1
|
Ros-Moner E, Jiménez-Góngora T, Villar-Martín L, Vogrinec L, González-Miguel VM, Kutnjak D, Rubio-Somoza I. Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha. Nat Commun 2024; 15:8326. [PMID: 39333479 PMCID: PMC11436993 DOI: 10.1038/s41467-024-52610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.
Collapse
Affiliation(s)
- Eric Ros-Moner
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Luis Villar-Martín
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Lana Vogrinec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Víctor M González-Miguel
- Data Analysis area, Bioinformatics Core Unit, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
2
|
Espindola AS. Simulated High Throughput Sequencing Datasets: A Crucial Tool for Validating Bioinformatic Pathogen Detection Pipelines. BIOLOGY 2024; 13:700. [PMID: 39336128 PMCID: PMC11428249 DOI: 10.3390/biology13090700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
The validation of diagnostic assays in plant pathogen detection is a critical area of research. It requires the use of both negative and positive controls containing a known quantity of the target pathogen, which are crucial elements when calculating analytical sensitivity and specificity, among other diagnostic performance metrics. High Throughput Sequencing (HTS) is a method that allows the simultaneous detection of a theoretically unlimited number of plant pathogens. However, accurately identifying the pathogen from HTS data is directly related to the bioinformatic pipeline utilized and its effectiveness at correctly assigning reads to their associated taxa. To this day, there is no consensus about the pipeline that should be used to detect the pathogens in HTS data, and results often undergo review and scientific evaluation. It is, therefore, imperative to establish HTS resources tailored for evaluating the performance of bioinformatic pipelines utilized in plant pathogen detection. Standardized artificial HTS datasets can be used as a benchmark by allowing users to test their pipelines for various pathogen infection scenarios, some of the most prevalent being multiple infections, low titer pathogens, mutations, and new strains, among others. Having these artificial HTS datasets in the hands of HTS diagnostic assay validators can help resolve challenges encountered when implementing bioinformatics pipelines for routine pathogen detection. Offering these purely artificial HTS datasets as benchmarking tools will significantly advance research on plant pathogen detection using HTS and enable a more robust and standardized evaluation of the bioinformatic methods, thereby enhancing the field of plant pathogen detection.
Collapse
Affiliation(s)
- Andres S Espindola
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Chinnadurai C, Wyatt NA, Weiland JJ, Neher OT, Hastings J, Bloomquist MW, Chu C, Chanda AK, Khan M, Bolton MD, Ramachandran V. Meta-transcriptomic analysis reveals the geographical expansion of known sugarbeet-infecting viruses and the occurrence of a novel virus in sugarbeet in the United States. FRONTIERS IN PLANT SCIENCE 2024; 15:1429402. [PMID: 39290724 PMCID: PMC11407286 DOI: 10.3389/fpls.2024.1429402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
In this study, meta-transcriptome sequencing was conducted on a total of 18 sugarbeet (Beta vulgaris L. subsp. vulgaris) sample libraries to profile the virome of field-grown sugarbeet to identify the occurrence and distribution of known and potentially new viruses from five different states in the United States. Sugarbeet roots with symptoms resembling rhizomania caused by beet necrotic yellow vein virus (BNYVV), or leaves exhibiting leaf-curling, yellowing to browning, or green mosaic were collected from the sugarbeet growing areas of California, Colorado, Idaho, Minnesota, and North Dakota. In silico analysis of de novo assembled contigs revealed the presence of nearly full-length genomes of BNYVV, beet soil-borne virus (BSBV), and beet soil-borne mosaic virus (BSBMV), which represent known sugarbeet-infecting viruses. Among those, BNYVV was widespread across the locations, whereas BSBV was prevalent in Minnesota and Idaho, and BSBMV was only detected in Minnesota. In addition, two recently reported Beta vulgaris satellite virus isoforms (BvSatV-1A and BvSatV-1B) were detected in new locations, indicating the geographical expansion of this known virus. Besides these known sugarbeet-infecting viruses, the bioinformatic analysis identified the widespread occurrence of a new uncharacterized Erysiphe necator-associated abispo virus (En_abispoV), a fungus-related virus that was identified in all 14 libraries. En_abispoV contains two RNA components, and nearly complete sequences of both RNA1 and RNA2 were obtained from RNASeq and were further confirmed by primer-walking RT-PCR and Sanger sequencing. Phylogenetic comparison of En_abispoV isolates obtained in this study showed varying levels of genetic diversity within RNA1 and RNA2 compared to previously reported isolates. The undertaken meta-transcriptomic approach revealed the widespread nature of coexisting viruses associated with field-grown sugarbeet exhibiting virus disease-like symptoms in the United States.
Collapse
Affiliation(s)
| | - Nathan A Wyatt
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - John J Weiland
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Oliver T Neher
- Sugarbeet Research, Amalgamated Sugar Company, Boise, ID, United States
| | - Joe Hastings
- Agriculture Department, American Crystal Sugar Company, Moorhead, MN, United States
| | - Mark W Bloomquist
- Agriculture Department, Southern Minnesota Beet Sugar Cooperative, Renville, MN, United States
| | - Chenggen Chu
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Ashok K Chanda
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- Northwest Research and Outreach Center, University of Minnesota, Crookston, MN, United States
| | - Mohamed Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Melvin D Bolton
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Vanitharani Ramachandran
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
4
|
Kanapiya A, Amanbayeva U, Tulegenova Z, Abash A, Zhangazin S, Dyussembayev K, Mukiyanova G. Recent advances and challenges in plant viral diagnostics. FRONTIERS IN PLANT SCIENCE 2024; 15:1451790. [PMID: 39193213 PMCID: PMC11347306 DOI: 10.3389/fpls.2024.1451790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Accurate and timely diagnosis of plant viral infections plays a key role in effective disease control and maintaining agricultural productivity. Recent advances in the diagnosis of plant viruses have significantly expanded our ability to detect and monitor viral pathogens in agricultural crops. This review discusses the latest advances in diagnostic technologies, including both traditional methods and the latest innovations. Conventional methods such as enzyme-linked immunosorbent assay and DNA amplification-based assays remain widely used due to their reliability and accuracy. However, diagnostics such as next-generation sequencing and CRISPR-based detection offer faster, more sensitive and specific virus detection. The review highlights the main advantages and limitations of detection systems used in plant viral diagnostics including conventional methods, biosensor technologies and advanced sequence-based techniques. In addition, it also discusses the effectiveness of commercially available diagnostic tools and challenges facing modern diagnostic techniques as well as future directions for improving informed disease management strategies. Understanding the main features of available diagnostic methodologies would enable stakeholders to choose optimal management strategies against viral threats and ensure global food security.
Collapse
Affiliation(s)
- Aizada Kanapiya
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ulbike Amanbayeva
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanar Tulegenova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Altyngul Abash
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Sayan Zhangazin
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Kazbek Dyussembayev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzhamal Mukiyanova
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
- Scientific Center "Agrotechnopark", Shakarim University, Semey, Kazakhstan
| |
Collapse
|
5
|
Farrall T, Brawner J, Dinsdale A, Kehoe M. A Review of Probe-Based Enrichment Methods to Inform Plant Virus Diagnostics. Int J Mol Sci 2024; 25:8348. [PMID: 39125919 PMCID: PMC11312432 DOI: 10.3390/ijms25158348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Modern diagnostic techniques based on DNA sequence similarity are currently the gold standard for the detection of existing and emerging pathogens. Whilst individual assays are inexpensive to use, assay development is costly and carries risks of not being sensitive or specific enough to capture an increasingly diverse range of targets. Sequencing can provide the entire nucleic acid content of a sample and may be used to identify all pathogens present in the sample when the depth of coverage is sufficient. Targeted enrichment techniques have been used to increase sequence coverage and improve the sensitivity of detection within virus samples, specifically, to capture sequences for a range of different viruses or increase the number of reads from low-titre virus infections. Vertebrate viruses have been well characterised using in-solution hybridisation capture to target diverse virus families. The use of probes for genotyping and strain identification has been limited in plants, and uncertainty around sensitivity is an impediment to the development of a large-scale virus panel to use within regulatory settings and diagnostic pipelines. This review aims to compare significant studies that have used targeted enrichment of viruses to identify approaches to probe design and potential for use in plant virus detection and characterisation.
Collapse
Affiliation(s)
- Thomas Farrall
- Plant Innovation Centre, Australian Government, Department of Agriculture, Fisheries and Forestry (DAFF), Canberra, ACT 2601, Australia; (T.F.); (A.D.)
- Forest Research Institute, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Jeremy Brawner
- Forest Research Institute, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Adrian Dinsdale
- Plant Innovation Centre, Australian Government, Department of Agriculture, Fisheries and Forestry (DAFF), Canberra, ACT 2601, Australia; (T.F.); (A.D.)
| | - Monica Kehoe
- Diagnostic Laboratory Services, Biosecurity and Sustainability, Department of Primary Industries and Regional Development (DPIRD), Perth, WA 6151, Australia
| |
Collapse
|
6
|
Edula SR, Hand LC, Roberts PM, Beasley E, Snider JL, Kemerait RC, Chee PW, Bag S. Characterization of Caulimovirid-like Sequences from Upland Cotton ( Gossypium hirsutum L.) Exhibiting Terminal Abortion in Georgia, USA. Viruses 2024; 16:1111. [PMID: 39066273 PMCID: PMC11281623 DOI: 10.3390/v16071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we investigated the potential involvement of endogenous viral elements (EVEs) in the development of apical tissue necrosis, resulting in the terminal abortion of upland cotton (Gossypium hirsutum L.) in Georgia. The high-throughput sequence analysis of symptomatic and asymptomatic plant tissue samples revealed near-complete EVE-Georgia (EVE-GA) sequences closely related to caulimoviruses. The analysis of EVE-GA's putative open reading frames (ORFs) compared to cotton virus A and endogenous cotton pararetroviral elements (eCPRVE) revealed their similarity in putative ORFs 1-4. However, in the ORF 5 and ORF 6 encoding putative coat protein and reverse transcriptase, respectively, the sequences from EVE-GA have stop codons similar to eCPRVE sequences from Mississippi. In silico mining of the cotton genome database using EVE-GA as a query uncovered near-complete viral sequence insertions in the genomes of G. hirsutum species (~7 kb) but partial in G. tomentosum (~5.3 kb) and G. mustelinum (~5.1 kb) species. Furthermore, cotton EVEs' episomal forms and messenger RNA (mRNA) transcripts were detected in both symptomatic and asymptomatic plants collected from cotton fields. No significant yield difference was observed between symptomatic and asymptomatic plants of the two varieties evaluated in the experimental plot. Additionally, EVEs were also detected in cotton seeds and seedlings. This study emphasizes the need for future research on EVE sequences, their coding capacity, and any potential role in host immunity or pathogenicity.
Collapse
Affiliation(s)
- Surendra R. Edula
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Lavesta C. Hand
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA
| | | | - Edward Beasley
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA 31793, USA
| | - John L. Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793, USA
| | - Robert C. Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Peng W. Chee
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA 31793, USA
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| |
Collapse
|
7
|
Kim HJ, Cho IS, Choi SR, Jeong RD. Identification of an Isolate of Citrus Tristeza Virus by Nanopore Sequencing in Korea and Development of a CRISPR/Cas12a-Based Assay for Rapid Visual Detection of the Virus. PHYTOPATHOLOGY 2024; 114:1421-1428. [PMID: 38079355 DOI: 10.1094/phyto-10-23-0354-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Citrus tristeza virus (CTV) is a highly destructive viral pathogen posing a significant threat to citrus crops worldwide. Disease management and crop protection strategies necessitate the development of rapid and accurate detection methods. In this study, we employed Oxford Nanopore sequencing to detect CTV in Citrus unshiu samples. Subsequently, we developed a specific and sensitive detection assay combining CRISPR/Cas12a with reverse transcription-recombinase polymerase amplification. The CRISPR-Cas12a assay exhibited exceptional specificity for CTV, surpassing conventional RT-PCR by at least 10-fold in sensitivity. Remarkably, the developed assay detected CTV in field samples, with zero false negatives. This diagnostic approach is user-friendly, cost-effective, and offers tremendous potential for rapid onsite detection of CTV. Therefore, the CRISPR-Cas12a assay plays a significant role in managing and preserving citrus trees that are free from viruses in the industry.
Collapse
Affiliation(s)
- Hae-Jun Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Republic of Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Se-Ryung Choi
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Republic of Korea
| |
Collapse
|
8
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
9
|
González-Pérez E, Chiquito-Almanza E, Villalobos-Reyes S, Canul-Ku J, Anaya-López JL. Diagnosis and Characterization of Plant Viruses Using HTS to Support Virus Management and Tomato Breeding. Viruses 2024; 16:888. [PMID: 38932180 PMCID: PMC11209215 DOI: 10.3390/v16060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Viral diseases pose a significant threat to tomato crops (Solanum lycopersicum L.), one of the world's most economically important vegetable crops. The limited genetic diversity of cultivated tomatoes contributes to their high susceptibility to viral infections. To address this challenge, tomato breeding programs must harness the genetic resources found in native populations and wild relatives. Breeding efforts may aim to develop broad-spectrum resistance against the virome. To identify the viruses naturally infecting 19 advanced lines, derived from native tomatoes, high-throughput sequencing (HTS) of small RNAs and confirmation with PCR and RT-PCR were used. Single and mixed infections with tomato mosaic virus (ToMV), tomato golden mosaic virus (ToGMoV), and pepper huasteco yellow vein virus (PHYVV) were detected. The complete consensus genomes of three variants of Mexican ToMV isolates were reconstructed, potentially forming a new ToMV clade with a distinct 3' UTR. The absence of reported mutations associated with resistance-breaking to ToMV suggests that the Tm-1, Tm-2, and Tm-22 genes could theoretically be used to confer resistance. However, the high mutation rates and a 63 nucleotide insertion in the 3' UTR, as well as amino acid mutations in the ORFs encoding 126 KDa, 183 KDa, and MP of Mexican ToMV isolates, suggest that it is necessary to evaluate the capacity of these variants to overcome Tm-1, Tm-2, and Tm-22 resistance genes. This evaluation, along with the characterization of advanced lines using molecular markers linked to these resistant genes, will be addressed in future studies as part of the breeding strategy. This study emphasizes the importance of using HTS for accurate identification and characterization of plant viruses that naturally infect tomato germplasm based on the consensus genome sequences. This study provides crucial insights to select appropriate disease management strategies and resistance genes and guide breeding efforts toward the development of virus-resistant tomato varieties.
Collapse
Affiliation(s)
| | - Elizabeth Chiquito-Almanza
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, Guanajuato 38110, Mexico; (E.G.-P.); (S.V.-R.); (J.C.-K.)
| | | | | | - José Luis Anaya-López
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, Guanajuato 38110, Mexico; (E.G.-P.); (S.V.-R.); (J.C.-K.)
| |
Collapse
|
10
|
Jin T, Kim JK, Byun HS, Choi HS, Cha B, Kwak HR, Kim M. Occurrence and Multiplex PCR Detection of Citrus Yellow Vein Clearing Virus in Korea. THE PLANT PATHOLOGY JOURNAL 2024; 40:125-138. [PMID: 38606443 PMCID: PMC11016552 DOI: 10.5423/ppj.oa.09.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 04/13/2024]
Abstract
Citrus yellow vein clearing virus (CYVCV) is a member of the Alphaflexiviridae family that causes yellow vein clearing symptoms on citrus leaves. A total of 118 leaf samples from nine regions of six provinces in Korea were collected from various citrus species in 2020 and 2021. Viral diagnosis using next-generation sequencing and reverse transcription polymerase chain reaction (RT-PCR) identified four viruses: citrus tristeza virus, citrus leaf blotch virus, citrus vein enation virus, and CYVCV. A CYVCV incidence of 9.3% was observed in six host plants, including calamansi, kumquat, Persian lime, and Eureka lemon. Among the citrus infected by CYVCV, only three samples showed a single infection; the other showed a mixed infection with other viruses. Eureka lemon and Persian lime exhibited yellow vein clearing, leaf distortion, and water-soak symptom underside of the leaves, while the other hosts showed only yellowing symptoms on the leaves. The complete genome sequences were obtained from five CYVCV isolates. Comparison of the isolates reported from the different geographical regions and hosts revealed the high sequence identity (95.2% to 98.8%). Phylogenetic analysis indicated that all the five isolates from Korea were clustered into same clade but were not distinctly apart from isolates from China, Pakistan, India, and Türkiye. To develop an efficient diagnosis system for the four viruses, a simultaneous detection method was constructed using multiplex RT-PCR. Sensitivity evaluation, simplex RT-PCR, and stability testing were conducted to verify the multiplex RT-PCR system developed in this study. This information will be useful for developing effective disease management strategies for citrus growers in Korea.
Collapse
Affiliation(s)
- Taemin Jin
- Department of Plant Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Ji-Kwang Kim
- Chungcheongnam-do Agricultural Research and Extension Services, Buyeo 33168, Korea
| | - Hee-Seong Byun
- Crop Protection Division, National Institute of Agricultural Science, Wanju 55365, Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Science, Wanju 55365, Korea
| | - Byeongjin Cha
- Department of Plant Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Science, Wanju 55365, Korea
| | - Mikyeong Kim
- Department of Plant Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
11
|
Gholampour Z, Zakiaghl M, Asquini E, Moser M, Gualandri V, Mehrvar M, Si-Ammour A. Application of High-Throughput Sequencing for Comprehensive Virome Profiling in Grapevines Shows Yellows in Iran. Viruses 2024; 16:204. [PMID: 38399980 PMCID: PMC10891595 DOI: 10.3390/v16020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
A comprehensive study on the whole spectrum of viruses and viroids in five Iranian grapevine cultivars was carried out using sRNA libraries prepared from phloem tissue. A comparison of two approaches to virus detection from sRNAome data indicated a significant difference in the results and performance of the aligners in viral genome reconstruction. The results showed a complex virome in terms of viral composition, abundance, and richness. Thirteen viruses and viroids were identified in five Iranian grapevine cultivars, among which the grapevine red blotch virus and grapevine satellite virus were detected for the first time in Iranian vineyards. Grapevine leafroll-associated virus 1 (GLRaV1) and grapevine fanleaf virus (GFLV) were highly dominant in the virome. However, their frequency and abundance were somewhat different among grapevine cultivars. The results revealed a mixed infection of GLRaV1/grapevine yellow speckle viroid 1 (GYSVd1) and GFLV/GYSVd1 in grapevines that exhibited yellows and vein banding. We also propose a threshold of 14% of complete reconstruction as an appropriate threshold for detection of grapevine viruses that can be used as indicators for reliable grapevine virome profiling or in quarantine stations and certification programs.
Collapse
Affiliation(s)
- Zahra Gholampour
- Department of Plant Pathology, College of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran; (Z.G.); (M.M.)
| | - Mohammad Zakiaghl
- Department of Plant Pathology, College of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran; (Z.G.); (M.M.)
| | - Elisa Asquini
- Research and Innovation Center, Fondazione Edmund Mach, 38098 San Michele All’Adige, Italy; (E.A.); (M.M.); (V.G.)
| | - Mirko Moser
- Research and Innovation Center, Fondazione Edmund Mach, 38098 San Michele All’Adige, Italy; (E.A.); (M.M.); (V.G.)
| | - Valeria Gualandri
- Research and Innovation Center, Fondazione Edmund Mach, 38098 San Michele All’Adige, Italy; (E.A.); (M.M.); (V.G.)
| | - Mohsen Mehrvar
- Department of Plant Pathology, College of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran; (Z.G.); (M.M.)
| | - Azeddine Si-Ammour
- Research and Innovation Center, Fondazione Edmund Mach, 38098 San Michele All’Adige, Italy; (E.A.); (M.M.); (V.G.)
| |
Collapse
|
12
|
Jaksa-Czotter N, Nagyné Galbács Z, Jahan A, Demián E, Várallyay É. Viromes of Plants Determined by High-Throughput Sequencing of Virus-Derived siRNAs. Methods Mol Biol 2024; 2732:179-198. [PMID: 38060126 DOI: 10.1007/978-1-0716-3515-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Plants growing in open airfields can be infected by several viruses even as a multiple infection. Virus infection in crops can lead to a serious damage to the harvest. In addition, virus presence in grapevine, fruit trees, and tuberous vegetables, propagated vegetatively affects the phytosanitary status of the propagation material (both the rootstock and the variety) having profound effect on the lifetime and health of the new plantations. The fast evolution of sequencing techniques provides a new opportunity for metagenomics-based viral diagnostics. Small interfering (si) RNAs produced by the RNA silencing-based host immune system during viral infection can be sequenced by high-throughput techniques and analyzed for the presence of viruses, revealing the presence of all known viral pathogens in the sample and therefore opening new avenues in virus diagnostics. This method is based on Illumina sequencing and bioinformatics analysis of virus-derived siRNAs in the host. Here we describe a protocol for this challenging technique step by step with notes, to ensure success for every user.
Collapse
Affiliation(s)
- Nikoletta Jaksa-Czotter
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Zsuzsanna Nagyné Galbács
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Almash Jahan
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Emese Demián
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary
| | - Éva Várallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, MATE, Gödöllő, Hungary.
| |
Collapse
|
13
|
Schönegger D, Moubset O, Margaria P, Menzel W, Winter S, Roumagnac P, Marais A, Candresse T. Benchmarking of virome metagenomic analysis approaches using a large, 60+ members, viral synthetic community. J Virol 2023; 97:e0130023. [PMID: 37888981 PMCID: PMC10688312 DOI: 10.1128/jvi.01300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using synthetic communities of varying complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 genera of plant viruses. The results obtained confirm that the dsRNA-based approach provides a more complete representation of the RNA virome, in particular, for high complexity ones. However, for viromes of low to medium complexity, VANA appears a reasonable alternative and would be the preferred choice if analysis of DNA viruses is of importance. Several parameters impacting performance were identified as well as a direct relationship between the completeness of virome description and sample sequencing depth. The strategy, results, and tools used here should prove useful in a range of virome analysis efforts.
Collapse
Affiliation(s)
| | - Oumaima Moubset
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Paolo Margaria
- Plant Virus Department, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Wulf Menzel
- Plant Virus Department, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Stephan Winter
- Plant Virus Department, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | | |
Collapse
|
14
|
Elwan EA, Rabie M, Aleem EEA, Fattouh FA, Kagda MS, Zaghloul HAH. Exploring virus presence in field-collected potato leaf samples using RNA sequencing. J Genet Eng Biotechnol 2023; 21:106. [PMID: 37861927 PMCID: PMC10589165 DOI: 10.1186/s43141-023-00561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The quick and accurate identification of viruses is essential for plant disease management. Next-generation sequencing (NGS) technology may allow the discovery, detection, and identification of plant pathogens. This study adopted RNA-sequencing (RNA-Seq) technology to explore the viruses in three potato plants (S3, S4, and S6) growing under field conditions. RESULTS Potato-known infecting viruses, such as alfalfa mosaic virus (AMV), potato leafroll virus (PLRV), and potato virus Y (PVY), were identified using bioinformatics programs and validated using RT-PCR. The presence of these potato viruses was also confirmed by visual inspection of host symptoms. In addition, the nearly complete genome of PLRV and the complete or partial genome sequence of multipartite virus segments have been identified. Besides the three major potato viruses that BLASTn analysis revealed were present in our samples, BLASTx analysis revealed some reads are derived from other potato viruses, such as potato virus V (PVV), Andean potato latent virus (APLV), and tomato chlorosis virus (ToCV), which are not frequently reported in potato field screenings in Egypt. Other microbial agents, such as bacteria and fungi, were also identified in the examined sample sequences. Some mycovirus sequences derived from ourmia-like viruses and Alternaria alternata chrysovirus were also identified in sample S4, confirming the complexity of the potato microbiome under field conditions. CONCLUSION NGS quickly and accurately identifies potato plant viruses under field conditions. Implementing this technology on a larger scale is recommended to explore potato fields and imported plants, where symptoms may be absent, unspecific, or only triggered under certain conditions.
Collapse
Affiliation(s)
- Esraa A Elwan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Mona Rabie
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Engy E Abdel Aleem
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Faiza A Fattouh
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Meenakshi S Kagda
- Genetics Department, School of Medicine, Stanford University, Stanford, CA, USA
| | - Heba A H Zaghloul
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
15
|
Kamaal N, Akram M, Pratap A, Kumar D, Nair RM. Urdbean Leaf Crinkle Virus: A Mystery Waiting to Be Solved. Viruses 2023; 15:2120. [PMID: 37896897 PMCID: PMC10612105 DOI: 10.3390/v15102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Urdbean leaf crinkle disease (ULCD) affects mainly the urdbean or blackgram (Vigna mungo (L.) Hepper) causing distinct symptoms that often result in serious yield losses. It has been known to occur for more than five decades and is considered to be of viral etiology. The identity of the causal agent, often referred to as the urdbean leaf crinkle virus, is not unequivocally proved. There are few attempts to characterize the causal agent of ULCD; however, there is no unanimity in the results. Recent attempts to characterize the causal agent of ULCD using next-generation sequencing of the virome of ULCD-affected urdbean plants indicated the involvement of cowpea mild mottle virus; however, without conforming through Koch's postulates, the etiology of ULCD remains inconclusive. Claims of different insect vectors involved in the transmission of ULCD make this disease even more mysterious. The information available so far indicates that either two different viruses are causing ULCD or a mixture of viruses is involved. The identity of the virus/es causing ULCD still remains to be unambiguously ascertained. In this review, we attempt to analyze information on the various aspects of ULCD.
Collapse
Affiliation(s)
- Naimuddin Kamaal
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | - Mohammad Akram
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | - Deepender Kumar
- ICAR-Indian Institute of Pulses Research, Kanpur 208024, India; (N.K.); (A.P.); (D.K.)
| | | |
Collapse
|
16
|
Qi YH, Ye ZX, Zhang CX, Chen JP, Li JM. Diversity of RNA viruses in agricultural insects. Comput Struct Biotechnol J 2023; 21:4312-4321. [PMID: 37711182 PMCID: PMC10497914 DOI: 10.1016/j.csbj.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.
Collapse
Affiliation(s)
- Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
17
|
Rivarez MPS, Faure C, Svanella-Dumas L, Pecman A, Tušek-Žnidaric M, Schönegger D, De Jonghe K, Blouin A, Rasmussen DA, Massart S, Ravnikar M, Kutnjak D, Marais A, Candresse T. Diversity and Pathobiology of an Ilarvirus Unexpectedly Detected in Diverse Plants and Global Sequencing Data. PHYTOPATHOLOGY 2023; 113:1729-1744. [PMID: 37399026 DOI: 10.1094/phyto-12-22-0465-v] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
High-throughput sequencing (HTS) and sequence mining tools revolutionized virus detection and discovery in recent years, and implementing them with classical plant virology techniques results in a powerful approach to characterize viruses. An example of a virus discovered through HTS is Solanum nigrum ilarvirus 1 (SnIV1) (Bromoviridae), which was recently reported in various solanaceous plants from France, Slovenia, Greece, and South Africa. It was likewise detected in grapevines (Vitaceae) and several Fabaceae and Rosaceae plant species. Such a diverse set of source organisms is atypical for ilarviruses, thus warranting further investigation. In this study, modern and classical virological tools were combined to accelerate the characterization of SnIV1. Through HTS-based virome surveys, mining of sequence read archive datasets, and a literature search, SnIV1 was further identified from diverse plant and non-plant sources globally. SnIV1 isolates showed relatively low variability compared with other phylogenetically related ilarviruses. Phylogenetic analyses showed a distinct basal clade of isolates from Europe, whereas the rest formed clades of mixed geographic origin. Furthermore, systemic infection of SnIV1 in Solanum villosum and its mechanical and graft transmissibility to solanaceous species were demonstrated. Near-identical SnIV1 genomes from the inoculum (S. villosum) and inoculated Nicotiana benthamiana were sequenced, thus partially fulfilling Koch's postulates. SnIV1 was shown to be seed-transmitted and potentially pollen-borne, has spherical virions, and possibly induces histopathological changes in infected N. benthamiana leaf tissues. Overall, this study provides information to better understand the diversity, global presence, and pathobiology of SnIV1; however, its possible emergence as a destructive pathogen remains uncertain. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Chantal Faure
- University of Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, 33882, France
| | - Laurence Svanella-Dumas
- University of Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, 33882, France
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Magda Tušek-Žnidaric
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Deborah Schönegger
- University of Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, 33882, France
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Merelbeke, 9820, Belgium
| | - Arnaud Blouin
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, 27606, U.S.A
| | - Sebastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Armelle Marais
- University of Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, 33882, France
| | - Thierry Candresse
- University of Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, 33882, France
| |
Collapse
|
18
|
Haegeman A, Foucart Y, De Jonghe K, Goedefroit T, Al Rwahnih M, Boonham N, Candresse T, Gaafar YZA, Hurtado-Gonzales OP, Kogej Zwitter Z, Kutnjak D, Lamovšek J, Lefebvre M, Malapi M, Mavrič Pleško I, Önder S, Reynard JS, Salavert Pamblanco F, Schumpp O, Stevens K, Pal C, Tamisier L, Ulubaş Serçe Ç, van Duivenbode I, Waite DW, Hu X, Ziebell H, Massart S. Looking beyond Virus Detection in RNA Sequencing Data: Lessons Learned from a Community-Based Effort to Detect Cellular Plant Pathogens and Pests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2139. [PMID: 37299118 PMCID: PMC10255714 DOI: 10.3390/plants12112139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be detected in this unused sequence data. In the present study, our goal was to investigate whether total RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs analyses. After communicating the results, 6 out of the 15 participants indicated that they were unaware of the possible presence of these pathogens in their sample(s). All participants indicated that they would broaden the scope of their bioinformatic analyses in future studies and thus check for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With this study, we hope to raise awareness among plant virologists that their data might be useful for fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.
Collapse
Affiliation(s)
- Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Yoika Foucart
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Thomas Goedefroit
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Maher Al Rwahnih
- Foundation Plant Services, Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Neil Boonham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bordeaux, 33882 Villenave-d’Ornon, France
| | - Yahya Z. A. Gaafar
- Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, BC V8L 1H3, Canada
| | - Oscar P. Hurtado-Gonzales
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Beltsville, ML 20705, USA
| | - Zala Kogej Zwitter
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), 1000 Ljubljana, Slovenia
| | - Janja Lamovšek
- Plant Protection Department, Agricultural Institute of Slovenia (KIS), 1000 Ljubljana, Slovenia
| | - Marie Lefebvre
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bordeaux, 33882 Villenave-d’Ornon, France
| | - Martha Malapi
- Biotechnology Risk Analysis Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Riverdale, ML 20737, USA
| | - Irena Mavrič Pleško
- Plant Protection Department, Agricultural Institute of Slovenia (KIS), 1000 Ljubljana, Slovenia
| | - Serkan Önder
- Department of Plant Protection, Faculty of Agriculture, Eskişehir Osmangazi University, Odunpazarı, Eskişehir 26160, Turkey
| | | | | | - Olivier Schumpp
- Department of Plant Protection, Agroscope, 1260 Nyon, Switzerland
| | - Kristian Stevens
- Foundation Plant Services, Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Chandan Pal
- Zespri International Limited, 400 Maunganui Road, Mount Maunganui 3116, New Zealand
| | - Lucie Tamisier
- Unités GAFL et Pathologie Végétale, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 84143 Montfavet, France
| | - Çiğdem Ulubaş Serçe
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - Inge van Duivenbode
- Dutch General Inspection Service for Agricultural Seed and Seed Potatoes (NAK), Randweg 14, 8304 AS Emmeloord, The Netherlands
| | - David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1140, New Zealand
| | - Xiaojun Hu
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Beltsville, ML 20705, USA
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104 Braunschweig, Germany
| | - Sébastien Massart
- Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, TERRA, 5030 Gembloux, Belgium
| |
Collapse
|
19
|
Wang H, Ma L, Jin Z, Cui Z, Yang H, Miao M. Highly sensitive fluorescence detection of tobacco mosaic virus RNA based on polysaccharide and ARGET ATRP double signal amplification. Talanta 2023; 257:124360. [PMID: 36801566 DOI: 10.1016/j.talanta.2023.124360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Plant diseases caused by tobacco mosaic viruses (TMV) reduce the yield and quality of crops and cause significant losses. Early detection and prevention of TMV has important value of research and reality. Herein, a fluorescent biosensor was constructed for highly sensitive detection of TMV RNA (tRNA) based on the principle of base complementary pairing, polysaccharides and atom transfer radical polymerization by electron transfer activated regeneration catalysts (ARGET ATRP) as double signal amplification strategy. The 5'-end sulfhydrylated hairpin capture probe (hDNA) was first immobilized on amino magnetic beads (MBs) by a cross-linking agent, which specifically recognizes tRNA. Then, chitosan binds to BIBB, providing numerous active sites for fluorescent monomer polymerization, which successfully significantly amplifying the fluorescent signal. Under optimal experimental conditions, the proposed fluorescent biosensor for the detection of tRNA has a wide detection range from 0.1 pM to 10 nM (R2 = 0.998) with a limit of detection (LOD) as low as 1.14 fM. In addition, the fluorescent biosensor showed satisfactory applicability for the qualitative and quantitative analysis of tRNA in real samples, thereby demonstrating the potential in the field of viral RNA detection.
Collapse
Affiliation(s)
- Hesen Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Lele Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zhenyu Jin
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zhenzhen Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
20
|
Rivarez MPS, Pecman A, Bačnik K, Maksimović O, Vučurović A, Seljak G, Mehle N, Gutiérrez-Aguirre I, Ravnikar M, Kutnjak D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. MICROBIOME 2023; 11:60. [PMID: 36973750 PMCID: PMC10042675 DOI: 10.1186/s40168-023-01500-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
- Present Address: College of Agriculture and Agri-Industries, Caraga State University, Ampayon, Butuan City, 8600 Philippines
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Olivera Maksimović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Gabrijel Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri Glavni trg 8, Vipava, 5271 Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| |
Collapse
|
21
|
Hao X, Zheng Y, Cui B, Xiang B. Localization of southern tomato virus (STV) in tomato tissues. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2023; 130:1-5. [PMID: 37361930 PMCID: PMC10011777 DOI: 10.1007/s41348-023-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/01/2023] [Indexed: 06/28/2023]
Abstract
Southern tomato virus (STV) is a dsRNA virus, which belongs to the newly formed Amalgavirus genus of the Amalgaviridae family. Currently there is no report regarding the presence of STV in tomato tissues. In this study, we performed in situ hybridization to examine the distribution of STV in host tissues. STV was found in the leaves, stems, seeds, shoot apexes and root tips of tomato and localized in the cortex tissue, vascular tissues, pith, seed coat, endosperm, cotyledon (including inner cotyledons and outer cotyledons), hypocotyls and radicles of infected tomato tissues. In addition, STV was detected in the apical part of the stems and roots for the first time. This indicates that STV is a systemic infectious virus.
Collapse
Affiliation(s)
- Xiaojun Hao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Xinjiang Production and Construction Corps Key Laboratory of Special Fruitsand Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi, 832003 China
| | - Yinying Zheng
- Key Laboratory of Agriculture Biotechnology of Shihezi University, College of Life Sciences, Shihezi University, Shihezi, 832003 China
| | - Baiming Cui
- Key Laboratory of Agriculture Biotechnology of Shihezi University, College of Life Sciences, Shihezi University, Shihezi, 832003 China
| | - Benchun Xiang
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Xinjiang Production and Construction Corps Key Laboratory of Special Fruitsand Vegetables Cultivation Physiology and Germplasm Resources Utilization, College of Agriculture, Shihezi University, Shihezi, 832003 China
| |
Collapse
|
22
|
Roberts JMK, Jooste AEC, Pretorius LS, Geering ADW. Surveillance for Avocado Sunblotch Viroid Utilizing the European Honey Bee ( Apis mellifera). PHYTOPATHOLOGY 2023; 113:559-566. [PMID: 36346373 DOI: 10.1094/phyto-08-22-0295-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Avocado is one of the world's fastest growing tropical fruit industries, and the pathogen avocado sunblotch viroid (ASBVd) is a major threat to both production and access to international export markets. ASBVd is seed transmissible, with infection possible via either the male (pollen) or female gametes. Surveillance for ASBVd across commercial orchards is a major logistical task, particularly when aiming to meet the stringent standards of evidence required for a declaration of pest freedom. As with many fruit crops, insect pollination is important for high avocado yields, and honey bee (Apis mellifera) hives are typically moved into orchards for paid pollination services. Exploiting the foraging behavior of honey bees can provide a complementary strategy to traditional surveillance methods. High-throughput sequencing (HTS) of bee samples for plant viruses shows promise, but this surveillance method has not yet been tested for viroids or in a targeted plant biosecurity context. Here, we tested samples of bees and pollen collected from pollination hives in two ASBVd orchard locations, one in Australia, where only four trees in a block were known to be infected, and a second in South Africa, where the estimated incidence of infection was 10%. Using real-time RT-PCR and HTS (total RNA-seq and small RNA-seq), we demonstrated that ASBVd can be confidently detected in bees and pollen samples from hives within 100 m of infected trees. The potential for using this approach in ASBVd surveillance for improved orchard management and supporting market access is discussed.
Collapse
Affiliation(s)
- John M K Roberts
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross Street, Canberra, Australian Capital Territory 2601, Australia
| | - Anna E C Jooste
- Agricultural Research Council-Tropical and Subtropical Crops, Private Bag X11208, Mbombela 1200, South Africa
| | - Lara-Simone Pretorius
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
23
|
Lombardi EM, Peters J, Jacob L, Power AG. Wild and weedy Hesperis matronalis hosts turnip mosaic virus across heterogeneous landscapes in upstate New York. Virus Res 2023; 323:199011. [PMID: 36511291 DOI: 10.1016/j.virusres.2022.199011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
Abstract
Turnip mosaic virus (TuMV) is a widespread and economically important pathogen in agricultural crops and has the widest known host range in the virus family Potyviridae. While management of the virus and its aphid vectors in agricultural fields decreases virus incidence, many alternative wild hosts for TuMV may serve as source populations for crop infection through spillover. Over thirty years ago, research demonstrated that the introduced brassica, Dame's Rocket (Hesperis matronalis) hosts several viruses, including TuMV. Here, we use both enzyme-linked immunosorbent assays (ELISA) and next generation sequencing to document the frequent infection by TuMV of Dame's Rocket, which is common and widespread in disturbed areas around crop fields in upstate New York. Deep sequencing of multiple tissue types of symptomatic hosts indicate that the infection is systemic and causes diagnostic, visible symptoms. In a common garden experiment using host populations from across upstate New York, we found evidence for genetic tolerance to TuMV infection in H. matronalis. Field surveys show that TuMV prevalence varies across populations, but is generally higher in agricultural areas. Examining disease dynamics in this and other common alternative hosts will enhance our understanding of TuMV epidemiology and, more broadly, virus distribution in wild plants.
Collapse
Affiliation(s)
- Elizabeth M Lombardi
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA.
| | - Jasmine Peters
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| | - Lukin Jacob
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| | - Alison G Power
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| |
Collapse
|
24
|
Betancourt WQ. Waterborne Plant Viruses of Importance in Agriculture. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
25
|
Costa LC, Atha B, Hu X, Lamour K, Yang Y, O’Connell M, McFarland C, Foster JA, Hurtado-Gonzales OP. High-throughput detection of a large set of viruses and viroids of pome and stone fruit trees by multiplex PCR-based amplicon sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1072768. [PMID: 36578329 PMCID: PMC9791224 DOI: 10.3389/fpls.2022.1072768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A comprehensive diagnostic method of known plant viruses and viroids is necessary to provide an accurate phytosanitary status of fruit trees. However, most widely used detection methods have a small limit on either the number of targeted viruses/viroids or the number of samples to be evaluated at a time, hampering the ability to rapidly scale up the test capacity. Here we report that by combining the power of high multiplexing PCR (499 primer pairs) of small amplicons (120-135bp), targeting 27 viruses and 7 viroids of fruit trees, followed by a single high-throughput sequencing (HTS) run, we accurately diagnosed the viruses and viroids on as many as 123 pome and stone fruit tree samples. We compared the accuracy, sensitivity, and reproducibility of this approach and contrast it with other detection methods including HTS of total RNA (RNA-Seq) and individual RT-qPCR for every fruit tree virus or viroid under the study. We argue that this robust and high-throughput cost-effective diagnostic tool will enhance the viral/viroid knowledge of fruit trees while increasing the capacity for large scale diagnostics. This approach can also be adopted for the detection of multiple viruses and viroids in other crops.
Collapse
Affiliation(s)
- Larissa Carvalho Costa
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Benjamin Atha
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Xiaojun Hu
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Yu Yang
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Mary O’Connell
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Clint McFarland
- Plant Protection and Quarantine - Field Operations, Animal and Plant Health Inspection Service, United States Department of Agriculture, Raleigh, NC, United States
| | - Joseph A. Foster
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Oscar P. Hurtado-Gonzales
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
26
|
Zhong X, Yang L, Li J, Tang Z, Wu C, Zhang L, Zhou X, Wang Y, Wang Z. Integrated next-generation sequencing and comparative transcriptomic analysis of leaves provides novel insights into the ethylene pathway of Chrysanthemum morifolium in response to a Chinese isolate of chrysanthemum virus B. Virol J 2022; 19:182. [DOI: 10.1186/s12985-022-01890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant.
Methods
Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level.
Results
In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection.
Conclusion
This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.
Collapse
|
27
|
Medberry A, Tzanetakis IE. Identification, Characterization, and Detection of a Novel Strawberry Cytorhabdovirus. PLANT DISEASE 2022; 106:2784-2787. [PMID: 36176214 DOI: 10.1094/pdis-11-21-2449-sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2020, a novel agent was discovered in strawberry, a rhabdovirus closely related to lettuce necrotic yellows virus. The new virus, named strawberry virus 2 (StrV-2), was discovered in an accession of the Fragaria virus collection of the National Clonal Germplasm Repository (NCGR), and for this reason, it was studied in-depth. The complete StrV-2 genome was obtained and investigated in silico. Transmission was assessed using two aphid species whereas a multiplex RT-PCR test targeting plant and virus genes was developed and used to screen the NCGR Fragaria virus collection.
Collapse
Affiliation(s)
- Ava Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
28
|
Prajapati MR, Manav A, Singhal P, Sidharthan VK, Sirohi U, Kumar M, Bharti MK, Singh J, Kumar P, Kumar R, Prakash S, Baranwal VK. Complete Genomic RNA Sequence of Tuberose Mild Mosaic Virus and Tuberose Mild Mottle Virus Acquired by High-Throughput Sequencing. Pathogens 2022; 11:pathogens11080861. [PMID: 36014982 PMCID: PMC9412269 DOI: 10.3390/pathogens11080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberose (Polianthes tuberosa) is an ornamental flowering crop of the Amaryllidaceae family. Tuberose mild mosaic virus (TuMMV) and tuberose mild mottle virus (TuMMoV), members of the genus Potyvirus, are ubiquitously distributed in most tuberose growing countries worldwide with low biological incidence. Here, we report the first coding-complete genomic RNA of TuMMV and TuMMoV obtained through high-throughput sequencing (HTS) and further, the presence of both the viruses were confirmed using virus-specific primers in RT-PCR assays. Excluding the poly (A) tail, the coding-complete genomic RNA of TuMMV and TuMMoV was 9485 and 9462 nucleotides (nts) in length, respectively, and contained a single large open reading frame (ORF). Polyprotein encoded by both the viral genomes contained nine putative cleavage sites. BLASTn analysis of TuMMV and TuMMoV genomes showed 72.40–76.80% and 67.95–77% nucleotide sequence similarities, respectively, with the existing potyviral sequences. Phylogenetic analysis based on genome sequences showed that TuMMV and TuMMoV clustered in a distinct clade to other potyviruses. Further studies are required to understand the mechanism of symptom development, distribution, genetic variability, and their possible threat to tuberose production in India.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Aakansha Manav
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Pankhuri Singhal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Venkidusamy K Sidharthan
- Division of Genetics and Tree Improvement, Institute of Forest Biodiversity (ICFRE), Hyderabad 500100, Telangana, India
| | - Ujjwal Sirohi
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Mahesh Kumar Bharti
- College of Veterinary and Animal Science, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Jitender Singh
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Pankaj Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Ravindra Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Satya Prakash
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, Uttar Pradesh, India
| | - Virendra Kumar Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
29
|
Bester R, Steyn C, Breytenbach JHJ, de Bruyn R, Cook G, Maree HJ. Reproducibility and Sensitivity of High-Throughput Sequencing (HTS)-Based Detection of Citrus Tristeza Virus and Three Citrus Viroids. PLANTS 2022; 11:plants11151939. [PMID: 35893644 PMCID: PMC9330035 DOI: 10.3390/plants11151939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
The credibility of a pathogen detection assay is measured using specific parameters including repeatability, specificity, sensitivity, and reproducibility. The use of high-throughput sequencing (HTS) as a routine detection assay for viruses and viroids in citrus was previously evaluated and, in this study, the reproducibility and sensitivity of the HTS assay were assessed. To evaluate the reproducibility of HTS, the same plants assayed in a previous study were sampled again, one year later, and assessed in triplicate using the same analyses to construct the virome profile. The sensitivity of the HTS assay was compared to routinely used RT-PCR assays in a time course experiment, to compensate for natural pathogen accumulation in plants over time. The HTS pipeline applied in this study produced reproducible and comparable results to standard RT-PCR assays for the detection of CTV and three viroid species in citrus. Even though the limit of detection of HTS can be influenced by pathogen concentration, sample processing method and sequencing depth, detection with HTS was found to be either equivalent or more sensitive than RT-PCR in this study.
Collapse
Affiliation(s)
- Rachelle Bester
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa;
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Chanel Steyn
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa; (C.S.); (J.H.J.B.); (G.C.)
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | - Rochelle de Bruyn
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa; (C.S.); (J.H.J.B.); (G.C.)
| | - Glynnis Cook
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa; (C.S.); (J.H.J.B.); (G.C.)
| | - Hans J. Maree
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa;
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Correspondence: ; Tel.: +27-21-808-9579
| |
Collapse
|
30
|
Mrkvová M, Hančinský R, Predajňa L, Alaxin P, Achs A, Tomašechová J, Šoltys K, Mihálik D, Olmos A, Ruiz-García AB, Glasa M. High-Throughput Sequencing Discloses the Cucumber Mosaic Virus (CMV) Diversity in Slovakia and Reveals New Hosts of CMV from the Papaveraceae Family. PLANTS (BASEL, SWITZERLAND) 2022; 11:1665. [PMID: 35807616 PMCID: PMC9269241 DOI: 10.3390/plants11131665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants originated from the Papaveraceae species (oilseed poppy, common poppy and great celandine), previously poorly described as CMV natural hosts. Based on a BLAST search and phylogenetic analysis, the Slovak CMV isolates can be divided into two genetically different Groups, Ia and II, respectively. The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples (T101, SL50V, CP2, MVU2-21), the presence of satellite CMV RNA was identified along with CMV. Although mechanically transmitted to experimental cucumber plants, the role of satellite RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses.
Collapse
Affiliation(s)
- Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Lukáš Predajňa
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Peter Alaxin
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Adam Achs
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Jana Tomašechová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| | - Katarína Šoltys
- Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia;
| | - Daniel Mihálik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešt’any, Slovakia
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.O.); (A.B.R.-G.)
| | - Ana Belén Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra, Moncada-Náquera Km 4.5, 46113 Moncada, Spain; (A.O.); (A.B.R.-G.)
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (M.M.); (R.H.); (P.A.); (J.T.); (D.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (L.P.); (A.A.)
| |
Collapse
|
31
|
Adeleke IA, Kavalappara SR, McGregor C, Srinivasan R, Bag S. Persistent, and Asymptomatic Viral Infections and Whitefly-Transmitted Viruses Impacting Cantaloupe and Watermelon in Georgia, USA. Viruses 2022; 14:1310. [PMID: 35746780 PMCID: PMC9227350 DOI: 10.3390/v14061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cucurbits in Southeastern USA have experienced a drastic decline in production over the years due to the effect of economically important viruses, mainly those transmitted by the sweet potato whitefly (Bemisia tabaci Gennadius). In cucurbits, these viruses can be found as a single or mixed infection, thereby causing significant yield loss. During the spring of 2021, surveys were conducted to evaluate the incidence and distribution of viruses infecting cantaloupe (n = 80) and watermelon (n = 245) in Georgia. Symptomatic foliar tissues were collected from six counties and sRNA libraries were constructed from seven symptomatic samples. High throughput sequencing (HTS) analysis revealed the presence of three different new RNA viruses in Georgia: cucumis melo endornavirus (CmEV), cucumis melo amalgavirus (CmAV1), and cucumis melo cryptic virus (CmCV). Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of CmEV and CmAV1 in 25% and 43% of the total samples tested, respectively. CmCV was not detected using RT-PCR. Watermelon crinkle leaf-associated virus 1 (WCLaV-1), recently reported in GA, was detected in 28% of the samples tested. Furthermore, RT-PCR and PCR analysis of 43 symptomatic leaf tissues collected from the fall-grown watermelon in 2019 revealed the presence of cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and cucurbit leaf crumple virus (CuLCrV) at 73%, 2%, and 81%, respectively. This finding broadens our knowledge of the prevalence of viruses in melons in the fall and spring, as well as the geographical expansion of the WCLaV-1 in GA, USA.
Collapse
Affiliation(s)
| | | | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
32
|
Pecman A, Adams I, Gutiérrez-Aguirre I, Fox A, Boonham N, Ravnikar M, Kutnjak D. Systematic Comparison of Nanopore and Illumina Sequencing for the Detection of Plant Viruses and Viroids Using Total RNA Sequencing Approach. Front Microbiol 2022; 13:883921. [PMID: 35633678 PMCID: PMC9131090 DOI: 10.3389/fmicb.2022.883921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing (HTS) has become an important tool for plant virus detection and discovery. Nanopore sequencing has been rapidly developing in the recent years and offers new possibilities for fast diagnostic applications of HTS. With this in mind, a study was completed, comparing the most established HTS platform (MiSeq benchtop sequencer-Illumina), with the MinION sequencer (Oxford Nanopore Technologies) for the detection of plant viruses and viroids. Method comparisons were performed on five selected samples, containing two viroids, which were sequenced using nanopore technology for the first time and 11 plant viruses with different genome organizations. For all samples, sequencing libraries for the MiSeq were prepared from ribosomal RNA-depleted total RNA (rRNA-depleted totRNA) and for MinION sequencing, direct RNA sequencing of totRNA was used. Moreover, for one of the samples, which contained five different plant viruses and a viroid, three additional variations of sample preparation for MinION sequencing were also used: direct RNA sequencing of rRNA-depleted totRNA, cDNA-PCR sequencing of totRNA, and cDNA-PCR sequencing of rRNA-depleted totRNA. Whilst direct RNA sequencing of total RNA was the quickest of the tested approaches, it was also the least sensitive: using this approach, we failed to detect only one virus that was present in a sample at an extremely low titer. All other MinION sequencing approaches showed improved performance with outcomes similar to Illumina sequencing, with cDNA-PCR sequencing of rRNA-depleted totRNA showing the best performance amongst tested nanopore MinION sequencing approaches. Moreover, when enough sequencing data were generated, high-quality consensus viral genome sequences could be reconstructed from MinION sequencing data, with high identity to the ones generated from Illumina data. The results of this study implicate that, when an appropriate sample and library preparation are selected, nanopore MinION sequencing could be used for the detection of plant viruses and viroids with similar performance as Illumina sequencing. Taken as a balance of practicality and performance, this suggests that MinION sequencing may be an ideal tool for fast and affordable virus diagnostics.
Collapse
Affiliation(s)
- Anja Pecman
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ian Adams
- Fera Science Ltd., York, United Kingdom
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maja Ravnikar
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
33
|
Lai X, Wang H, Wu C, Zheng W, Leng J, Zhang Y, Yan L. Comparison of Potato Viromes Between Introduced and Indigenous Varieties. Front Microbiol 2022; 13:809780. [PMID: 35602024 PMCID: PMC9114672 DOI: 10.3389/fmicb.2022.809780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Viral disease in potatoes has been a major problem in potato production worldwide. In addition to the potential risk of introducing new diseases in new areas, viral-disease epidemics/pandemics can be initiated by “spillover” of indigenous viruses from infected alternative hosts into introduced cultivars. To investigate the tendency of potential viral infection/resistance, we analyzed the viromes of introduced and indigenous varieties of potatoes among different tissues using RNA-seq libraries. Bioinformatics analyses revealed that potato viruses PVM, PVY, and PVS were dominant and the most frequently identified viruses infecting potato virus-free plants in the field, and showed an infection bias between introduced and indigenous cultivars. PVY and PVS were the major viruses in introduced varieties, whereas PVM showed an extraordinarily high percentage in the indigenous variety. Other three common viruses, PVH, potato mop-top virus, and potato leafroll virus were identified specifically in the indigenous variety. There was a tendency for tissue-specific infection and sequence variation in viruses: underground parts (tubers, roots) harbored more unusual viruses, and tubers harbored relatively more variation with a high frequency of single nucleotide polymorphisms than other tissues. Taken together, our study provides a comprehensive overview of the composition, distribution, and sequence variation of viruses between introduced and indigenous varieties of potatoes.
Collapse
Affiliation(s)
- Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Haiyan Wang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caiyun Wu
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Wen Zheng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Jing Leng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Yizheng Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| |
Collapse
|
34
|
Rivarez MPS, Kogej Z, Jakoš N, Pecman A, Seljak G, Vučurović A, Ravnikar M, Mehle N, Kutnjak D. First Report of Ranunculus White Mottle Ophiovirus in Slovenia in Pepper with Yellow Leaf Curling Symptom and in Tomato. PLANT DISEASE 2022; 106:PDIS08211624PDN. [PMID: 34854763 DOI: 10.1094/pdis-08-21-1624-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- M P S Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Z Kogej
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - N Jakoš
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - A Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - G Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - A Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - M Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - N Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - D Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review. REMOTE SENSING 2022. [DOI: 10.3390/rs14071542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plant viral diseases result in productivity and economic losses to agriculture, necessitating accurate detection for effective control. Lab-based molecular testing is the gold standard for providing reliable and accurate diagnostics; however, these tests are expensive, time-consuming, and labour-intensive, especially at the field-scale with a large number of samples. Recent advances in optical remote sensing offer tremendous potential for non-destructive diagnostics of plant viral diseases at large spatial scales. This review provides an overview of traditional diagnostic methods followed by a comprehensive description of optical sensing technology, including camera systems, platforms, and spectral data analysis to detect plant viral diseases. The paper is organized along six multidisciplinary sections: (1) Impact of plant viral disease on plant physiology and consequent phenotypic changes, (2) direct diagnostic methods, (3) traditional indirect detection methods, (4) optical sensing technologies, (5) data processing techniques and modelling for disease detection, and (6) comparison of the costs. Finally, the current challenges and novel ideas of optical sensing for detecting plant viruses are discussed.
Collapse
|
36
|
Wild Radish (Raphanus raphanistrum L.) Is a Potential Reservoir Host of Cucurbit Chlorotic Yellows Virus. Viruses 2022; 14:v14030593. [PMID: 35337000 PMCID: PMC8950442 DOI: 10.3390/v14030593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cucurbit chlorotic yellows virus (CCYV) belongs to the genus Crinivirus and is part of a complex of whitefly-transmitted viruses that cause yellowing disease in cucurbits. In the southeastern USA, heavy incidences of CCYV have been observed on all cucurbits grown in the fall. CCYV was detected from wild radish (Raphanus raphanistrum L.), a common weed that grows in the southeastern USA by high-throughput sequencing as well as RT-PCR. CCYV sequence from wild radish was 99.90% and 99.95%, identical to RNA 1 and RNA 2 of cucurbit isolates of CCYV from the region. Transmission assays using whiteflies demonstrated that wild radish is a good host for CCYV. Whiteflies were also able to acquire CCYV from wild radish and transmit the virus to cucurbit hosts, which developed typical symptoms associated with CCYV. Using quantitative PCR, the titer of CCYV in wild radish was also estimated to be on par with that of cucurbit hosts of the virus. Whitefly bioassays revealed that wild radish is an acceptable feeding and reproductive host plant. These results indicate that wild radish could serve as a reservoir host for CCYV in the USA and other parts of the world where similar conditions exist.
Collapse
|
37
|
Molecular Characteristics and Incidence of Apple Rubbery Wood Virus 2 and Citrus Virus A Infecting Pear Trees in China. Viruses 2022; 14:v14030576. [PMID: 35336983 PMCID: PMC8952854 DOI: 10.3390/v14030576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023] Open
Abstract
Apple rubbery wood virus 2 (ARWV-2) and citrus virus A (CiVA) belong to a recently approved family Phenuiviridae in the order Bunyavirales and possess negative-sense single-stranded RNA genomes. In this study, the genome sequence of three ARWV-2 isolates (S17E2, LYC2, and LYXS) and a CiVA isolate (CiVA-P) infecting pear trees grown in China were characterized using high-throughput sequencing combined with conventional reverse-transcription PCR (RT-PCR) assays. The genome-wide nt sequence identities were above 93.6% among the ARWV-2 isolates and above 93% among CiVA isolates. Sequence comparisons showed that sequence diversity occurred in the 5′ untranslated region of the ARWV-2 genome and the intergenic region of the CiVA genome. For the first time, this study revealed that ARWV-2 proteins Ma and Mb displayed a plasmodesma subcellular localization, and the MP of CiVA locates in cell periphery and can interact with the viral NP in bimolecular fluorescence complementation assays. RT-PCR tests disclosed that ARWV-2 widely occurs, while CiVA has a low incidence in pear trees grown in China. This study presents the first complete genome sequences and incidences of ARWV-2 and CiVA from pear trees and the obtained results extend our knowledge of the viral pathogens of pear grown in China.
Collapse
|
38
|
Nabi SU, Baranwal VK, Rao GP, Mansoor S, Vladulescu C, Raja WH, Jan BL, Alansi S. High-Throughput RNA Sequencing of Mosaic Infected and Non-Infected Apple (Malus × domestica Borkh.) Cultivars: From Detection to the Reconstruction of Whole Genome of Viruses and Viroid. PLANTS 2022; 11:plants11050675. [PMID: 35270146 PMCID: PMC8912866 DOI: 10.3390/plants11050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
Abstract
Many viruses have been found associated with apple mosaic disease in different parts of the world. In order to reveal and characterize the viruses and viroids in symptomatic apple plants, next-generation sequencing (RNA seq.) of rRNA-depleted total RNA using Illumina Hiseq2500 was applied to two cultivars, Oregon Spur and Golden Delicious, with symptoms of mosaic and necrosis and one cultivar, Red Fuji, which was asymptomatic. The RNA sequencing detected five viruses, viz., apple necrotic mosaic virus (ApNMV), apple mosaic virus (ApMV), apple stem grooving virus (ASGV) and apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), and one viroid i.e., apple hammerhead viroid (AHVd). RT-PCR amplification and sequencing also confirmed the presence of all these five viruses and viroids detected in HTS of total RNA. The complete genomes of five viruses and AHVd were reconstructed. The phylogenetic analysis of these viruses and AHVd revealed genetic diversity by forming subclusters with isolates from other countries. Recombination events were observed in all five viruses while single-nucleotide variants were detected only in ApMV and ApNMV. The absence of ApMV and ApNMV in asymptomatic samples from the same cultivars in an RT-PCR assay indicated that these two viruses are associated with mosaic disease of apples in India. This is the first viral genome analysis of symptomatic and asymptomatic apple plants and the first report of genome characterization of viruses associated with apple mosaic disease from India. High-throughput RNA sequencing is a powerful tool to characterize the genome of viruses and viroids in plants previously undetected by conventional methods. This would also help in the indexing and certification of large-scale germplasm.
Collapse
Affiliation(s)
- Sajad U. Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, India; (S.U.N.); (W.H.R.)
| | - Virendra K. Baranwal
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
- Correspondence: (V.K.B.); (S.M.)
| | - Govind P. Rao
- Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sheikh Mansoor
- Division of Biochemistry, FBSc, Sher-e-Kashmir University of Agricultural Science and Technology, Jammu 180009, India
- Correspondence: (V.K.B.); (S.M.)
| | - Carmen Vladulescu
- Department of Biology and Environmental Engineering, University of Craiova, 13, A.I.Cuza, 200585 Craiova, Romania;
| | - Wasim H. Raja
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, India; (S.U.N.); (W.H.R.)
| | - Basit L. Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saleh Alansi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
39
|
Valmonte-Cortes GR, Lilly ST, Pearson MN, Higgins CM, MacDiarmid RM. The Potential of Molecular Indicators of Plant Virus Infection: Are Plants Able to Tell Us They Are Infected? PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020188. [PMID: 35050076 PMCID: PMC8777591 DOI: 10.3390/plants11020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 05/06/2023]
Abstract
To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant Arabidopsis thaliana were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 (AtSGS3) and calcium-dependent protein kinase 3 (AtCPK3) by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips. Good limits of detection have been demonstrated from two-fold 10-point serial dilution regression to 0.1 ng of RNA. The ratio of small RNA (sRNA) to ribosomal RNA (rRNA), as a proportion of averaged mock-inoculation, correlated with known virus infection to a high degree of certainty. AtSGS3 transcript decreased between 14- and 28-days post inoculation (dpi) for all viruses investigated, while AtCPK3 transcript increased between 14 and 28 dpi for all viruses. A combination of these two molecular approaches may be useful for assessment of virus-infection of samples without the need for diagnosis of specific virus infection.
Collapse
Affiliation(s)
- Gardette R. Valmonte-Cortes
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- Correspondence:
| | - Sonia T. Lilly
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| | - Michael N. Pearson
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| | - Colleen M. Higgins
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand; (S.T.L.); (R.M.M.)
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand;
| |
Collapse
|
40
|
Nessler JN, Jo WK, Osterhaus ADME, Ludlow M, Tipold A. Canine Meningoencephalitis of Unknown Origin-The Search for Infectious Agents in the Cerebrospinal Fluid via Deep Sequencing. Front Vet Sci 2021; 8:645517. [PMID: 34950723 PMCID: PMC8688736 DOI: 10.3389/fvets.2021.645517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Meningoencephalitis of unknown origin (MUO) describes a group of meningoencephalitides in dogs with a hitherto unknown trigger. An infectious agent has been suggested as one possible trigger of MUO but has not been proven so far. A relatively new method to screen for viral RNA or DNA is next-generation sequencing (NGS) or deep sequencing. In this study, a metagenomics analysis of the virome in a sample is analyzed and scanned for known or unknown viruses. We examined fresh-frozen CSF of 6 dogs with MUO via NGS using a modified sequence-independent, single-primer amplification protocol to detect a possible infectious trigger. Analysis of sequencing reads obtained from the six CSF samples showed no evidence of a virus infection. The inability to detect a viral trigger which could be implicated in the development of MUO in the examined population of European dogs, suggests that the current techniques are not sufficiently sensitive to identify a possible virus infection, that the virus is already eliminated at the time-point of disease outbreak, the trigger might be non-infectious or that there is no external trigger responsible for initiating MUO in dogs.
Collapse
Affiliation(s)
- Jasmin Nicole Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Wendy Karen Jo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
41
|
Fowkes AR, McGreig S, Pufal H, Duffy S, Howard B, Adams IP, Macarthur R, Weekes R, Fox A. Integrating High throughput Sequencing into Survey Design Reveals Turnip Yellows Virus and Soybean Dwarf Virus in Pea ( Pisum Sativum) in the United Kingdom. Viruses 2021; 13:2530. [PMID: 34960799 PMCID: PMC8707713 DOI: 10.3390/v13122530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
There is only limited knowledge of the presence and incidence of viruses in peas within the United Kingdom, therefore high-throughput sequencing (HTS) in combination with a bulk sampling strategy and targeted testing was used to determine the virome in cultivated pea crops. Bulks of 120 leaves collected from twenty fields from around the UK were initially tested by HTS, and presence and incidence of virus was then determined using specific real-time reverse-transcription PCR assays by testing smaller mixed-bulk size samples. This study presents the first finding of turnip yellows virus (TuYV) in peas in the UK and the first finding of soybean dwarf virus (SbDV) in the UK. While TuYV was not previously known to be present in UK peas, it was found in 13 of the 20 sites tested and was present at incidences up to 100%. Pea enation mosaic virus-1, pea enation mosaic virus-2, pea seed-borne mosaic virus, bean yellow mosaic virus, pea enation mosaic virus satellite RNA and turnip yellows virus associated RNA were also identified by HTS. Additionally, a subset of bulked samples were re-sequenced at greater depth to ascertain whether the relatively low depth of sequencing had missed any infections. In each case the same viruses were identified as had been identified using the lower sequencing depth. Sequencing of an isolate of pea seed-borne mosaic virus from 2007 also revealed the presence of TuYV and SbDV, showing that both viruses have been present in the UK for at least a decade, and represents the earliest whole genome of SbDV from Europe. This study demonstrates the potential of HTS to be used as a surveillance tool, or for crop-specific field survey, using a bulk sampling strategy combined with HTS and targeted diagnostics to indicate both presence and incidence of viruses in a crop.
Collapse
Affiliation(s)
- Aimee R. Fowkes
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (S.M.); (I.P.A.); (R.M.); (R.W.); (A.F.)
| | - Sam McGreig
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (S.M.); (I.P.A.); (R.M.); (R.W.); (A.F.)
| | - Hollie Pufal
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle NE1 7RU, UK;
| | - Shona Duffy
- Processors & Growers Research Organisation (PGRO), Peterborough PE8 6HJ, UK; (S.D.); (B.H.)
| | - Becky Howard
- Processors & Growers Research Organisation (PGRO), Peterborough PE8 6HJ, UK; (S.D.); (B.H.)
| | - Ian P. Adams
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (S.M.); (I.P.A.); (R.M.); (R.W.); (A.F.)
| | - Roy Macarthur
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (S.M.); (I.P.A.); (R.M.); (R.W.); (A.F.)
| | - Rebecca Weekes
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (S.M.); (I.P.A.); (R.M.); (R.W.); (A.F.)
| | - Adrian Fox
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (S.M.); (I.P.A.); (R.M.); (R.W.); (A.F.)
| |
Collapse
|
42
|
Kochetov AV, Pronozin AY, Shatskaya NV, Afonnikov DA, Afanasenko OS. Potato spindle tuber viroid. Vavilovskii Zhurnal Genet Selektsii 2021; 25:269-275. [PMID: 34901723 PMCID: PMC8628614 DOI: 10.18699/vj21.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
Viroids belong to a very interesting class of molecules attracting researchers in phytopathology and
molecular evolution. Here we review recent literature data concerning the genetics of Potato spindle tuber viroid
(PSTVd) and the mechanisms related to its pathological effect on the host plants. PSTVd can be transmitted vertically through microspores and macrospores, but not with pollen from another infected plant. The 359 nucleotidelong genomic RNA of PSTVd is highly structured and its 3D-conformation is responsible for interaction with host
cellular factors to mediate replication, transport between tissues during systemic infection and the severity of
pathological symptoms. RNA replication is prone to errors and infected plants contain a population of mutated
forms of the PSTVd genome. Interestingly, at 7 DAI, only 25 % of the newly synthesized RNAs were identical to
the master copy, but this proportion increased to up to 70 % at 14 DAI and remained the same afterwards. PSTVd
infection induces the immune response in host plants. There are PSTVd strains with a severe, a moderate or a mild
pathological effect. Interestingly, viroid replication itself does not necessarily induce strong morphological or
physiological symptoms. In the case of PSTVd, disease symptoms may occur due to RNA-interference, which decreases the expression levels of some important cellular regulatory factors, such as, for example, potato StTCP23
from the gibberellic acid pathway with a role in tuber morphogenesis or tomato FRIGIDA-like protein 3 with an
early flowering phenotype. This association between the small segments of viroid genomic RNAs complementary
to the untranslated regions of cellular mRNAs and disease symptoms provides a way for new resistant cultivars to
be developed by genetic editing. To conclude, viroids provide a unique model to reveal the fundamental features
of living systems, which appeared early in evolution and still remain undiscovered.
Collapse
Affiliation(s)
- A V Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A Y Pronozin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Shatskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Afonnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - O S Afanasenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| |
Collapse
|
43
|
Vazquez-Iglesias I, McGreig S, Pufal H, Robinson R, Clover GRG, Fox A, Boonham N, Adams IP. A novel high-throughput sequencing approach reveals the presence of a new virus infecting Rosa: rosa ilarvirus-1 (RIV-1). J Virol Methods 2021; 300:114417. [PMID: 34902457 DOI: 10.1016/j.jviromet.2021.114417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/11/2023]
Abstract
Roses are one of the most valuable ornamental flowering shrubs grown worldwide. Despite the widespread of rose viruses and their impact on cultivation, they have not been studied in detail in the United Kingdom (UK) since the 1980's. As part of a survey of rose viruses entering the UK, 35 samples were collected at Heathrow Airport (London, UK) and were tested by RT-qPCR for different common rose viruses. Of the 35 samples tested using RT-qPCR for prunus necrotic ringspot virus (PNRSV; genus Ilarvirus), 10 were positive. Confirmatory testing was performed using RT-PCR with both PNRSV-specific and ilarvirus-generic primers, and diverse results were obtained: One sample was exclusively positive when using the ilarvirus-generic primers, and subsequent sequencing of the RT-PCR product revealed homology to other ilarviruses but not PNRSV. Further work to characterise the virus was performed using high throughput sequencing, both the MinION Flongle and Illumina MiSeq. The sequencing confirmed the presence of a new virus within group 2 of the genus Ilarvirus and we propose the name "rosa ilarvirus-1″ (RIV-1). Here, we describe the identification of a novel virus using the low-cost Flongle flow cell and discuss its potential as a front-line diagnostic tool.
Collapse
Affiliation(s)
- Ines Vazquez-Iglesias
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom; School of Natural and Environmental Sciences, Agriculture Building, King's Road, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Sam McGreig
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Hollie Pufal
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Rebekah Robinson
- The Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB, United Kingdom
| | - Gerard R G Clover
- The Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB, United Kingdom
| | - Adrian Fox
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Neil Boonham
- School of Natural and Environmental Sciences, Agriculture Building, King's Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ian P Adams
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom; Institute of Agri Food Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
44
|
Jia A, Yan C, Yin H, Sun R, Xia F, Gao L, Zhang Y, Li Y. Small RNA and Transcriptome Sequencing of a Symptomatic Peony Plant Reveals Mixed Infections with Novel Viruses. PLANT DISEASE 2021; 105:3816-3828. [PMID: 34156278 DOI: 10.1094/pdis-01-21-0007-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To identify the viruses in tree peony plants associated with the symptoms of yellowing, leaf rolling, stunted growth, and decline, high-throughput sequencing of small RNA and mRNA was conducted from a single symptomatic plant. Bioinformatic analyses and reconstruction of viral genomes indicated mixed viral infections involving cycas necrotic stunt virus, apple stem grooving virus, lychnis mottle virus, grapevine line pattern virus, and three new viruses designated as peony yellowing-associated citrivirus (PYaCV, Citrivirus in Betaflexiviridae), peony betaflexivirus 1 (PeV1, unclassified in Betaflexiviridae), and peony leafroll-associated virus (PLRaV, Ampelovirus in Closteroviridae). PYaCV was 8,666 nucleotides (nt) in length, comprising three open reading frames (ORFs), and shared 63.8 to 75.9% nt sequence identity with citrus leaf blotch virus (CLBV) isolates. However, the ORF encoding the replication-associated protein (REP) shared 57 and 52% sequence identities at the nt and amino acid (aa) level, respectively, with other reported CLBV isolates, which were below the criterion for species classification within the family Betaflexiviridae. Recombination analysis identified putative recombination sites in PYaCV, which originated from CLBV. PeV1, only identified from the transcriptome data, was 8,124 nt in length, with five ORFs encoding the REP (ORF1), triple gene block (ORF2 to 4) and coat protein (CP, ORF5). Phylogenetic analysis and sequence comparison showed that PeV1 clustered with an unassigned member, the garlic yellow mosaic-associated virus within the Betaflexiviridae family, into a separate clade. Partial genome sequence analysis of PLRaV (12,545 nt) showed it contained seven ORFs encoding the partial polyprotein 1a, the RNA-dependent RNA polymerase (RdRp), two small hydrophobic proteins p11 and p6, HSP70h, p55, and a CP duplicate, which shared low aa sequence identity with Closteroviridae family members. Phylogenetic analysis based on the aa sequences of RdRp or HSP70h indicated that PLRaV clustered with grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-13 in the Ampelovirus genus. Field investigation confirmed the wide distribution of these viruses, causing mixed infections of peony plants in Beijing.
Collapse
Affiliation(s)
- Anning Jia
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Chenge Yan
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Hang Yin
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Rui Sun
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Fei Xia
- Beijing Institute of Landscape Architecture, Beijing 100102, China
| | - Lan Gao
- Beijing JingShan Park, Beijing 100009, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yongqiang Li
- College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
45
|
Škorić D, Černi S, Ćurković-Perica M, Ježić M, Krajačić M, Šeruga Musić M. Legacy of Plant Virology in Croatia-From Virus Identification to Molecular Epidemiology, Evolution, Genomics and Beyond. Viruses 2021; 13:2339. [PMID: 34960609 PMCID: PMC8707422 DOI: 10.3390/v13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
This paper showcases the development of plant virology in Croatia at the University of Zagreb, Faculty of Science, from its beginning in the 1950s until today, more than 70 years later. The main achievements of the previous and current group members are highlighted according to various research topics and fields. Expectedly, some of those accomplishments remained within the field of plant virology, but others make part of a much-extended research spectrum exploring subviral pathogens, prokaryotic plant pathogens, fungi and their viruses, as well as their interactions within ecosystems. Thus, the legacy of plant virology in Croatia continues to contribute to the state of the art of microbiology far beyond virology. Research problems pertinent for directing the future research endeavors are also proposed in this review.
Collapse
Affiliation(s)
- Dijana Škorić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (S.Č.); (M.Ć.-P.); (M.J.); (M.K.); (M.Š.M.)
| | | | | | | | | | | |
Collapse
|
46
|
Identification of Cacao Mild Mosaic Virus (CaMMV) and Cacao Yellow Vein-Banding Virus (CYVBV) in Cocoa ( Theobroma cacao) Germplasm. Viruses 2021; 13:v13112152. [PMID: 34834959 PMCID: PMC8623607 DOI: 10.3390/v13112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Cocoa, Theobroma cacao, is an important tropical perennial crop grown widely in the humid tropics. The exchange of cocoa germplasm between germplasm collections and breeding centres is vital for varietal development. Intermediate quarantine facilities, such as the International Cocoa Quarantine Centre, Reading UK (ICQC-R) play a vital role in ensuring the transfer of germplasm whilst minimising the risk of spreading pests and diseases. Current screening procedures combine visual inspection and molecular techniques, which are effective in detecting Cocoa swollen shoot virus (CSSV), a badnavirus, which causes severe losses but are restricted to West Africa. However, the detection of latent or mild virus infections that produce no visual symptoms has been a challenge. Recently two badnavirus species of cocoa producing mild symptoms, cacao mild mosaic virus (CaMMV) and cacao yellow vein-banding virus (CYVBV), have been sequenced. Here, we report new assays for the detection of these two species, for the first time in non-symptomatic accessions. Evolutionary and bioinformatic analyses of the viruses suggest their most recent source was from Trinidad, though there is historic evidence that these viruses may have their origin in South America and then become widespread globally over the last century. We also report a novel colorimetric Loop-mediated isothermal amplification (LAMP) assay for the detection of CYVBV. This simple and accurate method could be employed in field virus testing.
Collapse
|
47
|
Mushtaq M, Dar AA, Basu U, Bhat BA, Mir RA, Vats S, Dar MS, Tyagi A, Ali S, Bansal M, Rai GK, Wani SH. Integrating CRISPR-Cas and Next Generation Sequencing in Plant Virology. Front Genet 2021; 12:735489. [PMID: 34759957 PMCID: PMC8572880 DOI: 10.3389/fgene.2021.735489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Plant pathology has been revolutionized by the emergence and intervention of next-generation sequencing technologies (NGS) which provide a fast, cost-effective, and reliable diagnostic for any class of pathogens. NGS has made tremendous advancements in the area of research and diagnostics of plant infecting viromes and has bridged plant virology with other advanced research fields like genome editing technologies. NGS in a broader perspective holds the potential for plant health improvement by diagnosing and mitigating the new or unusual symptoms caused by novel/unidentified viruses. CRISPR-based genome editing technologies can enable rapid engineering of efficient viral/viroid resistance by directly targeting specific nucleotide sites of plant viruses and viroids. Critical genes such as eIf (iso) 4E or eIF4E have been targeted via the CRISPR platform to produce plants resistant to single-stranded RNA (ssRNA) viruses. CRISPR/Cas-based multi-target DNA or RNA tests can be used for rapid and accurate diagnostic assays for plant viruses and viroids. Integrating NGS with CRISPR-based genome editing technologies may lead to a paradigm shift in combating deadly disease-causing plant viruses/viroids at the genomic level. Furthermore, the newly discovered CRISPR/Cas13 system has unprecedented potential in plant viroid diagnostics and interference. In this review, we have highlighted the application and importance of sequencing technologies on covering the viral genomes for precise modulations. This review also provides a snapshot vision of emerging developments in NGS technologies for the characterization of plant viruses and their potential utilities, advantages, and limitations in plant viral diagnostics. Furthermore, some of the notable advances like novel virus-inducible CRISPR/Cas9 system that confers virus resistance with no off-target effects have been discussed.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | | | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Sanskriti Vats
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - M. S. Dar
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Monika Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| |
Collapse
|
48
|
Hasiów-Jaroszewska B, Boezen D, Zwart MP. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses 2021; 13:1939. [PMID: 34696369 PMCID: PMC8539035 DOI: 10.3390/v13101939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
High throughput sequencing (HTS) has revolutionised virus detection and discovery, allowing for the untargeted characterisation of whole viromes. Viral metagenomics studies have demonstrated the ubiquity of virus infection - often in the absence of disease symptoms - and tend to discover many novel viruses, highlighting the small fraction of virus biodiversity described to date. The majority of the studies using high-throughput sequencing to characterise plant viromes have focused on economically important crops, and only a small number of studies have considered weeds and wild plants. Characterising the viromes of wild plants is highly relevant, as these plants can affect disease dynamics in crops, often by acting as viral reservoirs. Moreover, the viruses in unmanaged systems may also have important effects on wild plant populations and communities. Here, we review metagenomic studies on weeds and wild plants to show the benefits and limitations of this approach and identify knowledge gaps. We consider key genomics developments that are likely to benefit the field in the near future. Although only a small number of HTS studies have been performed on weeds and wild plants, these studies have already discovered many novel viruses, demonstrated unexpected trends in virus distributions, and highlighted the potential of metagenomics as an approach.
Collapse
Affiliation(s)
- Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznań, Poland
| | - Dieke Boezen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| | - Mark P. Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| |
Collapse
|
49
|
Gaafar YZA, Westenberg M, Botermans M, László K, De Jonghe K, Foucart Y, Ferretti L, Kutnjak D, Pecman A, Mehle N, Kreuze J, Muller G, Vakirlis N, Beris D, Varveri C, Ziebell H. Interlaboratory Comparison Study on Ribodepleted Total RNA High-Throughput Sequencing for Plant Virus Diagnostics and Bioinformatic Competence. Pathogens 2021; 10:pathogens10091174. [PMID: 34578206 PMCID: PMC8469820 DOI: 10.3390/pathogens10091174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
High-throughput sequencing (HTS) technologies and bioinformatic analyses are of growing interest to be used as a routine diagnostic tool in the field of plant viruses. The reliability of HTS workflows from sample preparation to data analysis and results interpretation for plant virus detection and identification must be evaluated (verified and validated) to approve this tool for diagnostics. Many different extraction methods, library preparation protocols, and sequence and bioinformatic pipelines are available for virus sequence detection. To assess the performance of plant virology diagnostic laboratories in using the HTS of ribosomal RNA depleted total RNA (ribodepleted totRNA) as a diagnostic tool, we carried out an interlaboratory comparison study in which eight participants were required to use the same samples, (RNA) extraction kit, ribosomal RNA depletion kit, and commercial sequencing provider, but also their own bioinformatics pipeline, for analysis. The accuracy of virus detection ranged from 65% to 100%. The false-positive detection rate was very low and was related to the misinterpretation of results as well as to possible cross-contaminations in the lab or sequencing provider. The bioinformatic pipeline used by each laboratory influenced the correct detection of the viruses of this study. The main difficulty was the detection of a novel virus as its sequence was not available in a publicly accessible database at the time. The raw data were reanalysed using Virtool to assess its ability for virus detection. All virus sequences were detected using Virtool in the different pools. This study revealed that the ribodepletion target enrichment for sample preparation is a reliable approach for the detection of plant viruses with different genomes. A significant level of virology expertise is needed to correctly interpret the results. It is also important to improve and complete the reference data.
Collapse
Affiliation(s)
- Yahya Z. A. Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104 Braunschweig, Germany;
| | - Marcel Westenberg
- National Reference Centre of Plant Health, Dutch National Plant Protection Organization, Geertjesweg 15, 6706 EA Wageningen, The Netherlands; (M.W.); (M.B.)
| | - Marleen Botermans
- National Reference Centre of Plant Health, Dutch National Plant Protection Organization, Geertjesweg 15, 6706 EA Wageningen, The Netherlands; (M.W.); (M.B.)
| | - Krizbai László
- Plant Health Diagnostics National Reference Laboratory, Directorate of Food Chain Safety Laboratory, National Food Chain Safety Office, Budaörsi út 141–145, H-1118 Budapest, Hungary;
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (Y.F.)
| | - Yoika Foucart
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (Y.F.)
| | - Luca Ferretti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, Via C.G. Bertero 22, 00156 Rome, Italy;
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; (D.K.); (A.P.); (N.M.)
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; (D.K.); (A.P.); (N.M.)
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; (D.K.); (A.P.); (N.M.)
| | - Jan Kreuze
- Health and Quarantine Unit, International Potato Center (CIP), Av. La Molina 1895 La Molina, Lima 15023, Peru; (J.K.); (G.M.)
| | - Giovanna Muller
- Health and Quarantine Unit, International Potato Center (CIP), Av. La Molina 1895 La Molina, Lima 15023, Peru; (J.K.); (G.M.)
| | - Nikolaos Vakirlis
- Benaki Phytopathological Institute, Stefanou Delta 8, Kifissia, Attica, 14561 Athens, Greece; (N.V.); (D.B.); (C.V.)
| | - Despoina Beris
- Benaki Phytopathological Institute, Stefanou Delta 8, Kifissia, Attica, 14561 Athens, Greece; (N.V.); (D.B.); (C.V.)
| | - Christina Varveri
- Benaki Phytopathological Institute, Stefanou Delta 8, Kifissia, Attica, 14561 Athens, Greece; (N.V.); (D.B.); (C.V.)
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104 Braunschweig, Germany;
- Correspondence:
| |
Collapse
|
50
|
Vučurović A, Kutnjak D, Mehle N, Stanković I, Pecman A, Bulajić A, Krstić B, Ravnikar M. Detection of Four New Tomato Viruses in Serbia Using Post Hoc High-Throughput Sequencing Analysis of Samples From a Large-Scale Field Survey. PLANT DISEASE 2021; 105:2325-2332. [PMID: 33761774 DOI: 10.1094/pdis-09-20-1915-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tomato production worldwide is affected by numerous plant virus species. The early and accurate detection of viruses is a critical step for disease control. However, the simultaneous detection of the most known tomato viruses can be difficult because of the high number and diversity of tomato-infecting viruses. Here, we have identified four new viruses in Serbia by applying target-independent small RNA high-throughput sequencing (HTS). HTS was applied on pools of samples and separate samples, in total comprising 30 tomato samples that exhibited (severe) virus-like symptoms and were collected in Serbia during three annual surveys (2011 to 2013). These samples had previously tested negative for the presence of 16 tomato viruses using targeted detection methods. Three divergent complete genome sequences of Physostegia chlorotic mottled virus were obtained from different localities, indicating for the first time that this virus is widespread in Serbia and might represent an emergent viral pathogen of tomato. The tomato torrado virus was detected at one locality with devastating yield losses. The southern tomato virus was detected at two localities, and the spinach latent virus was detected at one locality. In addition, we detected the presence of one already-known virus in Serbia, the tomato spotted wilt orthotospovirus. All the HTS results were subsequently confirmed by targeted detection methods. In this study, the successful application of post hoc HTS testing of a limited number of pooled samples resulted in the discovery of new viruses. Thus, our results encourage the use of HTS in research and diagnostic laboratories, including laboratories that have limited resources to resolve disease etiology.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Ivana Stanković
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Aleksandra Bulajić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Branka Krstić
- Institute of Phytomedicine, Department of Phytopathology, University of Belgrade-Faculty of Agriculture, 11080 Belgrade, Serbia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- University of Nova Gorica, 5000 Nova Gorica, Slovenia
| |
Collapse
|