1
|
Januszek M, Satora P, Pater A, Wajda Ł. The Role of Keeving in Modulating Fermentation and the Flavour Profiles of Apple Brandy. Biomolecules 2024; 14:1322. [PMID: 39456255 PMCID: PMC11506311 DOI: 10.3390/biom14101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Keeving is the removal of nutrients from apple musts due to their binding to pectin, resulting in a slower fermentation and spontaneous arrest. The aim of this study was to determine the effect of keeving on the chemical composition of fermented apple must and on the volatile profile and sensory analysis of apple brandies. We compared the application of keeving during spontaneous fermentation with fermentation carried out by Saccharomyces cerevisiae (SafSpirit HG-1). We evaluated the impact of adding different doses of calcium chloride on various parameters of fermented musts and distillates. Calcium chloride had a greater effect on the ethanol concentration, total extract, and fermentation efficiency than on the type of fermentation used. However, a different phenomenon was observed with respect to the volatiles. The concentration of most of the higher alcohols, acetaldehyde, dodecanal, and geranylaceton, decreased after spontaneous fermentation and increased during the fermentation carried out with Saccharomyces cerevisiae SafSpirit HG-1. In general, the application of keeving contributed to a decrease in the concentration of ethyl and methyl esters, but caused an increase in the concentration of all acetate esters and terpenoids. When the amount of nutrients in the environment is limited and starvation occurs, microorganisms use the available nutrients for basic metabolic processes that allow them to survive and limit the formation of side metabolites such as volatiles. However, most of the samples fermented after the faecal depletion achieved high scores for the floral, fruity, and "overall note" parameters in the sensory analysis. This means that this method, carried out with a properly selected yeast strain, could be feasible for the distilling industry.
Collapse
Affiliation(s)
- Magdalena Januszek
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Kraków, Poland; (M.J.); (A.P.)
| | - Paweł Satora
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Kraków, Poland; (M.J.); (A.P.)
| | - Aneta Pater
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Street 122, 30-149 Kraków, Poland; (M.J.); (A.P.)
| | - Łukasz Wajda
- BioLyo Technologies Ltd., Technologiepark-Zwijnaarde 94, 9052 Gent, Belgium;
| |
Collapse
|
2
|
Bedoya K, Buetas L, Rozès N, Mas A, Portillo MC. Influence of different stress factors during the elaboration of grape must's pieddecuve on the dynamics of yeast populations during alcoholic fermentation. Food Microbiol 2024; 123:104571. [PMID: 39038885 DOI: 10.1016/j.fm.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
The pieddecuve (PdC) technique involves using a portion of grape must to undergo spontaneous fermentation, which is then used to inoculate a larger volume of must. This allows for promoting autochthonous yeasts present in the must, which can respect the typicality of the resulting wine. However, the real impact of this practice on the yeast population has not been properly evaluated. In this study, we examined the effects of sulphur dioxide (SO2), temperature, ethanol supplementation, and time on the dynamics and selection of yeasts during spontaneous fermentation to be used as PdC. The experimentation was conducted in a synthetic medium and sterile must using a multi-species yeast consortium and in un-inoculated natural grape must. Saccharomyces cerevisiae dominated both the PdC and fermentations inoculated with commercial wine yeast, displaying similar population growth regardless of the tested conditions. However, using 40 mg/L of SO2 and 1% (v/v) ethanol during spontaneous fermentation of Muscat of Alexandria must allowed the non-Saccharomyces to be dominant during the first stages, regardless of the temperature tested. These findings suggest that it is possible to apply the studied parameters to modulate the yeast population during spontaneous fermentation while confirming the effectiveness of the PdC methodology in controlling alcoholic fermentation.
Collapse
Affiliation(s)
- Katherine Bedoya
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Luis Buetas
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Nicolas Rozès
- Biotecnologia Microbiana dels Aliments, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Albert Mas
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - M Carmen Portillo
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| |
Collapse
|
3
|
Li Y, Xu L, Sam FE, Li A, Hu K, Tao Y. Improving aromatic higher alcohol acetates in wines by co-fermentation of Pichia kluyveri and Saccharomyces cerevisiae: growth interaction and amino acid competition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6875-6883. [PMID: 38690688 DOI: 10.1002/jsfa.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Higher alcohol acetates (HAAs) are potent aroma-active esters that impart desirable fruity and floral aromas. However, the conversion of higher alcohol precursors into HAAs is extremely low in winemaking. To investigate the underlying yeast-yeast interaction on targeted improvement of aromatic HAAs, we evaluated fermentation activity, cell viability, amino acid consumption and HAA production when Pichia kluyveri and Saccharomyces cerevisiae were inoculated concurrently or sequentially. RESULTS Pichia kluyveri PK-21 possessed the ability to survive and increased HAA level up to 5.2-fold in mixed fermentation. Such an increment may benefit from the efficient conversion of higher alcohol precursors into HAAs (>27-fold higher than S. cerevisiae). During mixed fermentation, the two yeasts exhibited crucial interactions regarding cell growth and amino acid competition. Saccharomyces cerevisiae dominated over the co-inoculated P. kluyveri by efficient uptake of amino acids and biomass production. However, this dominance decreased in sequential fermentation, where P. kluyveri growth increased due to the consumption of preferred amino acids prior to S. cerevisiae. Pearson correlation analysis indicated that phenylalanine and aspartic acid may act as positive amino acids in boosting P. kluyveri growth and HAA production. Laboratory-scale winemaking validated the fermentation performance of P. kluyveri in sequential inoculum, resulting in a balanced aroma profile with enhanced floral and tropical fruity characteristics in the final wines. CONCLUSION This study proposes a microbial, non-genetically engineered approach for targeted increase of HAA production in winemaking and the findings provide new insights into yeast-yeast interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yueqi Li
- College of Enology, Northwest A&F University, Yangling, China
| | - Lingbin Xu
- College of Enology, Northwest A&F University, Yangling, China
| | | | - Aihua Li
- College of Food Science and Engineering, Yangling, China
| | - Kai Hu
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, China
- Shaanxi Engineering Research Center for Viti-viniculture, Yangling, China
| |
Collapse
|
4
|
García-Ríos E, Pardo J, Su Y, Guillamón JM. Different Nitrogen Consumption Patterns in Low Temperature Fermentations in the Wine Yeast Saccharomyces cerevisiae. Foods 2024; 13:2522. [PMID: 39200449 PMCID: PMC11354071 DOI: 10.3390/foods13162522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Nowadays, the wine industry carries out fermentations at low temperatures because this oenological practice clearly improves the aromatic complexity of the final wines. In addition, nitrogen content of the must also influences the quality of the wine. In this study, we carried out a phenotypic and fermentative analysis of two industrial wine Saccharomyces cerevisiae strains (P5 and P24) at 15 and 28 °C and three nitrogen concentrations (60, 140 and 300 mg N/L) in synthetic must. Our results show that both parameters, temperature and nitrogen, are interrelated and clearly determine the competitiveness of the wine strains and their ability to adapt at low temperatures. The best adapted strain at low temperatures decreased its competitiveness at lower nitrogen concentrations. In addition, our results show that it is not only the quantity of nitrogen transported that is important but also the quality of the nitrogen source used for wine yeast adaptation at low temperatures. The presence of some amino acids, such as arginine, branched chain amino acids, and some aromatic amino acids can improve the growth and fermentation activity of wine yeasts at low temperatures. These results allow us to better understand the basis of wine yeast adaptation to fermentation conditions, providing important information for winemakers to help them select the most appropriate yeast strain, thus reducing the economic costs associated with long and sluggish fermentations. The correlation between some amino acids and better yeast fermentation performance could be used in the future to design inactive dry yeast enriched in some of these amino acids, which could be added as a nutritional supplement during low temperature fermentations.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| | - Judit Pardo
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| | - Ying Su
- College of Enology, Northwest A&F University, Xianyang 712100, China;
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain; (J.P.); (J.M.G.)
| |
Collapse
|
5
|
Moreira LDPD, Porcellato D, Marangon M, Nadai C, Duarte VDS, Devold TG, Giacomini A, Corich V. Interactions between Starmerella bacillaris and Saccharomyces cerevisiae during sequential fermentations influence the release of yeast mannoproteins and impact the protein stability of an unstable wine. Food Chem 2024; 440:138311. [PMID: 38160596 DOI: 10.1016/j.foodchem.2023.138311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Wine protein haze formation is a problem due to grape proteins aggregation during wine storage. The cell wall components of wine yeasts, particularly high molecular weight mannoproteins, have a protective effect against haze formation, although their involvement remains poorly understood. This study aimed at characterizing glycosylated proteins released by Starmerella bacillaris and Saccharomyces cerevisiae during single and sequential fermentations in a synthetic must, and testing their impact on wine protein stability. Mannoproteins-rich extracts from sequential fermentations showed an increase in the low MW polysaccharide fraction and, when added to an unstable wine, had a greater effect on protein stability than S. cerevisiae extracts. Shotgun proteomics approaches revealed that the identified cell wall proteins exclusively found in sequential fermentations were produced by both S. bacillaris (MKC7, ENG1) and S. cerevisiae (Bgl2p). Moreover, sequential fermentations significantly increased the expression of Scw4p and 1,3-beta-glucanosyltransferase (GAS5), produced by S. cerevisiae. Finally, some of the key proteins identified might play a positive role in increasing wine protein stability.
Collapse
Affiliation(s)
- Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Matteo Marangon
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Chiara Nadai
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy; Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, PD, Italy.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Tove Gulbrandsen Devold
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| |
Collapse
|
6
|
Torres-Guardado R, Rozès N, Esteve-Zarzoso B, Reguant C, Bordons A. Succinic acid production by wine yeasts and the influence of GABA and glutamic acid. Int Microbiol 2024; 27:505-512. [PMID: 37498437 PMCID: PMC10990983 DOI: 10.1007/s10123-023-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
As a consequence of alcoholic fermentation (AF) in wine, several compounds are released by yeasts, and some of them are linked to the general quality and mouthfeel perceptions in wine. However, others, such as succinic acid, act as inhibitors, mainly of malolactic fermentation. Succinic acid is produced by non-Saccharomyces and Saccharomyces yeasts during the initial stages of AF, and the presence of some amino acids such as γ-aminobutyric acid (GABA) and glutamic acid can increase the concentration of succinic acid. However, the influence of these amino acids on succinic acid production has been studied very little to date. In this work, we studied the production of succinic acid by different strains of non-Saccharomyces and Saccharomyces yeasts during AF in synthetic must, and the influence of the addition of GABA or glutamic acid or a combination of both. The results showed that succinic acid can be produced by non-Saccharomyces yeasts with values in the range of 0.2-0.4 g/L. Moreover, the addition of GABA or glutamic acid can increase the concentration of succinic acid produced by some strains to almost 100 mg/L more than the control, while other strains produce less. Consequently, higher succinic acid production by non-Saccharomyces yeast in coinoculated fermentations with S. cerevisiae strains could represent a risk of inhibiting Oenococcus oeni and therefore the MLF.
Collapse
Affiliation(s)
- Rafael Torres-Guardado
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007, Tarragona, Catalonia, Spain
| | - Nicolás Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007, Tarragona, Catalonia, Spain
| | - Braulio Esteve-Zarzoso
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007, Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007, Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007, Tarragona, Catalonia, Spain.
| |
Collapse
|
7
|
Puyo M, Scalabrino L, Romanet R, Simonin S, Klein G, Alexandre H, Tourdot-Maréchal R. Competition for Nitrogen Resources: An Explanation of the Effects of a Bioprotective Strain Metschnikowia pulcherrima on the Growth of Hanseniaspora Genus in Oenology. Foods 2024; 13:724. [PMID: 38472837 DOI: 10.3390/foods13050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
As a biological alternative to the antimicrobial action of SO2, bioprotection has been proposed to winemakers as a means to limit or prevent grape musts microbial alteration. Competition for nitrogenous nutrients and for oxygen are often cited as potential explanations for the effectiveness of bioprotection. This study analyses the effect of a bioprotective M. pulcherrima strain on the growth of one H. valbyensis strain and one H. uvarum strain. Bioprotection efficiency was observed only against H. valbyensis inoculated at the two lowest concentrations. These results indicate a potential species-dependent efficiency of the bioprotective strain and a strong impact of the initial ratio between bioprotective and apiculate yeasts. The analysis of the consumption of nitrogen compounds revealed that leucine, isoleucine, lysine and tryptophan were consumed preferentially by all three strains. The weaker assimilation percentages of these amino acids observed in H. valbyensis at 24 h growth suggest competition with M. pulcherrima that could negatively affects the growth of the apiculate yeast in co-cultures. The slowest rate of O2 consumption of H. valbyensis strain, in comparison with M. pulcherrima, was probably not involved in the bioprotective effect. Non-targeted metabolomic analyses of M. pulcherrima and H. valbyensis co-culture indicate that the interaction between both strains particularly impact lysin and tryptophan metabolisms.
Collapse
Affiliation(s)
- Maëlys Puyo
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Léa Scalabrino
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Rémy Romanet
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform, UMR Procédés Alimentaires et Microbiologiques, IUVV, 2 Rue 11 Claude Ladrey, 21000 Dijon, France
| | - Scott Simonin
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Géraldine Klein
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France
| |
Collapse
|
8
|
Balmaseda A, Rozès N, Bordons A, Reguant C. The use of Torulaspora delbrueckii to improve malolactic fermentation. Microb Biotechnol 2024; 17:e14302. [PMID: 37387409 PMCID: PMC10832531 DOI: 10.1111/1751-7915.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter. Nevertheless, information about the possible effects of T. delbrueckii chemical modulation on subsequent malolactic fermentation is still not fully explained. In general, T. delbrueckii is related to a decrease in toxic compounds that negatively affect Oenococcus oeni and an increase in others that are described as stimulating compounds. In this work, we aimed to compile the changes described in studies using T. delbrueckii in wine that can have a potential effect on O. oeni and highlight those works that directly evaluated O. oeni performance in T. delbrueckii fermented wines.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| |
Collapse
|
9
|
Tzamourani AP, Taliadouros V, Paraskevopoulos I, Dimopoulou M. Developing a novel selection method for alcoholic fermentation starters by exploring wine yeast microbiota from Greece. Front Microbiol 2023; 14:1301325. [PMID: 38179455 PMCID: PMC10765506 DOI: 10.3389/fmicb.2023.1301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The selection of native yeast for alcoholic fermentation in wine focuses on ensuring the success of the process and promoting the quality of the final product. The purpose of this study was firstly to create a large collection of new yeast isolates and categorize them based on their oenological potential. Additionally, the geographical distribution of the most dominant species, Saccharomyces cerevisiae, was further explored. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level. RAPD (Random Amplified Polymorphic DNA) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. All yeast isolates were scrutinized for their sensitivity to killer toxin, production of non-desirable metabolites such as acetic acid and H2S, β-glucosidase production and resistance to the antimicrobial agent; SO2. In parallel, S. cerevisiae isolates were typed at strain level by interdelta - PCR genomic fingerprinting. S. cerevisiae strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized grape must. Glucose and fructose consumption was monitored daily and at the final point a free sorting task was conducted to categorize the samples according to their organoleptic profile. According to our results, among the 190 isolates, S. cerevisiae was the most dominant species while some less common non-Saccharomyces species such as Trigonopsis californica, Priceomyces carsonii, Zygosaccharomyces bailii, Brettanomyces bruxellensis and Pichia manshurica were identified in minor abundancies. According to phenotypic typing, most isolates were neutral to killer toxin test and exhibited low acetic acid production. Hierarchical Cluster Analysis revealed the presence of four yeast groups based on phenotypic fingerprinting. Strain level typing reported 20 different S. cerevisiae strains from which 65% indicated fermentative capacity and led to dry wines. Sensory evaluation results clearly discriminated the produced wines and consequently, the proposed yeast categorization was confirmed. A novel approach that employs biostatistical tools for a rapid screening and classification of indigenous wine yeasts with oenological potential, allowing a more efficient preliminary selection or rejection of isolates is proposed.
Collapse
Affiliation(s)
- Aikaterini P. Tzamourani
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| | - Vasileios Taliadouros
- Department of Statistics and Insurance Science, University of Piraeus, Piraeus, Greece
| | - Ioannis Paraskevopoulos
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| | - Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
| |
Collapse
|
10
|
Rojo MC, Talia PM, Lerena MC, Ponsone ML, Gonzalez ML, Becerra LM, Mercado LA, Martín-Arranz V, Rodríguez-Gómez F, Arroyo-López FN, Combina M. Evaluation of different nitrogen sources on growth and fermentation performance for enhancing ethanol production by wine yeasts. Heliyon 2023; 9:e22608. [PMID: 38213578 PMCID: PMC10782155 DOI: 10.1016/j.heliyon.2023.e22608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
The utilization of grape juice from low oenological value grape varieties for bioethanol production represent an alternative for diversification and value addition in viticulture. Optimizing Very High Gravity (VHG) fermentation can significantly increase ethanol productivity while reducing water and energy consumption. In this study, the impact of different nitrogen sources on growth and fermentative performance of locally selected yeast strains was investigated. Five yeast strains of species Saccharomyces cerevisiae and Zygosaccharomyces rouxii were cultured in both synthetic culture media and natural grape juice supplemented with ammonium sulfate (NH), yeast extract (YE), Fermaid K (FERM), and urea (U) at varying concentrations. Due to the very low fermentation rate, the Z. rouxii strain was excluded from the selection. The results obtained in synthetic medium showed that nitrogen sources that promoted growth (NH and YE) had minimal effects on fermentative performance and were highly dependent on the specific yeast strain. However, the combination of urea and ammonium favored the rate of sugar consumption. When validated in natural grape juice, urea combined with ammonium (U + NH 300 + 75 mg/L) improved both growth parameters and ethanol yield. Doubling the concentration (U + NH 600 + 150 mg/L) further enhanced sugar consumption and ethanol production while reducing unwanted by-products. The combined use of urea and ammonium exhibited a synergistic effect, making it a cost-effective nitrogen supplement for VHG fermentations.
Collapse
Affiliation(s)
- María Cecilia Rojo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Paola Mónica Talia
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Lerena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - María Lorena Ponsone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo) Padre Jorge Contreras 1300, Parque Gral San Martin (M5502JMA), Mendoza, Argentina
| | - Magalí Lucía Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Lucía Maribel Becerra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Laura Analía Mercado
- Wine Research Center, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mza INTA), San Martín 3853, Luján de Cuyo, Mendoza 5507, Argentina
| | - Virginia Martín-Arranz
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Francisco Rodríguez-Gómez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Mariana Combina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Nasoha NZ, Luthfi AAI, Roslan MF, Hariz HB, Bukhari NA, Manaf SFA. Exploring pineapple peel hydrolysate as a sustainable carbon source for xylitol production. Sci Rep 2023; 13:19284. [PMID: 37935748 PMCID: PMC10630370 DOI: 10.1038/s41598-023-46061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
This study explores utilizing pineapple peel (PP) hydrolysate as a promising carbon source for xylitol production, covering scopes from the pre-treatment to the fermentation process. The highest xylose concentration achieved was around 20 g/L via mild acid hydrolysis (5% nitric acid, 105 °C, 20-min residence time) with a solid loading of 10%. Two sets fermentability experiments were carried out of varying pH levels in synthetic media that includes acetic acid as the main inhibitors and hydrolysate supplemented with diverse nitrogen source. The results revealed that pH 7 exhibited the highest xylitol production, yielding 0.35 g/g. Furthermore, urea was found to be a highly promising and cost-effective substitute for yeast extract, as it yielded a comparable xylitol production of 0.31 g/g with marginal difference of only 0.01 g/g compared to yeast extract further highlights the viability of urea as the preferred option for reducing xylitol production cost. The absence of a significant difference between the synthetic media and hydrolysate, with only a marginal variance of 0.35 to 0.32 g/g, implies that acetic acid is indeed the primary constraint in xylitol production using PP hydrolysate. The study sheds light on PP biomass's potential for xylitol production, aligning economic benefits with environmental sustainability and waste management.
Collapse
Affiliation(s)
- Nur Zahidah Nasoha
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Muhammad Faizuddin Roslan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Hikmah Bajunaid Hariz
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Nurul Adela Bukhari
- Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, 43000, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Shareena Fairuz Abdul Manaf
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
12
|
Puyo M, Mas P, Roullier-Gall C, Romanet R, Lebleux M, Klein G, Alexandre H, Tourdot-Maréchal R. Bioprotection Efficiency of Metschnikowia Strains in Synthetic Must: Comparative Study and Metabolomic Investigation of the Mechanisms Involved. Foods 2023; 12:3927. [PMID: 37959046 PMCID: PMC10649255 DOI: 10.3390/foods12213927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Three Metschnikowia strains marketed as bioprotection yeasts were studied to compare their antimicrobial effect on a mixture of two Hanseniaspora yeast strains in synthetic must at 12 °C, mimicking pre-fermentative maceration by combining different approaches. The growth of the different strains was monitored, their nitrogen and oxygen requirements were characterised, and their metabolomic footprint in single and co-cultures studied. Only the M. fructicola strain and one M. pulcherrima strains colonised the must and induced the rapid decline of Hanseniaspora. The efficiency of these two strains followed different inhibition kinetics. Furthermore, the initial ratio between Metschnikowia and Hanseniaspora was an important factor to ensure optimal bioprotection. Nutrient consumption kinetics showed that apiculate yeasts competed with Metschnikowia strains for nutrient accessibility. However, this competition did not explain the observed bioprotective effect, because of the considerable nitrogen content remaining on the single and co-cultures. The antagonistic effect of Metschnikowia on Hanseniaspora probably implied another form of amensalism. For the first time, metabolomic analyses of the interaction in a bioprotection context were performed after the pre-fermentative maceration step. A specific footprint of the interaction was observed, showing the strong impact of the interaction on the metabolic modulation of the yeasts, especially on the nitrogen and vitamin pathways.
Collapse
Affiliation(s)
- Maëlys Puyo
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Perrine Mas
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Rémy Romanet
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR A 02.102, IUVV, 2 Rue Claude Ladrey, 21000 Dijon, France;
| | - Manon Lebleux
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Géraldine Klein
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| |
Collapse
|
13
|
Carbon HN, Aplin JJ, Jiang GZ, Gibney PA, Edwards CG. Fate of carbon in synthetic media fermentations containing Metschnikowia pulcherrima or Meyerozyma guilliermondii in the presence and absence of Saccharomyces cerevisiae. Food Microbiol 2023; 114:104308. [PMID: 37290869 DOI: 10.1016/j.fm.2023.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
While sequentially inoculating non-Saccharomyces yeasts with Saccharomyces cerevisiae can lower the alcohol contents of wine, the abilities of these yeasts to utilize/produce ethanol or generate other byproducts remained unclear. Metschnikowia pulcherrima or Meyerozyma guilliermondii were inoculated into media with or without S. cerevisiae to assess byproduct formation. Both species metabolized ethanol in a yeast-nitrogen-base medium but produced the alcohol in a synthetic grape juice medium. In fact, Mt. pulcherrima and My. guilliermondii generated less ethanol per gram of metabolized sugar (0.372 and 0.301 g/g, respectively) compared to S. cerevisiae (0.422 g/g). Sequentially inoculating each non-Saccharomyces species with S. cerevisiae into grape juice media achieved up to 3.0% v/v alcohol reduction compared to S. cerevisiae alone while producing variable glycerol, succinic acid, and acetic acid concentrations. However, neither non-Saccharomyces yeasts released appreciable CO2 under fermentative conditions regardless of incubation temperature. Despite equivalent peak populations, S. cerevisiae produced more biomass (2.98 g/L) than the non-Saccharomyces yeasts while sequential inoculations yielded higher biomass with Mt. pulcherrima (3.97 g/L) but not My. guilliermondii (3.03 g/L). To reduce ethanol concentrations, these non-Saccharomyces species may metabolize ethanol and/or produce less from metabolized sugars compared to S. cerevisiae but also divert carbon towards glycerol, succinic acid, and/or biomass.
Collapse
Affiliation(s)
- Heather N Carbon
- School of Food Science, Washington State University, Pullman, WA, 99164-6376, USA
| | - Jesse J Aplin
- School of Food Science, Washington State University, Pullman, WA, 99164-6376, USA; Presently Affiliated with United States Pharmacopeia, Rockville, MD, 20852, USA
| | - Glycine Z Jiang
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Charles G Edwards
- School of Food Science, Washington State University, Pullman, WA, 99164-6376, USA.
| |
Collapse
|
14
|
Puyo M, Simonin S, Bach B, Klein G, Alexandre H, Tourdot-Maréchal R. Bio-protection in oenology by Metschnikowia pulcherrima: from field results to scientific inquiry. Front Microbiol 2023; 14:1252973. [PMID: 37664122 PMCID: PMC10469929 DOI: 10.3389/fmicb.2023.1252973] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Finding alternatives to the use of chemical inputs to preserve the sanitary and organoleptic quality of food and beverages is essential to meet public health requirements and consumer preferences. In oenology, numerous manufacturers already offer a diverse range of bio-protection yeasts to protect must against microbiological alterations and therefore limit or eliminate sulphites during winemaking. Bio-protection involves selecting non-Saccharomyces yeasts belonging to different genera and species to induce negative interactions with indigenous microorganisms, thereby limiting their development and their impact on the matrix. Although the effectiveness of bio-protection in the winemaking industry has been reported in numerous journals, the underlying mechanisms are not yet well understood. The aim of this review is to examine the current state of the art of field trials and laboratory studies that demonstrate the effects of using yeasts for bio-protection, as well as the interaction mechanisms that may be responsible for these effects. It focuses on the yeast Metschnikowia pulcherrima, particularly recommended for the bio-protection of grape musts.
Collapse
Affiliation(s)
- Maëlys Puyo
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Scott Simonin
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Benoit Bach
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Géraldine Klein
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, Équipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Dijon, France
| |
Collapse
|
15
|
Thiamine and Biotin: Relevance in the Production of Volatile and Non-Volatile Compounds during Saccharomyces cerevisiae Alcoholic Fermentation in Synthetic Grape Must. Foods 2023; 12:foods12050972. [PMID: 36900489 PMCID: PMC10000645 DOI: 10.3390/foods12050972] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Vitamins are major cofactors to numerous key metabolic pathways in enological yeasts, and both thiamine and biotin, notably, are believed to be essential to yeast fermentation and growth, respectively. In order to further assess and clarify their role in winemaking, and in the resulting wine, alcoholic fermentations of a commercial Saccharomyces cerevisiae active dried yeast were conducted in synthetic media containing various concentrations of both vitamins. Growth and fermentation kinetics were monitored and proved the essential character of biotin in yeast growth, and of thiamine in fermentation. The synthetic wine volatile compounds were quantified, and notable influences of both vitamins appeared, through a striking positive effect of thiamine on the production of higher alcohols, and of biotin on fatty acids. Beyond the evidence of this influence on fermentations and on the production of volatiles, this work proves, for the first time, the impact held by vitamins on wine yeasts' exometabolome, investigated through an untargeted metabolomic analysis. This highlighted chemical differences in the composition of synthetic wines through a notably marked influence of thiamine on 46 named S. cerevisiae metabolic pathways, and especially in amino acid-associated metabolic pathways. This provides, overall, the first evidence of the impact held by both vitamins on the wine.
Collapse
|
16
|
Lola D, Kalloniati C, Dimopoulou M, Kanapitsas A, Papadopoulos G, Dorignac É, Flemetakis E, Kotseridis Y. Impact of Assimilable Nitrogen Supplementation on Saccharomyces cerevisiae Metabolic Response and Aromatic Profile of Moschofilero Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2952-2963. [PMID: 36719992 DOI: 10.1021/acs.jafc.2c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The concentration of nitrogen in must is critical to yeast fermentation efficiency and wine aroma profile. The present work determined the effect of the amount of yeast assimilable nitrogen (YAN) on fermentation kinetics, aroma production, and gene expression patterns of the wine yeast Saccharomyces cerevisiae. Fermentations were performed under two different YAN concentrations of must. Acetate esters, linalool, and nerol appeared to be clearly affected by the different YAN levels. Real-time-PCR results revealed that the genes involved in ethyl and acetate esters production recorded, in general, higher transcript levels under high nitrogen supplementation. In addition, an up-regulation of the BGL2 and EXG1 genes, which are related to terpenes production, was observed in the case of high nitrogen content and it is well corresponded to the terpenol concentration found. Our study revealed the impact of nitrogen supplementation on yeast metabolism and its importance to adjust wine's aromatic composition and sensory profile.
Collapse
Affiliation(s)
- Despina Lola
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Maria Dimopoulou
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo 12243, Greece
| | - Alexandros Kanapitsas
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Georgios Papadopoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | | | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Yorgos Kotseridis
- Laboratory of Enology and Alcoholic Drinks (LEAD), Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
17
|
Synthesis of Aroma Compounds as a Function of Different Nitrogen Sources in Fermentations Using Non- Saccharomyces Wine Yeasts. Microorganisms 2022; 11:microorganisms11010014. [PMID: 36677305 PMCID: PMC9861872 DOI: 10.3390/microorganisms11010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Non-Saccharomyces yeasts are prevalent at the onset of grape must fermentations and can have a significant influence on the final wine product. In contrast to Saccharomyces cerevisiae, the biosynthetic pathways leading to aroma compound formation in these non-conventional yeasts, in particular those that are derived from amino acid metabolism, remains largely unexplored. Within a synthetic must environment, we investigated the amino acid utilization of four species (Hanseniaspora uvarum, Hanseniaspora osmophila, Zygosaccharomyces rouxii, Starmerella bacillaris) and S. cerevisiae. We report on the differential uptake preferences for amino acids with H. uvarum displaying the most rapid uptake of most amino acids. To investigate the fate of amino acids and their direct contribution to aroma synthesis in H. uvarum, H. osmophila and Z. rouxii, musts were supplemented with single amino acids. Aroma profiling undertaken after three days showed the synthesis of specific aroma compounds by the respective yeast was dependent on the specific amino acid supplementation. H. osmophila showed similarities to S. cerevisiae in both amino acid uptake and the synthesis of aroma compounds depending on the nitrogen sources. This study shows how the uptake of specific amino acids contributes to the synthesis of aroma compounds in wine fermentations using different non-Saccharomyces yeasts.
Collapse
|
18
|
Starmerella bacillaris Released in Vineyards at Different Concentrations Influences Wine Glycerol Content Depending on the Vinification Protocols. Foods 2022; 12:foods12010003. [PMID: 36613220 PMCID: PMC9818441 DOI: 10.3390/foods12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Starmerella bacillaris is a non-Saccharomyces yeast proposed for must fermentation together with Saccharomyces cerevisiae because of its high glycerol and moderate volatile acidity production. Furthermore, it was demonstrated that the same S. bacillaris strains that possess interesting technological properties exhibited antifungal activity against Botrytis cinerea, suggesting the release of this yeast in the vineyard. To obtain a positive effect during the following winemaking process, the maintenance of suitable concentrations of S. bacillaris is essential. Therefore, to obtain information on the survival of S. bacillaris, a small-scale field trial was performed. One week before the harvest, two different concentrations of S. bacillaris (106 and 107 cells/mL) were sprayed on Pinot grigio bunches, and the strain concentration was monitored by means of qPCR during the subsequent fermentation process. In addition, the combined effect of different winemaking techniques was evaluated, i.e., the vinification of juice, juice with marc and cryomaceration treatment. Results demonstrated that, under the tested conditions, S. bacillaris released in the vineyard remained viable for one week on grape bunches and increased glycerol content during the subsequent fermentation process. Different vinification protocols influenced cell concentrations. In particular, the cryomaceration treatment, due to the use of low temperature, supported S. bacillaris growth due to its cryotolerant aptitude. The collected data open new perspectives on the control of alcoholic fermentation, involving both vineyard and cellar management.
Collapse
|
19
|
Wang Y, Wang M, Li W, Wang X, Kong W, Huang W, Zhan J, Xia G, You Y. Indigenous yeast can increase the phenolic acid and volatile ester compounds in Petit Manseng wine. Front Nutr 2022; 9:1031594. [PMID: 36562039 PMCID: PMC9763556 DOI: 10.3389/fnut.2022.1031594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Indigenous yeasts are generally found in grapes, vineyards, and natural environments. Sequential inoculation and fermentation with non-Saccharomyces cerevisiae yeast (H30) and Saccharomyces cerevisiae (YT13) also improve the flavor of wine. Methods This study sequentially inoculated fermented Petit Manseng and natural grape juice with native H30 and YT13 selected from vineyards in Yantai, China. Results and discussion The sensory characteristics of Petit Manseng wine were evaluated by detecting the primary organic acids, phenolic acid compounds, and volatile ester compounds. The results showed that the lactic acid content of the natural wine fermented sequentially with H30 and YT13 increased by 490 μg/L compared with the control group, while the ferulic acid content was 1.4 times that of the single-yeast fermentation group. Furthermore, butyrolactone and anthocyanidin propionate were present in the mixed fermentation group, increasing the aroma complexity of Petit Manseng wine and providing high-quality yeast resources that increase the regional characteristics when producing dry white wine.
Collapse
Affiliation(s)
- Yanyu Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Miao Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Wenjuan Li
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Xinyuan Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weifu Kong
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guangli Xia
- Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China,College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,*Correspondence: Guangli Xia,
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yilin You,
| |
Collapse
|
20
|
Roca-Mesa H, Delgado-Yuste E, Mas A, Torija MJ, Beltran G. Importance of micronutrients and organic nitrogen in fermentations with Torulaspora delbrueckii and Saccharomyces cerevisiae. Int J Food Microbiol 2022; 381:109915. [PMID: 36084391 DOI: 10.1016/j.ijfoodmicro.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The current use of non-Saccharomyces yeasts in mixed fermentations increases the relevance of the interactions between yeast species. In this work, the interactions between Saccharomyces cerevisiae and Torulaspora delbrueckii were analyzed. For this purpose, fermentations with and without contact between strains of those yeast species were performed in synthetic must. Fermentation kinetics, yeast growth and dynamics were measured over time. Additionally, the effects of nitrogen and other nutrient supplementations on the mixed fermentations were determined. Our results showed that S. cerevisiae did not always dominate the sequential fermentations, and experiments without yeast contact (in which T. delbrueckii cells were removed from the medium before inoculating S. cerevisiae at 48 h) resulted in stuck fermentations except when the inoculum size was increased (from 2 × 106 to 108 cells/mL) or there was a supplementation of thiamine, zinc and amino acids at the same concentration as initially found in the synthetic must. Our findings highlight the importance of inoculum size and ensuring the availability of enough micronutrients for all yeast species, especially in sequential fermentations.
Collapse
Affiliation(s)
- Helena Roca-Mesa
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Ester Delgado-Yuste
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Mas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - María-Jesús Torija
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain.
| | - Gemma Beltran
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
21
|
Vicente J, Ruiz J, Tomasi S, de Celis M, Ruiz-de-Villa C, Gombau J, Rozès N, Zamora F, Santos A, Marquina D, Belda I. Impact of rare yeasts in Saccharomyces cerevisiae wine fermentation performance: Population prevalence and growth phenotype of Cyberlindnera fabianii, Kazachstania unispora, and Naganishia globosa. Food Microbiol 2022; 110:104189. [DOI: 10.1016/j.fm.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
|
22
|
What Is Candida Doing in My Food? A Review and Safety Alert on Its Use as Starter Cultures in Fermented Foods. Microorganisms 2022; 10:microorganisms10091855. [PMID: 36144457 PMCID: PMC9502980 DOI: 10.3390/microorganisms10091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
The use of yeasts as starter cultures was boosted with the emergence of large-scale fermentations in the 20th century. Since then, Saccharomyces cerevisiae has been the most common and widely used microorganism in the food industry. However, Candida species have also been used as an adjuvant in cheese production or as starters for coffee, cocoa, vegetable, meat, beer, and wine fermentations. A thorough screening of candidate Candida is sometimes performed to obtain the best performing strains to enhance specific features. Some commonly selected species include C. pulcherrima (teleomorph Metschnikowia pulcherrima) (wine), C. parapsilosis (teleomorph Monilia parapsilosis) (coffee), C. famata (teleomorph Debaryomyces hansenii) (cheese), and C. zeylanoides (teleomorph Kurtzmaniella zeylanoides) and C. norvegensis (teleomorph Pichia norvegensis) (cocoa). These species are associated with the production of key metabolites (food aroma formation) and different enzymes. However, safety-associated selection criteria are often neglected. It is widely known that some Candida species are opportunistic human pathogens, with important clinical relevance. Here, the physiology and metabolism of Candida species are addressed, initially emphasizing their clinical aspects and potential pathogenicity. Then, Candida species used in food fermentations and their functional roles are reported. We recommended that Candida not be used as food cultures if safety assessments are not performed. Some safety features are highlighted to help researchers choose methods and selection criteria.
Collapse
|
23
|
Characterization of Non-Saccharomyces Yeast Strains Isolated from Grape Juice and Pomace: Production of Polysaccharides and Antioxidant Molecules after Growth and Autolysis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-Saccharomyces yeasts (NSY) represent a relevant part of must and wine microbiota, contributing remarkably to the composition of lees biomass. Despite a number of studies indicate their capacity to increase wine polysaccharide content, their contribution to wine quality during aging on lees (AOL) has not been well elucidated yet. In the present study, twenty yeast strains (13 non-Saccharomyces and 7 Saccharomyces) were isolated from grape must and pomace and identified by morphologic and genetic characterization. Biomass production, cell growth and the release of soluble molecules (polysaccharides, amino acids, thiol compounds and glutathione) were evaluated after growth and after autolysis induced by β-glucanases addition. Differences between strains were observed for all parameters. Strains that produced higher amounts of soluble compounds during growth also showed the highest release after autolysis. Hanseniaspora spp. showed the greatest production of polysaccharides and antioxidant molecules, and biomass production and cell viability comparable to the commercial S. cerevisiae and T. delbrueckii used as reference. The aptitude of certain NSY to release antioxidants and polysaccharides is an interesting feature for managing AOL through sequential or mixed fermentations or for the production of inactive autolyzed yeasts for winemaking.
Collapse
|
24
|
Biochemical Traits, 1H NMR Profile and Residual DNA Content of ‘Asprinio’, White Wine from Campania Region (Southern Italy). Foods 2022; 11:foods11152322. [PMID: 35954087 PMCID: PMC9368296 DOI: 10.3390/foods11152322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
‘Asprinio’ is a white dry wine characteristic for its acidity and aromatic flavour, known as emerging DOP wine in Southern Italy. Nevertheless, little information is available on the metabolomic profile of this wine. Thus, in this paper we evaluated the colourimetric parameters, 1H NMR profiles and free amino acids content of ‘Asprinio’ wines, bottled by two different wineries (hereafter ‘Asprinio_A’ and ‘Asprinio_B’) collected in 2019 and 2020, using ‘Greco di Tufo’ for comparison. The colourimetric parameters are similar for both ‘Asprinio’ wines and differ from ‘Greco di Tufo’ wines. On the other hand, both 1H NMR and free amino acid content profiles show different chemometric profiles among the three wines analysed, although the profiles are similar for both vintages. Moreover, the multivariate analyses carried out highlight differences between ‘Asprinio_A’ and ‘Asprinio_B’, which exbibit also different residual yeast and plant DNA. Overall, considering that the two-manufacturing wineries use 100% ‘Asprinio’ grape, the difference retrieved between the two ‘Asprinio’ wines could be explained by the different grapevine training systems: ‘vite maritata’ (training system inherited from Etruscans) for ‘Asprinio_A’ and ‘guyot’ for ‘Asprinio_B’.
Collapse
|
25
|
Multiparametric Approach to Interactions between Saccharomyces cerevisiae and Lachancea thermotolerans during Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of a significant part of current wine technology research is to better understand and monitor mixed culture fermentations and optimize the microbiological processes and characteristics of the final wine. In this context, the yeast couple formed by Lachancea thermotolerans and Saccharomyces cerevisiae is of particular interest. The diverse results observed in the literature have shown that wine characteristics are dependent on both interactions between yeasts and environmental and fermentation parameters. Here, we took a multiparametric approach to study the impact of fermentation parameters on three different but related aspects of wine fermentation: population dynamics, fermentation, and volatile compound production. An experimental design was used to assess the effects of four independent factors (temperature, oxygenation, nitrogen content, inoculum ratio) on variables representing these three aspects. Temperature and, to a lesser extent, oxygenation and the inoculum ratio, were shown to constitute key factors in optimizing the presence of Lachancea thermotolerans during fermentation. The inoculum ratio also appeared to greatly impact lactic acid production, while the quantity of nitrogen seemed to be involved more in the management of aroma compound production. These results showed that a global approach to mixed fermentations is not only pertinent, but also constitutes an important tool for controlling them.
Collapse
|
26
|
Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines. FERMENTATION 2022. [DOI: 10.3390/fermentation8060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Haze can appear in white wines as a result of the denaturation and subsequent aggregation of grape pathogenesis-related (PR) proteins. Yeast cell-wall polysaccharides, particularly mannoproteins, represent a promising strategy to reduce the incidence of this phenomenon. The aim of this study was to evaluate the effects of 13 Starmerella bacillaris strains, in sequential fermentation with Saccharomyces cerevisiae, on wine protein stability of three white wines (Sauvignon blanc, Pinot grigio, and Manzoni bianco). The resulting wines were characterized in terms of their chemical composition, content of PR proteins and polysaccharides, and heat stability. In addition, the mannoprotein fraction was purified from six wines, five produced with S. bacillaris and one with S. cerevisiae EC1118 used as control. Generally, wines produced with S. bacillaris strains were more heat-stable, despite generally containing higher amounts of PR proteins. The increased heat stability of Starmerella wines was attributed to the stabilizing effect resulting from their higher concentrations of both total polysaccharides and mannoprotein fractions. In particular, for the most heat unstable wine (Manzoni bianco), the low MW mannoprotein fraction resulted to be the most involved in wine stability. The ability to produce wines with different heat stability was demonstrated to be strain-dependent and was more evident in the most unstable wines. By reducing fining waste, the use of S. bacillaris as an enological starter can be proposed as a new tool to manage wine protein stability for a more sustainable winemaking.
Collapse
|
27
|
Effect of Yeast Assimilable Nitrogen Content on Fermentation Kinetics, Wine Chemical Composition and Sensory Character in the Production of Assyrtiko Wines. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two wild-type Saccharomyces cerevisiae yeast strains (Sa and Sb) were tested for white wine production using Assyrtiko grape of Santorini. A third commercial Saccharomyces strain was also studied for comparison reasons. Two concentrations of yeast extract and diammonium phosphate (DAP) were added to the must (150 and 250 mg/L) in order to evaluate the effect of nitrogen content on the final wine quality. Analytical methods (HPLC, GC-MS) and sensory analysis were employed to assess the quality of the wines. Fermentation kinetics were monitored throughout the experiment. By the second day of fermentation, all strains showed an approximate consumption of 70% of amino acids. Differences among strains were observed regarding inorganic nitrogen requirements. Sb strain resulted in higher concentrations of higher alcohols (1.9-fold) and ketones (5.6-fold) and lower concentrations of esters (1.2-fold) compared to the control, while Sa strain resulted in higher content of fatty acids (2.1-fold). Both indigenous strains scored better results in aroma quality, body and acidity compared to control. The overall evaluation of the data highlights the great potential of the indigenous S. cerevisiae strains as fermentation starters providing promising results in the sector of terroir wines.
Collapse
|
28
|
Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality. Microorganisms 2022; 10:microorganisms10010107. [PMID: 35056556 PMCID: PMC8781278 DOI: 10.3390/microorganisms10010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
The use of yeast starter cultures consisting of a blend of Saccharomyces cerevisiae and non-Saccharomyces yeasts has increased in recent years as a mean to address consumers’ demands for diversified wines. However, this strategy is currently limited by the lack of a comprehensive knowledge regarding the factors that determine the balance between the yeast-yeast interactions and their responses triggered in complex environments. Our previous studies demonstrated that the strain Hanseniaspora guilliermondii UTAD222 has potential to be used as an adjunct of S. cerevisiae in the wine industry due to its positive impact on the fruity and floral character of wines. To rationalize the use of this yeast consortium, this study aims to understand the influence of production factors such as sugar and nitrogen levels, fermentation temperature, and the level of co-inoculation of H. guilliermondii UTAD222 in shaping fermentation and wine composition. For that purpose, a Central Composite experimental Design was applied to investigate the combined effects of the four factors on fermentation parameters and metabolites produced. The patterns of variation of the response variables were analyzed using machine learning methods, to describe their clustered behavior and model the evolution of each cluster depending on the experimental conditions. The innovative data analysis methodology adopted goes beyond the traditional univariate approach, being able to incorporate the modularity, heterogeneity, and hierarchy inherent to metabolic systems. In this line, this study provides preliminary data and insights, enabling the development of innovative strategies to increase the aromatic and fermentative potential of H. guilliermondii UTAD222 by modulating temperature and the availability of nitrogen and/or sugars in the medium. Furthermore, the strategy followed gathered knowledge to guide the rational development of mixed blends that can be used to obtain a particular wine style, as a function of fermentation conditions.
Collapse
|
29
|
Roullier-Gall C, Bordet F, David V, Schmitt-Kopplin P, Alexandre H. Yeast interaction on Chardonnay wine composition: Impact of strain and inoculation time. Food Chem 2021; 374:131732. [PMID: 34875436 DOI: 10.1016/j.foodchem.2021.131732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/04/2022]
Abstract
It is of great importance to understand the molecular characteristics and substantial chemical transformations due to yeast-yeast interaction. Non-targeted metabolomics was used to unravel must in fermentation composition, inoculated with non-Saccharomyces (NS) yeasts and Saccharomyces cerevisiae (S) for sequential fermentation. ultrahigh-resolution mass spectrometry was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms. Among the modifications observed, metabolomic unravels deep changes in nitrogen metabolism due to yeast-yeast interactions and suggests that the redistribution pattern affects two different routes, the pentose phosphate and the amino acid synthesis pathways.
Collapse
Affiliation(s)
- C Roullier-Gall
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France.
| | - F Bordet
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - V David
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - P Schmitt-Kopplin
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany; Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - H Alexandre
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| |
Collapse
|
30
|
Bordet F, Roullier-Gall C, Ballester J, Vichi S, Quintanilla-Casas B, Gougeon RD, Julien-Ortiz A, Kopplin PS, Alexandre H. Different Wines from Different Yeasts? " Saccharomyces cerevisiae Intraspecies Differentiation by Metabolomic Signature and Sensory Patterns in Wine". Microorganisms 2021; 9:microorganisms9112327. [PMID: 34835452 PMCID: PMC8620830 DOI: 10.3390/microorganisms9112327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Alcoholic fermentation is known to be a key stage in the winemaking process that directly impacts the composition and quality of the final product. Twelve wines were obtained from fermentations of Chardonnay must made with twelve different commercial wine yeast strains of Saccharomyces cerevisiae. In our study, FT-ICR-MS, GC-MS, and sensory analysis were combined with multivariate analysis. Ultra-high-resolution mass spectrometry (uHRMS) was able to highlight hundreds of metabolites specific to each strain from the same species, although they are characterized by the same technological performances. Furthermore, the significant involvement of nitrogen metabolism in this differentiation was considered. The modulation of primary metabolism was also noted at the volatilome and sensory levels. Sensory analysis allowed us to classify wines into three groups based on descriptors associated with white wine. Thirty-five of the volatile compounds analyzed, including esters, medium-chain fatty acids, superior alcohols, and terpenes discriminate and give details about differences between wines. Therefore, phenotypic differences within the same species revealed metabolic differences that resulted in the diversity of the volatile fraction that participates in the palette of the sensory pattern. This original combination of metabolomics with the volatilome and sensory approaches provides an integrative vision of the characteristics of a given strain. Metabolomics shine the new light on intraspecific discrimination in the Saccharomyces cerevisiae species.
Collapse
Affiliation(s)
- Fanny Bordet
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
- Lallemand SAS, 19 Rue des Briquetiers, CEDEX, 31700 Blagnac, France;
- Correspondence:
| | - Chloé Roullier-Gall
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
| | - Jordi Ballester
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Stefania Vichi
- Food Science and Gastronomy Department, University of Barcelona, Nutrition, INSA (Institut de Recerca en Nutricio I Seguretat Alimentaria), 08921 Santa Coloma de Gramenet, Spain; (S.V.); (B.Q.-C.)
| | - Beatriz Quintanilla-Casas
- Food Science and Gastronomy Department, University of Barcelona, Nutrition, INSA (Institut de Recerca en Nutricio I Seguretat Alimentaria), 08921 Santa Coloma de Gramenet, Spain; (S.V.); (B.Q.-C.)
| | - Régis D. Gougeon
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR, IUVV, Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France
| | - Anne Julien-Ortiz
- Lallemand SAS, 19 Rue des Briquetiers, CEDEX, 31700 Blagnac, France;
| | - Philippe Schmitt Kopplin
- German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764 Neuherberg, Germany;
| | - Hervé Alexandre
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-Institut Universitaire de la Vigne et du Vin (IUVV), Rue Claude Ladrey, BP 27877, CEDEX, 21078 Dijon, France; (C.R.-G.); (R.D.G.); (H.A.)
| |
Collapse
|
31
|
Zhang L, Huang C, Johansen PG, Petersen MA, Poojary MM, Lund MN, Jespersen L, Arneborg N. The utilisation of amino acids by Debaryomyces hansenii and Yamadazyma triangularis associated with cheese. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Chemical and Sensory Profiles of Merlot Wines Produced by Sequential Inoculation of Metschnikowia pulcherrima or Meyerzyma guilliermondii. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inoculation of selected non-Saccharomyces yeasts with Saccharomyces cerevisiae as means to produce Merlot wines with reduced ethanol contents was investigated. Fermentations of grape musts (25.4° Brix, pH 3.50, and 4.23 g/L titratable acidity) were conducted in stainless steel tanks inoculated with Metschnikowia pulcherrima strains P01A016 or NS-MP or Meyerozyma guilliermondii P40D002 with S. cerevisiae Syrah added after three days. After fermentation, wines with Mt. pulcherrima contained 13.8% (P01A016) or 13.9% (NS-MP) v/v ethanol, respectively, amounts which were lower than in wines with S. cerevisiae alone (14.9% v/v). Delayed inoculation of must with S. cerevisiae (day 3) or musts with My. guilliermondii contained elevated concentrations of ethyl acetate (145 and 148 mg/L, respectively), concentrations significantly higher than those with S. cerevisiae inoculated on day 0 or with either strain of Mt. pulcherrima. Descriptive sensory analysis revealed a significant effect due to panelist but not due to Mt. pulcherrima or My. guilliermondii. This research indicates the potential for commercial application of these yeasts towards the production of reduced alcohol wines but without imparting negative sensory attributes.
Collapse
|
34
|
Comitini F, Agarbati A, Canonico L, Ciani M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22147754. [PMID: 34299371 PMCID: PMC8307806 DOI: 10.3390/ijms22147754] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Wine can be defined as a complex microbial ecosystem, where different microorganisms interact in the function of different biotic and abiotic factors. During natural fermentation, the effect of unpredictable interactions between microorganisms and environmental factors leads to the establishment of a complex and stable microbiota that will define the kinetics of the process and the final product. Controlled multistarter fermentation represents a microbial approach to achieve the dual purpose of having a less risky process and a distinctive final product. Indeed, the interactions evolved between microbial consortium members strongly modulate the final sensorial properties of the wine. Therefore, in well-managed mixed fermentations, the knowledge of molecular mechanisms on the basis of yeast interactions, in a well-defined ecological niche, becomes fundamental to control the winemaking process, representing a tool to achieve such objectives. In the present work, the recent development on the molecular and metabolic interactions between non-Saccharomyces and Saccharomyces yeasts in wine fermentation was reviewed. A particular focus will be reserved on molecular studies regarding the role of nutrients, the production of the main byproducts and volatile compounds, ethanol reduction, and antagonistic actions for biological control in mixed fermentations.
Collapse
|
35
|
A Statistical Workflow to Evaluate the Modulation of Wine Metabolome and Its Contribution to the Sensory Attributes. FERMENTATION 2021. [DOI: 10.3390/fermentation7020072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A data-processing and statistical analysis workflow was proposed to evaluate the metabolic changes and its contribution to the sensory characteristics of different wines. This workflow was applied to rosé wines from different fermentation strategies. The metabolome was acquired by means of two high-throughput techniques: gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) for volatile and non-volatile metabolites, respectively, in an untargeted approach, while the sensory evaluation of the wines was performed by a trained panel. Wine volatile and non-volatile metabolites modulation was independently evaluated by means of partial least squares discriminant analysis (PLS-DA), obtaining potential markers of the fermentation strategies. Then, the complete metabolome was integrated by means of sparse generalised canonical correlation analysis discriminant analysis (sGCC-DA). This integrative approach revealed a high link between the volatile and non-volatile data, and additional potential metabolite markers of the fermentation strategies were found. Subsequently, the evaluation of the contribution of metabolome to the sensory characteristics of wines was carried out. First, the all-relevant metabolites affected by the different fermentation processes were selected using PLS-DA and random forest (RF). Each set of volatile and non-volatile metabolites selected was then related to the sensory attributes of the wines by means of partial least squares regression (PLSR). Finally, the relationships among the three datasets were complementary evaluated using regularised generalised canonical correlation analysis (RGCCA), revealing new correlations among metabolites and sensory data.
Collapse
|
36
|
Reiter T, Montpetit R, Byer S, Frias I, Leon E, Viano R, Mcloughlin M, Halligan T, Hernandez D, Figueroa-Balderas R, Cantu D, Steenwerth K, Runnebaum R, Montpetit B. Transcriptomics Provides a Genetic Signature of Vineyard Site and Offers Insight into Vintage-Independent Inoculated Fermentation Outcomes. mSystems 2021; 6:e00033-21. [PMID: 33850038 PMCID: PMC8546962 DOI: 10.1128/msystems.00033-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics.IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.
Collapse
Affiliation(s)
- Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Population Health and Reproduction, University of California, Davis, California, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Shelby Byer
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Isadora Frias
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Esmeralda Leon
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Robert Viano
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Michael Mcloughlin
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Thomas Halligan
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Desmon Hernandez
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Kerri Steenwerth
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, USA
| | - Ron Runnebaum
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Ben Montpetit
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| |
Collapse
|
37
|
Aplin JJ, Edwards CG. Impacts of non-Saccharomyces species and aeration on sequential inoculation with Saccharomyces cerevisiae to produce lower alcohol Merlot wines from Washington state. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1715-1719. [PMID: 32869309 DOI: 10.1002/jsfa.10769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Species of non-Saccharomyces yeasts isolated from Washington vineyards were evaluated for their abilities to reduce alcohol contents of wines. As many of these yeasts benefit from some oxygen, the effect of limited aeration was also studied. RESULTS Although fermentations of a high sugar Merlot grape must (310 g L-1 ) did not reach dryness, inoculation of Metschnikowia chrysoperlae, Mt. pulcherrima, Meyerozyma guillermondii, Pichia kluyveri, or P. membranifaciens yielded in wines with lower amounts of ethanol without excessive levels of acetic acid. Aeration frequently resulted in wines with less ethanol but with more acetic acid compared to non-aerated fermentations. Inoculation of Mt. pulcherrima or My. guilliermondii into another Merlot grape must that contained a lower initial amount of fermentable sugar (266 g L-1 ) resulted in dry wines that contained less alcohol. CONCLUSIONS Inoculation of My. guilliermondii or Mt. pulcherrima before primary alcoholic fermentation resulted in wines with reduced alcohol contents without excessive acetic acid production. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jesse J Aplin
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Charles G Edwards
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
38
|
Color Stabilization of Apulian Red Wines through the Sequential Inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Molecules 2021; 26:molecules26040907. [PMID: 33572140 PMCID: PMC7915498 DOI: 10.3390/molecules26040907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Mixed fermentation using Starmerella bacillaris and Saccharomyces cerevisiae has gained attention in recent years due to their ability to modulate the qualitative parameters of enological interest, such as the color intensity and stability of wine. In this study, three of the most important red Apulian varieties were fermented through two pure inoculations of Saccharomyces cerevisiae strains or the sequential inoculation of Saccharomyces cerevisiae after 48 h from Starmerella bacillaris. The evolution of anthocyanin profiles and chromatic characteristics were determined in the produced wines at draining off and after 18 months of bottle aging in order to assess the impact of the different fermentation protocols on the potential color stabilization and shelf-life. The chemical composition analysis showed titratable acidity and ethanol content exhibiting marked differences among wines after fermentation and aging. The 48 h inoculation delay produced wines with higher values of color intensity and color stability. This was ascribed to the increased presence of compounds, such as stable A-type vitisins and reddish/violet ethylidene-bridge flavonol-anthocyanin adducts, in the mixed fermentation. Our results proved that the sequential fermentation of Starmerella bacillaris and Saccharomyces cerevisiae could enhance the chromatic profile as well as the stability of the red wines, thus improving their organoleptic quality.
Collapse
|
39
|
Gutiérrez-Gamboa G, Zheng W, Martínez de Toda F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res Int 2021; 139:109946. [DOI: 10.1016/j.foodres.2020.109946] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
|
40
|
Fairbairn S, Engelbrecht L, Setati ME, du Toit M, Bauer FF, Divol B, Rossouw D. Combinatorial analysis of population dynamics, metabolite levels and malolactic fermentation in Saccharomyces cerevisiae/ Lachancea thermotolerans mixed fermentations. Food Microbiol 2020; 96:103712. [PMID: 33494893 DOI: 10.1016/j.fm.2020.103712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023]
Abstract
The outcome of co- or sequential inoculation of Lachancea thermotolerans in winemaking remains unpredictable due to a lack of integrated data regarding the impact of grape juice composition on L. thermotolerans fermentation behaviour. Here, we investigate the impact of nitrogen composition on fermentation characteristics and aroma compound production in grape juice sequentially inoculated with commercial L. thermotolerans and S. cerevisiae strains. Subsequently, all treatments were subjected to malolactic fermentation (MLF) using two commercial strains of Oenococcus oeni. Addition of amino acids led to faster growth for S. cerevisiae fermentations, compared to the nitrogen-equivalent addition of diammonium phosphate (DAP). L. thermotolerans persistence in the mixed fermentations was significantly higher following DAP addition, with higher glycerol and lactic acid production. Interestingly, the lower total Nitrogen content in DAP-treated musts compared to other treatments did not alter the subsequent growth of S. cerevisiae. MLF was more similar between musts fermented with L. thermotolerans, regardless of nutrient regime, whereas significant differences in MLF completion times were observed for different nitrogen treatments in S. cerevisiae fermentations. Collectively, the data present an integrated view of the impact of nitrogen treatment on multispecies co-inoculation (growth kinetics and aromatic outcomes) and the downstream impact on MLF.
Collapse
Affiliation(s)
- S Fairbairn
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch, University, Private Bag X1, 7602, Matieland, Stellenbosch, South Africa
| | - L Engelbrecht
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch, University, Private Bag X1, 7602, Matieland, Stellenbosch, South Africa
| | - M E Setati
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch, University, Private Bag X1, 7602, Matieland, Stellenbosch, South Africa
| | - M du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch, University, Private Bag X1, 7602, Matieland, Stellenbosch, South Africa
| | - F F Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch, University, Private Bag X1, 7602, Matieland, Stellenbosch, South Africa
| | - B Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch, University, Private Bag X1, 7602, Matieland, Stellenbosch, South Africa
| | - D Rossouw
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch, University, Private Bag X1, 7602, Matieland, Stellenbosch, South Africa.
| |
Collapse
|
41
|
Metabolic network of ammonium in cereal vinegar solid-state fermentation and its response to acid stress. Food Microbiol 2020; 95:103684. [PMID: 33397616 DOI: 10.1016/j.fm.2020.103684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Shanxi aged vinegar (SAV), a Chinese traditional vinegar, is produced by various microorganisms. Ammonium is an important nitrogen source for microorganisms and a key intermediate for the utilization of non-ammonium nitrogen sources. In this work, an ammonium metabolic network during SAV fermentation was constructed through the meta-transcriptomic analysis of in situ samples, and the potential mechanism of acid affecting ammonium metabolism was revealed. The results showed that ammonium was enriched as the acidity increased. Meta-transcriptomic analysis showed that the conversion of glutamine to ammonia is the key pathway of ammonium metabolism in vinegar and that Lactobacillus and Acetobacter are the dominant genera. The construction and analysis of the metabolic network showed that amino acid metabolism, nucleic acid metabolism, pentose phosphate pathway and energy metabolism were enhanced to resist acid damage to the intracellular environment and cell structures. The enhancement of nitrogen assimilation provides nitrogen for metabolic pathways that resist acid cytotoxicity. In addition, the concentration gradient allows ammonium to diffuse outside the cell, which causes ammonium to accumulate during fermentation.
Collapse
|
42
|
The impact of mixed amino acids supplementation on Torulaspora delbrueckii growth and volatile compound modulation in soy whey alcohol fermentation. Food Res Int 2020; 140:109901. [PMID: 33648203 DOI: 10.1016/j.foodres.2020.109901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/19/2023]
Abstract
Soy (tofu) whey is a liquid side stream generated from tofu production and is often discarded as waste after it is generated. Direct disposal of soy whey can result in environmental issue in the long run. Soy whey has been previously successfully fermented using different types of wine yeasts, but the yeast available nitrogen (YAN) was found to be deficient. In this study, the soy whey YAN was estimated to be approximately 45.9 mg N/L. A mixture of four amino acids (valine, leucine, isoleucine and phenylalanine) was added into soy whey at a total concentration of +40, +80, +120 and +160 mg N/L and fermented with Torulaspora delbrueckii Biodiva for a period of 10 days. Increasing amino acid supplementation did not affect the yeast cell growth, but it sped up the sugar utilization proportionally. Increasing amino acid supplementation resulted in lower organic acid production and higher glycerol production. Amino acid supplementation also enhances the production rate of higher alcohols; increasing amount of higher alcohols and their respective esters were obtained with increasing amount of amino acid supplementation. However, higher levels of amino acid supplementation (particularly at +160 mg N/L sample) resulted in higher residual nitrogen contents which may lead to microbial instability. Supplementation of 120 mg N/L of amino acids was found to be the optimum concentration to enhance the metabolism of the yeast without leaving a high residual amino acid content. Therefore, with proper control of the amino acid addition dosage, the usage of mixed amino acid supplementation may be a strategy to regulate the fermentation kinetics and volatile compound modulation in soy whey alcohol fermentation.
Collapse
|
43
|
Nitrogen metabolism in three non-conventional wine yeast species: A tool to modulate wine aroma profiles. Food Microbiol 2020; 94:103650. [PMID: 33279075 DOI: 10.1016/j.fm.2020.103650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023]
Abstract
The positive impact of certain non-Saccharomyces yeasts on the aromatic profile of wines has been well documented in literature and their industrial use in association with S. cerevisiae is now recommended. Competition between non-Saccharomyces species and Saccharomyces cerevisiae for various nutrients, especially nitrogen sources, greatly impacts the production of aroma compounds. In this study, we further explored the impact of different nitrogen nutrition strategies on the production of carbon and sulphur volatile compounds of three non-Saccharomyces strains, namely Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae sequentially inoculated with S. cerevisiae in Sauvignon blanc and Shiraz grape musts. Nitrogen additions were implemented according the specific requirement of each species. At the end of fermentation, we observed specific metabolic signatures for each strain in response to the nature of the nitrogen source suggesting strain-specific metabolic fluxes present. Overall, these results confirmed and further explored the interconnection between nitrogen sources and aroma metabolism (including that of higher alcohols, fatty acids, esters and volatile sulphur compounds), and their variations according to species and the nature of the nitrogen source. The knowledge generated provides new insights to modulate the aroma profile of wines produced with non-Saccharomyces species.
Collapse
|
44
|
Gutiérrez-Gamboa G, Alañón-Sánchez N, Mateluna-Cuadra R, Verdugo-Vásquez N. An overview about the impacts of agricultural practices on grape nitrogen composition: Current research approaches. Food Res Int 2020; 136:109477. [PMID: 32846560 DOI: 10.1016/j.foodres.2020.109477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
Nitrogen is a structural component of proteins, nucleic acids, chlorophyll, hormones and amino acids. The last one and ammonium are important primary metabolites in grapes and are key compounds in winemaking since they are primary sources for yeast fermentation. Currently, grape quality has been affected due to the negative impacts of global warming and anthropogenic activity. Certain studies have reported a significant decrease in the free amino acids content and an increase in berry soluble solids and in proline biosynthesis in grapes in some grapevine varieties cultivated under warm climate conditions and water restriction. Proline is not metabolized by yeasts and stuck and sluggish fermentations can occur when the content of yeast assimilable nitrogen is low. Nitrogen composition of grape is mainly affected by variety, edaphoclimatic conditions of the vineyard and agricultural practices performed to the grapevines. This review summarized the most current research carried out to modify the nitrogen composition of the grape and give an overview of the technical and scientific aspects that should be considered for future research in this field.
Collapse
Affiliation(s)
- Gastón Gutiérrez-Gamboa
- Universidad de Talca, Facultad de Ciencias Agrarias, 2 Norte 685, Casilla 747, 346000 Talca, Chile.
| | - Noelia Alañón-Sánchez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Carretera de Burgos, Km. 6, 26007 Logroño, Spain
| | - Roberto Mateluna-Cuadra
- Universidad de Talca, Facultad de Ciencias Agrarias, 2 Norte 685, Casilla 747, 346000 Talca, Chile
| | - Nicolás Verdugo-Vásquez
- Instituto de Investigaciones Agropecuarias INIA, Centro de Investigación Intihuasi, Colina San Joaquín s/n, La Serena, Chile
| |
Collapse
|
45
|
Non-Saccharomyces in Winemaking: Source of Mannoproteins, Nitrogen, Enzymes, and Antimicrobial Compounds. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Traditionally, non-Saccharomyces yeasts have been considered contaminants because of their high production of metabolites with negative connotations in wine. This aspect has been changing in recent years due to an increased interest in the use of these yeasts in the winemaking process. The majority of these yeasts have a low fermentation power, being used in mixed fermentations with Saccharomyces cerevisiae due to their ability to produce metabolites of enological interest, such as glycerol, fatty acids, organic acids, esters, higher alcohols, stable pigments, among others. Additionally, existing literature reports various compounds derived from the cellular structure of non-Saccharomyces yeasts with benefits in the winemaking process, such as polysaccharides, proteins, enzymes, peptides, amino acids, or antimicrobial compounds, some of which, besides contributing to improving the quality of the wine, can be used as a source of nitrogen for the fermentation yeasts. These compounds can be produced exogenously, and later incorporated into the winemaking process, or be uptake directly by S. cerevisiae from the fermentation medium after their release via lysis of non-Saccharomyces yeasts in sequential fermentations.
Collapse
|
46
|
Tran T, Grandvalet C, Verdier F, Martin A, Alexandre H, Tourdot-Maréchal R. Microbial Dynamics between Yeasts and Acetic Acid Bacteria in Kombucha: Impacts on the Chemical Composition of the Beverage. Foods 2020; 9:E963. [PMID: 32708248 PMCID: PMC7404802 DOI: 10.3390/foods9070963] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Kombucha is a traditional low-alcoholic beverage made from sugared tea and transformed by a complex microbial consortium including yeasts and acetic acid bacteria (AAB). To study the microbial interactions and their impact on the chemical composition of the beverage, an experimental design with nine couples associating one yeast strain and one AAB strain isolated from original black tea kombucha was set up. Three yeast strains belonging to the genera Brettanomyces, Hanseniaspora, and Saccharomyces and three strains of Acetobacter and Komagataeibacter species were chosen. Monocultures in sugared tea were analyzed to determine their individual microbial behaviors. Then, cultivation of the original kombucha consortium and cocultures in sugared tea were compared to determine the interactive microbial effects during successive phases in open and closed incubation conditions. The results highlight the main impact of yeast metabolism on the product's chemical composition and the secondary impact of bacterial species on the composition in organic acids. The uncovered microbial interactions can be explained by different strategies for the utilization of sucrose. Yeasts and AAB unable to perform efficient sucrose hydrolysis rely on yeasts with high invertase activity to access released monosaccharides. Moreover, the presence of AAB rerouted the metabolism of Saccharomyces cerevisiae towards higher invertase and fermentative activities.
Collapse
Affiliation(s)
- Thierry Tran
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe Vin Alimentation Micro-organismes Stress (VAlMiS) Institut Universitaire de la Vigne et du Vin Jules Guyot, 2 rue Claude Ladrey, BP 27877, 21000/26, bd Docteur Petitjean, BP 87999, 21079 Dijon, France; (C.G.); (H.A.); (R.T.-M.)
| | - Cosette Grandvalet
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe Vin Alimentation Micro-organismes Stress (VAlMiS) Institut Universitaire de la Vigne et du Vin Jules Guyot, 2 rue Claude Ladrey, BP 27877, 21000/26, bd Docteur Petitjean, BP 87999, 21079 Dijon, France; (C.G.); (H.A.); (R.T.-M.)
| | | | - Antoine Martin
- Biomère, 14 rue Audubon, 75120 Paris, France; (F.V.); (A.M.)
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe Vin Alimentation Micro-organismes Stress (VAlMiS) Institut Universitaire de la Vigne et du Vin Jules Guyot, 2 rue Claude Ladrey, BP 27877, 21000/26, bd Docteur Petitjean, BP 87999, 21079 Dijon, France; (C.G.); (H.A.); (R.T.-M.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe Vin Alimentation Micro-organismes Stress (VAlMiS) Institut Universitaire de la Vigne et du Vin Jules Guyot, 2 rue Claude Ladrey, BP 27877, 21000/26, bd Docteur Petitjean, BP 87999, 21079 Dijon, France; (C.G.); (H.A.); (R.T.-M.)
| |
Collapse
|
47
|
Song Y, Gibney P, Cheng L, Liu S, Peck G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front Microbiol 2020; 11:1264. [PMID: 32670223 PMCID: PMC7326769 DOI: 10.3389/fmicb.2020.01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The fermentation of apple juice into hard cider is a complex biochemical process that transforms sugars into alcohols by yeast, of which Saccharomyces cerevisiae is the most widely used species. Among many factors, hydrogen sulfide (H2S) production by yeast during cider fermentation is affected by yeast strain and yeast assimilable nitrogen (YAN) concentration in the apple juice. In this study, we investigated the regulatory mechanism of YAN concentration on S. cerevisiae H2S formation. Two S. cerevisiae strains, UCD522 (a H2S-producing strain) and UCD932 (a non-H2S-producing strain), were used to ferment apple juice that had Low, Intermediate, and High diammonium phosphate (DAP) supplementation. Cider samples were collected 24 and 72 h after yeast inoculation. Using RNA-Seq, differentially expressed genes (DEGs) identification and annotation, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that gene expression was dependent on yeast strain, fermentation duration, H2S formation, and the interaction of these three factors. For UCD522, under the three DAP treatments, a total of 30 specific GO terms were identified. Of the 18 identified KEGG pathways, “Sulfur metabolism,” “Glycine, serine and threonine metabolism,” and “Biosynthesis of amino acids” were significantly enriched. Both GO and KEGG analyses revealed that the “Sulfate Reduction Sequence (SRS) pathway” was significantly enriched. We also found a complex relationship between H2S production and stress response genes. For UCD522, we confirm that there is a non-linear relationship between YAN and H2S production, with the Low and Intermediate treatments having greater H2S production than the High treatment. By integrating results obtained through the transcriptomic analysis with yeast physiological data, we present a mechanistic view into the H2S production by yeast as a result of different concentrations of YAN during cider fermentation.
Collapse
Affiliation(s)
- Yangbo Song
- College of Enology, Northwest A&F University, Yangling, China.,Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Patrick Gibney
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling, China
| | - Gregory Peck
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
48
|
Isotopic Tracers Unveil Distinct Fates for Nitrogen Sources during Wine Fermentation with Two Non- Saccharomyces Strains. Microorganisms 2020; 8:microorganisms8060904. [PMID: 32560056 PMCID: PMC7356982 DOI: 10.3390/microorganisms8060904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
Non-Saccharomyces yeast strains have become increasingly prevalent in the food industry, particularly in winemaking, because of their properties of interest both in biological control and in complexifying flavour profiles in end-products. However, unleashing the full potential of these species would require solid knowledge of their physiology and metabolism, which is, however, very limited to date. In this study, a quantitative analysis using 15N-labelled NH4Cl, arginine, and glutamine, and 13C-labelled leucine and valine revealed the specificities of the nitrogen metabolism pattern of two non-Saccharomyces species, Torulaspora delbrueckii and Metschnikowia pulcherrima. In T. delbrueckii, consumed nitrogen sources were mainly directed towards the de novo synthesis of proteinogenic amino acids, at the expense of volatile compounds production. This redistribution pattern was in line with the high biomass-producer phenotype of this species. Conversely, in M. pulcherrima, which displayed weaker growth capacities, a larger proportion of consumed amino acids was catabolised for the production of higher alcohols through the Ehrlich pathway. Overall, this comprehensive overview of nitrogen redistribution in T. delbrueckii and M. pulcherrima provides valuable information for a better management of co- or sequential fermentation combining these species with Saccharomyces cerevisiae.
Collapse
|
49
|
Simonin S, Roullier-Gall C, Ballester J, Schmitt-Kopplin P, Quintanilla-Casas B, Vichi S, Peyron D, Alexandre H, Tourdot-Maréchal R. Bio-Protection as an Alternative to Sulphites: Impact on Chemical and Microbial Characteristics of Red Wines. Front Microbiol 2020; 11:1308. [PMID: 32612594 PMCID: PMC7308991 DOI: 10.3389/fmicb.2020.01308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
In wine, one method of limiting the addition of sulphites, a harmful and allergenic agent, is bio-protection. This practice consists of the early addition of microorganisms on grape must before fermentation. Non-Saccharomyces yeasts have been proposed as an interesting alternative to sulphite addition. However, scientific data proving the effectiveness of bio-protection remains sparse. This study provides the first analysis of the chemical and microbiological effects of a Metschnikowia pulcherrima strain inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. Like sulphiting, bio-protection effectively limited the growth of spoilage microbiota and had no influence on the phenolic compounds protecting musts and wine from oxidation. The bio-protection had no effect on the volatile compounds and the sensory differences were dependent on the experimental sites. However, a non-targeted metabolomic analysis by FTICR-MS highlighted a bio-protection signature.
Collapse
Affiliation(s)
- Scott Simonin
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Philippe Schmitt-Kopplin
- Analytical Food Chemistry, Technische Universität München, Munich, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beatriz Quintanilla-Casas
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Stefania Vichi
- Nutrition, Food Science and Gastronomy Department, INSA - XaRTA (Catalonian Reference Network on Food Technology), University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Dominique Peyron
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon, France
| |
Collapse
|
50
|
Sequential Non-Saccharomyces and Saccharomyces cerevisiae Fermentations to Reduce the Alcohol Content in Wine. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decades, the average alcohol content of wine has increased due to climate change and consumer preferences for particular wine styles that resulted in increased grape sugar levels at harvest. Therefore, alcohol reduction is a current challenge in the winemaking industry. Among several strategies under study, the use of non-conventional yeasts in combination with Saccharomyces cerevisiae plays an important role for lowering ethanol production in wines nowadays. In the present work, 33 native non-Saccharomyces strains were assayed in sequential culture with a S. cerevisiae wine strain to determine their potential for reducing the alcohol content in Malvar white wines. Four of the non-Saccharomyces strains (Wickerhamomyces anomalus 21A-5C, Meyerozyma guilliermondii CLI 1217, and two Metschnikowia pulcherrima (CLI 68 and CLI 460)) studied in sequential combination with S. cerevisiae CLI 889 were best able to produce dry wines with decreased alcohol proportion in comparison with one that was inoculated only with S. cerevisiae. These sequential fermentations produced wines with between 0.8% (v/v) and 1.3% (v/v) lower ethanol concentrations in Malvar wines, showing significant differences compared with the control. In addition, these combinations provided favorable oenological characteristics to wines such as high glycerol proportion, volatile higher alcohols, and esters with fruity and sweet character.
Collapse
|