoidea (Hemiptera: Heteroptera) develop crypts in the posterior midgut, harboring Caballeronia (Burkholderia) symbionts. These symbionts form a monophyletic group in Burkholderia sensu lato, called the “stinkbug-associated beneficial and environmental (SBE)” group, recently reclassified as the new genus Caballeronia. SBE symbionts are separated into the subclades SBE-α and SBE-β. Previous studies suggested a regional effect on the symbiont infection pattern; Japanese and American bug species are more likely to be associated with SBE-α, while European bug species are almost exclusively associated with SBE-β. However, since only a few insect species have been investigated, it remains unclear whether region-specific infection is general. We herein investigated Caballeronia gut symbionts in diverse Japanese, European, and North American populations of a cosmopolitan species, the Western conifer seed bug Leptoglossus occidentalis (Coreoidea: Coreidae). A molecular phylogenetic analysis of the 16S rRNA gene demonstrated that SBE-β was the most dominant in all populations. Notably, SBE-α was rarely detected in any region, while a third clade, the “Coreoidea clade” occupied one fourth of the tested populations. Although aposymbiotic bugs showed high mortality, SBE-α- and SBE-β-inoculated insects both showed high survival rates; however, a competition assay demonstrated that SBE-β outcompeted SBE-α in the midgut crypts of L. occidentalis. These results strongly suggest that symbiont specificity in the Leptoglossus-Caballeronia symbiotic association is influenced by the host rather than geography, while the geographic distribution of symbionts may be more important in other bugs.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO).,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | - Raynald Cossard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | - Gaëlle Lextrait
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | | | | | | | - Kanako Tago
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO)
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center.,Graduate School of Agriculture, Hokkaido University
| |
Collapse
|
18
|
Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK, Maluk M, Muasya MA, Avontuur JR, Yin Chan W, Venter SN, Steenkamp ET. Delineation of Paraburkholderia tuberum sensu stricto and description of Paraburkholderia podalyriae sp. nov. nodulating the South African legume Podalyria calyptrata. Syst Appl Microbiol 2022; 45:126316. [DOI: 10.1016/j.syapm.2022.126316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
19
|
Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC, Kaestli M, Schupp J, Martz M, Settles EW, Busch JD, Sidak-Loftis L, Thomas A, Kreutzer L, Georgi E, Schweizer HP, Warner JM, Keim P, Currie BJ, Wagner DM. Expanding the Burkholderia pseudomallei Complex with the Addition of Two Novel Species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2022; 88:e0158321. [PMID: 34644162 PMCID: PMC8752149 DOI: 10.1128/aem.01583-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.
Collapse
Affiliation(s)
- Carina M. Hall
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anthony L. Baker
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Mirjam Kaestli
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - James Schupp
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Madison Martz
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Erik W. Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lindsay Sidak-Loftis
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Astrid Thomas
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Lisa Kreutzer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey M. Warner
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J. Currie
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
20
|
Multiple Copies of flhDC in Paraburkholderia unamae Regulate Flagellar Gene Expression, Motility, and Biofilm Formation. J Bacteriol 2021; 203:e0029321. [PMID: 34543106 DOI: 10.1128/jb.00293-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FlhDC is a heterohexameric complex that acts as a master regulator of flagellar biosynthesis genes in numerous bacteria. Previous studies have identified a single flhDC operon encoding this complex. However, we found that two flhDC loci are present throughout Paraburkholderia, and two additional flhC copies are also present in Paraburkholderia unamae. Systematic deletion analysis in P. unamae of the different flhDC copies showed that one of the operons, flhDC1, plays the predominant role, with deletion of its genes resulting in a severe inhibition of motility and biofilm formation. Expression analysis using promoter-lacZ fusions and real-time quantitative PCR support the primary role of flhDC1 in flagellar gene regulation, with flhDC2 a secondary contributor. Phylogenetic analysis shows the presence of the flhDC1 and flhDC2 operons throughout Paraburkholderia. In contrast, Burkholderia and other bacteria only carry the copy syntenous with flhDC2. The variations in impact each copy of flhDC has on downstream processes indicate that regulation of FlhDC in P. unamae, and likely other Paraburkholderia species, is regulated at least in part by the presence of multiple copies of these genes. IMPORTANCE Motility is important in the colonization of plant roots by beneficial and pathogenic bacteria, with flagella playing essential roles in host cell adhesion, entrance, and biofilm formation. Flagellar biosynthesis is energetically expensive. Its complex regulation by the FlhDC master regulator is well studied in peritrichous flagella expressing enterics. We report the unique presence throughout Paraburkholderia of multiple copies of flhDC. In P. unamae, the flhDC1 copy showed higher expression and a greater effect on swim motility, flagellar development, and regulation of downstream genes, than the flhDC2 copy that is syntenous to flhDC in Escherichia coli and pathogenic Burkholderia spp. The flhDC genes have evolved differently in these plant-growth-promoting bacteria, giving an additional layer of complexity in gene regulation by FlhDC.
Collapse
|
21
|
Acevedo TS, Fricker GP, Garcia JR, Alcaide T, Berasategui A, Stoy KS, Gerardo NM. The Importance of Environmentally Acquired Bacterial Symbionts for the Squash Bug ( Anasa tristis), a Significant Agricultural Pest. Front Microbiol 2021; 12:719112. [PMID: 34671328 PMCID: PMC8521078 DOI: 10.3389/fmicb.2021.719112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Most insects maintain associations with microbes that shape their ecology and evolution. Such symbioses have important applied implications when the associated insects are pests or vectors of disease. The squash bug, Anasa tristis (Coreoidea: Coreidae), is a significant pest of human agriculture in its own right and also causes damage to crops due to its capacity to transmit a bacterial plant pathogen. Here, we demonstrate that complete understanding of these insects requires consideration of their association with bacterial symbionts in the family Burkholderiaceae. Isolation and sequencing of bacteria housed in the insects’ midgut crypts indicates that these bacteria are consistent and dominant members of the crypt-associated bacterial communities. These symbionts are closely related to Caballeronia spp. associated with other true bugs in the superfamilies Lygaeoidea and Coreoidea. Fitness assays with representative Burkholderiaceae strains indicate that the association can significantly increase survival and decrease development time, though strains do vary in the benefits that they confer to their hosts, with Caballeronia spp. providing the greatest benefit. Experiments designed to assess transmission mode indicate that, unlike many other beneficial insect symbionts, the bacteria are not acquired from parents before or after hatching but are instead acquired from the environment after molting to a later developmental stage. The bacteria do, however, have the capacity to escape adults to be transmitted to later generations, leaving the possibility for a combination of indirect vertical and horizontal transmission.
Collapse
Affiliation(s)
- Tarik S Acevedo
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Justine R Garcia
- Department of Biology, Emory University, Atlanta, GA, United States.,Department of Biology, New Mexico Highlands University, Las Vegas, NM, United States
| | - Tiffanie Alcaide
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Nicole M Gerardo
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. Transmission of Bacterial Symbionts With and Without Genome Erosion Between a Beetle Host and the Plant Environment. Front Microbiol 2021; 12:715601. [PMID: 34630349 PMCID: PMC8493222 DOI: 10.3389/fmicb.2021.715601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains have presumably evolved from plant pathogens. Notably, little is known about the role of the environment for the transmission dynamics and the maintenance of the symbionts. Through manipulative assays, we demonstrate the transfer of the symbionts from the beetle to wheat, rice and soybean plants, as well as leaf litter. In addition, we confirm that aposymbiotic larvae can pick up Lv-StA from dry leaves and the symbiont can successfully establish in the beetle’s symbiotic organs. Also, we show that the presence of plants and soil in the environment improves symbiont maintenance. These results indicate that the symbionts of L. villosa beetles are still capable of interacting with plants despite signatures of genome erosion and suggest that a mixed-mode of bacterial transmission is likely key for the persistence of the symbiosis.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Paul Gaube
- Molecular Biodiversity Research Group, Center for Computational and Theoretical Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Dagmar Klebsch
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Mullins AJ, Mahenthiralingam E. The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of Burkholderia Sensu Lato. Front Microbiol 2021; 12:726847. [PMID: 34650530 PMCID: PMC8506256 DOI: 10.3389/fmicb.2021.726847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato is a collection of closely related genera within the family Burkholderiaceae that includes species of environmental, industrial, biotechnological, and clinical importance. Multiple species within the complex are the source of diverse specialized metabolites, many of which have been identified through genome mining of their biosynthetic gene clusters (BGCs). However, the full, true genomic diversity of these species and genera, and their biosynthetic capacity have not been investigated. This study sought to cluster and classify over 4000 Burkholderia sensu lato genome assemblies into distinct genomic taxa representing named and uncharacterized species. We delineated 235 species groups by average nucleotide identity analyses that formed seven distinct phylogenomic clades, representing the genera of Burkholderia sensu lato: Burkholderia, Paraburkholderia, Trinickia, Caballeronia, Mycetohabitans, Robbsia, and Pararobbisa. A total of 137 genomic taxa aligned with named species possessing a sequenced type strain, while 93 uncharacterized species groups were demarcated. The 95% ANI threshold proved capable of delineating most genomic species and was only increased to resolve several closely related species. These analyses enabled the assessment of species classifications of over 4000 genomes, and the correction of over 400 genome taxonomic assignments in public databases into existing and uncharacterized genomic species groups. These species groups were genome mined for BGCs, their specialized metabolite capacity calculated per species and genus, and the number of distinct BGCs per species estimated through kmer-based de-replication. Mycetohabitans species dedicated a larger proportion of their relatively small genomes to specialized metabolite biosynthesis, while Burkholderia species harbored more BGCs on average per genome and possessed the most distinct BGCs per species compared to the remaining genera. Exploring the hidden genomic diversity of this important multi-genus complex contributes to our understanding of their taxonomy and evolutionary relationships, and supports future efforts toward natural product discovery.
Collapse
|
24
|
Paulitsch F, Dos Reis FB, Hungria M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch Microbiol 2021; 203:4785-4803. [PMID: 34245357 DOI: 10.1007/s00203-021-02466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that β-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of β-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70040-020, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil. .,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
25
|
Palomares-Rius JE, Gutiérrez-Gutiérrez C, Mota M, Bert W, Claeys M, Yushin VV, Suzina NE, Ariskina EV, Evtushenko LI, Subbotin SA, Castillo P. ' Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov., an endosymbiotic bacterium associated with nematode species of the genus Xiphinema (Nematoda, Longidoridae). Int J Syst Evol Microbiol 2021; 71:004888. [PMID: 34287117 PMCID: PMC8489844 DOI: 10.1099/ijsem.0.004888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
An intracellular bacterium, strain IAST, was observed to infect several species of the plant-parasitic nematode genus Xiphinema (Xiphinema astaregiense, Xiphinema incertum, Xiphinema madeirense, Xiphinema pachtaicum, Xiphinema parapachydermum and Xiphinema vallense). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAST was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts Mycoavidus cysteinexigens B1-EBT (92.9 % sequence identity) and 'Candidatus Glomeribacter gigasporarum' BEG34 (89.8 % identity) are the closest taxa and form a separate phylogenetic clade inside Burkholderiaceae. Other genes (atpD, lepA and recA) also separated this species from its closest relatives using a multilocus sequence analysis approach. These genes were obtained using a partial genome of this bacterium. The localization of the bacterium (via light and fluorescence in situ hybridization microscopy) is in the X. pachtaicum females clustered around the developing oocytes, primarily found embedded inside the epithelial wall cells of the ovaries, from where they are dispersed in the intestine. Transmission electron microscopy (TEM) observations supported the presence of bacteria inside the nematode body, where they occupy ovaries and occur inside the intestinal epithelium. Ultrastructural analysis of the bacterium showed cells that appear as mostly irregular, slightly curved rods with rounded ends, 0.8-1.2 µm wide and 2.5-6.0 µm long, possessing a typical Gram-negative cell wall. The peptidoglycan layer is, however, evident only occasionally and not detectable by TEM in most cells. Another irregularly occurring shell surrounding the endosymbiont cells or the cell clusters was also revealed, probably originating from the host cell membrane. Flagella or spore-like cells do not occur and the nucleoid is diffusely distributed throughout the cell. This endosymbiont is transmitted vertically through nematode generations. These results support the proposal of IAST as a new species, although its obligate intracellular and obligate endosymbiont nature prevented isolation of a definitive type strain. Strain IAST is therefore proposed as representing 'Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov.
Collapse
Affiliation(s)
- Juan E. Palomares-Rius
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Carlos Gutiérrez-Gutiérrez
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Manuel Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Vladimir V. Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Natalia E. Suzina
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Elena V. Ariskina
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Lyudmila I. Evtushenko
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Sergei A. Subbotin
- California Department of Food and Agriculture, Plant Pest Diagnostic Center, Sacramento, CA 95832, USA
- Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow 117071, Russia
| | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
26
|
Bellés-Sancho P, Lardi M, Liu Y, Hug S, Pinto-Carbó MA, Zamboni N, Pessi G. Paraburkholderia phymatum Homocitrate Synthase NifV Plays a Key Role for Nitrogenase Activity during Symbiosis with Papilionoids and in Free-Living Growth Conditions. Cells 2021; 10:cells10040952. [PMID: 33924023 PMCID: PMC8073898 DOI: 10.3390/cells10040952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022] Open
Abstract
Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for nitrogenase activity both in root nodules of papilionoid plants and in free-living growth conditions. Notably, nifV was dispensable in nodules of Mimosa pudica despite the fact that the gene was highly expressed during symbiosis with all tested papilionoid and mimosoid plants. A metabolome analysis of papilionoid and mimosoid root nodules infected with the P. phymatum wild-type strain revealed that among the approximately 400 measured metabolites, homocitrate and other metabolites involved in lysine biosynthesis and degradation have accumulated in all plant nodules compared to uninfected roots, suggesting an important role of these metabolites during symbiosis.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Sebastian Hug
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Marta Adriana Pinto-Carbó
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland;
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (S.H.); (M.A.P.-C.)
- Correspondence: ; Tel.: +41-44-63-52904
| |
Collapse
|
27
|
Cauduro GP, Leal AL, Marmitt M, de Ávila LG, Kern G, Quadros PD, Mahenthiralingam E, Valiati VH. New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:163. [PMID: 33675444 DOI: 10.1007/s10661-021-08952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The prospection of bacteria that are resistant to polyaromatic hydrocarbons (PAH) of activated sludge from a Petrochemical Wastewater Treatment Plant (WWTP) allows investigating potential biodegraders of PAH. For this purpose, sludge samples were cultured with benzo(a)pyrene and/or naphthalene as carbon sources. The recovered isolates were characterized by biochemical methods and identified based on the analysis of the sequence of three genes: 16S, recA and gyrB. The isolated strains were shown to be capable of producing surfactants, which are important for compound degradation. The ability to reduce benzo(a)pyrene in vitro was tested by gas chromatography. After 20 days of experiment, the consortium that was enriched with 1 mg/L of benzo(a)pyrene was able to reduce 30% of the compound when compared to a control without bacteria. The four isolated strains that significantly reduced benzo(a)pyrene belong to the Burkholderia cepacia complex and were identified within the consortium as the species B. cenocepacia IIIa, B. vietnamiensis, B. cepacia, and B. multivorans. This finding demonstrates the biotechnological potential of the B. cepacia complex strains for use in wastewater treatment and bioremediation. Previous studies on hydrocarbon-degrading strains focused mainly on contaminated soil or marine areas. In this work, the strains were prospected from activated sludge in a WWTP and showed the potential of indigenous samples to be used in both improving treatment systems and bioremediation of areas contaminated with petrochemical waste.
Collapse
Affiliation(s)
- Guilherme Pinto Cauduro
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Marcela Marmitt
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Letícia Gomes de Ávila
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Gabriela Kern
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Patrícia Dörr Quadros
- Laboratório de Biodeterioração de Combustíveis e Biocombustíveis, UFRGS, Brazil Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Victor Hugo Valiati
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
| |
Collapse
|
28
|
Ishigami K, Jang S, Itoh H, Kikuchi Y. Insecticide resistance governed by gut symbiosis in a rice pest, Cletus punctiger, under laboratory conditions. Biol Lett 2021; 17:20200780. [PMID: 33653096 DOI: 10.1098/rsbl.2020.0780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance to toxins in insects is generally thought of as their own genetic trait, but recent studies have revealed that gut microorganisms could mediate resistance by detoxifying phytotoxins and man-made insecticides. By laboratory experiments, we here discovered a striking example of gut symbiont-mediated insecticide resistance in a serious rice pest, Cletus punctiger. The rice bug horizontally acquired fenitrothion-degrading Burkholderia through oral infection and housed it in midgut crypts. Fenitrothion-degradation test revealed that the gut-colonizing Burkholderia retains a high degrading activity of the organophosphate compound in the insect gut. This gut symbiosis remarkably increased resistance against fenitrothion treatment in the host rice bug. Considering that many stinkbug pests are associated with soil-derived Burkholderia, our finding strongly supports that a number of stinkbug species could gain resistance against insecticide simply by acquiring insecticide-degrading gut bacteria.
Collapse
Affiliation(s)
- Kota Ishigami
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Seonghan Jang
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| |
Collapse
|
29
|
Provorov NA. Symbiotic Models for Reconstruction of Organellogenesis. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera. Genes (Basel) 2021; 12:genes12010071. [PMID: 33430351 PMCID: PMC7825797 DOI: 10.3390/genes12010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Among other attributes, the Betaproteobacterial genus Azoarcus has biotechnological importance for plant growth-promotion and remediation of petroleum waste-polluted water and soils. It comprises at least two phylogenetically distinct groups. The "plant-associated" group includes strains that are isolated from the rhizosphere or root interior of the C4 plant Kallar Grass, but also strains from soil and/or water; all are considered to be obligate aerobes and all are diazotrophic. The other group (now partly incorporated into the new genus Aromatoleum) comprises a diverse range of species and strains that live in water or soil that is contaminated with petroleum and/or aromatic compounds; all are facultative or obligate anaerobes. Some are diazotrophs. A comparative genome analysis of 32 genomes from 30 Azoarcus-Aromatoleum strains was performed in order to delineate generic boundaries more precisely than the single gene, 16S rRNA, that has been commonly used in bacterial taxonomy. The origin of diazotrophy in Azoarcus-Aromatoleum was also investigated by comparing full-length sequences of nif genes, and by physiological measurements of nitrogenase activity using the acetylene reduction assay. Based on average nucleotide identity (ANI) and whole genome analyses, three major groups could be discerned: (i) Azoarcus comprising Az. communis, Az. indigens and Az. olearius, and two unnamed species complexes, (ii) Aromatoleum Group 1 comprising Ar. anaerobium, Ar. aromaticum, Ar. bremense, and Ar. buckelii, and (iii) Aromatoleum Group 2 comprising Ar. diolicum, Ar. evansii, Ar. petrolei, Ar. toluclasticum, Ar. tolulyticum, Ar. toluolicum, and Ar. toluvorans. Single strain lineages such as Azoarcus sp. KH32C, Az. pumilus, and Az. taiwanensis were also revealed. Full length sequences of nif-cluster genes revealed two groups of diazotrophs in Azoarcus-Aromatoleum with nif being derived from Dechloromonas in Azoarcus sensu stricto (and two Thauera strains) and from Azospira in Aromatoleum Group 2. Diazotrophy was confirmed in several strains, and for the first time in Az. communis LMG5514, Azoarcus sp. TTM-91 and Ar. toluolicum TT. In terms of ecology, with the exception of a few plant-associated strains in Azoarcus (s.s.), across the group, most strains/species are found in soil and water (often contaminated with petroleum or related aromatic compounds), sewage sludge, and seawater. The possession of nar, nap, nir, nor, and nos genes by most Azoarcus-Aromatoleum strains suggests that they have the potential to derive energy through anaerobic nitrate respiration, so this ability cannot be usefully used as a phenotypic marker to distinguish genera. However, the possession of bzd genes indicating the ability to degrade benzoate anaerobically plus the type of diazotrophy (aerobic vs. anaerobic) could, after confirmation of their functionality, be considered as distinguishing phenotypes in any new generic delineations. The taxonomy of the Azoarcus-Aromatoleum group should be revisited; retaining the generic name Azoarcus for its entirety, or creating additional genera are both possible outcomes.
Collapse
|
31
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|
32
|
Ecophysiological Study of Paraburkholderia sp. Strain 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency. Appl Environ Microbiol 2020; 86:AEM.01851-20. [PMID: 33008817 PMCID: PMC7688210 DOI: 10.1128/aem.01851-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression.IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution.
Collapse
|
33
|
Madhaiyan M, Wirth JS, Saravanan VS. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int J Syst Evol Microbiol 2020; 70:5926-5936. [DOI: 10.1099/ijsem.0.004498] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analyses based on 16S rRNA gene sequences of members of the family
Staphylococcaceae
showed the presence of para- and polyphyletic genera. This finding prompted a thorough investigation into the taxonomy of the
Staphylococcaceae
family by analysing their core genome phylogeny complemented with genome-based indices such as digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity. The resulting data suggested the following proposals:
Auricoccus indicus
was reduced in taxonomic rank as a later heterotypic synonym of
Abyssicoccus albus
;
Staphylococcus petrasii
subsp.
jettensis
as a later heterotypic synonym of
Staphylococcus petrasii
subsp.
petrasii
; the unification of
Staphylococcus aureus
subsp.
anaerobius
and
Staphylococcus aureus
subsp.
aureus
as
Staphylococcus aureus
; the unification of
Staphylococcus carnosus
subsp.
utilis
and
Staphylococcus carnosus
subsp.
carnosus
as
Staphylococcus carnosus
; the unification of
Staphylococcus saprophyticus
subsp.
bovis
and
Staphylococcus saprophyticus
subsp.
saprophyticus
as
Staphylococcus saprophyticus
; Staphylococcus succinis subsp. casei as the novel species Staphylococcus casei;
Staphylococcus schleiferi
subsp.
coagulans
as the novel species Staphylococcus coagulans;
Staphylococcus petrasii
subsp.
croceilyticus
as the novel species Staphylococcus croceilyticus;
Staphylococcus petrasii
subsp.
pragensis
as the novel species Staphylococcus pragensis;
Staphylococcus cohnii
subsp.
urealyticus
as the novel species Staphylococcus urealyticus; the reassignment of
Staphylococcus sciuri
,
Staphylococcus fleurettii
,
Staphylococcus lentus
,
Staphylococcus stepanovicii
and
Staphylococcus vitulinus
to the novel genus Mammaliicoccus with Mammaliicoccus sciuri as the type species; and the formal assignment of
Nosocomiicoccus
as a member of the family
Staphylococcaceae
.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Department of Agricultural Microbiology, Tamilnadu Agricultural University, Coimbatore 641 003, Tamilnadu, India
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Joseph S. Wirth
- Department of Biology, Harvey Mudd College Claremont, CA 91711, USA
| | | |
Collapse
|
34
|
Liu X, You S, Liu H, Yuan B, Wang H, James EK, Wang F, Cao W, Liu ZK. Diversity and Geographic Distribution of Microsymbionts Associated With Invasive Mimosa Species in Southern China. Front Microbiol 2020; 11:563389. [PMID: 33250864 PMCID: PMC7673401 DOI: 10.3389/fmicb.2020.563389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
In order to investigated diversity and geographic distribitution of rhizobia associated with invasive Mimosa species, Mimosa nodules and soils around the plants were sampled from five provinces in southern China. In total, 361 isolates were obtained from Mimosa pudica and Mimosa diplotricha in 25 locations. A multi-locus sequence analysis (MLSA) including 16S rRNA, atpD, dnaK, glnA, gyrB, and recA identified the isolates into eight genospecies corresponding to Paraburkhleria mimosarum, Paraburkholderia phymatum, Paraburkholeria carbensis, Cupriavidus taiwanensis, Cupriavidus sp., Rhizobium altiplani, Rhizobium mesoamericanum, and Rhizobium etli. The majority of the isolates were Cupriavidus (62.6%), followed by Paraburkholderia (33.5%) and Rhizobium (2.9%). Cupriavidus strains were more predominant in nodules of M. diplotricha (76.2) than in M. pudica (59.9%), and the distribution of P. phymatum in those two plant species was reverse (3.4:18.2%). Four symbiotypes were defined among the isolates based upon the phylogeny of nodA-nifH genes, represented by P. mimosarum, P. phymatum–P. caribensis, Cupriavidus spp., and Rhizobium spp. The species affiliation and the symbiotype division among the isolates demonstrated the multiple origins of Mimosa rhizobia in China: most were similar to those found in the original centers of Mimosa plants, but Cupriavidus sp. might have a local origin. The unbalanced distribution of symbionts between the two Mimosa species might be related to the soil pH, organic matter and available nitrogen; Cupriavidus spp. generally dominated most of the soils colonized by Mimosa in this study, but it had a particular preference for neutral-alkaline soils with low fertility whereas. While Paraburkholderia spp. preferred more acidic and fertile soils. The Rhizobium spp. tended to prefer neutral–acidic soils with high fertility soils.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shenghao You
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Huajie Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Baojuan Yuan
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haoyu Wang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Fang Wang
- Key Laboratory of State Forestry Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning of CAAS, Beijing, China
| | - Zhong Kuan Liu
- Institute of Agro-resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
35
|
Mavima L, Beukes CW, Palmer M, De Meyer SE, James EK, Maluk M, Gross E, Dos Reis Junior FB, Avontuur JR, Chan WY, Venter SN, Steenkamp ET. Paraburkholderia youngii sp. nov. and 'Paraburkholderia atlantica' - Brazilian and Mexican Mimosa-associated rhizobia that were previously known as Paraburkholderia tuberum sv. mimosae. Syst Appl Microbiol 2020; 44:126152. [PMID: 33276286 DOI: 10.1016/j.syapm.2020.126152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.
Collapse
Affiliation(s)
- Lazarus Mavima
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Sofie E De Meyer
- MALDIID Pty Ltd, Murdoch, Western Australia, Australia; Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Marta Maluk
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Eduardo Gross
- Universidade Estadual de Santa Cruz, km 16 Rodovia Ilhéus - Itabuna, CEP 45662-900 Ilhéus, BA, Brazil
| | | | - Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; Biotechnology Platform, Agricultural Research Council Onderstepoort Veterinary Institute (ARC-OVI), Onderstepoort, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Wilhelm RC, Cyle KT, Martinez CE, Karasz DC, Newman JD, Buckley DH. Paraburkholderia solitsugae sp. nov. and Paraburkholderia elongata sp. nov., phenolic acid-degrading bacteria isolated from forest soil and emended description of Paraburkholderia madseniana. Int J Syst Evol Microbiol 2020; 70:5093-5105. [PMID: 32809929 DOI: 10.1099/ijsem.0.004387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two bacterial strains, 1NT and 5NT, were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of 1NT (0.65×1.85 µm) and 5NT (0.6×1.85 µm) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods, diplobacilli or in chains of varying length. During growth in dilute media (≤0.1× tryptic soy broth; TSB), cells are primarily motile with flagella. At higher concentrations (≥0.3× TSB), cells of both strains increasingly form non-motile chains, and cells of 5NT elongate (0.57×~7 µm) and form especially long filaments. Optimum growth of 1NT and 5NT occurred at 25-30 °C, pH 6.5-7.0 and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that 1NT and 5NT were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP11T, Paraburkholderia aspalathi LMG 27731T and Paraburkholderia caffeinilytica CF1T. The genomes of 1NT and 5NT had an average nucleotide identity (91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%±2.6 and 45.5%±2.5) and differed in functional gene content from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of phenolic acids, also differentiated strains 1NT and 5NT from each other and their closest relatives. The only ubiquinone present in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed features 2 (3OH-C14 : 0 / C16 : 1 iso I), 3 (C16 : 1 ω6c/ω7c) and 8 (C18 : 1 ω7c/ω6c). A third bacterium, strain RL16-012-BIC-B, was isolated from soil associated with shallow roots and was determined to be a strain of P. madseniana (ANI, 98.8%; 16S rRNA gene similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the species description of P. madseniana. Our polyphasic approach demonstrated that strains 1NT and 5NT represent novel species from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain 1NT=DSM 110721T=LMG 31704T) and Paraburkholderia elongata sp. nov. (type strain 5NT=DSM 110722T=LMG 31705T) are proposed.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - K Taylor Cyle
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Carmen Enid Martinez
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David C Karasz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | | | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
37
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
38
|
Paraburkholderia phymatum STM815 σ54 Controls Utilization of Dicarboxylates, Motility, and T6SS-b Expression. NITROGEN 2020. [DOI: 10.3390/nitrogen1020008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhizobia have two major life styles, one as free-living bacteria in the soil, and the other as bacteroids within the root/stem nodules of host legumes where they convert atmospheric nitrogen into ammonia. In the soil, rhizobia have to cope with changing and sometimes stressful environmental conditions, such as nitrogen limitation. In the beta-rhizobial strain Paraburkholderia phymatum STM815, the alternative sigma factor σ54 (or RpoN) has recently been shown to control nitrogenase activity during symbiosis with Phaseolus vulgaris. In this study, we determined P. phymatum’s σ54 regulon under nitrogen-limited free-living conditions. Among the genes significantly downregulated in the absence of σ54, we found a C4-dicarboxylate carrier protein (Bphy_0225), a flagellar biosynthesis cluster (Bphy_2926-64), and one of the two type VI secretion systems (T6SS-b) present in the P. phymatum STM815 genome (Bphy_5978-97). A defined σ54 mutant was unable to grow on C4 dicarboxylates as sole carbon source and was less motile compared to the wild-type strain. Both defects could be complemented by introducing rpoNin trans. Using promoter reporter gene fusions, we also confirmed that the expression of the T6SS-b cluster is regulated by σ54. Accordingly, we show that σ54 affects in vitro competitiveness of P. phymatum STM815 against Paraburkholderia diazotrophica.
Collapse
|
39
|
Liu Y, Bellich B, Hug S, Eberl L, Cescutti P, Pessi G. The Exopolysaccharide Cepacian Plays a Role in the Establishment of the Paraburkholderia phymatum - Phaseolus vulgaris Symbiosis. Front Microbiol 2020; 11:1600. [PMID: 32765457 PMCID: PMC7378592 DOI: 10.3389/fmicb.2020.01600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Paraburkholderia phymatum is a rhizobial strain that belongs to the beta-proteobacteria, a group known to form efficient nitrogen-fixing symbioses within root nodules of several legumes, including the agriculturally important common bean. The establishment of the symbiosis requires the exchange of rhizobial and plant signals such as lipochitooligosaccharides (Nod factors), polysaccharides, and flavonoids. Inspection of the genome of the competitive rhizobium P. phymatum revealed the presence of several polysaccharide biosynthetic gene clusters. In this study, we demonstrate that bceN, a gene encoding a GDP-D-mannose 4,6-dehydratase, which is involved in the production of the exopolysaccharide cepacian, an important component of biofilms produced by closely related opportunistic pathogens of the Burkholderia cepacia complex (Bcc), is required for efficient plant colonization. Wild-type P. phymatum was shown to produce cepacian while a bceN mutant did not. Additionally, the bceN mutant produced a significantly lower amount of biofilm and formed less root nodules compared to the wild-type strain with Phaseolus vulgaris as host plant. Finally, expression of the operon containing bceN was induced by the presence of germinated P. vulgaris seeds under nitrogen limiting conditions suggesting a role of this polysaccharide in the establishment of this ecologically important symbiosis.
Collapse
Affiliation(s)
- Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Brock DA, Noh S, Hubert AN, Haselkorn TS, DiSalvo S, Suess MK, Bradley AS, Tavakoli-Nezhad M, Geist KS, Queller DC, Strassmann JE. Endosymbiotic adaptations in three new bacterial species associated with Dictyostelium discoideum: Paraburkholderia agricolaris sp. nov., Paraburkholderia hayleyella sp. nov., and Paraburkholderia bonniea sp. nov. PeerJ 2020; 8:e9151. [PMID: 32509456 PMCID: PMC7247526 DOI: 10.7717/peerj.9151] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum. The new species P. agricolaris sp. nov., P. hayleyella sp. nov., and P. bonniea sp. nov. are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum. We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship. All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses.
Collapse
Affiliation(s)
- Debra A. Brock
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Suegene Noh
- Department of Biology, Colby College, Waterville, ME, United States of America
| | - Alicia N.M. Hubert
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Tamara S. Haselkorn
- Department of Biology, University of Central Arkansas, Conway, AR, United States of America
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University at Edwardsville, Edwardsville, IL, United States of America
| | - Melanie K. Suess
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St Louis, MO, United States of America
| | - Alexander S. Bradley
- Department of Earth and Planetary Sciences, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St Louis, MO, United States of America
| | | | - Katherine S. Geist
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| |
Collapse
|
41
|
Wilhelm RC, Murphy SJL, Feriancek NM, Karasz DC, DeRito CM, Newman JD, Buckley DH. Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int J Syst Evol Microbiol 2020; 70:2137-2146. [PMID: 32027304 DOI: 10.1099/ijsem.0.004029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RP11T was isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11T are aerobic, non-sporulating, exhibit swimming motility, and are rods (0.8 µm by 1.4 µm) that often occur as diplobacillus or in short chains (3-4 cells). Optimal growth on minimal media containing 4-hydroxybenzoic acid (µ=0.216 hr-1) occurred at 30 °C, pH 6.5 or 7.0 and 0% salinity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative type strains identified as Paraburkholderia aspalathi LMG 27731T, Paraburkholderia fungorum LMG 16225T and Paraburkholderia caffeinilytica CF1T. Strain RP11T is genetically distinct from P. aspalathi, its closest relative, in terms of 16S rRNA gene sequence similarity (98.7%), genomic average nucleotide identity (94%) and in silico DNA-DNA hybridization (56.7 %±2.8). The composition of fatty acids and substrate utilization pattern differentiated strain RP11T from its closest relatives, including growth on phthalic acid. Strain RP11T encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone detected in strain RP11T was Q-8, and the major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω7c/ω6c). On the basis of this polyphasic approach, it was determined that strain RP11T represents a novel species from the genus Paraburkholderia for which the name Paraburkholderia madseniana sp. nov. is proposed. The type strain is RP11T (=DSM 110123T=LMG 31517T).
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Sean J L Murphy
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole M Feriancek
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David C Karasz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher M DeRito
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | | | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
42
|
Pratama AA, Jiménez DJ, Chen Q, Bunk B, Spröer C, Overmann J, van Elsas JD. Delineation of a Subgroup of the Genus Paraburkholderia, Including P. terrae DSM 17804T, P. hospita DSM 17164T, and Four Soil-Isolated Fungiphiles, Reveals Remarkable Genomic and Ecological Features-Proposal for the Definition of a P. hospita Species Cluster. Genome Biol Evol 2020; 12:325-344. [PMID: 32068849 PMCID: PMC7186790 DOI: 10.1093/gbe/evaa031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
The fungal-interactive (fungiphilic) strains BS001, BS007, BS110, and BS437 have previously been preliminarily assigned to the species Paraburkholderia terrae. However, in the (novel) genus Paraburkholderia, an as-yet unresolved subgroup exists, that clusters around Paraburkholderia hospita (containing the species P. terrae, P. hospita, and Paraburkholderia caribensis). To shed light on the precise relationships across the respective type strains and the novel fungiphiles, we here compare their genomic and ecophysiological features. To reach this goal, the genomes of the three type strains, with sizes ranging from 9.0 to 11.5 Mb, were de novo sequenced and the high-quality genomes analyzed. Using whole-genome, ribosomal RNA and marker-gene-concatenate analyses, close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T, versus more remote relationships to P. caribensis DSM 13236T, were found. All four fungiphilic strains clustered closely to the two-species cluster. Analyses of average nucleotide identities (ANIm) and tetranucleotide frequencies (TETRA) confirmed the close relationships between P. hospita DSM 17164T and P. terrae DSM 17804T (ANIm = 95.42; TETRA = 0.99784), as compared with the similarities of each one of these strains to P. caribensis DSM 13236T. A species cluster was thus proposed. Furthermore, high similarities of the fungiphilic strains BS001, BS007, BS110, and BS437 with this cluster were found, indicating that these strains also make part of it, being closely linked to P. hospita DSM 17164T (ANIm = 99%; TETRA = 0.99). We propose to coin this cluster the P. hospita species cluster (containing P. hospita DSM 17164T, P. terrae DSM 17804T, and strains BS001, BS007, BS110, and BS437), being clearly divergent from the closely related species P. caribensis (type strain DSM 13236T). Moreover, given their close relatedness to P. hospita DSM 17164T within the cluster, we propose to rename the four fungiphilic strains as members of P. hospita. Analysis of migratory behavior along with fungal growth through soil revealed both P. terrae DSM 17804T and P. hospita DSM 17164T (next to the four fungiphilic strains) to be migration-proficient, whereas P. caribensis DSM 13236T was a relatively poor migrator. Examination of predicted functions across the genomes of the seven investigated strains, next to several selected additional ones, revealed the common presence of features in the P. hospita cluster strains that are potentially important in interactions with soil fungi. Thus, genes encoding specific metabolic functions, biofilm formation (pelABCDEFG, pgaABCD, alginate-related genes), motility/chemotaxis, type-4 pili, and diverse secretion systems were found.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Qian Chen
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Microbiology, Braunschweig University of Technology, Germany
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| |
Collapse
|
43
|
Madhaiyan M, Saravanan VS, Wirth JS, Whitman WB. Reclassification of Sphingomonas aeria as a later heterotypic synonym of Sphingomonas carotinifaciens based on whole-genome sequence analysis. Int J Syst Evol Microbiol 2020; 70:2355-2358. [PMID: 32053091 DOI: 10.1099/ijsem.0.004045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 16S rRNA gene sequences of Sphingomonas carotinifaciens L9-754T and Sphingomonas aeria B093034T possess 99.71 % sequence similarity. Further studies were undertaken to clarify the taxonomic assignments of these species. Whole-genome comparisons showed that S. aeria B093034Tand S. carotinifaciens L9-754T shared 96.9 % average nucleotide identity, 98.4 % average amino acid identity and 76.1 % digital DNA-DNA hybridization values. These values exceeded or approached the recommended species delineation threshold values. Furthermore, a phylogenetic tree based on 41 of the most conserved genes provided additional evidence that S. aeria B093034T and S. carotinifaciens L9-754T are very closely related. Based on this evidence we propose the reclassification of S. aeria Xue et al. 2018 as a later heterotypic synonym of S. carotinifaciens Madhaiyan et al. 2017.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Biomaterials and Biocatalysts, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | | | - Joseph S Wirth
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, GA 30602-2605, USA
| | - William B Whitman
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, GA 30602-2605, USA
| |
Collapse
|
44
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
45
|
Host-symbiont specificity determined by microbe-microbe competition in an insect gut. Proc Natl Acad Sci U S A 2019; 116:22673-22682. [PMID: 31636183 DOI: 10.1073/pnas.1912397116] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the omnipresence of specific host-symbiont associations with acquisition of the microbial symbiont from the environment, little is known about how the specificity of the interaction evolved and is maintained. The bean bug Riptortus pedestris acquires a specific bacterial symbiont of the genus Burkholderia from environmental soil and harbors it in midgut crypts. The genus Burkholderia consists of over 100 species, showing ecologically diverse lifestyles, and including serious human pathogens, plant pathogens, and nodule-forming plant mutualists, as well as insect mutualists. Through infection tests of 34 Burkholderia species and 18 taxonomically diverse bacterial species, we demonstrate here that nonsymbiotic Burkholderia and even its outgroup Pandoraea could stably colonize the gut symbiotic organ and provide beneficial effects to the bean bug when inoculated on aposymbiotic hosts. However, coinoculation revealed that the native symbiont always outcompeted the nonnative bacteria inside the gut symbiotic organ, explaining the predominance of the native Burkholderia symbiont in natural bean bug populations. Hence, the abilities for colonization and cooperation, usually thought of as specific traits of mutualists, are not unique to the native Burkholderia symbiont but, to the contrary, competitiveness inside the gut is a derived trait of the native symbiont lineage only and was thus critical in the evolution of the insect gut symbiont.
Collapse
|
46
|
Jiao J, Du J, Frediansyah A, Jahanshah G, Gross H. Structure elucidation and biosynthetic locus of trinickiabactin from the plant pathogenic bacterium Trinickia caryophylli. J Antibiot (Tokyo) 2019; 73:28-34. [DOI: 10.1038/s41429-019-0246-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/17/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
|
47
|
Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 2019; 201:1435-1446. [PMID: 31428824 DOI: 10.1007/s00203-019-01714-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/14/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7-98.9%), but similar values were found with other Paraburkholderia species. The multilocus sequence analysis (MLSA) of five (recA, gyrB, trpB, gltB, and atpD) housekeeping genes indicated that the CNPSo strains represent a novel lineage, sharing less than 95.7% of nucleotide identity (NI) with other Paraburkholderia species, being more closely related to P. nodosa. Genome parameters were analyzed for strain CNPSo 3008T, and DNA-DNA hybridization revealed a maximum of 55.9% of DNA-DNA relatedness with P. nodosa, while average nucleotide identity with the two closest species was of 93.84% with P. nodosa and of 87.93% with P. mimosarum, both parameters confirming that the strain represents a new species. In the analysis of the nodulation nodC gene, all CNPSo strains showed the highest similarity with P. nodosa, and nodulation tests indicated host specificity with Mimosa. Other phylogenetic, physiological, and chemotaxonomic properties were evaluated. All data obtained support the description of the novel species Paraburkholderia guartelaensis sp. nov., with CNPSo 3008T (= U13000T = G29.01T) indicated as the type strain.
Collapse
|
48
|
Vincent B, Juillot F, Fritsch E, Klonowska A, Gerbert N, Acherar S, Grangeteau C, Hannibal L, Galiana A, Ducousso M, Jourand P. A leguminous species exploiting alpha- and beta-rhizobia for adaptation to ultramafic and volcano-sedimentary soils: an endemic Acacia spirorbis model from New Caledonia. FEMS Microbiol Ecol 2019; 95:5524360. [PMID: 31247638 DOI: 10.1093/femsec/fiz099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022] Open
Abstract
Acacia spirorbis subsp. spirorbis Labill. is a widespread tree legume endemic to New Caledonia that grows in ultramafic (UF) and volcano-sedimentary (VS) soils. The aim of this study was to assess the symbiotic promiscuity of A. spirorbis with nodulating and nitrogen-fixing rhizobia in harsh edaphic conditions. Forty bacterial strains were isolated from root nodules and characterized through (i) multilocus sequence analyses, (ii) symbiotic efficiency and (iii) tolerance to metals. Notably, 32.5% of the rhizobia belonged to the Paraburkholderia genus and were only found in UF soils. The remaining 67.5%, isolated from both UF and VS soils, belonged to the Bradyrhizobium genus. Strains of the Paraburkholderia genus showed significantly higher nitrogen-fixing capacities than those of Bradyrhizobium genus. Strains of the two genera isolated from UF soils showed high metal tolerance and the respective genes occurred in 50% of strains. This is the first report of both alpha- and beta-rhizobia strains associated to an Acacia species adapted to UF and VS soils. Our findings suggest that A. spirorbis is an adaptive plant that establishes symbioses with whatever rhizobia is present in the soil, thus enabling the colonization of contrasted ecosystems.
Collapse
Affiliation(s)
- Bryan Vincent
- IRD, LSTM UMR040, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | - Farid Juillot
- IRD, IMPMC UMR206, 98848 Nouméa Cedex, New Caledonia
| | | | - Agnieszka Klonowska
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394 Montpellier, France
| | - Noëmie Gerbert
- IRD, LSTM UMR040, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | - Sarah Acherar
- IRD, LSTM UMR040, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | - Cedric Grangeteau
- IRD, LSTM UMR040, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | - Laure Hannibal
- IRD, LSTM UMR040, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | - Antoine Galiana
- CIRAD, LSTM UMR082, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | - Marc Ducousso
- CIRAD, LSTM UMR082, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| | - Philippe Jourand
- IRD, LSTM UMR040, TA A-82/J, Campus International de Baillarguet, 34398 Montpellier cedex 5, France
| |
Collapse
|
49
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
50
|
Estrada-de los Santos P, Palmer M, Steenkamp ET, Maluk M, Beukes C, Hirsch AM, James EK, Venter SN. Trinickia dabaoshanensis sp. nov., a new name for a lost species. Arch Microbiol 2019; 201:1313-1316. [DOI: 10.1007/s00203-019-01703-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
|