1
|
Kafle A, Tenorio JCB, Mahato RK, Dhakal S, Heikal MF, Suttiprapa S. Construction and validation of a novel multi-epitope in silico vaccine design against the paramyosin protein of Opisthorchis viverrini using immunoinformatics analyses. Acta Trop 2024; 260:107389. [PMID: 39251174 DOI: 10.1016/j.actatropica.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Liver fluke infection caused by Opisthorchis viverrini (O. viverrini) remains a significant but neglected health threat across Southeastern Asia. The early infective anabolic growth stage of O. viverrini expresses and exposes proteins integral for the growth and maturation of immature worms to the adult catabolic stage. Among these proteins, paramyosin emerged as a distinct immunogenic protein during opisthorchiasis. The functional region of the paramyosin protein known as myosin tail was selected to design a multi-epitope vaccine (MEV) to elicit T and B cell immune responses in susceptible human hosts utilizing various immunoinformatics and in silico vaccinology tools. The vaccine candidate had several B- and T-cell epitopes that stimulate both humoral and cellular immune responses. Moreover, in silico structural, docking, and dynamic analyses showed that the construct interacted with target immune receptors effectively, which may result in sufficient immunological stimulation. Analysis of simulated coverage efficacy also supports vaccine application in the field. Cloning and expression of the vaccine candidate were determined to be viable based on physicochemical and in silico assessments. These results reveal that the vaccine candidate developed herein is stable and potentially useful in addressing opisthorchiasis. The promising result of this study establishes a strong platform for initiating laboratory and efficacy trials for the vaccine candidate.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jan Clyden B Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Sahara Dhakal
- Master of Nursing Science, Faculty of Nursing, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Muhammad F Heikal
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Rendon-Marin S, Rincón-Tabares DS, Tabares-Guevara JH, Arbeláez N, Forero-Duarte JE, Díaz FJ, Robledo SM, Hernandez JC, Ruiz-Saenz J. Evaluation of the Safety and Immunogenicity of a Multiple Epitope Polypeptide from Canine Distemper Virus (CDV) in Mice. Vaccines (Basel) 2024; 12:1140. [PMID: 39460307 PMCID: PMC11511104 DOI: 10.3390/vaccines12101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Morbillivirus canis is the etiological agent of a highly contagious disease that affects diverse domestic and wild animals. Vaccination is considered the most suitable strategy for controlling CDV dissemination, transmission, and distemper disease. However, the emergence of new CDV strains has led to the need to update the current vaccine strategies employed to prevent CDV infection in domestic and wild animals. Currently, there is a lack of effective alternatives for wild animals. Diverse computational tools, especially peptide-based therapies, enable the development of new universal vaccines. OBJECTIVE The aim of this study was to evaluate the safety and humoral and cellular immune response of a new generation of vaccines based on CDV peptides as single-peptide mixtures or multiepitope CDV polypeptides in mice. METHODS Twenty-four BALB/c mice were subjected to a three-dose regimen for 28 days. Seroconversion was evaluated via ELISA, and cellular immune responses were evaluated via flow cytometry through activation-induced markers (AIMs). RESULTS Compared with the placebo, the peptide mixture and multiepitope CDV polypeptide were safe, and seroconversion was statistically significant in the multiepitope CDV polypeptide and commercial vaccine (CV) groups. The numbers of antigen-specific CD4+CD134+ and IFN-γ+ T cells, CD8+ T cells and TNF-α- and IL-6-producing cells were greater in the mice immunized with the multiepitope CDV polypeptide than in the control mice. CONCLUSION This combined approach represents a potential step forward in developing new immunization candidates or enhancing current commercial vaccines to control CDV disease in domestic dogs and wild animals.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
| | - Daniel-Santiago Rincón-Tabares
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Jorge H. Tabares-Guevara
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Natalia Arbeláez
- Grupo PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (N.A.); (S.M.R.)
| | - Jorge E. Forero-Duarte
- Grupo de Investigación en Microbiología Ambiental, Escuela de Microbiología, Universidad de Antioquia, Medellín 050001, Colombia;
| | - Francisco J. Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Sara M. Robledo
- Grupo PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (N.A.); (S.M.R.)
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050001, Colombia; (D.-S.R.-T.); (J.H.T.-G.); (F.J.D.)
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680001, Colombia;
| |
Collapse
|
3
|
Rastogi A, Gautam S, Kumar M. Bioinformatic elucidation of conserved epitopes to design a potential vaccine candidate against existing and emerging SARS-CoV-2 variants of concern. Heliyon 2024; 10:e35129. [PMID: 39157328 PMCID: PMC11328099 DOI: 10.1016/j.heliyon.2024.e35129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 poses a significant adverse effects on health and economy globally. Due to mutations in genome, COVID-19 vaccine efficacy decreases. We used immuno-informatics to design a Multi epitope vaccine (MEV) candidate for SARS-CoV-2 variants of concern (VOCs). Hence, we predicted binders/epitopes MHC-I, CD8+, MHC-II, CD4+, and CTLs from spike, membrane and envelope proteins of VOCs. In addition, we assessed the conservation of these binders and epitopes across different VOCs. Subsequently, we designed MEV by combining the predicted CTL and CD4+ epitopes from spike protein, peptide linkers, and an adjuvant. Further, we evaluated the binding of MEV candidate against immune receptors namely HLA class I histocompatibility antigen, HLA class II histocompatibility antigen, and TLR4, achieving binding scores of -1265.3, -1330.7, and -1337.9. Molecular dynamics and normal mode analysis revealed stable docking complexes. Moreover, immune simulation suggested MEV candidate elicits both innate and adaptive immune response. We anticipate that this conserved MEV candidate will provide protection from VOCs and emerging strains.
Collapse
Affiliation(s)
- Amber Rastogi
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Gautam
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Rendon-Marin S, Ruíz-Saenz J. Universal peptide-based potential vaccine design against canine distemper virus (CDV) using a vaccinomic approach. Sci Rep 2024; 14:16605. [PMID: 39026076 PMCID: PMC11258135 DOI: 10.1038/s41598-024-67781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Abstract
Canine distemper virus (CDV) affects many domestic and wild animals. Variations among CDV genome linages could lead to vaccination failure. To date, there are several vaccine alternatives, such as a modified live virus and a recombinant vaccine; however, most of these alternatives are based on the ancestral strain Onderstepoort, which has not been circulating for years. Vaccine failures and the need to update vaccines have been widely discussed, and the development of new vaccine candidates is necessary to reduce circulation and mortality. Current vaccination alternatives cannot be used in wildlife animals due to the lack of safety data for most of the species, in addition to the insufficient immune response against circulating strains worldwide in domestic species. Computational tools, including peptide-based therapies, have become essential for developing new-generation vaccines for diverse models. In this work, a peptide-based vaccine candidate with a peptide library derived from CDV H and F protein consensus sequences was constructed employing computational tools. The molecular docking and dynamics of the selected peptides with canine MHC-I and MHC-II and with TLR-2 and TLR-4 were evaluated. In silico safety was assayed through determination of antigenicity, allergenicity, toxicity potential, and homologous canine peptides. Additionally, in vitro safety was also evaluated through cytotoxicity in cell lines and canine peripheral blood mononuclear cells (cPBMCs) and through a hemolysis potential assay using canine red blood cells. A multiepitope CDV polypeptide was constructed, synthetized, and evaluated in silico and in vitro by employing the most promising peptides for comparison with single CDV immunogenic peptides. Our findings suggest that predicting immunogenic CDV peptides derived from most antigenic CDV proteins could aid in the development of new vaccine candidates, such as multiple single CDV peptides and multiepitope CDV polypeptides, that are safe in vitro and optimized in silico. In vivo studies are being conducted to validate potential vaccines that may be effective in preventing CDV infection in domestic and wild animals.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julián Ruíz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia.
| |
Collapse
|
5
|
Naskar S, Harsukhbhai Chandpa H, Agarwal S, Meena J. Super epitope dengue vaccine instigated serotype independent immune protection in-silico. Vaccine 2024; 42:3857-3873. [PMID: 38616437 DOI: 10.1016/j.vaccine.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024]
Abstract
Dengue becomes the most common life-threatening infectious arbovirus disease globally, with prevalence in the tropical and subtropical areas. The major clinical features include dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), a condition of hypovolemic shock. Four different serotypes of the dengue virus, known as dengue virus serotype (DENV)- 1, 2, 3 and 4 can infect humans. Only one vaccine is available in the market, named Dengvaxia by Sanofi Pasteur, but there is no desired outcome of this treatment due the antibody dependent enhancement (ADE) of the multiple dengue serotypes. As of now, there is no cure against dengue disease. Our goal in this work was to create a subunit vaccine based on several epitopes that would be effective against every serotype of the dengue virus. Here, computational methods like- immunoinformatics and bioinformatics were implemented to find out possible dominant epitopes. A total of 21 epitopes were chosen using various in-silico techniques from the expected 133 major histocompatibility complex (MHC)- I and major histocompatibility complex (MHC)- II epitopes, along with 95 B-cell epitopes which were greatly conserved. Immune stimulant, non-allergenic and non-toxic immunodominant epitopes (super epitopes) with a suitable adjuvant (Heparin-Binding Hemagglutinin Adhesin, HBHA) were used to construct the vaccine. Following the physicochemical analysis, vaccine construct was docked with Toll-like receptors (TLRs) to predict the immune stimulation. Consequently, the optimal docked complex that demonstrated the least amount of ligand-receptor complex deformability was used to conduct the molecular dynamics analysis. By following the codon optimization, the final vaccine molecule was administered into an expressing vector to perform in-silico cloning. The robust immune responses were generated in the in-silico immune simulation analysis. Hence, this study provides a hope to control the dengue infections. For validation of the immune outcomes, in-vitro as well as in-vivo investigations are essential.
Collapse
Affiliation(s)
- Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
6
|
Naveed M, Hassan A, Aziz T, Ali U, Khan AA, Alharbi M, Alshammari A. Integrating 16S rRNA profiling and in-silico analysis for an epitope-based vaccine strategy against Achromobacter xylosoxidans infection. Int Immunopharmacol 2024; 135:112287. [PMID: 38776850 DOI: 10.1016/j.intimp.2024.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Achromobacter xylosoxidans is an aerobic, catalase-positive, non-pigment-forming, Gram-negative, and motile bacterium. It potentially causes a wide range of human infections in cystic fibrosis and non-cystic fibrosis patients. However, developing a safe preventive or therapeutic solution against A. xylosoxidans remains challenging. This study aimed to construct an epitope-based vaccine candidate using immunoinformatic techniques. A. xylosoxidans was isolated from an auto workshop in Lahore, and its identification was confirmed through 16S rRNA amplification and bioinformatic analysis. Two protein targets with GenBank accession numbers AKP90890.1 and AKP90355.1 were selected for the vaccine construct. Both proteins exhibited antigenicity, with scores of 0.757 and 0.580, respectively and the epitopes were selected based on the IC50 value using the ANN 4.0 and NN-align 2.3 epitope prediction method for MHC I and MHC II epitopes respectively and predicted epitopes were analyzed for antigenicity, allergenicity and pathogenicity. The vaccine construct demonstrated structural stability, thermostability, solubility, and hydrophilicity. The vaccine produced 250 B-memory cells per mm3 and approximately 16,000 IgM + IgG counts, indicating an effective immune response against A. xylosoxidans. Moreover, the vaccine candidate interacted stably with toll-like receptor 5, a pattern recognition receptor, with a confidence score of 0.98. These results highlight the potency of the designed vaccine candidate, suggesting its potential to withstand rigorous in vitro and in vivo clinical trials. This epitope-based vaccine could serve as the first preventive immunotherapy against A. xylosoxidans infections, addressing this bacterium's health and financial burdens. The findings demonstrate the value of employing immunoinformatic tools in vaccine development, paving the way for more precise and tailored approaches to combating microbial threats.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
| | - Ali Hassan
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Tariq Aziz
- Department of Agriculture University of Ioannina Arta 47100 Greece.
| | - Urooj Ali
- Department of Biotechnology, Quaid-I-Azam University, Islamabad Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand Chakdara Dir Lower 18800 Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Jeffreys S, Tompkins MP, Aki J, Papp SB, Chambers JP, Guentzel MN, Hung CY, Yu JJ, Arulanandam BP. Development and Evaluation of an Immunoinformatics-Based Multi-Peptide Vaccine against Acinetobacter baumannii Infection. Vaccines (Basel) 2024; 12:358. [PMID: 38675740 PMCID: PMC11054912 DOI: 10.3390/vaccines12040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-drug-resistant (MDR) Acinetobacter baumannii is an opportunistic pathogen associated with hospital-acquired infections. Due to its environmental persistence, virulence, and limited treatment options, this organism causes both increased patient mortality and incurred healthcare costs. Thus, prophylactic vaccination could be ideal for intervention against MDR Acinetobacter infection in susceptible populations. In this study, we employed immunoinformatics to identify peptides containing both putative B- and T-cell epitopes from proteins associated with A. baumannii pathogenesis. A novel Acinetobacter Multi-Epitope Vaccine (AMEV2) was constructed using an A. baumannii thioredoxin A (TrxA) leading protein sequence followed by five identified peptide antigens. Antisera from A. baumannii infected mice demonstrated reactivity to rAMEV2, and subcutaneous immunization of mice with rAMEV2 produced high antibody titer against the construct as well as peptide components. Immunization results in increased frequency of IL-4-secreting splenocytes indicative of a Th2 response. AMEV2-immunized mice were protected against intranasal challenge with a hypervirulent strain of A. baumannii and demonstrated reduced bacterial burden at 48 h. In contrast, all mock vaccinated mice succumbed to infection within 3 days. Results presented here provide insight into the effectiveness of immunoinformatic-based vaccine design and its potential as an effective strategy to combat the rise of MDR pathogens.
Collapse
Affiliation(s)
- Sean Jeffreys
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Megan P. Tompkins
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jadelynn Aki
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Sara B. Papp
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - James P. Chambers
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - M. Neal Guentzel
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
| | - Bernard P. Arulanandam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA; (S.J.); (M.P.T.); (J.A.); (J.P.C.); (M.N.G.); (C.-Y.H.)
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Salahlou R, Farajnia S, Bargahi N, Bakhtiyari N, Elmi F, Shahgolzari M, Fiering S, Venkataraman S. Development of a novel multi‑epitope vaccine against the pathogenic human polyomavirus V6/7 using reverse vaccinology. BMC Infect Dis 2024; 24:177. [PMID: 38336665 PMCID: PMC10854057 DOI: 10.1186/s12879-024-09046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Human polyomaviruses contribute to human oncogenesis through persistent infections, but currently there is no effective preventive measure against the malignancies caused by this virus. Therefore, the development of a safe and effective vaccine against HPyV is of high priority. METHODS First, the proteomes of 2 polyomavirus species (HPyV6 and HPyV7) were downloaded from the NCBI database for the selection of the target proteins. The epitope identification process focused on selecting proteins that were crucial, associated with virulence, present on the surface, antigenic, non-toxic, and non-homologous with the human proteome. Then, the immunoinformatic methods were used to identify cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes from the target antigens, which could be used to create epitope-based vaccine. The physicochemical features of the designed vaccine were predicted through various online servers. The binding pattern and stability between the vaccine candidate and Toll-like receptors were analyzed through molecular docking and molecular dynamics (MD) simulation, while the immunogenicity of the designed vaccines was assessed using immune simulation. RESULTS Online tools were utilized to forecast the most optimal epitope from the immunogenic targets, including LTAg, VP1, and VP1 antigens of HPyV6 and HPyV7. A multi-epitope vaccine was developed by combining 10 CTL, 7 HTL, and 6 LBL epitopes with suitable linkers and adjuvant. The vaccine displayed 98.35% of the world's population coverage. The 3D model of the vaccine structure revealed that the majority of residues (87.7%) were located in favored regions of the Ramachandran plot. The evaluation of molecular docking and MD simulation revealed that the constructed vaccine exhibits a strong binding (-1414.0 kcal/mol) towards the host's TLR4. Moreover, the vaccine-TLR complexes remained stable throughout the dynamic conditions present in the natural environment. The immune simulation results demonstrated that the vaccine design had the capacity to elicit robust immune responses in the host. CONCLUSION The multi-parametric analysis revealed that the designed vaccine is capable of inducing sustained immunity against the selected polyomaviruses, although further in-vivo investigations are needed to verify its effectiveness.
Collapse
Affiliation(s)
- Reza Salahlou
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Bakhtiyari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faranak Elmi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, and Dartmouth Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
9
|
Choudhury A, Kumar P, Nafidi HA, Almaary KS, Wondmie GF, Kumar A, Bourhia M. Immunoinformatics approaches in developing a novel multi-epitope chimeric vaccine protective against Saprolegnia parasitica. Sci Rep 2024; 14:2260. [PMID: 38278861 PMCID: PMC10817918 DOI: 10.1038/s41598-024-52223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Saprolegnia parasitica is responsible for devastating infections in fish and poses a tremendous threat to the global aquaculture industry. Presently, no safe and effective control measures are available, on the contrary, use of banned toxic compounds against the pathogen is affecting humans via biomagnification routes. This pioneering study aims to design an effective multi-epitope multi-target vaccine candidate against S. parasitica by targeting key proteins involved in the infection process. The proteins were analyzed and linear B-cell epitopes, MHC class I, and class II epitopes were predicted. Subsequently, highly antigenic epitopes were selected and fused to a highly immunogenic adjuvant, 50S ribosomal protein L7/L12, to design a multi-epitope chimeric vaccine construct. The structure of the vaccine was generated and validated for its stereochemical quality, physicochemical properties, antigenicity, allergenicity, and virulence traits. Molecular docking analyses demonstrated strong binding interactions between the vaccine and piscine immune receptors (TLR5, MHC I, MHC II). Molecular dynamics simulations and binding energy calculations of the complexes, further, reflected the stability and favorable interactions of the vaccine and predicted its cytosolic stability. Immune simulations predicted robust and consistent kinetics of the immune response elicited by the vaccine. The study posits the vaccine as a promising solution to combat saprolegniasis in the aquaculture industry.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, 713 340, India.
| | - Pawan Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, 124 001, India
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, 2325G1V 0A6, Canada
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, 114 51, Riyadh, Saudi Arabia
| | | | - Ajit Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, 124 001, India.
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 700 00, Laayoune, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, B. P. 5696, Casablanca, Morocco
| |
Collapse
|
10
|
Chawla M, Cuspoca AF, Akthar N, Magdaleno JSL, Rattanabunyong S, Suwattanasophon C, Jongkon N, Choowongkomon K, Shaikh AR, Malik T, Cavallo L. Immunoinformatics-aided rational design of a multi-epitope vaccine targeting feline infectious peritonitis virus. Front Vet Sci 2023; 10:1280273. [PMID: 38192725 PMCID: PMC10773687 DOI: 10.3389/fvets.2023.1280273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a grave and frequently lethal ailment instigated by feline coronavirus (FCoV) in wild and domestic feline species. The spike (S) protein of FCoV assumes a critical function in viral ingress and infection, thereby presenting a promising avenue for the development of a vaccine. In this investigation, an immunoinformatics approach was employed to ascertain immunogenic epitopes within the S-protein of FIP and formulate an innovative vaccine candidate. By subjecting the amino acid sequence of the FIP S-protein to computational scrutiny, MHC-I binding T-cell epitopes were predicted, which were subsequently evaluated for their antigenicity, toxicity, and allergenicity through in silico tools. Our analyses yielded the identification of 11 potential epitopes capable of provoking a robust immune response against FIPV. Additionally, molecular docking analysis demonstrated the ability of these epitopes to bind with feline MHC class I molecules. Through the utilization of suitable linkers, these epitopes, along with adjuvants, were integrated to design a multi-epitope vaccine candidate. Furthermore, the stability of the interaction between the vaccine candidate and feline Toll-like receptor 4 (TLR4) was established via molecular docking and molecular dynamics simulation analyses. This suggests good prospects for future experimental validation to ascertain the efficacy of our vaccine candidate in inducing a protective immune response against FIP.
Collapse
Affiliation(s)
- Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrés Felipe Cuspoca
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica yTecnológica de Colombia, Tunja, Colombia
- Centro de Atención e Investigación Médica–CAIMED, Chía, Colombia
| | - Nahid Akthar
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Jorge Samuel Leon Magdaleno
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | | | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Hossen MS, Hasan MN, Haque M, Al Arian T, Halder SK, Uddin MJ, Abdullah-Al-Mamun M, Shakil MS. Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins. J Genet Eng Biotechnol 2023; 21:162. [PMID: 38055114 DOI: 10.1186/s43141-023-00623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Human parainfluenza viruses (HPIVs) are common RNA viruses responsible for respiratory tract infections. Human parainfluenza virus 3 (HPIV-3) is particularly pathogenic, causing severe illnesses with no effective vaccine or therapy available. RESULTS The current study employed a systematic immunoinformatic/reverse vaccinology approach to design a multiple epitope-based peptide vaccine against HPIV-3 by analyzing the virus proteome. On the basis of a number of therapeutic features, all three stable and antigenic proteins with greater immunological relevance, namely matrix protein, hemagglutinin neuraminidase, and RNA-directed RNA polymerase L, were chosen for predicting and screening suitable T-cell and B-cell epitopes. All of our desired epitopes exhibited no homology with human proteins, greater population coverage (99.26%), and high conservancy among reported HPIV-3 isolates worldwide. All of the T- and B-cell epitopes are then joined by putative ligands, yielding a 478-amino acid-long final construct. Upon computational refinement, validation, and thorough screening, several programs rated our peptide vaccine as biophysically stable, antigenic, allergenic, and non-toxic in humans. The vaccine protein demonstrated sufficiently stable interaction as well as binding affinity with innate immune receptors TLR3, TLR4, and TLR8. Furthermore, codon optimization and virtual cloning of the vaccine sequence in a pET32a ( +) vector showed that it can be readily expressed in the bacterial system. CONCLUSION The in silico designed HPIV-3 vaccine demonstrated potential in evoking an effective immune response. This study paves the way for further preclinical and clinical evaluation of the vaccine, offering hope for a future solution to combat HPIV-3 infections.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka, 1213, Bangladesh.
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
| | - Md Nazmul Hasan
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh.
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| | - Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, kha-208, 1 Bir Uttam Rafiqul Islam Ave, Dhaka, 1212, Bangladesh
| | - Tawsif Al Arian
- Department of Pharmacy, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Jasim Uddin
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Abdullah-Al-Mamun
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Salman Shakil
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216, Bangladesh
- Microbiology Program, Department of Mathematics and Natural Sciences (MNS), Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
12
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
13
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Multi-epitope vaccine candidates based on mycobacterial membrane protein large (MmpL) proteins against Mycobacterium ulcerans. Open Biol 2023; 13:230330. [PMID: 37935359 PMCID: PMC10645115 DOI: 10.1098/rsob.230330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease. It is caused by the bacterium Mycobacterium ulcerans and is characterized by skin lesions. Several studies were performed testing the Bacillus Calmette-Guérin (BCG) vaccine in human and animal models and M. ulcerans-specific vaccines in animal models. However, there are currently no clinically accepted vaccines to prevent M. ulcerans infection. The aim of this study was to identify T-cell and B-cell epitopes from the mycobacterial membrane protein large (MmpL) proteins of M. ulcerans. These epitopes were analysed for properties including antigenicity, immunogenicity, non-allergenicity, non-toxicity, population coverage and the potential to induce cytokines. The final 8 CD8+, 12 CD4+ T-cell and 5 B-cell epitopes were antigenic, non-allergenic and non-toxic. The estimated global population coverage of the CD8+ and CD4+ epitopes was 97.71%. These epitopes were used to construct five multi-epitope vaccine constructs with different adjuvants and linker combinations. The constructs underwent further structural analyses and refinement. The constructs were then docked with Toll-like receptors. Three of the successfully docked complexes were structurally analysed. Two of the docked complexes successfully underwent molecular dynamics simulations (MDS) and post-MDS analysis. The complexes generated were found to be stable. However, experimental validation of the complexes is required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Elalouf A, Yaniv-Rosenfeld A. Immunoinformatic-guided designing and evaluating protein and mRNA-based vaccines against Cryptococcus neoformans for immunocompromised patients. J Genet Eng Biotechnol 2023; 21:108. [PMID: 37882985 PMCID: PMC10603020 DOI: 10.1186/s43141-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Cryptococcus neoformans is a fungal pathogen that can cause serious meningoencephalitis in individuals with compromised immune systems due to HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome), liver cirrhosis, and transplantation. Mannoproteins (MPs), glycoproteins in the C. neoformans capsule, crucially impact virulence by mediating adhesion to lung cells and modulating immune response via cytokine induction and phagocytosis influence. Therefore, creating a vaccine that can generate targeted antibodies to fight infection and prevent fungal illnesses is essential. RESULTS This research aims to create a unique, stable, and safe vaccine through bioinformatics methodologies, aiming at epitopes of T and B cells found in the MP of C. neoformans. Based on toxicity, immunogenicity, and antigenicity, this research predicted novel T cells (GNPVGGNVT, NPVGGNVTT, QTSYARLLS, TSVGNGIAS, WVMPGDYTN, AAATGSSSSGSTGSG, GSTGSGSGSAAAGST, SGSTGSGSGSAAAGS, SSGSTGSGSGSAAAG, and SSSGSTGSGSGSAAA) and B cell (ANGSTSTFQQRYTGTYTNGDGSLGTWTQGETVTPQTAYSTPATSNCKTYTSVGNGIASLALSNAGSNSTAAATNSSSGGASAAATGSSSSGSTGSGSGSAAAGSTAAASSSGDSSSSTSAAMSNGI, HGATGLGNPVGGNVTT, TMGPTNPSEPTLGTAI, GNPVGGNVTTNATGSD, and NSTAAATNSSSGGASA) epitopes for a multiple-epitope vaccine and constructed a vaccine subunit with potential immunogenic properties. The present study used four linkers (AAY, GPGPG, KK, and EAAAK linkers) to connect the epitopes and adjuvant. After constructing the vaccine, it was confronted with receptor docking and simulation analysis. Subsequently, the vaccine was cloned into the vector of Escherichia coli pET-28a ( +) by ligation process for the expression using the SnapGene tool, which confirmed a significant immune response. To assess the constructed vaccine's properties, multiple computational tools were employed. Based on the MP sequence, the tools evaluated the antigenicity, immunogenicity, cytokine-inducing capacity, allergenicity, toxicity, population coverage, and solubility. CONCLUSION Eventually, the results revealed a promising multi-epitope vaccine as a potential candidate for addressing global C. neoformans infection, particularly in immunocompromised patients. Yet, additional in vitro and in vivo investigations are necessary to validate its safety and effectiveness.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | |
Collapse
|
15
|
Zhao Y, Bi Q, Wei Y, Wang R, Wang G, Fu G, Ran Z, Lu J, Zhang H, Zhang L, Jin R, Nie Y. A DNA vaccine (EG95-PT1/2/3-IL2) encoding multi-epitope antigen and IL-2 provokes efficient and long-term immunity to echinococcosis. J Control Release 2023; 361:402-416. [PMID: 37527761 DOI: 10.1016/j.jconrel.2023.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Echinococcosis is a highly prevalent global zoonosis, and vaccines are required. The commercial vaccine based on a protein-based subunit (EG95), however, is limited by its insufficient cellular immunity, a short protection period, and limited prevention against novel mutant strains. Herein, we applied bioinformatics to develop a DNA vaccine (pEG95-IL2) expressing both multi-epitope-based antigens (EG95-PT1/2/3) and an IL-2 adjuvant to regulate T cell differentiation and memory cell response. EG95-PT1/2/3 was screened with hierarchical structure prediction from the epitope conformation of B cells with high confidence across various species to guarantee immunogenicity. Importantly, cationic arginine-rich lipid nanoparticles (RNP) were utilized as a delivery vehicle to form lipoplexes that had a transfection efficiency of nearly two orders of magnitude greater than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) with both immune and nonimmune cells (DC2.4 and L929 cells, respectively). RNP/pEG95-IL2 lipoplexes displayed a robust and long-term antigen expression, as well as adjuvant effects during the immunization. Consequently, intramuscular injection of RNP/pEG95-IL2 elicited similar humoral immune responses and significantly greater cellular responses in mice when compared with those of the commercial vaccine. In addition, the inoculation protocol of RNP/pEG95-IL2 with sequential booster further strengthens cellular immunity in comparison with the homologous booster. Those findings provide a promising strategy for improving plasmid vaccine efficacy.
Collapse
Affiliation(s)
- Yangyang Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Yu Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Gang Fu
- Chongqing Auleon Biological Co., Ltd., Chongqing 402460, China
| | - Zhiguang Ran
- Chongqing Auleon Biological Co., Ltd., Chongqing 402460, China
| | - Jiao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Heyang Zhang
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Leiden 2333 CC, the Netherlands
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Aleem MT, Wen Z, Yu Z, Chen C, Lu M, Xu L, Song X, Li X, Yan R. Inhibition of Trichinella spiralis Membrane-Associated Progesterone Receptor (MAPR) Results in a Reduction in Worm Burden. Vaccines (Basel) 2023; 11:1437. [PMID: 37766114 PMCID: PMC10535220 DOI: 10.3390/vaccines11091437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Trichinella spiralis (T. spiralis), a nematode parasite, is the major cause of Trichinellosis, a zoonotic disease. A key role of MAPR in the reproductive system is to maintain pregnancy. Previous studies found that antihormone drug design and vaccine therapy of recombinant protein (rTs-MAPRC2) control T. spiralis infection. The current study investigates the inhibitory effects of different ratios of antibodies against Ts-MAPRC2 on the development of muscle larvae (ML) and newborn larvae (NBL). First, we performed indirect immunofluorescence assays and examined the effects of rTs-MAPRC2-Ab on ML and NBL in vitro as well as in vivo. Afterward, siRNA-Ts-MAPRC2 was transfected into T. spiralis muscle larvae. Following that, Ts-MAPRC2 protein was detected by Western Blotting, and mRNA levels were determined by qPCR. We also assessed whether siRNA-treated NBLs were infective by analyzing muscle larvae burden (MLs). Our results showed that rTs-MAPRC2-Ab greatly inhibited the activity of the Ts-MAPRC2 in ML and NBL of T. spiralis and rTs-MAPRC2-Ab reduced larval infectivity and survival in the host in a dose-dependent manner (1:50, 1:200, 1:800 dilutions). Furthermore, siRNA-Ts-MAPRC2 effectively silenced the Ts-MAPRC2 gene in muscle larvae (ML) in vitro, as well as in newborn larvae (NBL) of T. spiralis in vivo. In addition, siRNA-Ts-MAPRC2 (siRNA180, siRNA419, siRNA559) reduced host larval survival and infectivity significantly. This study, therefore, suggests that Ts-MAPRC2 might be a novel molecular target useful in the development of vaccines against T. spiralis infection.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
| | - Zhengqing Yu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.T.A.); (Z.W.); (C.C.); (M.L.); (L.X.); (X.S.); (X.L.)
| |
Collapse
|
17
|
Imon RR, Samad A, Alam R, Alsaiari AA, Talukder MEK, Almehmadi M, Ahammad F, Mohammad F. Computational formulation of a multiepitope vaccine unveils an exceptional prophylactic candidate against Merkel cell polyomavirus. Front Immunol 2023; 14:1160260. [PMID: 37441076 PMCID: PMC10333698 DOI: 10.3389/fimmu.2023.1160260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine skin malignancy caused by human Merkel cell polyomavirus (MCV), leading to the most aggressive skin cancer in humans. MCV has been identified in approximately 43%-100% of MCC cases, contributing to the highly aggressive nature of primary cutaneous carcinoma and leading to a notable mortality rate. Currently, no existing vaccines or drug candidates have shown efficacy in addressing the ailment caused by this specific pathogen. Therefore, this study aimed to design a novel multiepitope vaccine candidate against the virus using integrated immunoinformatics and vaccinomics approaches. Initially, the highest antigenic, immunogenic, and non-allergenic epitopes of cytotoxic T lymphocytes, helper T lymphocytes, and linear B lymphocytes corresponding to the virus whole protein sequences were identified and retrieved for vaccine construction. Subsequently, the selected epitopes were linked with appropriate linkers and added an adjuvant in front of the construct to enhance the immunogenicity of the vaccine candidates. Additionally, molecular docking and dynamics simulations identified strong and stable binding interactions between vaccine candidates and human Toll-like receptor 4. Furthermore, computer-aided immune simulation found the real-life-like immune response of vaccine candidates upon administration to the human body. Finally, codon optimization was conducted on the vaccine candidates to facilitate the in silico cloning of the vaccine into the pET28+(a) cloning vector. In conclusion, the vaccine candidate developed in this study is anticipated to augment the immune response in humans and effectively combat the virus. Nevertheless, it is imperative to conduct in vitro and in vivo assays to evaluate the efficacy of these vaccine candidates thoroughly. These evaluations will provide critical insights into the vaccine's effectiveness and potential for further development.
Collapse
Affiliation(s)
- Raihan Rahman Imon
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Abdus Samad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Ahad Amer Alsaiari
- Clinical Laboratories Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mazen Almehmadi
- Clinical Laboratories Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
18
|
Larijani A, Kia-Karimi A, Roostaei D. Design of a multi-epitopic vaccine against Epstein-Barr virus via computer-based methods. Front Immunol 2023; 14:1115345. [PMID: 36999015 PMCID: PMC10043181 DOI: 10.3389/fimmu.2023.1115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundScientific findings have shown that Epstein-Barr virus (EBV) plays a key role in the development of some tumor diseases. Therefore, this study intends to take a practical step in controlling the pathogenicity of this virus by designing an effective vaccine based on the virus Capsid Envelope and Epstein–Barr nuclear immunogen (EBNA) Proteins Epitopes. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. So, we applied a computer-based strategy to design an epitope vaccineResultsWe designed a powerful multi-epitope peptide vaccine against EBV using in silico analysis. The vaccine is made up of 844 amino acids derived from three different types of proteins (Envelope, Capsid, EBNA) found in two different viral strains. responses. These epitopes have a high immunogenic capacity and are not likely to cause allergies. To enhance the vaccine immunogenicity, we used rOv-ASP-1, a recombinant Onchocerca volvulus activation associated protein-1, as an adjuvant and linked it to the vaccine’s N and C terminus. The physicochemical and immunological properties of the vaccine structure were evaluated. The proposed vaccine was stable, with a stability index of 33.57 and a pI of 10.10, according to bioinformatic predictions. Docking analysis revealed that the vaccine protein binds correctly with immunological receptors.ConclusionOur results demonstrated that the multi-epitope vaccine might be potentially immunogenic and induce humoral and cellular immune responses against EBV. This vaccine can interact appropriately with immunological receptors Also, it has a high-quality structure and suitable characteristics such as high stability.
Collapse
Affiliation(s)
- Amirhossein Larijani
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Kia-Karimi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davoud Roostaei
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- *Correspondence: Davoud Roostaei,
| |
Collapse
|
19
|
Moin AT, Singh G, Ahmed N, Saiara SA, Timofeev VI, Ahsan Faruqui N, Sharika Ahsan S, Tabassum A, Nebir SS, Andalib KMS, Araf Y, Ullah MA, Sarkar B, Islam NN, Zohora US. Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework. J Biomol Struct Dyn 2023; 41:833-855. [PMID: 36617426 DOI: 10.1080/07391102.2021.2014969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, in silico cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further in vitro and in vivo research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Nairita Ahsan Faruqui
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Afrida Tabassum
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Sadman Sakib Nebir
- Department of Microbiology and Immunology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Yusha Araf
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Asad Ullah
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Bishajit Sarkar
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Identification of a Potential Vaccine against Treponema pallidum Using Subtractive Proteomics and Reverse-Vaccinology Approaches. Vaccines (Basel) 2022; 11:vaccines11010072. [PMID: 36679917 PMCID: PMC9861075 DOI: 10.3390/vaccines11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Syphilis, a sexually transmitted infection, is a deadly disease caused by Treponema pallidum. It is a Gram-negative spirochete that can infect nearly every organ of the human body. It can be transmitted both sexually and perinatally. Since syphilis is the second most fatal sexually transmitted disease after AIDS, an efficient vaccine candidate is needed to establish long-term protection against infections by T. pallidum. This study used reverse-vaccinology-based immunoinformatic pathway subtractive proteomics to find the best antigenic proteins for multi-epitope vaccine production. Six essential virulent and antigenic proteins were identified, including the membrane lipoprotein TpN32 (UniProt ID: O07950), DNA translocase FtsK (UniProt ID: O83964), Protein Soj homolog (UniProt ID: O83296), site-determining protein (UniProt ID: F7IVD2), ABC transporter, ATP-binding protein (UniProt ID: O83930), and Sugar ABC superfamily ATP-binding cassette transporter, ABC protein (UniProt ID: O83782). We found that the multiepitope subunit vaccine consisting of 4 CTL, 4 HTL, and 11 B-cell epitopes mixed with the adjuvant TLR-2 agonist ESAT6 has potent antigenic characteristics and does not induce an allergic response. Before being docked at Toll-like receptors 2 and 4, the developed vaccine was modeled, improved, and validated. Docking studies revealed significant binding interactions, whereas molecular dynamics simulations demonstrated its stability. Furthermore, the immune system simulation indicated significant and long-lasting immunological responses. The vaccine was then reverse-transcribed into a DNA sequence and cloned into the pET28a (+) vector to validate translational activity as well as the microbial production process. The vaccine developed in this study requires further scientific consensus before it can be used against T. pallidum to confirm its safety and efficacy.
Collapse
|
21
|
Sarkar B, Ullah MA, Araf Y, Islam NN, Zohora US. Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV). Expert Rev Vaccines 2022; 21:1851-1871. [PMID: 33435759 PMCID: PMC7989953 DOI: 10.1080/14760584.2021.1874925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The group of human coronaviruses (HCoVs) consists of some highly pathogenic viruses that have caused several outbreaks in the past. The newly emerged strain of HCoV, the SARS-CoV-2 is responsible for the recent global pandemic that has already caused the death of hundreds of thousands of people due to the lack of effective therapeutic options. METHODS In this study, immunoinformatics methods were used to design epitope-based polyvalent vaccines which are expected to be effective against four different pathogenic strains of HCoV i.e., HCoV-OC43, HCoV-SARS, HCoV-MERS, and SARS-CoV-2. RESULTS The constructed vaccines consist of highly antigenic, non-allergenic, nontoxic, conserved, and non-homologous T-cell and B-cell epitopes from all the four viral strains. Therefore, they should be able to provide strong protection against all these strains. Protein-protein docking was performed to predict the best vaccine construct. Later, the MD simulation and immune simulation of the best vaccine construct also predicted satisfactory results. Finally, in silico cloning was performed to develop a mass production strategy of the vaccine. CONCLUSION If satisfactory results are achieved in further in vivo and in vitro studies, then the vaccines designed in this study might be effective as preventative measures against the selected HCoV strains.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
22
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Identification of potential candidate vaccines against Mycobacterium ulcerans based on the major facilitator superfamily transporter protein. Front Immunol 2022; 13:1023558. [PMID: 36426350 PMCID: PMC9679648 DOI: 10.3389/fimmu.2022.1023558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease that is characterized by non-fatal lesion development. The causative agent is Mycobacterium ulcerans (M. ulcerans). There are no known vectors or transmission methods, preventing the development of control methods. There are effective diagnostic techniques and treatment routines; however, several socioeconomic factors may limit patients' abilities to receive these treatments. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has shown limited efficacy, and no conventionally designed vaccines have passed clinical trials. This study aimed to generate a multi-epitope vaccine against M. ulcerans from the major facilitator superfamily transporter protein using an immunoinformatics approach. Twelve M. ulcerans genome assemblies were analyzed, resulting in the identification of 11 CD8+ and 7 CD4+ T-cell epitopes and 2 B-cell epitopes. These conserved epitopes were computationally predicted to be antigenic, immunogenic, non-allergenic, and non-toxic. The CD4+ T-cell epitopes were capable of inducing interferon-gamma and interleukin-4. They successfully bound to their respective human leukocyte antigens alleles in in silico docking studies. The expected global population coverage of the T-cell epitopes and their restricted human leukocyte antigens alleles was 99.90%. The population coverage of endemic regions ranged from 99.99% (Papua New Guinea) to 21.81% (Liberia). Two vaccine constructs were generated using the Toll-like receptors 2 and 4 agonists, LprG and RpfE, respectively. Both constructs were antigenic, non-allergenic, non-toxic, thermostable, basic, and hydrophilic. The DNA sequences of the vaccine constructs underwent optimization and were successfully in-silico cloned with the pET-28a(+) plasmid. The vaccine constructs were successfully docked to their respective toll-like receptors. Molecular dynamics simulations were carried out to analyze the binding interactions within the complex. The generated binding energies indicate the stability of both complexes. The constructs generated in this study display severable favorable properties, with construct one displaying a greater range of favorable properties. However, further analysis and laboratory validation are required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Omoboyede V, Ibrahim O, Umar HI, Bello T, Adedeji AA, Khalid A, Fayojegbe ES, Ayomide AB, Chukwuemeka PO. Designing a vaccine-based therapy against Epstein-Barr virus-associated tumors using immunoinformatics approach. Comput Biol Med 2022; 150:106128. [PMID: 36179514 DOI: 10.1016/j.compbiomed.2022.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/05/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
Epstein-Barr virus (EBV) is widely known due to its role in the etiology of infectious mononucleosis. However, it is the first oncovirus that was identified and has been implicated in the etiology of several types of cancers. Globally, EBV infection is associated with more than 200, 000 new cancer cases and 150, 000 deaths yearly. A prophylactic or therapeutic vaccine targeting tumors associated with EBV infection is currently lacking. Therefore, this study aimed to develop a multiepitope-based polyvalent vaccine against EBV-associated tumors using immunoinformatics approach. The latency-associated proteins (LAP) of three strains of the virus were used in this study. Potential epitopes predicted from the proteins were analyzed and selected based on several predicted properties. Thirty viable B-cell and T-cell epitopes were selected and conjugated using various linkers alongside beta-defensin 3 as an adjuvant and pan HLA DR-binding epitope (PADRE) sequence to improve the immunogenicity of the vaccine construct. Molecular docking studies of the vaccine construct against toll-like receptors (TLRs) showed it is capable of inducing immune response via recognition by TLRs while immune simulation studies showed it could induce both cellular and humoral immune responses. Furthermore, molecular dynamics study of the complex formed by the vaccine candidate and TLR-4 showed that the complex was stable. Ultimately, the designed vaccine showed desirable properties based on in silico evaluation; however, experimental studies are needed to validate the efficacy of the vaccine against EBV-associated tumors.
Collapse
Affiliation(s)
- Victor Omoboyede
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Ochapa Ibrahim
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Taye Bello
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Nigeria.
| | - Ayodeji Adeola Adedeji
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Aqsa Khalid
- Research Center for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan.
| | | | - Adunola Blessing Ayomide
- Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Prosper Obed Chukwuemeka
- Computer Aided Therapeutics Laboratory (CATL) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria; Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| |
Collapse
|
24
|
Abstract
Epstein-Barr virus (EBV) is a lymphotropic virus responsible for numerous epithelial and lymphoid cell malignancies, including gastric carcinoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Burkitt lymphoma. Hundreds of thousands of people worldwide get infected with this virus, and in most cases, this viral infection leads to cancer. Although researchers are trying to develop potential vaccines and drug therapeutics, there is still no effective vaccine to combat this virus. In this study, the immunoinformatics approach was utilized to develop a potential multiepitope subunit vaccine against the two most common subtypes of EBV, targeting three of their virulent envelope glycoproteins. Eleven cytotoxic T lymphocyte (CTL) epitopes, 11 helper T lymphocyte (HTL) epitopes, and 10 B-cell lymphocyte (BCL) epitopes were predicted to be antigenic, nonallergenic, nontoxic, and fully conserved among the two subtypes, and nonhuman homologs were used for constructing the vaccine after much analysis. Later, further validation experiments, including molecular docking with different immune receptors (e.g., Toll-like receptors [TLRs]), molecular dynamics simulation analyses (including root means square deviation [RMSD], root mean square fluctuation [RMSF], radius of gyration [Rg], principal-component analysis [PCA], dynamic cross-correlation [DCC], definition of the secondary structure of proteins [DSSP], and Molecular Mechanics Poisson-Boltzmann Surface Area [MM-PBSA]), and immune simulation analyses generated promising results, ensuring the safe and stable response of the vaccine with specific immune receptors after potential administration within the human body. The vaccine's high binding affinity with TLRs was revealed in the docking study, and a very stable interaction throughout the simulation proved the potential high efficacy of the proposed vaccine. Further, in silico cloning was also conducted to design an efficient mass production strategy for future bulk industrial vaccine production. IMPORTANCE Epstein-Barr virus (EBV) vaccines have been developing for over 30 years, but polyphyletic and therapeutic vaccines have failed to get licensed. Our vaccine surpasses the limitations of many such vaccines and remains very promising, which is crucial because the infection rate is higher than most viral infections, affecting a whopping 90% of the adult population. One of the major identifications covers a holistic analysis of populations worldwide, giving us crucial information about its effectiveness for everyone's unique immunological system. We targeted three glycoproteins that enhance the virulence of the virus to design an epitope-based polyvalent vaccine against two different strains of EBV, type 1 and 2. Our methodology in this study is nonconventional yet swift to show effective results while designing vaccines.
Collapse
|
25
|
Martin WR, Cheng F. A rational design of a multi-epitope vaccine against SARS-CoV-2 which accounts for the glycan shield of the spike glycoprotein. J Biomol Struct Dyn 2022; 40:7099-7113. [PMID: 33715598 PMCID: PMC9003619 DOI: 10.1080/07391102.2021.1894986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The ongoing global health crisis caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus which leads to Coronavirus Disease 2019 (COVID-19) has impacted not only the health of people everywhere, but the economy in nations across the world. While vaccine candidates and therapeutics are currently undergoing clinical trials, there is a lack of proven effective treatments or cures for COVID-19. In this study, we have presented a synergistic computational platform, including molecular dynamics simulations and immunoinformatics techniques, to rationally design a multi-epitope vaccine candidate for COVID-19. This platform combines epitopes across Linear B Lymphocytes (LBL), Cytotoxic T Lymphocytes (CTL) and Helper T Lymphocytes (HTL) derived from both mutant and wild-type spike glycoproteins from SARS-CoV-2 with diverse protein conformations. In addition, this vaccine construct also takes the considerable glycan shield of the spike glycoprotein into account, which protects it from immune response. We have identified a vaccine candidate (a 35.9 kDa protein), named COVCCF, which is composed of 5 LBL, 6 HTL, and 6 CTL epitopes from the spike glycoprotein of SARS-CoV-2. Using multi-dose immune simulations, COVCCF induces elevated levels of immunoglobulin activity (IgM, IgG1, IgG2), and induces strong responses from B lymphocytes, CD4 T-helper lymphocytes, and CD8 T-cytotoxic lymphocytes. COVCCF induces cytokines important to innate immunity, including IFN-γ, IL4, and IL10. Additionally, COVCCF has ideal pharmacokinetic properties and low immune-related toxicities. In summary, this study provides a powerful, computational vaccine design platform for rapid development of vaccine candidates (including COVCCF) for effective prevention of COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- William R. Martin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Araf Y, Moin AT, Timofeev VI, Faruqui NA, Saiara SA, Ahmed N, Parvez MSA, Rahaman TI, Sarkar B, Ullah MA, Hosen MJ, Zheng C. Immunoinformatic Design of a Multivalent Peptide Vaccine Against Mucormycosis: Targeting FTR1 Protein of Major Causative Fungi. Front Immunol 2022; 13:863234. [PMID: 35720422 PMCID: PMC9204303 DOI: 10.3389/fimmu.2022.863234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment’s safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine’s safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.
Collapse
Affiliation(s)
- Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh
| | - Abu Tayab Moin
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre, Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
| | - Nairita Ahsan Faruqui
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Syeda Afra Saiara
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh
| | - Nafisa Ahmed
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Md Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tanjim Ishraq Rahaman
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Bishajit Sarkar
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Molecular Docking and In Silico Simulation of Trichinella spiralis Membrane-Associated Progesterone Receptor Component 2 (Ts-MAPRC2) and Its Interaction with Human PGRMC1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7414198. [PMID: 35769668 PMCID: PMC9236782 DOI: 10.1155/2022/7414198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Background. Trichinellosis is a foodborne zoonotic disease caused by Trichinella spp., including Trichinella spiralis. This parasitic disease ranks as seven of the most infectious in the world. In this context, it is important to develop a vaccine that can combat Trichinellosis, especially for humans and pigs. This would be an important step in preventing transmission. In this study, we focus on homology modelling, binding site prediction, molecular modelling, and simulation techniques used to explore the association between Trichinella spiralis membrane-associated progesterone receptor component 2 (Ts-MAPRC2) and the human PGRMC1 protein. It was found that the progesterone receptor component 2 of T. spiralis has 44.54% sequence identity with human PGRMC1 (PDB ID: 4X8Y). Binding sites predicted for human PGRMC1 are GLU 7, PHE 8, PHE 10, PHE 18, LEU 27, ASP 36, and VAL 104. Molecular docking has six clusters based on Z scores. They range from -1.5 to 1.8. It was found that the progesterone receptor component 2 of T. spiralis has 44.54% sequence identity with human PGRMC1. During simulation, the average RMSD was 2.44 ± 0.20 Å, which indicated the overall stability of the protein. Based on docking studies and computational simulations, we hypothesized that the interaction of the proteins Trichinella spiralis membrane-associated progesterone receptor component 2 and human PGRMC1 formed stable complexes. The discovery of Ts-MAPRC2 may pave the way for the development of drugs and vaccines to treat Trichinellosis.
Collapse
|
28
|
Lv Y, Zhu Y, Chang L, Yang J, Zhao Y, Zhao J, Wang Y, Zhu M, Wu C, Zhao W. Identification of a dominant murine T-cell epitope in recombinant protein P29 from Echinococcus granulosus. Acta Biochim Biophys Sin (Shanghai) 2022; 54:482-493. [PMID: 35607954 PMCID: PMC9827856 DOI: 10.3724/abbs.2022036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Echinococcus granulosus causes echinococcosis, an important zoonotic disease worldwide and a major public health issue. Vaccination is an economical and practical approach for controlling E. granulosus. We have previously revealed that a recombinant protein P29 (rEg.P29) is a good vaccine candidate against E. granulosus. However, T cell immunogenic epitopes have not been identified. In the present study, we use rEg.P29-immunized mice as models to screen immunogenic epitopes for the construction of a novel multi-epitope vaccine. We search for immunodominant epitopes from an overlapping peptide library to screen the peptides of rEg.P29. Our results confirm that rEg.P29 immunization in mice elicits the activation of T cells and induces cellular immune responses. Further analyses show that a T cell epitope within amino acids 86–100 of rEg.P29 elicits significant antigen-specific IFN-γ production in CD4+ and CD8+ T cells and promotes specific T-cell activation and proliferation. Collectively, these results provide a reference for the construction of a novel vaccine against broad E. granulosus genotypes based on epitopes of rEg.P29.
Collapse
Affiliation(s)
- Yongxue Lv
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| | - Yazhou Zhu
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Liangliang Chang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Jihui Yang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| | - Yinqi Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Jiaqing Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| | - Yana Wang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Mingxing Zhu
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Changyou Wu
- Institute of ImmunologyZhongshan School of MedicineSun Yat-sen University Guangzhou 5102275China
| | - Wei Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
29
|
Sana M, Javed A, Babar Jamal S, Junaid M, Faheem M. Development of multivalent vaccine targeting M segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) using immunoinformatic approaches. Saudi J Biol Sci 2022; 29:2372-2388. [PMID: 35531180 PMCID: PMC9072894 DOI: 10.1016/j.sjbs.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 01/23/2023] Open
Abstract
Crimean-Congo Hemorrhagic Fever (CCHF) is a tick-borne viral infection with no licensed vaccine or therapeutics available for its treatment. In the present study we have developed the first multi-epitope subunit vaccine effective against all the seven genotypes of CCHF virus (CCHFV). The vaccine contains five B-cell, two MHC-II (HTL), and three MHC-I (CTL) epitopes screened from two structural glycoproteins (Gc and Gn in M segment) of CCHFV with an N-terminus human β-defensin as an adjuvant, as well as an N-terminus EAAAK sequence. The epitopes were rigorously investigated for their antigenicity, allergenicity, IFN gamma induction, anti-inflammatory responses, stability, and toxicity. The three-dimensional structure of the vaccine was predicted and docked with TLR-3, TLR-8, and TLR-9 receptors to find the strength of the binding complexes via molecular dynamics simulation. After codon adaptation, the subunit vaccine construct was developed in a pDual-GC plasmid and has population coverage of 98.47% of the world's population (HLA-I & II combined). The immune simulation studies were carried out on the C-ImmSim in-silico interface showing a marked increase in the production of cellular and humoral response (B-cell and T-cell) as well as TGFβ, IL-2, IL-10, and IL-12 indicating that the proposed vaccine would be able to sufficiently provoke both humoral and cell-mediated immune responses. Thus, making it a new and promising vaccine candidate against CCHFV.
Collapse
Affiliation(s)
- Maaza Sana
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Syed Babar Jamal
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Junaid
- Precision Medicine Laboratory, Rehman Medical Institute, Hayatabad, Peshawar, KPK, 25000, Pakistan
| | - Muhammad Faheem
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| |
Collapse
|
30
|
Soltan MA, Behairy MY, Abdelkader MS, Albogami S, Fayad E, Eid RA, Darwish KM, Elhady SS, Lotfy AM, Alaa Eldeen M. In silico Designing of an Epitope-Based Vaccine Against Common E. coli Pathotypes. Front Med (Lausanne) 2022; 9:829467. [PMID: 35308494 PMCID: PMC8931290 DOI: 10.3389/fmed.2022.829467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli (E. coli) is a Gram-negative bacterium that belongs to the family Enterobacteriaceae. While E. coli can stay as an innocuous resident in the digestive tract, it can cause a group of symptoms ranging from diarrhea to live threatening complications. Due to the increased rate of antibiotic resistance worldwide, the development of an effective vaccine against E. coli pathotypes is a major health priority. In this study, a reverse vaccinology approach along with immunoinformatics has been applied for the detection of potential antigens to develop an effective vaccine. Based on our screening of 5,155 proteins, we identified lipopolysaccharide assembly protein (LptD) and outer membrane protein assembly factor (BamA) as vaccine candidates for the current study. The conservancy of these proteins in the main E. coli pathotypes was assessed through BLASTp to make sure that the designed vaccine will be protective against major E. coli pathotypes. The multitope vaccine was constructed using cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes with suitable linkers and adjuvant. Following that, it was analyzed computationally where it was found to be antigenic, soluble, stable, and non-allergen. Additionally, the adopted docking study, as well as all-atom molecular dynamics simulation, illustrated the promising predicted affinity and free binding energy of this constructed vaccine against the human Toll-like receptor-4 (hTLR-4) dimeric state. In this regard, wet lab studies are required to prove the efficacy of the potential vaccine construct that demonstrated promising results through computational validation.
Collapse
Affiliation(s)
- Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mennatallah S. Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Lotfy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammad Alaa Eldeen
- Division of Cell Biology, Histology and Genetics, Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
31
|
Ardestani H, Nazarian S, Hajizadeh A, Sadeghi D, Kordbacheh E. In silico and in vivo approaches to recombinant multi-epitope immunogen of GroEL provides efficient cross protection against S. Typhimurium, S. flexneri, and S. dysenteriae. Mol Immunol 2022; 144:96-105. [PMID: 35217247 DOI: 10.1016/j.molimm.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Stress or Heat Shock Proteins (HSPs) have been included in various operations like protein folding, autophagy, and apoptosis. HSP families recognize as protective antigens in a wide range of bacteria because they have been conserved through evolution. Due to their homology as well as antigenicity they are competent for applying in cross-protection against bacterial diseases. METHODS In the present study, bioinformatics approaches utilized to design epitope-based construction of Hsp60 (or GroEL) protein. In this regard, potential B-cell and T-cell epitopes except for allergenic sequences were selected by immunoinformatic tools. The structural and functional aspects of the DNA, RNA, and protein levels were assessed by bioinformatics software. Following in silico investigations, recombinant GroEL multi-epitope of Salmonella typhi was expressed, purified, and validated. Mouse groups were immunized with recombinant protein and humoral immune response was measured by enzyme linked immunosorbent assay (ELISA). Animal challenge against Salmonella Typhimurium, Shigella flexneri, and Shigella dysenteriae was evaluated. RESULTS recombinant protein expression and purification with 14.3 kilodaltons (kDa) was confirmed by SDS-PAGE and western blotting. After animal administration, the immunoglobulins evaluated increase after each immunization. Immunized antisera exhibited 80%, 40%, and 40% protection against the lethal dose infection by S. Typhimurium, S. flexneri, and S. dysenteriae respectively. Passive immunization conferred 50%, 30%, and 30% protection in mice against S. Typhimurium, S. flexneri and S. dysentery respectively. In addition, bacterial organ load had exhibited a significant decrease in colony forming unit (CFU) in the liver and spleen of the immunized mice compared to the control. CONCLUSION Our study demonstrates the efficacy of S. Typhi recombinant GroEL multi-epitope to consider as a universal immunogen candidate versus multiple bacterial pathogens.
Collapse
Affiliation(s)
- Hassan Ardestani
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Abbas Hajizadeh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Davoud Sadeghi
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Emad Kordbacheh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
32
|
Vaccination of mice with recombinant novel aminopeptidase P and cathepsin X alone or in combination induces protective immunity against Trichinella spiralis infection. Acta Trop 2021; 224:106125. [PMID: 34508714 DOI: 10.1016/j.actatropica.2021.106125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Trichinella spiralis is a major foodborne zoonotic parasitic nematode which has a serious threat to meat food safety. Development of anti-Trichinella vaccine is requisite for control and elimination of Trichinella infection in food animals to ensure meat safety. Aminopeptidase P (TsAPP) and cathepsin X (TsCX) are two novel proteins identified in T. spiralis intestinal infectious L1 larvae (IIL1). The objective of this study was to investigate the protective immunity elicited by immunization with TsAPP and TsCX alone and TsAPP-TsCX in combination in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsAPP, rTsCX or rTsAPP + rTsCX elicited a systemic humoral response (high levels of serum IgG, IgG1/IgG2a and IgA) and significant local gut mucosal sIgA responses. The vaccination with rTsAPP, rTsCX or rTsAPP + rTsCX also induced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of IFN-γ and IL-4 in vaccinated mice. Vaccination of mice with rTsAPP+rTsCX exhibited a 63.99 % reduction of intestinal adult worms and 68.50% reduction of muscle larva burdens, alleviated inflammation of intestinal mucosal and muscle tissues, and provided a higher immune protection than that of vaccination with rTsAPP or rTsCX alone. The results demonstrated that TsAPP and TsCX might be considered novel candidate target molecules for anti-Trichinella vaccines.
Collapse
|
33
|
Sami SA, Marma KKS, Mahmud S, Khan MAN, Albogami S, El-Shehawi AM, Rakib A, Chakraborty A, Mohiuddin M, Dhama K, Uddin MMN, Hossain MK, Tallei TE, Emran TB. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS OMEGA 2021; 6:32043-32071. [PMID: 34870027 PMCID: PMC8638006 DOI: 10.1021/acsomega.1c04817] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 05/08/2023]
Abstract
Marburg virus disease (MVD) caused by the Marburg virus (MARV) generally appears with flu-like symptoms and leads to severe hemorrhagic fever. It spreads via direct contact with infected individuals or animals. Despite being considered to be less threatening in terms of appearances and the number of infected patients, the high fatality rate of this pathogenic virus is a major concern. Until now, no vaccine has been developed to combat this deadly virus. Therefore, vaccination for this virus is necessary to reduce its mortality. Our current investigation focuses on the design and formulation of a multi-epitope vaccine based on the structural proteins of MARV employing immunoinformatics approaches. The screening of potential T-cell and B-cell epitopes from the seven structural proteins of MARV was carried out through specific selection parameters. Afterward, we compiled the shortlisted epitopes by attaching them to an appropriate adjuvant and linkers. Population coverage analysis, conservancy analysis, and MHC cluster analysis of the shortlisted epitopes were satisfactory. Importantly, physicochemical characteristics, human homology assessment, and structure validation of the vaccine construct delineated convenient outcomes. We implemented disulfide bond engineering to stabilize the tertiary or quaternary interactions. Furthermore, stability and physical movements of the vaccine protein were explored using normal-mode analysis. The immune simulation study of the vaccine complexes also exhibited significant results. Additionally, the protein-protein docking and molecular dynamics simulation of the final construct exhibited a higher affinity toward toll-like receptor-4 (TLR4). From simulation trajectories, multiple descriptors, namely, root mean square deviations (rmsd), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), and hydrogen bonds, have been taken into account to demonstrate the inflexible and rigid nature of receptor molecules and the constructed vaccine. Inclusively, our findings suggested the vaccine constructs' ability to regulate promising immune responses against MARV pathogenesis.
Collapse
Affiliation(s)
- Saad Ahmed Sami
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Shafi Mahmud
- Microbiology
Laboratory, Bioinformatics Division, Department of Genetic Engineering
and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular
Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sarah Albogami
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Rakib
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mostafah Mohiuddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary
Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Mir Muhammad Nasir Uddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Kamrul Hossain
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology,
Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
34
|
Soltan MA, Eldeen MA, Elbassiouny N, Kamel HL, Abdelraheem KM, El-Gayyed HA, Gouda AM, Sheha MF, Fayad E, Ali OAA, Ghany KAE, El-damasy DA, Darwish KM, Elhady SS, Sileem AE. In Silico Designing of a Multitope Vaccine against Rhizopus microsporus with Potential Activity against Other Mucormycosis Causing Fungi. Cells 2021; 10:3014. [PMID: 34831237 PMCID: PMC8616407 DOI: 10.3390/cells10113014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
During the current era of the COVID-19 pandemic, the dissemination of Mucorales has been reported globally, with elevated rates of infection in India, and because of the high rate of mortality and morbidity, designing an effective vaccine against mucormycosis is a major health priority, especially for immunocompromised patients. In the current study, we studied shared Mucorales proteins, which have been reported as virulence factors, and after analysis of several virulent proteins for their antigenicity and subcellular localization, we selected spore coat (CotH) and serine protease (SP) proteins as the targets of epitope mapping. The current study proposes a vaccine constructed based on top-ranking cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes from filtered proteins. In addition to the selected epitopes, β-defensins adjuvant and PADRE peptide were included in the constructed vaccine to improve the stimulated immune response. Computational tools were used to estimate the physicochemical and immunological features of the proposed vaccine and validate its binding with TLR-2, where the output data of these assessments potentiate the probability of the constructed vaccine to stimulate a specific immune response against mucormycosis. Here, we demonstrate the approach of potential vaccine construction and assessment through computational tools, and to the best of our knowledge, this is the first study of a proposed vaccine against mucormycosis based on the immunoinformatics approach.
Collapse
Affiliation(s)
- Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt;
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Nada Elbassiouny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt;
| | - Hasnaa L. Kamel
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt;
| | - Kareem M. Abdelraheem
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (K.M.A.); (H.A.E.-G.)
| | - Hanaa Abd El-Gayyed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (K.M.A.); (H.A.E.-G.)
| | - Ahmed M. Gouda
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed F. Sheha
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | | | - Dalia A. El-damasy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt;
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ashraf E. Sileem
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
35
|
Characterization of Membrane-Associated Progesterone Receptor Component-2 (MAPRC2) from Trichinella spiralis and Its Interaction with Progesterone and Mifepristone. Vaccines (Basel) 2021; 9:vaccines9080934. [PMID: 34452060 PMCID: PMC8402905 DOI: 10.3390/vaccines9080934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Trichinellosis is a foodborne zoonotic disease caused by Trichinella spp., including Trichinella spiralis. In the present study, T. spiralis membrane-associated progesterone receptor component-2 (Ts-MAPRC2) gene was cloned and characterized using protein sequencing analysis. Furthermore, the expression, purification, immunoblot assay, binding ability with progesterone antibody, and immunofluorescence assay were performed. A direct effect of progesterone (P4) and mifepristone (RU486) on the Ts-MAPRC2 gene was determined using in vitro cell culture that showed different expression levels at all developmental stages (muscle larvae (ML), female adult worm (F-AL), male adult worm (M-AL), and newborn larvae (NBL)). Subsequently, the in vitro phenotypic effects of P4, RU486, and rTs-MAPRC2-Ab on F-AL and ML stages were measured. Later, the in vivo phenotypic effect and relative mRNA expression of mifepristone on the F-AL stage were studied. Our results revealed that the Ts-MAPRC2 gene is critical to maintaining pregnancy in the female adult worm (F-AL) of T. spiralis. The 300 ng/mL of P4 and 100 ng/mL of RU486 showed downregulation of the Ts-MAPRC2 gene in F-AL (p ≤ 0.05). This plays an important role in abortion and possibly decreases the worm burden of T. spiralis in the host. Only 30 ng/mL P4 showed significant upregulation in F-AL (p ≤ 0.05). The current study provides new insights regarding the antihormone (P4 and RU486) drug design and vaccine therapy of recombinant (rTs-MAPRC2) protein as well as their combined effects to control T. spiralis infection.
Collapse
|
36
|
Evaluation of the immune response to a multi-epitope vaccine candidate in comparison with Hla H35L, MntC, and SACOL0723 proteins against MRSA infection. Biologicals 2021; 73:8-15. [PMID: 34376341 DOI: 10.1016/j.biologicals.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus is an important human opportunistic pathogen that can have a major influence on public health. Here, we aimed to evaluate different aspects of the immune response to a novel multi-epitope fusion protein (HMS) based on HlaH35L, MntC, and SACOL0723 proteins in comparison to the individual antigens. For this purpose, specific total IgG, IgG1, and IgG2a isotypes and the cytokines related to Th1, Th2, and Th17 were assessed. The Bio-efficiency of the fusion protein was evaluated by opsonic killing activity. The HMS fusion protein elicited a high specific IgG level and also induced a higher level of Th1, Th2, and Th17-related cytokines which were more polarized towards the Th1 and Th17 compared to individual antigens. The HMS-specific antisera also significantly promoted phagocytosis of S. aureus COL strain by mouse macrophages. In conclusion, the fusion protein might be an effective vaccine for potential protective immunity against a lethal infection of S. aureus in mice.
Collapse
|
37
|
Wang D, Liu Q, Jiang YL, Huang HB, Li JY, Pan TX, Wang N, Yang WT, Cao X, Zeng Y, Shi CW, Wang JZ, Yang GL, Zhao Q, Wang CF. Oral immunization with recombinant Lactobacillus plantarum expressing Nudix hydrolase and 43 kDa proteins confers protection against Trichinella spiralis in BALB/c mice. Acta Trop 2021; 220:105947. [PMID: 33971160 DOI: 10.1016/j.actatropica.2021.105947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Trichinellosis is a significant food-borne zoonotic parasitic disease caused by parasite Trichinella. Given the side effects of anti-Trichinella drugs (e.g., Mebendazole) aroused in the course of treatments, an effective vaccine against the parasite is called for. The therapies available to date are in most instances targeting a single stage of Trichinella, resulting in an incomplete protective immunity against the parasite in terms of the complexity of its developmental stages. In this study, a recombinant dual-expression double anchor vector NC8-pLp-TsNd-S-pgsA'-gp43 was constructed carrying two antigen genes from Trichinella spiralis (T. spiralis), encoding the gp43 and T. spiralis Nudix hydrolase (TsNd) proteins which were mainly expressed in muscle larva (ML) and intestinal infective larva stages of the parasite respectively. These two proteins were to be expressed by Lactobacillus plantarum NC8 (L. plantarum NC8) which was designed to express the two anchored peptides, a truncated poly-γ-glutamic acid synthetase A (pgsA') and the surface layer protein of Lactobacillus acidophilus (SlpA), on its surface for attaching expressed foreign proteins. Oral immunization with the above recombinant vaccine induced higher levels of specific serum IgG and mucosal secretory IgA (SIgA) in BALB/c mice. In addition, cytokines, interferon-γ (IFN- γ), interleukin-4 (IL-4) and IL-17 released by lymphocytes, and CD4+ levels displayed on the surfaces of splenic and mesenteric lymph cells were significantly enhanced by the vaccination. Moreover, after larval challenges, a 75.67 % reduction of adult worms (AW) at 7 days post-infection (dpi) and 57.14 % reduction of ML at 42 dpi were observed in mice immunized with the recombinant vaccine. Furthermore, this oral vaccination reduced the counts of encysted larvae presented in tongue and masseter muscles after infected with T. spiralis in mice. The overall results demonstrated that the recombinant vaccine developed in this study could induce specific humoral, mucosal, and cellular immune responses, and provides protections against different stages (adult worms and muscle larva) of T. spiralis infections in BALB/c mice, which could make it a promising oral vaccine candidate against trichinellosis.
Collapse
Affiliation(s)
- Dan Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Qiong Liu
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; College of Food Engineering, Jilin Engineering Normal University, Changchun, Jilin 130052, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China.
| | - Quan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China.
| |
Collapse
|
38
|
Multi-antigen vaccination with LPD nanoparticles containing rgp63 and rLmaC1N proteins induced effective immune response against leishmaniasis in animal model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Obaidullah AJ, Alanazi MM, Alsaif NA, Albassam H, Almehizia AA, Alqahtani AM, Mahmud S, Sami SA, Emran TB. Immunoinformatics-guided design of a multi-epitope vaccine based on the structural proteins of severe acute respiratory syndrome coronavirus 2. RSC Adv 2021; 11:18103-18121. [PMID: 35480208 PMCID: PMC9033181 DOI: 10.1039/d1ra02885e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in a contagious respiratory tract infection that has become a global burden since the end of 2019. Notably, fewer patients infected with SARS-CoV-2 progress from acute disease onset to death compared with the progression rate associated with two other coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Several research organizations and pharmaceutical industries have attempted to develop successful vaccine candidates for the prevention of COVID-19. However, increasing evidence indicates that the SARS-CoV-2 genome undergoes frequent mutation; thus, an adequate analysis of the viral strain remains necessary to construct effective vaccines. The current study attempted to design a multi-epitope vaccine by utilizing an approach based on the SARS-CoV-2 structural proteins. We predicted the antigenic T- and B-lymphocyte responses to four structural proteins after screening all structural proteins according to specific characteristics. The predicted epitopes were combined using suitable adjuvants and linkers, and a secondary structure profile indicated that the vaccine shared similar properties with the native protein. Importantly, the molecular docking analysis and molecular dynamics simulations revealed that the constructed vaccine possessed a high affinity for toll-like receptor 4 (TLR4). In addition, multiple descriptors were obtained from the simulation trajectories, including the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), and radius of gyration (R g), demonstrating the rigid nature and inflexibility of the vaccine and receptor molecules. In addition, codon optimization, based on Escherichia coli K12, was used to determine the GC content and the codon adaptation index (CAI) value, which further followed for the incorporation into the cloning vector pET28+(a). Collectively, these findings suggested that the constructed vaccine could be used to modulate the immune reaction against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University Abha 62529 Saudi Arabia
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Department of Genetic Engineering and Biotechnology, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong Chittagong 4331 Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh Chittagong 4381 Bangladesh
| |
Collapse
|
40
|
Kolla HB, Tirumalasetty C, Sreerama K, Ayyagari VS. An immunoinformatics approach for the design of a multi-epitope vaccine targeting super antigen TSST-1 of Staphylococcus aureus. J Genet Eng Biotechnol 2021; 19:69. [PMID: 33974183 PMCID: PMC8112219 DOI: 10.1186/s43141-021-00160-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/05/2021] [Indexed: 11/10/2022]
Abstract
Background TSST-1 is a secretory and pyrogenic superantigen that is being responsible for staphylococcal mediated food poisoning and associated clinical manifestations. It is one of the main targets for the construction of vaccine candidates against Staphylococcus aureus. Most of the vaccines have met failure due to adverse reactions and toxicity reported during late clinical studies. To overcome this, an immunoinformatics approach is being used in the present study for the design of a multi-epitope vaccine to circumvent the problems related to toxicity and allergenicity. Results In this study, a multi-epitope vaccine against Staphylococcus aureus targeting TSST-1 was designed through an immunoinformatics approach. B cell and T cell epitopes were predicted in silico and mapped with linkers to avoid junctional immunogenicity and to ensure the efficient presentation of exposed epitopes through HLA. β-defensin and PADRE were adjusted at the N-terminal end of the final vaccine as adjuvants. Physiochemical parameters, antigenicity, and allergenicity of the vaccine construct were determined with the help of online servers. The three-dimensional structure of the vaccine protein was predicted and validated with various tools. The affinity of the vaccine with TLR-3 was studied through molecular docking studies and the interactions of two proteins were visualized using LigPlot+. The vaccine was successfully cloned in silico into pET-28a (+) for efficient expression in E. coli K12 system. Population coverage analysis had shown that the vaccine construct can cover 83.15% of the global population. Immune simulation studies showed an increase in the antibody levels, IL-2, IFN-γ, TGF-β, B cell, and T cell populations and induced primary, secondary, and tertiary immune responses. Conclusion Multi-epitope vaccine designed through a computational approach is a non-allergic and non-toxic antigen. Preliminary in silico reports have shown that this vaccine could elicit both B cell and T cell responses in the host as desired.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India
| | - Chakradhar Tirumalasetty
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India
| | - Krupanidhi Sreerama
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India
| | - Vijaya Sai Ayyagari
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur - District, Andhra Pradesh, 522 213, India.
| |
Collapse
|
41
|
Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, Ali MA, Laura FK, Halim MA. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100578. [PMID: 33898733 PMCID: PMC8057924 DOI: 10.1016/j.imu.2021.100578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmittable and pathogenic human coronavirus that caused a pandemic situation of acute respiratory syndrome, called COVID-19, which has posed a significant threat to global health security. The aim of the present study is to computationally design an effective peptide-based multi-epitope vaccine (MEV) against SARS-CoV-2. The overall model quality of the vaccine candidate, immunogenicity, allergenicity, and physiochemical analysis have been conducted and validated. Molecular dynamics studies confirmed the stability of the candidate vaccine. The docked complexes during the simulation revealed a strong and stable binding interactions of MEV with human and mice toll-like receptors (TLR), TLR3 and TLR4. Finally, candidate vaccine codons have been optimized for their in silico cloning in E. coli expression system, to confirm increased expression. The proposed MEV can be a potential candidate against SARS-CoV-2, but experimental validation is needed to ensure its safety and immunogenicity status.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Jahirul Islam
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Arpana Parihar
- Department of Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tarhima Jahan Jerin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Rupali Dhote
- Department of Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Md Ackas Ali
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Fariha Khan Laura
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Mohammad A Halim
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
- Department of Physical Sciences, University of Arkansas-Fort Smith, Fort Smith, AR, USA
| |
Collapse
|
42
|
Abass OA, Timofeev VI, Sarkar B, Onobun DO, Ogunsola SO, Aiyenuro AE, Aborode AT, Aigboje AE, Omobolanle BN, Imolele AG, Abiodun AA. Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria. J Biomol Struct Dyn 2021; 40:7283-7302. [PMID: 33719908 DOI: 10.1080/07391102.2021.1896387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lassa mammarenavirus (LASMV) is responsible for a specific type of acute viral hemorrhagic fever known as Lassa fever. Lack of effective treatments and counter-measures against the virus has resulted in a high mortality rate in its endemic regions. Therefore, in this study, a novel epitope-based vaccine has been designed using the methods of immunoinformatics targeting the glycoprotein and nucleoprotein of the virus. After numerous robust analyses, two CTL epitopes, eight HTL epitopes and seven B-cell epitopes were finally selected for constructing the vaccine. All these most promising epitopes were found to be antigenic, non-allergenic, nontoxic and non-human homolog, which made them suitable for designing the subunit vaccine. Furthermore, the selected T-cell epitopes which were found to be fully conserved across different isolates of the virus, were also considered for final vaccine construction. After that, numerous validation experiments, i.e. molecular docking, molecular dynamics simulation and immune simulation were conducted, which predicted that our designed vaccine should be stable within the biological environment and effective in combating the LASMV infection. In the end, codon adaptation and in silico cloning studies were performed to design a recombinant plasmid for producing the vaccine industrially. However, further in vitro and in vivo assessments should be done on the constructed vaccine to finally confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ohilebo Abdulateef Abass
- Department of Bioinformatics & Computational Biology, Centre for BioCode, Benin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Nigeria
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Bishajit Sarkar
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Desmond Odiamehi Onobun
- Department of Bioinformatics & Computational Biology, Centre for BioCode, Benin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Nigeria
| | | | | | - Abdullahi Tunde Aborode
- Research & Development, Shaping Women in STEM (SWIS) Africa, Lagos, Nigeria.,Research & Development, Healthy Africans Platform, Ibadan, Nigeria
| | | | | | | | - Alade Adebowale Abiodun
- Bio-Computing Research Unit, Molecular Biology & Simulations (Mols & Sims) Centre, Ado-Ekiti, Nigeria
| |
Collapse
|
43
|
Li X, Jiang S, Wang X, Hui W, Jia B. iTRAQ-based comparative proteomic analysis in different developmental stages of Echinococcus granulosus. ACTA ACUST UNITED AC 2021; 28:15. [PMID: 33666550 PMCID: PMC7934609 DOI: 10.1051/parasite/2021012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Cystic echinococcosis, caused by infection with the larval stage of the cestode Echinococcus granulosus, is a chronic zoonosis. The lifecycle of the E. granulosus parasite includes three consecutive stages that require specific gene regulation or protein expression to survive environmental shifts between definitive hosts and intermediate hosts. The aim of the present study is to screen and analyze the stage differential antigens to be considered for vaccine development against E. granulosus. By using the iTRAQ (isobaric tags for relative and absolute quantification) method, the differentially expressed proteins were selected from the three consecutive developmental stages of E. granulosus: oncosphere, adult tapeworms, and protoscolex. Through a bioinformatics analysis including Clusters of Orthologous Groups (COG), Gene Ontology (GO), and pathway metabolic annotation, we identified some proteins of interest from each stage. The results showed that a large number of differentially expressed proteins (375: oncosphere vs. adult, 346: oncosphere vs. protoscolex, and 391: adult vs. protoscolex) were identified from the three main lifecycle stages. Analysis of the differential protein pathways showed that these differential proteins are mainly enriched in metabolic pathways, Huntington’s diseases, Alzheimer’s diseases, and ribosome metabolic pathways. Interestingly, among these differential proteins, expression levels of paramyosin, HSP60, HSP70, HSP90, cathepsin L1, cathepsin D, casein kinase, and calmodulin were significantly higher in the oncosphere than in the adult or protoscolex (p < 0.05). We hope our findings will help to identify potential targets for diagnosis or for therapeutic and prophylactic intervention.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China - College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Xuhai Wang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Wenqiao Hui
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Road Nongkenan, Hefei 230031, Anhui, PR China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| |
Collapse
|
44
|
Mahmood M, Javaid A, Shahid F, Ashfaq UA. Rational design of multimeric based subunit vaccine against Mycoplasma pneumonia: Subtractive proteomics with immunoinformatics framework. INFECTION GENETICS AND EVOLUTION 2021; 91:104795. [PMID: 33667723 DOI: 10.1016/j.meegid.2021.104795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/14/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Mycoplasma pneumoniae is the prevalent cause of acquired respiratory infections around the globe. A multi-epitope vaccine (MEV) must be developed to combat infections of M. pneumoniae because there is no specific disease-modifying treatment or vaccination is present. The objective of this research is to design a vaccine that targets M. pneumoniae top five highly antigenic proteins using a combination of immunological techniques and molecular docking. T-cell (HTL & CTL), B-cell, and IFN-γ of target proteins were forecasted and highly conservative epitopes were chosen for further study. For designing of final vaccine, 4LBL, 7CTL, and 5HTL epitopes were joined by linkers of KK, AAY, and GPGPG. The N-end of the vaccine was linked to an adjuvant (Cholera enterotoxin subunit B) with a linker named EAAAK to enhance immunogenicity. After the addition of adjuvants and linkers, the size of the construct was 395 amino acids. The epitopes of IFN-γ and B-cells illustrate that the model construct is optimized for cell-mediated immune or humoral responses. To ensure that the final design is safer and immunogenic, properties like non-allergens, antigenicity, and various physicochemical properties were evaluated. Molecular docking of the vaccine with the toll-like receptor 4 (TLR4) was conducted to check the compatibility of the vaccine with the receptor. Besides, in-silico cloning was utilized for validation of the credibility and proper expression of the vaccine. Furthermore, to confirm that the multi-epitope vaccine created is protective and immunogenic, this research requires experimental validation.
Collapse
Affiliation(s)
- Marvah Mahmood
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
45
|
Mahdevar E, Safavi A, Abiri A, Kefayat A, Hejazi SH, Miresmaeili SM, Iranpur Mobarakeh V. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J Biomol Struct Dyn 2021; 40:6363-6380. [PMID: 33599191 DOI: 10.1080/07391102.2021.1883111] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, cancer immunotherapy has gained lots of attention to replace the current chemoradiation approaches and multi-epitope cancer vaccines are manifesting as the next generation of cancer immunotherapy. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a novel multi-epitope vaccine against breast cancer. The most immunogenic regions of the BORIS cancer-testis antigen were selected according to the binding affinity to MHC-I and II molecules as well as containing multiple cytotoxic T lymphocyte (CTL) epitopes by multiple immunoinformatics servers. The selected regions were linked together by GPGPG linker. Also, a T helper epitope (PADRE) and the TLR-4/MD-2 agonist (L7/L12 ribosomal protein from mycobacterium) were incorporated by A(EAAAK)3A linker to form the final vaccine construct. Then, its physicochemical properties, cleavage sites, TAP transport efficiency, B cell epitopes, IFN-γ inducing epitopes and population coverage were predicted. The final vaccine construct was reverse translated, codon-optimized and inserted into pcDNA3.1 to form the DNA vaccine. The final vaccine construct was a stable, immunogenic and non-allergenic protein that contained numerous CTL epitopes, IFN-γ inducing epitopes and several linear and conformational B cell epitopes. Also, the final vaccine construct formed stable and significant interactions with TLR-4/MD-2 complex according to molecular docking and dynamics simulations. Moreover, its world population coverage for HLA-I and HLA-II were about 93% and 96%, respectively. Taking together, these preliminary results can be used as an appropriate platform for further experimental investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Miresmaeili
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | | |
Collapse
|
46
|
Shey RA, Ghogomu SM, Shintouo CM, Nkemngo FN, Nebangwa DN, Esoh K, Yaah NE, Manka’aFri M, Nguve JE, Ngwese RA, Njume FN, Bertha FA, Ayong L, Njemini R, Vanhamme L, Souopgui J. Computational Design and Preliminary Serological Analysis of a Novel Multi-Epitope Vaccine Candidate against Onchocerciasis and Related Filarial Diseases. Pathogens 2021; 10:99. [PMID: 33494344 PMCID: PMC7912539 DOI: 10.3390/pathogens10020099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
: Onchocerciasis is a skin and eye disease that exerts a heavy socio-economic burden, particularly in sub-Saharan Africa, a region which harbours greater than 96% of either infected or at-risk populations. The elimination plan for the disease is currently challenged by many factors including amongst others; the potential emergence of resistance to the main chemotherapeutic agent, ivermectin (IVM). Novel tools, including preventative and therapeutic vaccines, could provide additional impetus to the disease elimination tool portfolio. Several observations in both humans and animals have provided evidence for the development of both natural and artificial acquired immunity. In this study, immuno-informatics tools were applied to design a filarial-conserved multi-epitope subunit vaccine candidate, (designated Ov-DKR-2) consisting of B-and T-lymphocyte epitopes of eight immunogenic antigens previously assessed in pre-clinical studies. The high-percentage conservation of the selected proteins and epitopes predicted in related nematode parasitic species hints that the generated chimera may be instrumental for cross-protection. Bioinformatics analyses were employed for the prediction, refinement, and validation of the 3D structure of the Ov-DKR-2 chimera. In-silico immune simulation projected significantly high levels of IgG1, T-helper, T-cytotoxic cells, INF-γ, and IL-2 responses. Preliminary immunological analyses revealed that the multi-epitope vaccine candidate reacted with antibodies in sera from both onchocerciasis-infected individuals, endemic normals as well as loiasis-infected persons but not with the control sera from European individuals. These results support the premise for further characterisation of the engineered protein as a vaccine candidate for onchocerciasis.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Cabirou Mounchili Shintouo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Francis Nongley Nkemngo
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea 99999, Cameroon;
- Centre for Research in Infectious Diseases (CRID), Department of Parasitology and Medical Entomology, Yaounde BP 13591, Cameroon
| | - Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Kevin Esoh
- Division of Human Genetics, Health Sciences Campus, Department of Pathology, University of Cape Town, Anzio Rd, Observatory, Cape Town 7925, South Africa;
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Muyanui Manka’aFri
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Joel Ebai Nguve
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Roland Akwelle Ngwese
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Ferdinand Ngale Njume
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| | - Fru Asa Bertha
- Department of Public Health and Hygiene, Faculty of Health Science, University of Buea, Buea 99999, Cameroon;
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé Rue 2005, Cameroon;
| | - Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| |
Collapse
|
47
|
Hossan MI, Chowdhury AS, Hossain MU, Khan MA, Mahmood TB, Mizan S. Immunoinformatics aided-design of novel multi-epitope based peptide vaccine against Hendra henipavirus through proteome exploration. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
48
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Hossain MS, Hossan MI, Mizan S, Moin AT, Yasmin F, Akash AS, Powshi SN, Hasan AR, Chowdhury AS. Immunoinformatics approach to designing a multi-epitope vaccine against Saint Louis Encephalitis Virus. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2020.100500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
50
|
Ma J, Wang L, Fan Z, Liu S, Wang X, Wang R, Chen J, Xiao X, Yang S, Duan X, Song B, Ma J, Tong C, Yu L, Yu Y, Cui Y. Immunogenicity of multi-epitope vaccines composed of epitopes from Streptococcus dysgalactiae GapC. Res Vet Sci 2020; 136:422-429. [PMID: 33812285 DOI: 10.1016/j.rvsc.2020.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/10/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase C (GapC) of Streptococcus dysgalactiae (S. dysgalactiae) is a highly conserved surface protein that can induce a protective immune response against S. dysgalactiae infection. To investigate the immune response and protective efficacy induced by epitope-vaccines against S. dysgalactiae infection, we constructed epitope-vaccines GTB1, GB1B2, and GTB1B2 using a T cell epitope (GapC63-77, abbreviated as GT) and two B cell epitopes (GapC30-36, abbreviated as GB1, and GapC97-103, abbreviated as GB2), which were identified in GapC1-150 of S. dysgalactiae in tandem by a GSGSGS linker. BALB/c mice were immunized via an intramuscular injection with the epitope vaccines. The levels of the cytokines, IFN-γ, IL-4, and IL-17, secreted by splenic lymphocytes and the antibody levels in the sera of the immunized mice were detected by ELISA. The immunized mice were subsequently challenged with S. dysgalactiae, and the bacterial colonization in the immunized-mouse organs was examined using the plate counting method. The results showed that the level of the cytokines induced by GTB1B2 was lower than that induced by GapC1-150, but higher than that induced by other epitope vaccines. The level of IgG induced by GTB1B2 was lower than that induced by GapC1-150, but higher than the levels induced by other epitope vaccines. The bacterial colonization numbers in the organs of the mice immunized with GTB1B2 were higher those of the mice immunized with GapC1-150, but significantly lower than those from the mice immunized with other epitope-vaccines. Our results demonstrated that the T cell and B cell epitopes in the epitope-vaccines worked synergistically against bacterial challenge. The multi-epitope vaccine, GTB1B2, could induce stronger cellular and humoral immune responses, and provide a better protective effect against S. dysgalactiae infection.
Collapse
Affiliation(s)
- Jun Ma
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhaowei Fan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuo Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xin Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ran Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Chen
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xue Xiao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Siyu Yang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xuyang Duan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yudong Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China,; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China..
| |
Collapse
|