1
|
Ma JH, Ying MX, Lu ZW, Guan ZW, Zhang CQ, Zhu XL, Yang GF. The resistance mechanism of B_P225F and B_H272R mutations in succinate dehydrogenase in Botrytis cinerea. Int J Biol Macromol 2024; 293:139360. [PMID: 39743098 DOI: 10.1016/j.ijbiomac.2024.139360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Botrytis cinerea populations resistant to succinate dehydrogenase inhibitors (SDHIs) represent a major problem for the sustainable development of modern agriculture. In the present study, the resistance mechanism of B_P225F and B_H272R mutations in B. cinerea SDH (BcSDH) resistant to SDHIs fungicides, including boscalid (BOS), penflufen (PEN), pydiflumetofen (PYD), fluopyram (FLU), and benzovindiflupyr (BEN), was uncovered. The biological assay results showed that both mutations exhibited different resistant factor (RF) for SDHIs. The molecular modeling results indicated that the B_P225F and B_H272R mutations had great effects on the conformational change of the binding pocket and the binding modes of inhibitors. For both mutations, the cation-π interaction between ligand and the residue of C_R88, playing an important contribution to the binding affinity in wild type (WT), was decreased in B_P225F and disappeared in B_H272R. It was interesting that an additional hydrogen bond (Hbond) established between inhibitors with B_R272 compensated for the reduction in binding energy that occurred with the B_H272R mutation. As a result, both mutant types (B_P225F and B_H272R) have a lower affinity when bound with SDHIs than the WT-BcSDH. The structural and mechanistic insights obtained from the present work will provide a valuable clue for designing novel SDH inhibitors to overcome drug resistance associated with B_P225F and B_H272R mutations.
Collapse
Affiliation(s)
- Jun-Hao Ma
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Mao-Xue Ying
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Zong-Wei Lu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Ze-Wei Guan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Chuan-Qing Zhang
- College of Advanced Agricultural Sciences, Zhejiang A and F University, Lin'an 311300, PR China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Pandey M, Amiri A. High resistance levels to pyrimethanil and fludioxonil among fourteen Penicillium spp. from pome fruits in the U.S. Pacific Northwest. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106206. [PMID: 39672630 DOI: 10.1016/j.pestbp.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 12/15/2024]
Abstract
In this study, 162 Penicillium isolates, i.e., 31 P. expansum isolates and 131 isolates from 13 other Penicillium spp. referred to as "non-expansum" were collected from apples and pears from multiple packinghouses in Washington State and Oregon. The sensitivity of the isolates to the postharvest fungicides pyrimethanil (PYR) and fludioxonil (FDL) was assessed in vitro. The mean EC50 value for PYR was 0.75 μg/mL in P. expansum compared to 1.63, 3.47, 6.95, 7.06 and 32.21 μg/mL in P. solitum, P. palitans, P. commune, P. roqueforti and P. carneum, respectively. For FDL, the mean EC50 value was 0.04 μg/mL in P. expansum compared to >0.80, 1.00, 10.40, 13.99, and 158.10 μg/mL in P. commune, P. palitans, P. roqueforti, P. solitum, and P. paneum, respectively. Overall, > 40 % of isolates from five "non-expansum" species showed dual resistance to PYR and FDL versus 9.6 % in P. expansum. The recommended rates of PYR and FDL failed to control isolates of six Penicillium spp. on detached apples after five months at 1.5 °C. Sequencing of the Mdl1, NikA, and Os1 genes from different isolates of eight species revealed a high polymorphism in the Mdl1 and NikA of several "non-expansum" species. Three and two concurrent mutations, in addition to a G409R and S959, were detected in the Mdl1 and NikA, respectively, that potentially confer resistance to PYR and FDL. The high level of resistance and the control failure observed on fruits highlight the potential risk posed by several "non-expansum" Penicillium species to pome fruit packers.
Collapse
Affiliation(s)
- Madan Pandey
- Washington State University, Department of Plant Pathology, Tree Fruit Research and Extension Center, 1100 N. Western Ave, Wenatchee, WA 98801, USA; University of Minnesota, Department of Horticulture, 1790 Folwell Ave, St. Paul, MN 55108, USA
| | - Achour Amiri
- Washington State University, Department of Plant Pathology, Tree Fruit Research and Extension Center, 1100 N. Western Ave, Wenatchee, WA 98801, USA.
| |
Collapse
|
3
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
4
|
Sofianos G, Piombo E, Dubey M, Karlsson M, Karaoglanidis G, Tzelepis G. Transcriptomic and functional analyses on a Botrytis cinerea multidrug-resistant (MDR) strain provides new insights into the potential molecular mechanisms of MDR and fitness. MOLECULAR PLANT PATHOLOGY 2024; 25:e70004. [PMID: 39244735 PMCID: PMC11380696 DOI: 10.1111/mpp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Botrytis cinerea is a notorious pathogen causing pre- and post-harvest spoilage in many economically important crops. Excessive application of site-specific fungicides to control the pathogen has led to the selection of strains possessing target site alterations associated with resistance to these fungicides and/or strains overexpressing efflux transporters associated with multidrug resistance (MDR). MDR in B. cinerea has been correlated with the overexpression of atrB and mfsM2, encoding an ATP-binding cassette (ABC) and a major facilitator superfamily (MFS) transporter, respectively. However, it remains unknown whether other transporters may also contribute to the MDR phenotype. In the current study, the transcriptome of a B. cinerea multidrug-resistant (MDR) field strain was analysed upon exposure to the fungicide fludioxonil, and compared to the B05.10 reference strain. The transcriptome of this field strain displayed significant differences as compared to B05.10, including genes involved in sugar membrane transport, toxin production and virulence. Among the induced genes in the field strain, even before exposure to fludioxonil, were several putatively encoding ABC and MFS transmembrane transporters. Overexpression of a highly induced MFS transporter gene in the B05.10 strain led to an increased tolerance to the fungicides fluopyram and boscalid, indicating an involvement in efflux transport of these compounds. Overall, the data from this study give insights towards better understanding the molecular mechanisms involved in MDR and fitness cost, contributing to the development of more efficient control strategies against this pathogen.
Collapse
Affiliation(s)
- Georgios Sofianos
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| | - George Karaoglanidis
- Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, Aristotelian University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Uppsala, Sweden
| |
Collapse
|
5
|
Esterio M, Osorio-Navarro C, Rodríguez D, Copier C, Rubilar M, Azócar M, Estrada V, Auger J. Chilean Botrytis cinerea Isolates with Reduced Sensitivity to Fludioxonil Exhibit Low to Null Fitness Penalties. PLANT DISEASE 2024; 108:1481-1485. [PMID: 38301218 DOI: 10.1094/pdis-10-23-2015-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The main phytosanitary problem for table grape production in Chile is gray mold caused by the fungus Botrytis cinerea. To manage this issue, the primary method utilized is chemical control. Fludioxonil, a phenylpyrrole, is highly effective in controlling B. cinerea and other plant pathogens. Consistently, there have been no field reports of reduced efficacy of fludioxonil; however, subpopulations with reduced sensitivity to fludioxonil are on the rise globally, as per increasing reports. Our study involved a large-scale evaluation of B. cinerea's sensitivity to fludioxonil in the Central Valley of Chile's primary table grape production area during the growing seasons from 2015 to 2018. Out of 2,207 isolates, only 1.04% of the isolates (n = 23) exceeded the sensitivity threshold value of 1 μg/ml. Remarkably, 95.7% are concentrated in a geographic region (Valparaíso Region). Isolates with reduced sensitivity to fludioxonil showed growth comparable with sensitive isolates and even more robust growth under nutritional deficit, temperature, or osmotic stress, suggesting greater environmental adaptation. When table grape detached berries were stored at 0°C, isolates less sensitive to fludioxonil caused larger lesions than sensitive isolates (2.82 mm compared with 1.48 mm). However, the lesions generated by both types of isolates were equivalent at room temperature. This study found no cross-resistance between fludioxonil and fenhexamid, an essential fungicide integrated with fludioxonil in Chilean B. cinerea control programs. All the Chilean isolates with reduced sensitivity to fludioxonil were controlled by the fludioxonil/cyprodinil mixture, a commonly employed form of fludioxonil. The cyprodinil sensitivity in the isolates with reduced sensitivity to fludioxonil explains their low field frequency despite their null fitness penalties. However, the emergence of fludioxonil-resistant isolates inside the Chilean B. cinerea population demands a comprehensive analysis of their genetic bases, accompanied by monitoring tools that allow the permanence of field fludioxonil efficacy.
Collapse
Affiliation(s)
- Marcela Esterio
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
- Plant Molecular Biology Centre, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniela Rodríguez
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Charleen Copier
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Mauricio Rubilar
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Madelaine Azócar
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Verónica Estrada
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Jaime Auger
- Laboratorio de Fitopatología Frutal y Molecular, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Li S, Yu Y, Xie P, Zhu X, Yang C, Wang L, Zhang S. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against Botrytis cinerea. Microorganisms 2024; 12:360. [PMID: 38399764 PMCID: PMC10891807 DOI: 10.3390/microorganisms12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Gray mold caused by Botrytis cinerea is a common postharvest fungal disease in fruit and vegetables. The prevention and treatment of postharvest gray mold has been one of the hot research issues addressed by researchers. This study aimed to investigate the effect of L-methionine and L-arginine on Botrytis cinerea in vitro and on cherry tomato fruit. The results of the in vitro experiment showed that L-methionine and L-arginine had significant inhibitory effects on the mycelial growth and spore germination of Botrytis cinerea, and the inhibitory effects were enhanced with increasing L-methionine or L-arginine concentration. In addition, L-methionine and L-arginine treatment increased the leakage of Botrytis cinerea electrolytes, proteins and nucleic acids. The experiment involving propidium iodide staining and malondialdehyde content assay also confirmed that L-methionine and L-arginine treatment could lead to cell membrane rupture and lipid peroxidation. The results of scanning electron microscopy further verified that the morphology of hyphae was damaged, deformed, dented and wrinkled after treatment with L-methionine or L-arginine. Fruit inoculation experiments displayed that L-methionine and L-arginine treatments significantly inhibited the occurrence and development of gray mold in postharvest cherry tomato. Therefore, treatment with L-methionine or L-arginine might be an effective means to control postharvest gray mold in fruit and vegetables.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (S.L.); (P.X.); (C.Y.)
| |
Collapse
|
7
|
Niu X, Wang Z, Wang C, Wang H. Dibenzylideneacetone Overcomes Botrytis cinerea Infection in Cherry Tomatoes by Inhibiting Chitinase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19422-19433. [PMID: 37915214 DOI: 10.1021/acs.jafc.3c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Chitinase, a crucial component of the fungal cell wall and septa, plays an important role in fungal germination by hydrolyzing chitin to provide carbon and energy for fungal growth and reproduction. In this study, we initially screened dibenzylideneacetone (DBA), a small molecule with inhibitory activity against Botrytis cinerea Chitinase, exhibiting an IC50 of 13.10 μg/mL. By constructing a three-dimensional (3D) model of the B. cinerea Chitinase and utilizing computational biology approaches, we found DBA bound to the active site pocket and formed strong π-π interactions and hydrophobic interactions with Chitinase, indicative of its competitive inhibitory mode. Site-directed mutagenesis also revealed that TRP-382, TRP-135, and ALA-215 were key amino acid residues involved in DBA binding. Subsequent antifungal assays showed that DBA had an MIC of 32 μg/mL against B. cinerea and EC50 values of 16.29 and 14.64 μg/mL in inhibiting mycelial growth and spore germination, respectively. Importantly, in vivo experiments demonstrated that DBA treatment significantly extended the shelf life of cherry tomatoes by 2-fold. Therefore, DBA represents a promising antifungal agent for fruit preservation applications.
Collapse
Affiliation(s)
- Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ziyou Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Chenyang Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
8
|
Sofianos G, Samaras A, Karaoglanidis G. Multiple and multidrug resistance in Botrytis cinerea: molecular mechanisms of MLR/MDR strains in Greece and effects of co-existence of different resistance mechanisms on fungicide sensitivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1273193. [PMID: 37868315 PMCID: PMC10585064 DOI: 10.3389/fpls.2023.1273193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Botrytis cinerea is a high-risk pathogen for fungicide resistance development. Within the fungal populations, strains have developed multiple mutations in different target genes leading to multiple resistance (MLR) or mutations associated with overexpression of efflux transporters leading to multidrug resistance (MDR). These types of resistance are a major threat, and their successful management is a major challenge. The current study was initiated to a) determine frequencies of MLR/MDR strains in populations originating from several crops, b) identify the types of MDR that occur in Greece, and c) determine interactions between MLR and MDR at the level of sensitivity to botryticides. The frequencies of MLR/MDR phenotypes were determined in 515 isolates subjected to bioassays using discriminatory concentrations of thiophanate-methyl, iprodione, cyprodinil, fenhexamid, boscalid, fluopyram, fludioxonil, pyraclostrobin, and tolnaftate. Interestingly, 7.8% and 31.3% of isolates from strawberry and rootstock seedlings were resistant to every single fungicide class, while MDR phenotypes from strawberries, rootstocks, and tomatoes accounted for 26%, 87%, and 13.4%, respectively. The MLR and MDR isolates were further molecularly analyzed regarding genes erg27, sdhB, Bcpos5, and Mrr1, responsible for resistance to fenhexamid, boscalid and fluopyram, cyprodinil, and MDR, respectively. The different mutations' presence was determined along with a new mutation in Mrr1 leading to MDR. MDR isolates were characterized as MDR1 or MDR1h based on the presence of a 3-bp deletion in Mrr1. MDR1h was predominant in isolates from rootstocks and MDR1 from tomatoes and strawberries, whereas the most frequent target-site mutations were F412S (erg27), H272R (sdhB), and L412F (Bcpos5). To determine whether the accumulation of target-site mutations along with MDR mutations exhibits an additive effect concerning fungicide resistance, the sensitivity of isolates possessing the predominant target-site mutations was calculated in both the presence and the absence of MDR-associated mutations. EC50 in cyprodinil and boscalid increased to about twofold in the presence of MDR mutations, while there was no difference for fenhexamid. In conclusion, MLR/MDR frequencies are notably high in heavily treated crops in Greece, and the combination of MLR and MDR mutations leads to even higher fungicide resistance levels, highlighting the importance of resistance management.
Collapse
Affiliation(s)
| | | | - Georgios Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Zhao H, Ding X, Chu X, Zhang H, Wang X, Zhang X, Liu H, Zhang X, Yin Z, Li Y, Ding X. Plant immune inducer ZNC promotes rutin accumulation and enhances resistance to Botrytis cinerea in tomato. STRESS BIOLOGY 2023; 3:36. [PMID: 37676331 PMCID: PMC10444710 DOI: 10.1007/s44154-023-00106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/09/2023] [Indexed: 09/08/2023]
Abstract
Gray mold is a destructive disease caused by Botrytis cinerea, a pervasive plant pathogen, which poses a threat to both tomato growth and postharvest storage. The utilization of induced resistance presents a potential strategy for combating plant pathogenic attacks. ZNC (zhinengcong), an extract derived from the endophytic fungus Paecilomyces variotii, has been discovered to play a vital role in preventing diverse forms of bacterial infections. Nevertheless, the precise mechanism behind its ability to enhance tomato resistance to fungi remains unclear. In this study, we found that the exogenous spraying of ZNC could significantly improve the resistance of tomato plants to B. cinerea. The results of both the metabolomic analysis and high-performance liquid chromatography (HPLC) demonstrated that tomato plants responded to ZNC treatment by accumulating high levels of rutin. Additional transcriptome analysis uncovered that rutin enhances tomato resistance possible by initiating the generation of reactive oxygen species (ROS) and phosphorylation of mitogen-activated protein kinases (MPKs) related genes expression during the initial phase of invasion by B. cinerea. In addition, we also found that rutin might activate plant immunity by eliciting ethylene (ET) and jasmonic acid (JA)-mediated pathways. Therefore, plant immune inducer ZNC and rutin has bright application prospects and high utilization value to control gray mold.
Collapse
Affiliation(s)
- Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiangyu Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xinwen Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China
| | - Xiaoying Zhang
- Shandong Pengbo Biotechnology Co., Ltd., Taian, 271000, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong, P. R. China.
| |
Collapse
|
10
|
Fan F, Zhu YX, Wu MY, Yin WX, Li GQ, Hahn M, Hamada MS, Luo CX. Mitochondrial Inner Membrane ABC Transporter Bcmdl1 Is Involved in Conidial Germination, Virulence, and Resistance to Anilinopyrimidine Fungicides in Botrytis cinerea. Microbiol Spectr 2023; 11:e0010823. [PMID: 37318357 PMCID: PMC10434148 DOI: 10.1128/spectrum.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 06/16/2023] Open
Abstract
Botrytis cinerea causes gray mold on thousands of plants, leading to huge losses in production. Anilinopyrimidine (AP) fungicides have been applied to control B. cinerea since the 1990s. Although resistance to AP fungicides was detected soon after their application, the mechanism of AP resistance remains to be elucidated. In this study, a sexual cross between resistant and sensitive isolates was performed, and the genomes of parental isolates and progenies were sequenced to identify resistance-related single nucleotide polymorphisms (SNPs). After screening and verification, mutation E407K in the Bcmdl1 gene was identified and confirmed to confer resistance to AP fungicides in B. cinerea. Bcmdl1 was predicted to encode a mitochondrial protein that belonged to a half-type ATP-binding cassette (ABC) transporter. Although Bcmdl1 was a transporter, it did not mediate resistance to multiple fungicides but mediated resistance specifically to AP fungicides. On the other hand, reductions in conidial germination and virulence were observed in Bcmdl1 knockout transformants compared to the parental isolate and complemented transformants, illustrating the biological functions of Bcmdl1. Subcellular localization analysis indicated that Bcmdl1 was localized in mitochondria. Interestingly, the production of ATP was reduced after cyprodinil treatment in Bcmdl1 knockout transformants, suggesting that Bcmdl1 was involved in ATP synthesis. Since Mdl1 could interact with ATP synthase in yeast, we hypothesize that Bcmdl1 forms a complex with ATP synthase, which AP fungicides might target, thereby interfering with the metabolism of energy. IMPORTANCE Gray mold, caused by B. cinerea, causes huge losses in the production of many fruits and vegetables. AP fungicides have been largely adopted to control this disease since the 1990s, and the development of resistance to AP fungicides initiates new problems for disease control. Due to the unknown mode of action, information on the mechanism of AP resistance is also limited. Recently, mutations in mitochondrial genes were reported to be related to AP resistance. However, the mitochondrial process of these genes remains to be elucidated. In this study, we identified several AP resistance-related mutations by quantitative trait locus sequencing (QTL-seq) and confirmed that mutation E407K in Bcmdl1 conferred AP resistance. We further characterized the expression patterns, biological functions, subcellular localization, and mitochondrial processes of the Bcmdl1 gene. This study deepens our understanding of the mechanism of resistance to and mode of action of AP fungicides.
Collapse
Affiliation(s)
- Fei Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Xu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Yi Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guo-Qing Li
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed S. Hamada
- Pesticides Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Fan F, Wu MY, Zhu YX, Li GQ, Luo CX. Site-directed transformants with E407K substitution in Bcmdl1 possesses different fitness from field anilinopyrimidine resistant isolates with E407K mutation in Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105427. [PMID: 37248005 DOI: 10.1016/j.pestbp.2023.105427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/31/2023]
Abstract
Botrytis cinerea is the causal agent of devastating disease gray mold on numerous crops worldwide. To control gray mold, anilinopyrimidine (AP) fungicides have been widely applied since the 1990s. However, the development of resistance in B. cinerea brought a new challenge to this disease control. Due to the unknown mode of action, the mechanism of AP resistance is still ambiguous. In our previous study, mutation E407K in Bcmdl1 was identified to be associated with AP resistance. Since this mutation is the major mechanism of AP resistance in our cases, it is essential to investigate the fitness of E407K strains before designing anti-resistance management strategies. Besides using field-resistant isolates with the E407K mutation, strains with E407K substitution obtained by site-directed mutagenesis were also used to estimate the specific effect of this mutation or substitution on fitness. The fitness of E407K strains were evaluated by determining mycelial growth, sporulation, conidial germination, virulence, acid production, osmotic and oxidative sensitivity, and sclerotial production and viability. Field resistant isolates with E407K mutation produced fewer sclerotia on intermediate medium (IM) but more conidia on PDA when compared with sensitive isolates, whereas site-directed transformants with E407K substitution did not show any fitness costs. The competitive ability of E407K strains was also evaluated on apple fruit using conidial mixtures at three initial ratios of resistant and sensitive isolates at 1:9, 1:1, and 9:1, respectively. Similar with fitness, impaired competitive ability was observed in field resistant isolates but not site-directed transformants at all initial ratios tested. These results indicated that field strains associated with AP resistance suffer a fitness penalty not linked directly to the E407K substitution in Bcmdl1.
Collapse
Affiliation(s)
- Fei Fan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Yi Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Xu Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo-Qing Li
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Ismail AM, Mosa MA, El-Ganainy SM. Chitosan-Decorated Copper Oxide Nanocomposite: Investigation of Its Antifungal Activity against Tomato Gray Mold Caused by Botrytis cinerea. Polymers (Basel) 2023; 15:polym15051099. [PMID: 36904340 PMCID: PMC10007424 DOI: 10.3390/polym15051099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Owing to the remarkable antimicrobial potential of these materials, research into the possible use of nanomaterials as alternatives to fungicides in sustainable agriculture is increasingly progressing. Here, we investigated the potential antifungal properties of chitosan-decorated copper oxide nanocomposite (CH@CuO NPs) to control gray mold diseases of tomato caused by Botrytis cinerea throughout in vitro and in vivo trials. The nanocomposite CH@CuO NPs were chemically prepared, and size and shape were determined using Transmission Electron Microscope (TEM). The chemical functional groups responsible for the interaction of the CH NPs with the CuO NPs were detected using the Fourier Transform Infrared (FTIR) spectrophotometry. The TEM images confirmed that CH NPs have a thin and semitransparent network shape, while CuO NPs were spherically shaped. Furthermore, the nanocomposite CH@CuO NPs ex-habited an irregular shape. The size of CH NPs, CuO NPs and CH@CuO NPs as measured through TEM, were approximately 18.28 ± 2.4 nm, 19.34 ± 2.1 nm, and 32.74 ± 2.3 nm, respectively. The antifungal activity of CH@CuO NPs was tested at three concentrations of 50, 100 and 250 mg/L and the fungicide Teldor 50% SC was applied at recommended dose 1.5 mL/L. In vitro experiments revealed that CH@CuO NPs at different concentrations significantly inhibited the reproductive growth process of B. cinerea by suppressing the development of hyphae, spore germination and formation of sclerotia. Interestingly, a significant control efficacy of CH@CuO NPs against tomato gray mold was observed particularly at concentrations 100 and 250 mg/L on both detached leaves (100%) as well as the whole tomato plants (100%) when compared to the conventional chemical fungicide Teldor 50% SC (97%). In addition, the tested concentration 100 mg/L improved to be sufficient to guarantee a complete reduction in the disease's severity (100%) to tomato fruits from gray mold without any morphological toxicity. In comparison, tomato plants treated with the recommended dose 1.5 mL/L of Teldor 50% SC ensured disease reduction up to 80%. Conclusively, this research enhances the concept of agro-nanotechnology by presenting how a nano materials-based fungicide could be used to protect tomato plants from gray mold under greenhouse conditions and during the postharvest stage.
Collapse
Affiliation(s)
- Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (A.M.I.); (M.A.M.)
| | - Mohamed A. Mosa
- Nanotechnology & Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (A.M.I.); (M.A.M.)
| | - Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
13
|
Islam MD, Harrison BD, Li JJY, McLoughlin AG, Court DA. Do mitochondria use efflux pumps to protect their ribosomes from antibiotics? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001272. [PMID: 36748523 PMCID: PMC9993110 DOI: 10.1099/mic.0.001272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.
Collapse
Affiliation(s)
- Md Deen Islam
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Brian D Harrison
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Judy J-Y Li
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Austein G McLoughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
14
|
A Melanin-Deficient Isolate of Venturia inaequalis Reveals Various Roles of Melanin in Pathogen Life Cycle and Fitness. J Fungi (Basel) 2022; 9:jof9010035. [PMID: 36675856 PMCID: PMC9867426 DOI: 10.3390/jof9010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Venturia inaequalis is the ascomycetous pathogen causing apple scabs and forms dark-pigmented spores and partially melanised infection structures. Although melanin is considered to be essential for the infection of host tissue, a spontaneously occurring melanin-deficient mutant was isolated from an abaxial side of an apple leaf and can be cultivated in vitro as well as in vivo. The morphology and development of the melanin-deficient-isolate SW01 on leaves of susceptible apple plants were compared to that of the corresponding wild-type isolate HS1. White conidia of SW01 were often wrinkled when dry and significantly increased their volume in suspension. Germination and formation of germtubes and appressoria were not impaired; however, the lack of melanisation of the appressorial ring structure at the interface with the plant cuticle significantly reduced the infection success of SW01. The colonisation of leaf tissue by non-melanised subcuticular hyphae was not affected until the initiation of conidiogenesis. Non-melanised conidiophores penetrated the plant cuticle from inside less successfully than the wild type, and the release of white conidia from less solid conidiophores above the cuticle was less frequent. Melanin in the outer cell wall of V. inaequalis was not required for the survival of conidia under ambient temperature or at -20 °C storage conditions, however, promoted the tolerance of the pathogen to copper and synthetic fungicides affecting the stability and function of the fungal cell wall, plasma membrane, respiration (QoIs) and enzyme secretion, but had no effect on the sensitivity to sulphur and SDHIs. The roles of melanin in different steps of the V. inaequalis life cycle and the epidemiology of apple scabs are discussed.
Collapse
|
15
|
Detection of Venturia inaequalis Isolates with Multiple Resistance in Greece. Microorganisms 2022; 10:microorganisms10122354. [PMID: 36557607 PMCID: PMC9780820 DOI: 10.3390/microorganisms10122354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
The excessive use of fungicides against Venturia inaequalis, the causal agent of apple scab, has led to the emergence of resistant populations to multiple fungicides over the years. In Greece, there is no available information on fungicide resistance, despite the fact that control failures have been reported on certain areas. An amount of 418 single-spore isolates were collected from three major apple production areas and tested for their sensitivity to eight commonly used fungicides from unrelated chemical groups. The isolates were tested on malt extract agar media enriched with the discriminatory dose of each fungicide using the point inoculation method. To define the discriminatory dose for assessing the levels of resistance, EC50 values on both spore germination and mycelial growth assays were previously determined. Isolates exhibiting high resistance to trifloxystrobin (92% in total) and difenoconazole (3%); and moderate resistance to cyprodinil (75%), dodine (28%), difenoconazole (36%), boscalid (5%), and fludioxonil (7%) were found for the first time in Greece. A small percentage of the isolates were also found less sensitive to captan (8%) and dithianon (6%). Two isolates showed various levels of resistance to all eight fungicides. Despite the occurrence of strains with multiple resistances to many fungicides, we concluded that this practical resistance in the field arose mainly due to the poor control of apple scab with trifloxystrobin and difenoconazole.
Collapse
|
16
|
Wang F, Saito S, Michailides TJ, Xiao CL. Fungicide Resistance in Alternaria alternata from Blueberry in California and Its Impact on Control of Alternaria Rot. PLANT DISEASE 2022; 106:1446-1453. [PMID: 34874181 DOI: 10.1094/pdis-09-21-1971-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternaria rot caused by Alternaria alternata is one of the major postharvest diseases affecting blueberries in California. The sensitivity profiles of A. alternata from blueberry field to quinone outside inhibitors (QoIs), boscalid, fluopyram, fludioxonil, cyprodinil, and polyoxin D in California were examined in this study. EC50 values of 51 A. alternata isolates for boscalid varied greatly among the isolates, ranging from 0.265 to >100 μg/ml. EC50 values of 51 A. alternata isolates to fluopyram, fludioxonil, cyprodinil, and polyoxin D were 5.188 ± 7.118, 0.078 ± 0.021, 0.465 ± 0.302, and 6.238 ± 7.352 μg/ml, respectively. In total, 143 isolates were screened for resistance at 5 and 10 μg/ml for fludioxonil, cyprodinil, and fluopyram, 10 μg/ml for polyoxin D, and 10 and 50 μg/ml for boscalid. Based on the published discriminatory concentrations for phenotyping resistance, of the 143 isolates, all were considered resistant to boscalid; 32, 69, and 42 were sensitive, low resistant, and resistant to fluopyram, respectively; and all were sensitive to fludioxonil and cyprodinil. In a PCR-restriction fragment length polymorphism method for phenotyping, 60 out of the 143 isolates were classified as resistant to QoIs. Control tests on detached blueberry fruit inoculated with different Alternaria isolates showed that fludioxonil and cyprodinil significantly reduced disease incidence and severity; however, pyraclostrobin, boscalid, fluopyram, and polyoxin D significantly reduced only disease severity. The obtained results will be helpful in making decisions on fungicide programs to control A. alternata isolates with resistance or reduced sensitivities to multiple fungicides.
Collapse
Affiliation(s)
- Fei Wang
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Seiya Saito
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Themis J Michailides
- Department of Plant Pathology, University of California Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Chang-Lin Xiao
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
17
|
Walker EK, Brock GN, Arvidson RS, Johnson RM. Acute Toxicity of Fungicide-Insecticide-Adjuvant Combinations Applied to Almonds During Bloom on Adult Honey Bees. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1042-1053. [PMID: 35060643 PMCID: PMC9313819 DOI: 10.1002/etc.5297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/06/2021] [Accepted: 01/10/2022] [Indexed: 05/26/2023]
Abstract
Beekeepers report significant honey bee deaths during and after almond bloom. These losses pose a major problem for the California almond industry because of its dependence on honey bees as pollinators. The present study aimed to determine if combinations of pesticides applied during almond bloom during daylight hours were a possible explanation for these losses. In this study we aimed to mimic the spray application route of exposure to pesticides using a Potter Spray Tower to treat adult honey bees with commonly encountered pesticides and pesticide combinations at multiples of the maximum recommended field application rates. Tested insecticides included Altacor® and Intrepid®, and tested fungicides included Tilt®, Pristine®, Luna Sensation®, and Vangard®. Synergistic toxicity was observed when the fungicide Tilt (active ingredient propiconazole) was applied with the insecticide Altacor (chlorantraniliprole), though neither caused significant mortality when applied independently. The study also looked at the effect of adding a spray adjuvant, Dyne-Amic®, to pesticide mixtures. Dyne-Amic was toxic to honey bees at concentrations above the maximum recommended field application rate, and toxicity was increased when combined with the fungicide Pristine (pyraclostrobin and boscalid). Addition of Dyne-Amic also increased toxicity of the Tilt and Altacor combination. These results suggest that application of Altacor and Tilt in combination with an adjuvant at the recommended field application rates could cause mortality in adult honey bees. These findings highlight a potential explanation for honey bee losses around almond bloom, emphasize that the safety of spray adjuvants to bees should not be assumed, and provide support for recommendations to protect bees from pesticides through application at night when bees are not foraging. Environ Toxicol Chem 2022;41:1042-1053. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Emily K. Walker
- Environmental Sciences Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Guy N. Brock
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOhioUSA
| | - Ryan S. Arvidson
- Departments of Biology and ChemistryThe College of WoosterWoosterOhioUSA
| | - Reed M. Johnson
- Department of EntomologyThe Ohio State UniversityWoosterOhioUSA
| |
Collapse
|
18
|
Harper LA, Paton S, Hall B, McKay S, Oliver RP, Lopez-Ruiz FJ. Fungicide resistance characterized across seven modes of action in Botrytis cinerea isolated from Australian vineyards. PEST MANAGEMENT SCIENCE 2022; 78:1326-1340. [PMID: 34854539 DOI: 10.1002/ps.6749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Botrytis bunch rot, caused by Botrytis cinerea, is an economically important disease of grapes in Australia and across grape-growing regions worldwide. Control of this disease relies on canopy management and the application of fungicides. Fungicide application can lead to the selection of resistant B. cinerea populations, which has an adverse effect on the management of the disease. Characterizing the distribution and severity of resistant B. cinerea populations is needed to inform resistance management strategies. RESULTS In this study, 724 isolates were sampled from 76 Australian vineyards during 2013-2016 and were screened against seven fungicides with different modes of action (MOAs). The resistance frequencies for azoxystrobin, boscalid, fenhexamid, fludioxonil, iprodione, pyrimethanil and tebuconazole were 5%, 2.8%, 2.1%, 6.2%, 11.6%, 7.7% and 2.9%, respectively. Nearly half of the resistant isolates (43.8%) were resistant to more than one of the fungicides tested. The frequency of vineyards with at least one isolate simultaneously resistant to one, two, three, four or five fungicides was 19.7%, 7.9%, 6.6%, 10.5% and 2.6%. Resistance was associated with previously published genotypes in CytB (G143A), SdhB (H272R/Y), Erg27 (F412S), Mrr1 (D354Y), Bos1 (I365S, N373S + Q369P, I365S + D757N) and Pos5 (V273I, P319A, L412F/V). Novel genotypes were also described in Mrr1 (S611N, D616G), Pos5 (V273L) and Cyp51 (P347S). Expression analysis was used to characterize fludioxonil-resistant isolates exhibiting overexpression (6.3-9.6-fold) of the ABC transporter gene AtrB (MDR1 phenotype). CONCLUSION Resistance frequencies were lower when compared to most previously published surveys of B. cinerea resistance in grape and other crops. Nevertheless, continued monitoring of critical MOAs used in Australian vineyards is recommended. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lincoln A Harper
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | | | - Barbara Hall
- South Australian Research and Development Institute, Plant Health and Biosecurity, Urrbrae, Australia
| | - Suzanne McKay
- South Australian Research and Development Institute, Plant Health and Biosecurity, Urrbrae, Australia
| | - Richard P Oliver
- School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| |
Collapse
|
19
|
Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14074056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.
Collapse
|
20
|
Leisen T, Werner J, Pattar P, Safari N, Ymeri E, Sommer F, Schroda M, Suárez I, Collado IG, Scheuring D, Hahn M. Multiple knockout mutants reveal a high redundancy of phytotoxic compounds contributing to necrotrophic pathogenesis of Botrytis cinerea. PLoS Pathog 2022; 18:e1010367. [PMID: 35239739 PMCID: PMC8923502 DOI: 10.1371/journal.ppat.1010367] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/15/2022] [Accepted: 02/12/2022] [Indexed: 11/19/2022] Open
Abstract
Botrytis cinerea is a major plant pathogen infecting more than 1400 plant species. During invasion, the fungus rapidly kills host cells, which is believed to be supported by induction of programmed plant cell death. To comprehensively evaluate the contributions of most of the currently known plant cell death inducing proteins (CDIPs) and metabolites for necrotrophic infection, an optimized CRISPR/Cas9 protocol was established which allowed to perform serial marker-free mutagenesis to generate multiple deletion mutants lacking up to 12 CDIPs. Whole genome sequencing of a 6x and 12x deletion mutant revealed a low number of off-target mutations which were unrelated to Cas9-mediated cleavage. Secretome analyses confirmed the loss of secreted proteins encoded by the deleted genes. Infection tests with the mutants revealed a successive decrease in virulence with increasing numbers of mutated genes, and varying effects of the knockouts on different host plants. Comparative analysis of mutants confirmed significant roles of two polygalacturonases (PG1, PG2) and the phytotoxic metabolites botrydial and botcinins for infection, but revealed no or only weak effects of deletion of the other CDIPs. Nicotiana benthamiana plants with mutated or silenced coreceptors of pattern recognition receptors, SOBIR1 and BAK1, showed similar susceptibility as control plants to infection by B. cinerea wild type and a 12x deletion mutant. These results raise doubts about a major role of manipulation of these plant defence regulators for B. cinerea infection. Despite the loss of most of the known phytotoxic compounds, the on planta secretomes of the multiple mutants retained substantial phytotoxic activity, proving that further, as yet unknown CDIPs contribute to necrosis and virulence. Our study has addressed for the first time systematically the functional redundancy of fungal virulence factors, and demonstrates that B. cinerea releases a highly redundant cocktail of proteins to achieve necrotrophic infection of a wide variety of host plants.
Collapse
Affiliation(s)
- Thomas Leisen
- Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Janina Werner
- Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Patrick Pattar
- Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Nassim Safari
- Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Edita Ymeri
- Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Frederik Sommer
- Department of Biology, Molecular Biotechnology & Systems Biology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Department of Biology, Molecular Biotechnology & Systems Biology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Ivonne Suárez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - David Scheuring
- Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Hahn
- Department of Biology, Phytopathology group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
21
|
Fonseca PLC, De-Paula RB, Araújo DS, Tomé LMR, Mendes-Pereira T, Rodrigues WFC, Del-Bem LE, Aguiar ERGR, Góes-Neto A. Global Characterization of Fungal Mitogenomes: New Insights on Genomic Diversity and Dynamism of Coding Genes and Accessory Elements. Front Microbiol 2021; 12:787283. [PMID: 34925295 PMCID: PMC8672057 DOI: 10.3389/fmicb.2021.787283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
Fungi comprise a great diversity of species with distinct ecological functions and lifestyles. Similar to other eukaryotes, fungi rely on interactions with prokaryotes and one of the most important symbiotic events was the acquisition of mitochondria. Mitochondria are organelles found in eukaryotic cells whose main function is to generate energy through aerobic respiration. Mitogenomes (mtDNAs) are double-stranded circular or linear DNA from mitochondria that may contain core genes and accessory elements that can be replicated, transcribed, and independently translated from the nuclear genome. Despite their importance, investigative studies on the diversity of fungal mitogenomes are scarce. Herein, we have evaluated 788 curated fungal mitogenomes available at NCBI database to assess discrepancies and similarities among them and to better understand the mechanisms involved in fungal mtDNAs variability. From a total of 12 fungal phyla, four do not have any representative with available mitogenomes, which highlights the underrepresentation of some groups in the current available data. We selected representative and non-redundant mitogenomes based on the threshold of 90% similarity, eliminating 81 mtDNAs. Comparative analyses revealed considerable size variability of mtDNAs with a difference of up to 260 kb in length. Furthermore, variation in mitogenome length and genomic composition are generally related to the number and length of accessory elements (introns, HEGs, and uORFs). We identified an overall average of 8.0 (0–39) introns, 8.0 (0–100) HEGs, and 8.2 (0–102) uORFs per genome, with high variation among phyla. Even though the length of the core protein-coding genes is considerably conserved, approximately 36.3% of the mitogenomes evaluated have at least one of the 14 core coding genes absent. Also, our results revealed that there is not even a single gene shared among all mitogenomes. Other unusual genes in mitogenomes were also detected in many mitogenomes, such as dpo and rpo, and displayed diverse evolutionary histories. Altogether, the results presented in this study suggest that fungal mitogenomes are diverse, contain accessory elements and are absent of a conserved gene that can be used for the taxonomic classification of the Kingdom Fungi.
Collapse
Affiliation(s)
- Paula L C Fonseca
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ruth B De-Paula
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thairine Mendes-Pereira
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luiz-Eduardo Del-Bem
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Discovery of novel photosensitized nanoparticles as a preservative for the storage of strawberries and their activity against Botrytis cinerea. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Shao W, Zhao Y, Ma Z. Advances in Understanding Fungicide Resistance in Botrytis cinerea in China. PHYTOPATHOLOGY 2021; 111:455-463. [PMID: 33174825 DOI: 10.1094/phyto-07-20-0313-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Gray mold, caused by Botrytis cinerea, is a devastating disease that causes significant yield losses in various economically important plants. Fungicide application is one of the main strategies for management of gray mold; however, B. cinerea has developed resistance to various groups of fungicide. In China, benzimidazole-, dicarboximide-, and quinone outside inhibitor-resistant populations of B. cinerea have become dominant. Substitute mutations in fungicide target genes are responsible for resistance in B. cinerea. Based on known resistance mechanisms, molecular methods including loop-mediated isothermal amplification have been developed for rapid detection of resistant isolates of B. cinerea. Because B. cinerea is able to quickly develop resistance to various fungicides, various integrated strategies have been implemented in the last decade, including biological and agricultural practices, to manage fungicide resistance in B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Zhonghua Ma
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Hu M, Chen S. Non-Target Site Mechanisms of Fungicide Resistance in Crop Pathogens: A Review. Microorganisms 2021; 9:microorganisms9030502. [PMID: 33673517 PMCID: PMC7997439 DOI: 10.3390/microorganisms9030502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
The rapid emergence of resistance in plant pathogens to the limited number of chemical classes of fungicides challenges sustainability and profitability of crop production worldwide. Understanding mechanisms underlying fungicide resistance facilitates monitoring of resistant populations at large-scale, and can guide and accelerate the development of novel fungicides. A majority of modern fungicides act to disrupt a biochemical function via binding a specific target protein in the pathway. While target-site based mechanisms such as alternation and overexpression of target genes have been commonly found to confer resistance across many fungal species, it is not uncommon to encounter resistant phenotypes without altered or overexpressed target sites. However, such non-target site mechanisms are relatively understudied, due in part to the complexity of the fungal genome network. This type of resistance can oftentimes be transient and noninheritable, further hindering research efforts. In this review, we focused on crop pathogens and summarized reported mechanisms of resistance that are otherwise related to target-sites, including increased activity of efflux pumps, metabolic circumvention, detoxification, standing genetic variations, regulation of stress response pathways, and single nucleotide polymorphisms (SNPs) or mutations. In addition, novel mechanisms of drug resistance recently characterized in human pathogens are reviewed in the context of nontarget-directed resistance.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Correspondence: (M.H.); (S.C.)
| | - Shuning Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (M.H.); (S.C.)
| |
Collapse
|
25
|
Kulik T, Van Diepeningen AD, Hausner G. Editorial: The Significance of Mitogenomics in Mycology. Front Microbiol 2021; 11:628579. [PMID: 33488569 PMCID: PMC7817700 DOI: 10.3389/fmicb.2020.628579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne D Van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Unconventional Yeasts Are Tolerant to Common Antifungals, and Aureobasidium pullulans Has Low Baseline Sensitivity to Captan, Cyprodinil, and Difenoconazole. Antibiotics (Basel) 2020; 9:antibiotics9090602. [PMID: 32942551 PMCID: PMC7557980 DOI: 10.3390/antibiotics9090602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023] Open
Abstract
Many yeasts have demonstrated intrinsic insensitivity to certain antifungal agents. Unlike the fungicide resistance of medically relevant yeasts, which is highly undesirable, intrinsic insensitivity to fungicides in antagonistic yeasts intended for use as biocontrol agents may be of great value. Understanding how frequently tolerance exists in naturally occurring yeasts and their underlying molecular mechanisms is important for exploring the potential of biocontrol yeasts and fungicide combinations for plant protection. Here, yeasts were isolated from various environmental samples in the presence of different fungicides (or without fungicide as a control) and identified by sequencing the internal transcribed spacer (ITS) region or through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Among 376 isolates, 47 taxa were identified, and Aureobasidium pullulans was the most frequently isolated yeast. The baseline sensitivity of this yeast was established for 30 isolates from different environmental samples in vitro to captan, cyprodinil, and difenoconazole. For these isolates, the baseline minimum inhibitory concentration (MIC50) values for all the fungicides were higher than the concentrations used for the control of plant pathogenic fungi. For some isolates, there was no growth inhibition at concentrations as high as 300 µg/mL for captan and 128 µg/mL for cyprodinil. This information provides insight into the presence of resistance among naturally occurring yeasts and allows the choice of strains for further mechanistic analyses and the assessment of A. pullulans for novel applications in combination with chemical agents and as part of integrated plant-protection strategies.
Collapse
|
27
|
Leisen T, Bietz F, Werner J, Wegner A, Schaffrath U, Scheuring D, Willmund F, Mosbach A, Scalliet G, Hahn M. CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea. PLoS Pathog 2020; 16:e1008326. [PMID: 32804988 PMCID: PMC7451986 DOI: 10.1371/journal.ppat.1008326] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/27/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
CRISPR/Cas has become the state-of-the-art technology for genetic manipulation in diverse organisms, enabling targeted genetic changes to be performed with unprecedented efficiency. Here we report on the first establishment of robust CRISPR/Cas editing in the important necrotrophic plant pathogen Botrytis cinerea based on the introduction of optimized Cas9-sgRNA ribonucleoprotein complexes (RNPs) into protoplasts. Editing yields were further improved by development of a novel strategy that combines RNP delivery with cotransformation of transiently stable vectors containing telomeres, which allowed temporary selection and convenient screening for marker-free editing events. We demonstrate that this approach provides superior editing rates compared to existing CRISPR/Cas-based methods in filamentous fungi, including the model plant pathogen Magnaporthe oryzae. Genome sequencing of edited strains revealed very few additional mutations and no evidence for RNP-mediated off-targeting. The high performance of telomere vector-mediated editing was demonstrated by random mutagenesis of codon 272 of the sdhB gene, a major determinant of resistance to succinate dehydrogenase inhibitor (SDHI) fungicides by in bulk replacement of the codon 272 with codons encoding all 20 amino acids. All exchanges were found at similar frequencies in the absence of selection but SDHI selection allowed the identification of novel amino acid substitutions which conferred differential resistance levels towards different SDHI fungicides. The increased efficiency and easy handling of RNP-based cotransformation is expected to accelerate molecular research in B. cinerea and other fungi. In this study, we describe the establishment of the CRISPR/Cas technology for genome editing in the gray mold fungus Botrytis cinerea, one of the economically most important plant pathogens worldwide. We report the development of a strategy which combines the introduction of an optimized nuclear-targeted Cas9-single guide RNA ribonucleoprotein complex (RNP) and a repair template together with unstable telomere vectors for transient selection into fungal protoplasts. A high proportion of the transformants contains the desired genetic changes, and the telomere vector is lost subsequently when selection is stopped. This system allowed introduction of changes into the genome without the requirement of selection markers. It shows superior editing efficiencies compared to existing CRISPR/Cas protocols for filamentous fungi, and leads to a very low number of additional off-target mutations. To demonstrate the performance of our protocol, we conducted for the first time a site-directed, random mutagenesis in a gene encoding an important fungicide target. This approach allows new applications such as in vivo structure-function analysis of proteins and rational fungicide resistance studies. As demonstrated with the rice blast pathogen Magnaporthe oryzae, the RNP-based CRISPR/Cas toolset with telomere vectors can be transferred to other fungi and is expected to boost their genetic manipulation.
Collapse
Affiliation(s)
- Thomas Leisen
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Fabian Bietz
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Janina Werner
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Alex Wegner
- RWTH Aachen University, Department of Plant Physiology, Aachen, Germany
| | - Ulrich Schaffrath
- RWTH Aachen University, Department of Plant Physiology, Aachen, Germany
| | - David Scheuring
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | - Felix Willmund
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
| | | | | | - Matthias Hahn
- University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
- * E-mail:
| |
Collapse
|
28
|
Kwak Y. Complete Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma atroviride: Genomic Features, Comparative Analysis and Insight Into the Mitochondrial Evolution in Trichoderma. Front Microbiol 2020; 11:785. [PMID: 32457712 PMCID: PMC7228111 DOI: 10.3389/fmicb.2020.00785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The improvement of biopesticides for use in the agriculture industry requires an understanding of the biological- and ecological principles underlying their behavior in natural environments. The nuclear genomes of members of the genus Trichoderma, which are representative fungal biocontrol agents, have been actively studied in relation to the unique characteristics of these species as effective producers of CAZymes/secondary metabolites and biopesticides, but their mitochondrial genomes have received much less attention. In this study, the mitochondrial genome of Trichoderma atroviride (Hypocreales, Sordariomycetes), which targets wood-decaying fungal pathogens and has the ability to degrade chemical fungicides, was assembled de novo. A 32,758 bp circular DNA molecule was revealed with specific features, such as a few more protein CDS and trn genes, two homing endonucleases (LAGLIDADG-/GIY-YIG-type), and even a putative overlapping tRNA gene, on a closer phylogenetic relationship with T. gamsii among hypocrealean fungi. Particularly, introns were observed with several footprints likely to be evolutionarily associated with the intron dynamics of the Trichoderma mitochondrial genomes. This study is the first to report the complete de novo mitochondrial genome of T. atroviride, while comparative analyses of Trichoderma mitochondrial genomes were also conducted from the perspective of mitochondrial evolution for the first time.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, Orsay, France
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
29
|
Sarven M, Hao Q, Deng J, Yang F, Wang G, Xiao Y, Xiao X. Biological Control of Tomato Gray Mold Caused by Botrytis Cinerea with the Entomopathogenic Fungus Metarhizium Anisopliae. Pathogens 2020; 9:pathogens9030213. [PMID: 32183055 PMCID: PMC7157576 DOI: 10.3390/pathogens9030213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Gray mold disease caused by Botrytis cinerea is a devastating disease that leads to serious financial loss. In this study, the entomopathogenic fungus Metarhizium anisopliae that acts against the gray mold pathogen B. cinerea was evaluated. M. anisopliae produced a significant inhibition zone in front of the B. cinerea colony in the dual culture test. In addition, volatile organic compounds generated by M. anisopliae were shown to have an inhibitory effect on B. cinerea mycelia growth and reduced 41% of gray mold severity of postharvest tomatoes. The 10% concentration of the culture filtrate of M. anisopliae inhibited 88.62% of colony radial growth as well as 63.85% of sclerotia germination and all conidia germination of B. cinerea. Furthermore, the culture filtrate of M. anisopliae retained its inhibitory effect against the radial growth of B. cinerea even after heating for 15 min at 100 °C. Feasible mechanisms of M. anisopliae involved in the control of B. cinerea were explored, and it was demonstrated that the plasma membrane of B. cinerea conidia was damaged by the product of metabolism of M. anisopliae. In addition, after treating with culture filtrate of M. anisopliae, the B. cinerea phenotype was shown to be abnormal, and cell organelles of B. cinerea mycelia were damaged significantly. A significant control efficacy of M. anisopliae against tomato gray mold was detected on both the detached leaf assay (84.24%) as well as the whole plant (72.38%). In addition, a 78% reduction in tomato fruit mold was detected at a 10% treated concentration of M. anisopliae. These findings suggest that M. anisopliae possesses potential as a biocontrol agent against tomato gray mold in the greenhouse and during the postharvest stage.
Collapse
Affiliation(s)
- Most.Sinthia Sarven
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Qiuyan Hao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Junbo Deng
- Jingmen (China Valley) Academy of Agricultural Science, Jingmen 448000, Hubei, China; (J.D.); (F.Y.)
| | - Fang Yang
- Jingmen (China Valley) Academy of Agricultural Science, Jingmen 448000, Hubei, China; (J.D.); (F.Y.)
| | - Gaofeng Wang
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Yannong Xiao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
| | - Xueqiong Xiao
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (M.S.); (Q.H.); (G.W.); (Y.X.)
- Correspondence:
| |
Collapse
|
30
|
Cosseboom SD, Schnabel G, Hu M. Competitive ability of multi-fungicide resistant Botrytis cinerea in a blackberry planting over three years. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:1-7. [PMID: 31973844 DOI: 10.1016/j.pestbp.2019.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Botrytis cinerea isolates with multi-fungicide resistance have frequently been isolated from small fruit fields such as strawberries and blackberries. Individual B. cinerea isolates have been found resistant to up to seven chemical classes of fungicides. Fitness costs and less competitiveness have been observed in multi-fungicide resistant isolates, but this has not been examined under field conditions. In the spring of 2016, flowers of field-grown blackberries were either not inoculated or inoculated with B. cinerea isolates sensitive (0CCR), resistant to five or six chemical classes excluding phenylpyrroles (5CCR), or resistant to six or seven chemical classes including phenylpyrroles (6CCR/MDR1h). The experimental field was left unsprayed for the duration of this study and isolates of B. cinerea were collected from flowers and/or fruit in each of the three experimental years. Isolates collected in summer of 2016 revealed resistance phenotypes in each plot closely matching those of the respective inoculum, with 95% 0CCR, 55% 5CCR, and 91% 6CCR/MDR1h isolates recovered from 0CCR, 5CCR, and 6CCR/MDR1h inoculation plots, respectively. In the 2017 and 2018 isolate collections, 6CCR/MDR1h resistance phenotypes were found in plots inoculated and non-inoculated with this phenotype, indicating their persistence and movement between plots. Resistance phenotypes different from the inoculum were also recovered each year, indicating that the inoculum was successfully competing with a native Botrytis population. Despite the competition, 6CCR/MDR1h isolates were recovered in high frequency from all inoculated plots in 2018. G3pdh and mrr1 sequences of 6CCR/MDR1h isolates collected in 2018 were identical to the sequences of the inoculum, indicating that these isolates likely descended from the inoculum. This study demonstrates that isolates carrying multi-fungicide resistant phenotypes, specifically 6CCR/MDR1h, are competitive in the absence of fungicide selection pressure.
Collapse
Affiliation(s)
- Scott D Cosseboom
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, United States
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson SC 29634, United States
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
31
|
Chinchilla D, Bruisson S, Meyer S, Zühlke D, Hirschfeld C, Joller C, L'Haridon F, Mène-Saffrané L, Riedel K, Weisskopf L. A sulfur-containing volatile emitted by potato-associated bacteria confers protection against late blight through direct anti-oomycete activity. Sci Rep 2019; 9:18778. [PMID: 31889050 PMCID: PMC6937334 DOI: 10.1038/s41598-019-55218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Plant diseases are a major cause for yield losses and new strategies to control them without harming the environment are urgently needed. Plant-associated bacteria contribute to their host’s health in diverse ways, among which the emission of disease-inhibiting volatile organic compounds (VOCs). We have previously reported that VOCs emitted by potato-associated bacteria caused strong in vitro growth inhibition of the late blight causing agent Phytophthora infestans. This work focuses on sulfur-containing VOCs (sVOCs) and demonstrates the high in planta protective potential of S-methyl methane thiosulfonate (MMTS), which fully prevented late blight disease in potato leaves and plantlets without phytotoxic effects, in contrast to other sVOCs. Short exposure times were sufficient to protect plants against infection. We further showed that MMTS’s protective activity was not mediated by the plant immune system but lied in its anti-oomycete activity. Using quantitative proteomics, we determined that different sVOCs caused specific proteome changes in P. infestans, indicating perturbations in sulfur metabolism, protein translation and redox balance. This work brings new perspectives for plant protection against the devastating Irish Famine pathogen, while opening new research avenues on the role of sVOCs in the interaction between plants and their microbiome.
Collapse
Affiliation(s)
- Delphine Chinchilla
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Sébastien Bruisson
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Silvan Meyer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Charlotte Joller
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, D-17489, Greifswald, Germany
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
32
|
Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019; 9:biom9100521. [PMID: 31547546 PMCID: PMC6843326 DOI: 10.3390/biom9100521] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Fungal diseases have been underestimated worldwide but constitute a substantial threat to several plant and animal species as well as to public health. The increase in the global population has entailed an increase in the demand for agriculture in recent decades. Accordingly, there has been worldwide pressure to find means to improve the quality and productivity of agricultural crops. Antifungal agents have been widely used as an alternative for managing fungal diseases affecting several crops. However, the unregulated use of antifungals can jeopardize public health. Application of fungicides in agriculture should be under strict regulation to ensure the toxicological safety of commercialized foods. This review discusses the use of antifungals in agriculture worldwide, the need to develop new antifungals, and improvement of regulations regarding antifungal use.
Collapse
|
33
|
Hu Z, Dai T, Li L, Liu P, Liu X. Use of GC-MS based metabolic fingerprinting for fast exploration of fungicide modes of action. BMC Microbiol 2019; 19:141. [PMID: 31234789 PMCID: PMC6591849 DOI: 10.1186/s12866-019-1508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The widespread occurrence of fungicide resistance in fungal plant pathogens requires the development of new compounds with different mode(s) of action (MOA) to avoid cross resistance. This will require a rapid method to identify MOAs. RESULTS Here, gas chromatography-mass spectrometry (GC-MS) based metabolic fingerprinting was used to elucidate the MOAs of fungicides. Botrytis cinerea, an important pathogen of vegetables and flowers, can be inhibited by a wide range of chemical fungicides with different MOAs. A sensitive strain of B. cinerea was exposed to EC50 concentrations of 13 fungicides with different known MOAs and one with unknown MOA. The mycelial extracts were analyzed for their "metabolic fingerprint" using GC-MS. A comparison among the GC-MS vector' profiles of cultures treated with fungicides were performeded. A model based on hierarchical clustering was established which allowed these antifungal compounds to be distinguished and classified coinciding with their MOAs. Thus, metabolic fingerprinting represents a rapid, convenient, and information-rich method for classifying the MOAs of antifungal substances. The biomarkers of fungicide MOAs were also established by an analysis of variance and included succinate for succinate dehydrogenase inhibitors and cystathionine for methionine synthesis inhibitors. Using the metabolic model and the common perturbation of metabolites, the new fungicide SYP-14288 was identified as having the same MOA as fluazinam. CONCLUSION This study provides a comprehensive database of the metabolic perturbations of B. cinerea induced by diverse MOA inhibitors and highlights the utility of metabolic fingerprinting for defining MOAs, which will assist in the development and optimization of new fungicides.
Collapse
Affiliation(s)
- Zhihong Hu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tan Dai
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Li
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
34
|
Grey mould disease of strawberry in northern Germany: causal agents, fungicide resistance and management strategies. Appl Microbiol Biotechnol 2019; 103:1589-1597. [DOI: 10.1007/s00253-018-09590-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 11/26/2022]
|
35
|
Yin WX, Adnan M, Shang Y, Lin Y, Luo CX. Sensitivity of Botrytis cinerea From Nectarine/Cherry in China to Six Fungicides and Characterization of Resistant Isolates. PLANT DISEASE 2018; 102:2578-2585. [PMID: 30299208 DOI: 10.1094/pdis-02-18-0244-re] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Botrytis cinerea, the causal agent of gray mold, can result in considerable preharvest and postharvest losses in many economically valuable plant species. Fungicides were widely used to minimize such losses, but fungicide resistances were detected frequently. In the present study, we collected 164 isolates from nectarine and cherry in China and tested the sensitivity to six fungicides. Among the tested isolates, 71 (43.3%) were resistant to azoxystrobin, 14 (8.5%) to cyprodinil, 7 (4.3%) to boscalid, 4 (2.4%) to carbendazim, 1 (0.6%) to iprodione, and no isolates were found to be resistant to fludioxonil. The EC50 value and resistance factor (RF) of resistant isolates were determined. Fitness analysis showed that there were no significant differences between sensitive and resistant isolates for osmotic stress and pathogenicity, while more conidia production was observed for some resistant isolates. Control efficacy of fungicides showed that the resistant isolates could not be controlled efficiently by using corresponding fungicides. The point mutation G143A was detected in the Cyt b gene of the isolates resistant to azoxystrobin, while the point mutation H272R of SdhB gene was confirmed in boscalid-resistant isolates, and mutations E198V/A of TUB2 gene and mutation I365S of BcOs1 occurred in carbendazim-resistant and iprodione-resistant isolates, respectively. These results indicate that the occurrence of fungicide resistance greatly threatens the management of gray mold on stone fruits nectarine and cherry.
Collapse
Affiliation(s)
- W X Yin
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - M Adnan
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Y Shang
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Y Lin
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - C X Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology and Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
36
|
Hawkins NJ, Fraaije BA. Fitness Penalties in the Evolution of Fungicide Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:339-360. [PMID: 29958074 DOI: 10.1146/annurev-phyto-080417-050012] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The evolution of resistance poses an ongoing threat to crop protection. Fungicide resistance provides a selective advantage under fungicide selection, but resistance-conferring mutations may also result in fitness penalties, resulting in an evolutionary trade-off. These penalties may result from the functional constraints of an evolving target site or from the resource allocation costs of overexpression or active transport. The extent to which such fitness penalties are present has important implications for resistance management strategies, determining whether resistance persists or declines between treatments, and for resistance risk assessments for new modes of action. Experimental results have proven variable, depending on factors such as temperature, nutrient status, osmotic or oxidative stress, and pathogen life-cycle stage. Functional genetics tools allow pathogen genetic background to be controlled, but this in turn raises the question of epistatic interactions. Combining fitness penalties under various conditions into a field-realistic scenario poses an important future challenge.
Collapse
Affiliation(s)
- N J Hawkins
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| | - B A Fraaije
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom;
| |
Collapse
|
37
|
Xu D, Yu G, Xi P, Kong X, Wang Q, Gao L, Jiang Z. Synergistic Effects of Resveratrol and Pyrimethanil against Botrytis cinerea on Grape. Molecules 2018; 23:E1455. [PMID: 29914082 PMCID: PMC6099729 DOI: 10.3390/molecules23061455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
Botrytis cinerea is the pathogen of gray mold disease affecting a wide range of plant hosts, with consequential economic losses worldwide. The increased frequency of fungicide resistance of the pathogen challenges its disease management, and thus the development of alternative control strategies are urgently required. In this study, we showed excellent synergistic interactions between resveratrol and pyrimethanil. Significant synergistic values were recorded by the two-drug combination on the suppression of mycelial growth and conidia germination of B. cinerea. The combination of resveratrol and pyrimethanil caused malformation of mycelia. Moreover, the inoculation assay was conducted on table grape and consistent synergistic suppression of the two-drug combination was found in vivo. Our findings first revealed that the combination of resveratrol and pyrimethanil has synergistic effects against resistant B. cinerea and support the potential use of resveratrol as a promising adjuvant on the control of gray mold.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ge Yu
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xiangyu Kong
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Lingwang Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|