1
|
Morselli S, Ceccarani C, Djusse ME, Laghi L, Camboni T, Consolandi C, Foschi C, Severgnini M, Marangoni A. Anti-chlamydial activity of vaginal fluids: new evidence from an in vitro model. Front Cell Infect Microbiol 2024; 14:1403782. [PMID: 38912205 PMCID: PMC11193362 DOI: 10.3389/fcimb.2024.1403782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction We assessed the in vitro anti-chlamydial activity of fresh vaginal secretions, deciphering the microbial and metabolic components able to counteract Chlamydia trachomatis viability. Methods Forty vaginal samples were collected from a group of reproductive-aged women and their anti-chlamydial activity was evaluated by inhibition experiments. Each sample underwent 16S rRNA metabarcoding sequencing to determine the bacterial composition, as well as 1H-NMR spectroscopy to detect and quantify the presence of vaginal metabolites. Results Samples characterized by a high anti-chlamydial activity were enriched in Lactobacillus, especially Lactobacillus crispatus and Lactobacillus iners, while not-active samples exhibited a significant reduction of lactobacilli, along with higher relative abundances of Streptococcus and Olegusella. Lactobacillus gasseri showed an opposite behavior compared to L. crispatus, being more prevalent in not-active vaginal samples. Higher concentrations of several amino acids (i.e., isoleucine, leucine, and aspartate; positively correlated to the abundance of L. crispatus and L. jensenii) lactate, and 4-aminobutyrate were the most significant metabolic fingerprints of highly active samples. Acetate and formate concentrations, on the other hand, were related to the abundances of a group of anaerobic opportunistic bacteria (including Prevotella, Dialister, Olegusella, Peptostreptococcus, Peptoniphilus, Finegoldia and Anaerococcus). Finally, glucose, correlated to Streptococcus, Lachnospira and Alloscardovia genera, emerged as a key molecule of the vaginal environment: indeed, the anti-chlamydial effect of vaginal fluids decreased as glucose concentrations increased. Discussion These findings could pave the way for novel strategies in the prevention and treatment of chlamydial urogenital infections, such as lactobacilli probiotic formulations or lactobacilli-derived postbiotics.
Collapse
Affiliation(s)
- Sara Morselli
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Marielle Ezekielle Djusse
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Claudio Foschi
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
- National Biodiversity Future Center S.c.a.r.l., Palermo, Italy
| | - Antonella Marangoni
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Sallam AM, Abou-Souliman I, Reyer H, Wimmers K, Rabee AE. New insights into the genetic predisposition of brucellosis and its effect on the gut and vaginal microbiota in goats. Sci Rep 2023; 13:20086. [PMID: 37973848 PMCID: PMC10654701 DOI: 10.1038/s41598-023-46997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Goats contribute significantly to the global food security and industry. They constitute a main supplier of meat and milk for large proportions of people in Egypt and worldwide. Brucellosis is a zoonotic infectious disease that causes a significant economic loss in animal production. A case-control genome-wide association analysis (GWAS) was conducted using the infectious status of the animal as a phenotype. The does that showed abortion during the last third period of pregnancy and which were positive to both rose bengal plate and serum tube agglutination tests, were considered as cases. Otherwise, they were considered as controls. All animals were genotyped using the Illumina 65KSNP BeadChip. Additionally, the diversity and composition of vaginal and fecal microbiota in cases and controls were investigated using PCR-amplicone sequencing of the V4 region of 16S rDNA. After applying quality control criteria, 35,818 markers and 66 does were available for the GWAS test. The GWAS revealed a significantly associated SNP (P = 5.01 × 10-7) located on Caprine chromosome 15 at 29 megabases. Four other markers surpassed the proposed threshold (P = 2.5 × 10-5). Additionally, fourteen genomic regions accounted for more than 0.1% of the variance explained by all genome windows. Corresponding markers were located within or in close vicinity to several candidate genes, such as ARRB1, RELT, ATG16L2, IGSF21, UBR4, ULK1, DCN, MAPB1, NAIP, CD26, IFIH1, NDFIP2, DOK4, MAF, IL2RB, USP18, ARID5A, ZAP70, CNTN5, PIK3AP1, DNTT, BLNK, and NHLRC3. These genes play important roles in the regulation of immune responses to the infections through several biological pathways. Similar vaginal bacterial community was observed in both cases and controls while the fecal bacterial composition and diversity differed between the groups (P < 0.05). Faeces from the control does showed a higher relative abundance of the phylum Bacteroidota compared to cases (P < 0.05), while the latter showed more Firmicutes, Spirochaetota, Planctomycetota, and Proteobacteria. On the genus level, the control does exhibited higher abundances of Rikenellaceae RC9 gut group and Christensenellaceae R-7 group (P < 0.05), while the infected does revealed higher Bacteroides, Alistipes, and Prevotellaceae UCG-003 (P < 0.05). This information increases our understanding of the genetics of the susceptibility to Brucella in goats and may be useful in breeding programs and selection schemes that aim at controlling the disease in livestock.
Collapse
Affiliation(s)
- Ahmed M Sallam
- Animal and Poultry Breeding Department, Desert Research Center, Cairo, Egypt.
| | | | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
3
|
Schwecht I, Nazli A, Gill B, Kaushic C. Lactic acid enhances vaginal epithelial barrier integrity and ameliorates inflammatory effects of dysbiotic short chain fatty acids and HIV-1. Sci Rep 2023; 13:20065. [PMID: 37973920 PMCID: PMC10654711 DOI: 10.1038/s41598-023-47172-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
The vaginal microenvironment is key in mediating susceptibility to sexually transmitted infections. A polymicrobial environment with reduced Lactobacilllus spp. is characteristic of vaginal dysbiosis, associated with increased production of several short chain fatty acids (SCFAs), vaginal inflammation and an increased risk of HIV-1 acquisition. In contrast, a eubiotic vaginal microbiome (VMB), dominated by Lactobacillus spp. correlates with increased production of lactic acid (LA), an acidic milieu and protection against HIV-1. Vaginal metabolites, specifically LA and SCFAs including butyric, succinic and acetic acids are associated with modulation of HIV-1 risk. We assessed the impact of combined and individual SCFAs and LA on vaginal epithelial cells (VK2) grown in air-liquid interface cultures. Treatment of VK2 cells with eubiotic SCFA + LA mixture showed increased epithelial barrier integrity, reduced FITC dextran leakage and enhanced expression of cell-cell adhesion proteins. Treatment with dysbiotic SCFA + LA mixture diminished epithelial barrier integrity, increased NFκB activation and inflammatory mediators: TNF-α, IL-6, IL-8 and RANTES. LA was found to be the primary contributor of the beneficial effects. Eubiotic SCFA + LA mixture ameliorated HIV-1 mediated barrier disruption and HIV-1 leakage, whereas dysbiotic SCFA + LA treatment exacerbated HIV-1 effects. These findings indicate a key role for LA in future prophylactic strategies.
Collapse
Affiliation(s)
- Ingrid Schwecht
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Aisha Nazli
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Biban Gill
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Jordan SJ, Wilson L, Ren J, Gupta K, Barnes S, Geisler WM. Natural Clearance of Chlamydia trachomatis Infection Is Associated With Distinct Differences in Cervicovaginal Metabolites. J Infect Dis 2023; 228:1119-1126. [PMID: 37163744 PMCID: PMC10582912 DOI: 10.1093/infdis/jiad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Natural clearance of Chlamydia trachomatis in women occurs in the interval between screening and treatment. In vitro, interferon-γ (IFN-γ)-mediated tryptophan depletion results in C. trachomatis clearance, but whether this mechanism occurs in vivo remains unclear. We previously found that women who naturally cleared C. trachomatis had lower cervicovaginal levels of tryptophan and IFN-γ compared to women with persisting infection, suggesting IFN-γ-independent pathways may promote C. trachomatis clearance. METHODS Cervicovaginal lavages from 34 women who did (n = 17) or did not (n = 17) naturally clear C. trachomatis were subjected to untargeted high-performance liquid chromatography mass-spectrometry to identify metabolites and metabolic pathways associated with natural clearance. RESULTS In total, 375 positively charged metabolites and 149 negatively charged metabolites were annotated. Compared to women with persisting infection, C. trachomatis natural clearance was associated with increased levels of oligosaccharides trehalose, sucrose, melezitose, and maltotriose, and lower levels of indoline and various amino acids. Metabolites were associated with valine, leucine, and isoleucine biosynthesis pathways. CONCLUSIONS The cervicovaginal metabolome in women who did or did not naturally clear C. trachomatis is distinct. In women who cleared C. trachomatis, depletion of various amino acids, especially valine, leucine, and isoleucine, suggests that amino acids other than tryptophan impact C. trachomatis survival in vivo.
Collapse
Affiliation(s)
- Stephen J Jordan
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jie Ren
- Department of Biostatics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Kanupriya Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William M Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Gill B, Schwecht I, Rahman N, Dhawan T, Verschoor C, Nazli A, Kaushic C. Metabolic signature for a dysbiotic microbiome in the female genital tract: A systematic review and meta-analysis. Am J Reprod Immunol 2023; 90:e13781. [PMID: 37766408 DOI: 10.1111/aji.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The vaginal microbiome (VMB) is a critical determinant of reproductive health, where a microbial shift towards a dysbiotic environment has implications for susceptibility to, and clinical presentation of sexually transmitted infections (STIs). Metabolomic profiling of the vaginal microenvironment has led to the identification of metabolic responses to clinical conditions of dysbiosis. However, no studies have examined metabolic markers that are common across conditions and can serve as a signature for vaginal dysbiosis. METHOD OF STUDY We have conducted a comprehensive systematic review and meta-analysis to identify consistently deregulated metabolites along with their impact on host and microbial metabolism during dysbiosis. We employed two complementary approaches including a vote counting analysis for all eligible studies identified in the systematic review, in addition to a meta-analysis for a subset of studies with sufficient available data. Significantly deregulated metabolites were then selected for pathway enrichment analysis. RESULTS Our results revealed a total of 502 altered metabolites reported across 10 dysbiotic conditions from 16 studies. Following a rigorous, collective analysis, six metabolites which were consistently downregulated and could be generalized to all dysbiotic conditions were identified. In addition, five downregulated and one upregulated metabolite was identified from a bacterial vaginosis (BV) focused sub-analysis. These metabolites have the potential to serve as a metabolic signature for vaginal dysbiosis. Their role in eight altered metabolic pathways indicates a disruption of amino acid, carbohydrate, and energy metabolism during dysbiosis. CONCLUSION Based on this analysis, we propose a schematic model outlining the common metabolic perturbations associated with vaginal dysbiosis, which can be potential targets for therapeutics and prophylaxis.
Collapse
Affiliation(s)
- Biban Gill
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Ingrid Schwecht
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Nuzhat Rahman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Tushar Dhawan
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Chris Verschoor
- Health Sciences North Research Institute, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aisha Nazli
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Santacroce L, Palmirotta R, Bottalico L, Charitos IA, Colella M, Topi S, Jirillo E. Crosstalk between the Resident Microbiota and the Immune Cells Regulates Female Genital Tract Health. Life (Basel) 2023; 13:1531. [PMID: 37511906 PMCID: PMC10381428 DOI: 10.3390/life13071531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The female genital tract (FGT) performs several functions related to reproduction, but due to its direct exposure to the external environment, it may suffer microbial infections. Both the upper (uterus and cervix) and lower (vagina) FGT are covered by an epithelium, and contain immune cells (macrophages, dendritic cells, T and B lymphocytes) that afford a robust protection to the host. Its upper and the lower part differ in terms of Lactobacillus spp., which are dominant in the vagina. An alteration of the physiological equilibrium between the local microbiota and immune cells leads to a condition of dysbiosis which, in turn, may account for the outcome of FGT infection. Aerobic vaginitis, bacterial vaginosis, and Chlamydia trachomatis are the most frequent infections, and can lead to severe complications in reproduction and pregnancy. The use of natural products, such as probiotics, polyphenols, and lactoferrin in the course of FGT infections is an issue of current investigation. In spite of positive results, more research is needed to define the most appropriate administration, according to the type of patient.
Collapse
Affiliation(s)
- Luigi Santacroce
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Palmirotta
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
7
|
Jimenez NR, Maarsingh JD, Łaniewski P, Herbst-Kralovetz MM. Commensal Lactobacilli Metabolically Contribute to Cervical Epithelial Homeostasis in a Species-Specific Manner. mSphere 2023; 8:e0045222. [PMID: 36629413 PMCID: PMC9942568 DOI: 10.1128/msphere.00452-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
In reproductive-age women, the vaginal microbiome is typically dominated by one or a few Lactobacillus species, including Lactobacillus crispatus, Lactobacillus iners, Lactobacillus paragasseri, Lactobacillus mulieris, and Lactobaccillus crispatus, has been associated with optimal cervicovaginal health; however, much is still unknown about how other lactobacilli metabolically contribute to cervicovaginal health. We hypothesized that metabolites of each Lactobacillus species differ and uniquely contribute to health and homeostasis. To address this hypothesis, we utilized a human three-dimensional (3D) cervical epithelial cell model in conjunction with genomics analyses and untargeted metabolomics to determine the metabolic contributions of less-studied vaginal lactobacilli-L. iners, L. paragasseri, and L. mulieris. Our study validated that vaginal lactobacilli exhibit a close phylogenetic relationship. Genomic findings from publicly available strains and those used in our study indicated that L. iners is metabolically distinct from other species of lactobacilli, likely due to a reduced genome size. Lactobacilli and mock controls were distinguishable based on global metabolic profiles. We identified 95 significantly altered metabolites (P < 0.05) between individual lactobacilli and mock controls. Metabolites related to amino acid metabolism were shared among the lactobacilli. N-Acetylated amino acids with potential antimicrobial properties were significantly elevated in a species-specific manner. L. paragasseri and L. iners shared aromatic, but not carbohydrate-derived, lactic acid metabolites with potential antimicrobial properties that may contribute to homeostasis of the cervicovaginal environment. Additionally, L. iners uniquely altered lipid metabolism, which may be a sign of adaptation to the cervicovaginal niche. Overall, these findings further elucidate the metabolic contributions of three key vaginal Lactobacillus species in gynecological health. IMPORTANCE Lactobacillus species contribute to cervicovaginal health by their production of lactic acid and other antimicrobial compounds. Yet, much is still unknown regarding the metabolic potential of lesser-studied but common vaginal lactobacilli. Here, we used untargeted metabolomics coupled with our 3D cervical epithelial cell model to identify metabolic differences among vaginal Lactobacillus species (Lactobacillus iners, Lactobacillus paragasseri, and Lactobacillus mulieris) and how those differences related to maintaining homeostasis of the cervical epithelium. Human 3D cell models are essential tools for studying host-bacteria interactions and reducing confounding factors inherent in clinical studies. Therefore, these unique models allowed us to decipher the putative lactobacilli mechanisms that contribute to their roles in health or disease. Metabolic analyses revealed distinct profiles of each Lactobacillus species but also shared metabolic contributions associated with antimicrobial activity: amino acid metabolism, N-acetylated amino acids, and aromatic lactic acids. These patterns provided validation of metabolites associated with health in clinical studies and provided novel targets, including immunomodulatory and antimicrobial metabolites, for postbiotic therapies.
Collapse
Affiliation(s)
- Nicole R. Jimenez
- Department of Obstetrics and Gynecology, College of Medicine—Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Jason D. Maarsingh
- Department of Obstetrics and Gynecology, College of Medicine—Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine—Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine—Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine—Phoenix, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
8
|
Filardo S, Di Pietro M, De Angelis M, Brandolino G, Porpora MG, Sessa R. In-Silico Functional Metabolic Pathways Associated to Chlamydia trachomatis Genital Infection. Int J Mol Sci 2022; 23:ijms232415847. [PMID: 36555488 PMCID: PMC9781786 DOI: 10.3390/ijms232415847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The advent of high-throughput technologies, such as 16s rDNA sequencing, has significantly contributed to expanding our knowledge of the microbiota composition of the genital tract during infections such as Chlamydia trachomatis. The growing body of metagenomic data can be further exploited to provide a functional characterization of microbial communities via several powerful computational approaches. Therefore, in this study, we investigated the predicted metabolic pathways of the cervicovaginal microbiota associated with C. trachomatis genital infection in relation to the different Community State Types (CSTs), via PICRUSt2 analysis. Our results showed a more rich and diverse mix of predicted metabolic pathways in women with a CST-IV microbiota as compared to all the other CSTs, independently from infection status. C. trachomatis genital infection further modified the metabolic profiles in women with a CST-IV microbiota and was characterized by increased prevalence of the pathways for the biosynthesis of precursor metabolites and energy, biogenic amino-acids, nucleotides, and tetrahydrofolate. Overall, predicted metabolic pathways might represent the starting point for more precisely designed future metabolomic studies, aiming to investigate the actual metabolic pathways characterizing C. trachomatis genital infection in the cervicovaginal microenvironment.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Gabriella Brandolino
- Department of Maternal and Child Health and Urology, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Maria Grazia Porpora
- Department of Maternal and Child Health and Urology, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome “Sapienza”, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Morselli S, Foschi C, Laghi L, Zagonari S, Patuelli G, Camboni T, Ceccarani C, Consolandi C, Djusse ME, Pedna MF, Marangoni A, Severgnini M, Sambri V. Torquetenovirus in pregnancy: Correlation with vaginal microbiome, metabolome and pro-inflammatory cytokines. Front Microbiol 2022; 13:998849. [PMID: 36160242 PMCID: PMC9501707 DOI: 10.3389/fmicb.2022.998849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Torquetenovirus (TTV) is a negative sense, single-stranded DNA virus present in many body fluids of apparently healthy individuals. At present, it is considered a non-pathogenic endogenous virus. TTV can be detected in the vagina of pregnant women, its abundance being modulated with the extent of immune system activation. Until now, there is only scarce information regarding the association between TTV and the composition of the vaginal environment. Therefore, this study aimed to assess the presence of TTV in the vaginal ecosystem of a cohort of white women with a normal pregnancy (n = 60) at different gestational stages (first, second and third trimester) and in 9 subjects suffering a first trimester miscarriage. For each woman, we determined (i) the presence and titer of TTV, (ii) the vaginal bacterial composition by means of Nugent score and 16S rRNA gene sequencing, (iii) the vaginal metabolic profiles through 1H-NMR spectroscopy, and (iv) the vaginal concentration of two pro-inflammatory cytokines (IL-6 and IL-8). More than one third of women were found negative for TTV at all gestational stages. Although not statistically significant, the positivity for TTV dropped from 53.3% in the first to 36.6% in the third trimester. TTV loads varied greatly among vaginal samples, ranging between 2 × 101 and 2 × 105 copies/reaction. No difference in TTV prevalence and loads was observed between women with normal pregnancies and miscarriages. The presence of TTV was more common in women with a higher vaginal leucocyte count (p = 0.02). The levels of IL-6 (p = 0.02), IL-8 (p = 0.03), propionate (p = 0.001) and cadaverine (p = 0.006) were significantly higher in TTV-positive samples. TTV titer was positively correlated with the concentrations of 4-hydroxyphenyllactate (p < 0.0001), isoleucine (p = 0.01) and phenylalanine (p = 0.04). TTV-positive samples were characterized by a higher relative abundance of Sneathia (p = 0.04) and Shuttleworthia (p = 0.0009). In addition, a trend toward a decrease of Lactobacillus crispatus and Lactobacillus jensenii, and an increase of Lactobacillus iners was observed for TTV-positive samples. In conclusion, we found that TTV is quite common in women with normal pregnancy outcomes, representing a possible predictor of local immune status.
Collapse
Affiliation(s)
- Sara Morselli
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences (DISTAL), Centre of Foodomics, University of Bologna, Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, Cesena, Italy
| | | | | | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Marielle Ezekielle Djusse
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Federica Pedna
- Great Romagna Hub Laboratory, Unit of Microbiology, Pievesestina di Cesena, Italy
| | - Antonella Marangoni
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
- *Correspondence: Antonella Marangoni
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Vittorio Sambri
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
- Great Romagna Hub Laboratory, Unit of Microbiology, Pievesestina di Cesena, Italy
| |
Collapse
|
10
|
Severgnini M, Morselli S, Camboni T, Ceccarani C, Salvo M, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. Gardnerella vaginalis clades in pregnancy: New insights into the interactions with the vaginal microbiome. PLoS One 2022; 17:e0269590. [PMID: 35700195 PMCID: PMC9197028 DOI: 10.1371/journal.pone.0269590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Gardnerella vaginalis (GV) is an anaerobic bacterial species involved in the pathogenesis of bacterial vaginosis (BV), a condition of vaginal dysbiosis associated with adverse pregnancy outcomes. GV strains are categorized into four clades, characterized by a different ability to produce virulence factors, such as sialidase. We investigated the distribution of GV clades and sialidase genes in the vaginal ecosystem of a cohort of pregnant women, assessing the correlations between GV clades and the whole vaginal microbiome. A total of 61 Caucasian pregnant women were enrolled. Their vaginal swabs, collected both at the first and third trimester of pregnancy, were used for (i) evaluation of the vaginal status by Nugent score, (ii) vaginal microbiome profiling by 16S rRNA sequencing, (iii) detection and quantification of GV clades and sialidase A gene by qPCR assays. DNA of at least one GV clade was detected in most vaginal swabs, with clade 4 being the most common one. GV clade 2, together with the presence of multiple clades (>2 simultaneously), were significantly associated with a BV condition. Significantly higher GV loads and sialidase gene levels were found in BV cases, compared to the healthy status. Clade 2 was related to the major shifts in the vaginal microbial composition, with a decrease in Lactobacillus and an increase in several BV-related taxa. As the number of GV clades detected simultaneously increased, a group of BV-associated bacteria tended to increase as well, while Bifidobacterium tended to decrease. A negative correlation between sialidase gene levels and Lactobacillus, and a positive correlation with Gardnerella, Atopobium, Prevotella, Megasphaera, and Sneathia were observed. Our results added knowledge about the interactions of GV clades with the inhabitants of the vaginal microbiome, possibly helping to predict the severity of BV and opening new perspectives for the prevention of pregnancy-related complications.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | - Sara Morselli
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | - Melissa Salvo
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | | | | | - Maria Federica Pedna
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | - Vittorio Sambri
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- * E-mail:
| | - Clarissa Consolandi
- Institute of Biomedical Technologies – National Research Council, Segrate, Milan, Italy
| | | |
Collapse
|
11
|
First-Void Urine Microbiome in Women with Chlamydia trachomatis Infection. Int J Mol Sci 2022; 23:ijms23105625. [PMID: 35628436 PMCID: PMC9143427 DOI: 10.3390/ijms23105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide. Until now, little information is available about the microbial composition of urine samples during CT urethritis. Therefore, in this study, we characterized the microbiome and metabolome profiles of first-void urines in a cohort of women with CT urethral infection attending an STI clinic. Methods: Based on CT positivity by nucleic acid amplification techniques on urine samples, the enrolled women were divided into two groups, i.e., “CT-negative” (n = 21) and “CT-positive” (n = 11). Urine samples were employed for (i) the microbiome profile analysis by means of 16s rRNA gene sequencing and (ii) the metabolome analysis by 1H-NMR. Results: Irrespective of CT infection, the microbiome of first-void urines was mainly dominated by Lactobacillus, L. iners and L. crispatus being the most represented species. CT-positive samples were characterized by reduced microbial biodiversity compared to the controls. Moreover, a significant reduction of the Mycoplasmataceae family—in particular, of the Ureaplasma parvum species—was observed during CT infection. The Chlamydia genus was positively correlated with urine hippurate and lactulose. Conclusions: These data can help elucidate the pathogenesis of chlamydial urogenital infections, as well as to set up innovative diagnostic and therapeutic approaches.
Collapse
|
12
|
Severgnini M, Morselli S, Camboni T, Ceccarani C, Laghi L, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. A Deep Look at the Vaginal Environment During Pregnancy and Puerperium. Front Cell Infect Microbiol 2022; 12:838405. [PMID: 35656029 PMCID: PMC9152327 DOI: 10.3389/fcimb.2022.838405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
A deep comprehension of the vaginal ecosystem may hold promise for unraveling the pathophysiology of pregnancy and may provide novel biomarkers to identify subjects at risk of maternal-fetal complications. In this prospective study, we assessed the characteristics of the vaginal environment in a cohort of pregnant women throughout their different gestational ages and puerperium. Both the vaginal bacterial composition and the vaginal metabolic profiles were analyzed. A total of 63 Caucasian women with a successful pregnancy and 9 subjects who had a first trimester miscarriage were enrolled. For the study, obstetric examinations were scheduled along the three trimester phases (9-13, 20-24, 32-34 gestation weeks) and puerperium (40-55 days after delivery). Two vaginal swabs were collected at each time point, to assess the vaginal microbiome profiling (by Nugent score and 16S rRNA gene sequencing) and the vaginal metabolic composition (1H-NMR spectroscopy). During pregnancy, the vaginal microbiome underwent marked changes, with a significant decrease in overall diversity, and increased stability. Over time, we found a significant increase of Lactobacillus and a decrease of several genera related to bacterial vaginosis (BV), such as Prevotella, Atopobium and Sneathia. It is worth noting that the levels of Bifidobacterium spp. tended to decrease at the end of pregnancy. At the puerperium, a significantly lower content of Lactobacillus and higher levels of Gardnerella, Prevotella, Atopobium, and Streptococcus were observed. Women receiving an intrapartum antibiotic prophylaxis for Group B Streptococcus (GBS) were characterized by a vaginal abundance of Prevotella compared to untreated women. Analysis of bacterial relative abundances highlighted an increased abundance of Fusobacterium in women suffering a first trimester abortion, at all taxonomic levels. Lactobacillus abundance was strongly correlated with higher levels of lactate, sarcosine, and many amino acids (i.e., isoleucine, leucine, phenylalanine, valine, threonine, tryptophan). Conversely, BV-associated genera, such as Gardnerella, Atopobium, and Sneathia, were related to amines (e.g., putrescine, methylamine), formate, acetate, alcohols, and short-chain fatty-acids (i.e., butyrate, propionate).
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | | | | | - Vittorio Sambri
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Cesena, Italy
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Passos LG, Terraciano P, Wolf N, Oliveira FDSD, Almeida ID, Passos EP. The Correlation between Chlamydia Trachomatis and Female Infertility: A Systematic Review. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRICIA : REVISTA DA FEDERACAO BRASILEIRA DAS SOCIEDADES DE GINECOLOGIA E OBSTETRICIA 2022; 44:614-620. [PMID: 35576969 PMCID: PMC9948125 DOI: 10.1055/s-0042-1748023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The impact of Chlamydia trachomatis (CT) infection on female's fertility is not completely established yet, since the level of evidence associating these factors is still weak. Hence, the goal of the present review is to contribute to a better elucidation of this matter. The electronic database chosen was the Medline/PubMed, with the last survey on May 11, 2021. Publication date was used as a filter, with the previous 5 years having been selected. The following describers were used: chlamydia trachomatis AND infertility; chlamydia trachomatis AND tubal alteration AND infertility; chlamydia AND low pregnancy rates. From the 322 studies screened, 293 that failed to meet our eligibility criteria were excluded. Subsequently, we removed seven studies for not having the possible correlation between CT infections and female infertility as its main focus, and three for being about sexually transmitted infections (STIs) in general. Moreover, two studies designed as reviews were also excluded. Ergo, we included 17 studies in our qualitative analysis. The authors conducted research individually and analyzed carefully the studies selected. As we retrieved the information needed for our study through reading the texts, no contact was made with the authors of the studies selected. This systematic review corroborates the hypothesis that CT infection potentiates female infertility, as 76.47% of the included studies found a positive correlation between them. We conclude that there is an important association between CT infection and female infertility. Ergo, making CT screening part of the infertility investigation routine is relevant and has a reasonable justification.
Collapse
Affiliation(s)
- Laura Gazal Passos
- Medicine school of Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paula Terraciano
- Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medicine school of Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nicole Wolf
- Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medicine school of Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Dos Santos de Oliveira
- Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medicine school of Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isabel de Almeida
- Fertility Center, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medicine school of Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Fertility Center, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Foschi C, Alvisi S, Baldassarre M, Laghi L, Gava G, Mancini I, Casadio P, Seracchioli R, Meriggiola MC. Vaginal metabolites in postmenopausal women with or without vulvo-vaginal atrophy at baseline and after ospemifeme and systemic hormone treatment. Maturitas 2022; 159:7-14. [DOI: 10.1016/j.maturitas.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022]
|
15
|
Zakaria ZZ, Al-Rumaihi S, Al-Absi RS, Farah H, Elamin M, Nader R, Bouabidi S, Suleiman SE, Nasr S, Al-Asmakh M. Physiological Changes and Interactions Between Microbiome and the Host During Pregnancy. Front Cell Infect Microbiol 2022; 12:824925. [PMID: 35265534 PMCID: PMC8899668 DOI: 10.3389/fcimb.2022.824925] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, it has become clear that microbiome play a variety of essential roles in human metabolism, immunity, and overall health and that the composition of these microbiome is influenced by our environment, diet, weight, hormones, and other factors. Indeed, numerous physiological and pathological conditions, including obesity and metabolic syndrome, are associated with changes in our microbiome, referred to as dysbiosis. As a result, it is not surprising that such changes occur during pregnancy, which includes substantial weight gain and significant changes in metabolism and immune defenses. The present review relates physiological changes during pregnancy to alterations in the microbial composition at various sites, including the gut, oral cavity, and vagina. Pregnancy has been linked to such microbial changes, and we believe that, in contrast to certain disease states, these microbial changes are vital for a healthy pregnancy, probably through their influence on the mother’s immunological, endocrinological, and metabolic status.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University (QU), Doha, Qatar
| | - Shouq Al-Rumaihi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Rana S. Al-Absi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University (QU), Doha, Qatar
| | - Huda Farah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Muram Elamin
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Rahaf Nader
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Salma Bouabidi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Sara Elgaili Suleiman
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Shahd Nasr
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University (QU), Doha, Qatar
- *Correspondence: Maha Al-Asmakh,
| |
Collapse
|
16
|
Costantini PE, Vanpouille C, Firrincieli A, Cappelletti M, Margolis L, Ñahui Palomino RA. Extracellular Vesicles Generated by Gram-Positive Bacteria Protect Human Tissues Ex Vivo From HIV-1 Infection. Front Cell Infect Microbiol 2022; 11:822882. [PMID: 35145925 PMCID: PMC8821821 DOI: 10.3389/fcimb.2021.822882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Vaginal microbiota dominated by lactobacilli protects women from sexually transmitted infection, in particular HIV-1. This protection is, in part, mediated by Lactobacillus-released extracellular vesicles (EVs). Here, we investigated whether EVs derived from other Gram-positive bacteria also present in healthy vaginas, in particular Staphylococcus aureus, Gardnerella vaginalis, Enterococcus faecium, and Enterococcus faecalis, can affect vaginal HIV-1 infection. We found that EVs released by these bacteria protect human cervico-vaginal tissues ex vivo and isolated cells from HIV-1 infection by inhibiting HIV-1-cell receptor interactions. This inhibition was associated with a diminished exposure of viral Env by steric hindrance of gp120 or gp120 modification evidenced by the failure of EV-treated virions to bind to nanoparticle-coupled anti-Env antibodies. Furthermore, we found that protein components associated with EV’s outer surface are critical for EV-mediated protection from HIV-1 infection since treatment of bacteria-released EVs with proteinase K abolished their anti-HIV-1 effect. We identified numerous EV-associated proteins that may be involved in this protection. The identification of EVs with specific proteins that suppress HIV-1 may lead to the development of novel strategies for the prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Paolo E. Costantini
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Christophe Vanpouille
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Leonid Margolis
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Leonid Margolis,
| | - Rogers A. Ñahui Palomino
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Plesniarski A, Siddik AB, Su RC. The Microbiome as a Key Regulator of Female Genital Tract Barrier Function. Front Cell Infect Microbiol 2022; 11:790627. [PMID: 34976864 PMCID: PMC8719631 DOI: 10.3389/fcimb.2021.790627] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiome, the collection of microbial species at a site or compartment, has been an underappreciated realm of human health up until the last decade. Mounting evidence suggests the microbiome has a critical role in regulating the female genital tract (FGT) mucosa's function as a barrier against sexually transmitted infections (STIs) and pathogens. In this review, we provide the most recent experimental systems and studies for analyzing the interplay between the microbiome and host cells and soluble factors with an influence on barrier function. Key components, such as microbial diversity, soluble factors secreted by host and microbe, as well as host immune system, all contribute to both the physical and immunologic aspects of the FGT mucosal barrier. Current gaps in what is known about the effects of the microbiome on FGT mucosal barrier function are compared and contrasted with the literature of the gut and respiratory mucosa. This review article presents evidence supporting that the vaginal microbiome, directly and indirectly, contributes to how well the FGT protects against infection.
Collapse
Affiliation(s)
- Andrew Plesniarski
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abu Bakar Siddik
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Verstraelen H, Vieira-Baptista P, De Seta F, Ventolini G, Lonnee-Hoffmann R, Lev-Sagie A. The Vaginal Microbiome: I. Research Development, Lexicon, Defining "Normal" and the Dynamics Throughout Women's Lives. J Low Genit Tract Dis 2022; 26:73-78. [PMID: 34928256 PMCID: PMC8719517 DOI: 10.1097/lgt.0000000000000643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This series of articles, titled The Vaginal Microbiome, written on behalf of the International Society for the Study of Vulvovaginal Disease, aims to summarize the current findings and understanding of the vaginal bacterial microbiota, mainly regarding areas relevant to clinicians specializing in vulvovaginal disorders. MATERIALS AND METHODS A database search of PubMed was performed, using the search terms "vaginal microbiome" (VMB) with "research," "normal," "neonate," "puberty," "adolescent," "menopause," and "ethnicities," as well as "human microbiome project." Full article texts were reviewed. Reference lists were screened for additional articles. RESULTS In the last 2 decades, many studies applying molecular techniques were performed, intending to characterize the vaginal microbiota. These studies advanced our understanding of how vaginal health is defined. The first article in this series focuses on the advancement of VMB research, technical definitions, the definition of "normal" VMB, and the dynamics of VMB throughout women's lives. CONCLUSIONS Understanding how microorganisms inhabiting the vagina interact with each other and with the host is important for a more complete understanding of vaginal health. The clinical application of microbial community sequencing is in its beginning, and its interpretation regarding practical clinical aspects is yet to be determined.
Collapse
Affiliation(s)
- Hans Verstraelen
- Department of Obstetrics & Gynaecology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Porto, Portugal
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
- LAP, a Unilabs Company, Porto, Portugal
| | - Francesco De Seta
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gary Ventolini
- Professor of Obstetrics and Gynecology, Distinguish University, Professor School of Medicine, Texas Tech University Health Sciences Center Permian Basin, Odessa, TX
| | - Risa Lonnee-Hoffmann
- Department of Obstetrics and Gynecology, St Olavs University Hospital, Trondheim, Norway
- Institute for Clinical and Molecular Medicine, Norwegian University for Science and Technology, Trondheim, Norway
| | - Ahinoam Lev-Sagie
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
19
|
Severgnini M, Camboni T, Ceccarani C, Morselli S, Cantiani A, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. Distribution of ermB, ermF, tet(W), and tet(M) Resistance Genes in the Vaginal Ecosystem of Women during Pregnancy and Puerperium. Pathogens 2021; 10:pathogens10121546. [PMID: 34959501 PMCID: PMC8705968 DOI: 10.3390/pathogens10121546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
The inhabitants of the vaginal ecosystem can harbor genetic determinants conferring antimicrobial resistance. However, detailed data about the distribution of resistance genes in the vaginal microbiome of pregnant women are still lacking. Therefore, we assessed the presence of macrolide (i.e., erm genes) and tetracycline (i.e., tet genes) resistance markers in the vaginal environment of Caucasian women at different gestational ages. Furthermore, the detection of resistance genes was related to the composition of the vaginal microbiota. A total of 228 vaginal samples, collected at different trimesters of pregnancy or during the puerperium, were tested for the presence of ermB, ermF, tet(W), and tet(M) by in-house end-point PCR assays. The composition of the vaginal microbiota was assessed through a microscopic evaluation (i.e., Nugent score) and by means of sequencing V3–V4 hypervariable regions of the bacterial 16 rRNA gene. Overall, the most detected resistance gene was tet(M) (76.7%), followed by ermB (55.2%). In 17% of women, mainly with a ‘normal’ vaginal microbiota, no resistance genes were found. Except for tet(W), a significant correlation between the positivity of resistance genes and a dysbiotic vaginal status (i.e., bacterial vaginosis (BV)) was noticed. Indeed, samples positive for at least one resistance determinant were characterized by a decrease in Lactobacillus spp. and an increase of BV-related genera (Prevotella, Gardnerella, Atopobium, Sneathia). A high predominance of vaginal Lactobacillus spp. (>85%) was associated with a lower risk of tet(W) gene detection, whereas the presence of Megasphaera (>1%) increased the risk of positivity for all analyzed genes. Different types of vaginal microbiota are associated with peculiar resistance profiles, being a lactobacilli-dominated ecosystem poor in or free of resistance genes. These data could open new perspectives for promoting maternal and neonatal health.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| | - Alessia Cantiani
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| | - Sara Zagonari
- Family Advisory Health Centres, 48121 Ravenna, Italy; (S.Z.); (G.P.)
| | - Giulia Patuelli
- Family Advisory Health Centres, 48121 Ravenna, Italy; (S.Z.); (G.P.)
| | | | - Vittorio Sambri
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47023 Cesena, Italy;
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
- Correspondence: ; Tel.: +39-0512144513
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (M.S.); (T.C.); (C.C.); (C.C.)
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40128 Bologna, Italy; (S.M.); (A.C.); (V.S.); (A.M.)
| |
Collapse
|
20
|
Raimondi S, Candeliere F, Amaretti A, Foschi C, Morselli S, Gaspari V, Rossi M, Marangoni A. Vaginal and Anal Microbiome during Chlamydia trachomatis Infections. Pathogens 2021; 10:1347. [PMID: 34684295 PMCID: PMC8539191 DOI: 10.3390/pathogens10101347] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Background.Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide, with a significant impact on women's health. Despite the increasing number of studies about the vaginal microbiome in women with CT infections, information about the composition of the anal microbiome is still lacking. Here, we assessed the bacterial community profiles of vaginal and anal ecosystems associated or not with CT infection in a cohort of Caucasian young women. Methods. A total of 26 women, including 10 with a contemporary vaginal and ano-rectal CT infection, were enrolled. Composition of vaginal and anal microbiome was studied by 16S rRNA gene profiling. Co-occurrence networks of bacterial communities and metagenome metabolic functions were determined. Results. In case of CT infection, both vaginal and anal environments were characterized by a degree of dysbiosis. Indeed, the vaginal microbiome of CT-positive women were depleted in lactobacilli, with a significant increase in dysbiosis-associated bacteria (e.g., Sneathia, Parvimonas, Megasphaera), whereas the anal microbiota of CT-infected women was characterized by higher levels of Parvimonas and Pseudomonas and lower levels of Escherichia. Interestingly, the microbiome of anus and vagina had numerous bacterial taxa in common, reflecting a significant microbial 'sharing' between the two sites. In the vaginal environment, CT positively correlated with Ezakiella spp. while Gardnerella vaginalis co-occurred with several dysbiosis-related microbes, regardless of CT vaginal infection. The vaginal microbiome of CT-positive females exhibited a higher involvement of chorismate and aromatic amino acid biosynthesis, as well as an increase in mixed acid fermentation. Conclusions. These data could be useful to set up new diagnostic/prognostic tools, offering new perspectives for the control of chlamydial infections.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (S.M.); (A.M.)
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (S.M.); (A.M.)
| | - Valeria Gaspari
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), St. Orsola Malpighi University Hospital, 40138 Bologna, Italy;
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (S.M.); (A.M.)
| |
Collapse
|
21
|
Pace RM, Chu DM, Prince AL, Ma J, Seferovic MD, Aagaard KM. Complex species and strain ecology of the vaginal microbiome from pregnancy to postpartum and association with preterm birth. MED 2021; 2:1027-1049. [PMID: 34617072 DOI: 10.1016/j.medj.2021.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Lactobacillus was described as a keystone bacterial taxon in the human vagina over 100 years ago. Using metagenomics, we and others have characterized lactobacilli and other vaginal taxa across health and disease states, including pregnancy. While shifts in community membership have been resolved at the genus/species level, strain dynamics remain poorly characterized. Methods We performed a metagenomic analysis of the complex ecology of the vaginal econiche during and after pregnancy in a large U.S. based longitudinal cohort of women who were initially sampled in the third trimester of pregnancy, then validated key findings in a second cohort of women initially sampled in the second trimester of pregnancy. Findings First, we resolved microbial species and strains, interrogated their co-occurrence patterns, and probed the relationship between keystone species and preterm birth outcomes. Second, to determine the role of human heredity in shaping vaginal microbial ecology in relation to preterm birth, we performed a mtDNA-bacterial species association analysis. Finally, we explored the clinical utility of metagenomics in detection and co-occurrence patterns for the pathobiont Group B Streptococcus (causative bacterium of invasive neonatal sepsis). Conclusions Our highly refined resolutions of the vaginal ecology during and post-pregnancy provide insights into not only structural and functional community dynamics, but highlight the capacity of metagenomics to reveal finer aspects of the vaginal microbial ecologic framework. Funding NIH-NINR R01NR014792, NIH-NICHD R01HD091731, NIH National Children's Study Formative Research, Burroughs Wellcome Fund Preterm Birth Initiative, March of Dimes Preterm Birth Research Initiative, NIH-NIGMS (K12GM084897, T32GM007330, T32GM088129).
Collapse
Affiliation(s)
- Ryan M Pace
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Derrick M Chu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, United States.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Amanda L Prince
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jun Ma
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Maxim D Seferovic
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kjersti M Aagaard
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, United States.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
22
|
Shetty S, Kouskouti C, Schoen U, Evangelatos N, Vishwanath S, Satyamoorthy K, Kainer F, Brand A. Diagnosis of Chlamydia trachomatis genital infections in the era of genomic medicine. Braz J Microbiol 2021; 52:1327-1339. [PMID: 34164797 PMCID: PMC8221097 DOI: 10.1007/s42770-021-00533-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/17/2021] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Chlamydial genital infections constitute significant sexually transmitted infections worldwide. The often asymptomatic status of C. trachomatis (CT) infections leads to an increased burden on human reproductive health, especially in middle- and low-income settings. Early detection and management of these infections could play a decisive role in controlling this public health burden. The objective of this review is to provide an insight into the evolution of diagnostic methods for CT infections through the development of new molecular technologies, emphasizing on -omics' technologies and their significance as diagnostic tools both for effective patient management and control of disease transmission. METHODS Narrative review of the diagnostic methodologies of CT infections and the impact of the introduction of -omics' technologies on their diagnosis by review of the literature. RESULTS Various methodologies are discussed with respect to working principles, required specifications, advantages, and disadvantages. Implementing the most accurate methods in diagnosis is highlighted as the cornerstone in managing CT infections. CONCLUSION Diagnostics based on -omics' technologies are considered to be the most pertinent modalities in CT testing when compared to other available methods. There is a need to modify these effective and accurate diagnostic tools in order to render them more available and feasible in all settings, especially aiming on turning them to rapid point-of-care tests for effective patient management and disease control.
Collapse
Affiliation(s)
- Seema Shetty
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Madhav Nagar, Manipal, 576104, Karnataka, India.
- United Nations University - Maastricht Economics and Social Research Institute On Innovation and Technology (UNU-MERIT), Maastricht, 6211, AX, The Netherlands.
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Christina Kouskouti
- Department of Obstetrics and Perinatal Medicine, Klinik Hallerwiese, St. Johannis-Muhlgasse 19, 90419, Nuremberg, Germany
- Division of Maternal and Fetal Medicine Department of Obstetrics and Gynaecology, Mt. Sinai Hospital University of Toronto, Toronto, ON, Canada
| | - Uwe Schoen
- BioMedHeliX (Pty) Ltd., 3 Conifer Road, Cape Town, 8005, South Africa
| | - Nikolaos Evangelatos
- United Nations University - Maastricht Economics and Social Research Institute On Innovation and Technology (UNU-MERIT), Maastricht, 6211, AX, The Netherlands
- Interdepartmental Division of Critical Care Medicine, University of Toronto, ON, Canada
- Dr. TMA Pai Endowment Chair in Research Policy in Biomedical Sciences and Public Health, Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shashidhar Vishwanath
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Madhav Nagar, Manipal, 576104, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Franz Kainer
- Department of Obstetrics and Perinatal Medicine, Klinik Hallerwiese, St. Johannis-Muhlgasse 19, 90419, Nuremberg, Germany
| | - Angela Brand
- United Nations University - Maastricht Economics and Social Research Institute On Innovation and Technology (UNU-MERIT), Maastricht, 6211, AX, The Netherlands
- Dr. TMA Pai Endowment Chair in Public Health Genomics, Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of International Health, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6229, GT, The Netherlands
| |
Collapse
|
23
|
Ansari A, Bose S, You Y, Park S, Kim Y. Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. Int J Mol Sci 2021; 22:8145. [PMID: 34360908 PMCID: PMC8347546 DOI: 10.3390/ijms22158145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Preterm birth (PTB) refers to the birth of infants before 37 weeks of gestation and is a challenging issue worldwide. Evidence reveals that PTB is a multifactorial dysregulation mediated by a complex molecular mechanism. Thus, a better understanding of the complex molecular mechanisms underlying PTB is a prerequisite to explore effective therapeutic approaches. During early pregnancy, various physiological and metabolic changes occur as a result of endocrine and immune metabolism. The microbiota controls the physiological and metabolic mechanism of the host homeostasis, and dysbiosis of maternal microbial homeostasis dysregulates the mechanistic of fetal developmental processes and directly affects the birth outcome. Accumulating evidence indicates that metabolic dysregulation in the maternal or fetal membranes stimulates the inflammatory cytokines, which may positively progress the PTB. Although labour is regarded as an inflammatory process, it is still unclear how microbial dysbiosis could regulate the molecular mechanism of PTB. In this review based on recent research, we focused on both the pathological and therapeutic contribution of microbiota-generated metabolites to PTB and the possible molecular mechanisms.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Shambhunath Bose
- Department of Bioscience, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka 585313, India;
| | - Youngah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Sunwha Park
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| | - Youngju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Mokdong Hospital, Seoul 07985, Korea; (A.A.); (Y.Y.); (S.P.)
| |
Collapse
|
24
|
Dall'Asta M, Laghi L, Morselli S, Re MC, Zagonari S, Patuelli G, Foschi C, Pedna MF, Sambri V, Marangoni A, Danesi F. Pre-Pregnancy Diet and Vaginal Environment in Caucasian Pregnant Women: An Exploratory Study. Front Mol Biosci 2021; 8:702370. [PMID: 34395531 PMCID: PMC8356051 DOI: 10.3389/fmolb.2021.702370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Vaginal microbes and their metabolic products have crucial functions, affecting local immunity development and maternal-fetal health. The composition of the vaginal microbiome can vary in response to various factors, including body mass index (BMI), and diet. In this study we get new insights into the vaginal ecosystem of Caucasian women (n = 24) at the first trimester of pregnancy, assessing whether pre-pregnancy diet can affect the structure of the vaginal environment in terms of bacterial composition and vaginal metabolite concentration. We characterized 1) the vaginal bacterial composition (Nugent score), 2) the vaginal metabolic profiles (1H-NMR spectroscopy), and 3) the dietary nutrient intake by means of a validated food frequency questionnaire. Pre-pregnancy BMI was negatively related to vaginal health status, indicating that women who begin pregnancy overweight/obese have a greater occurrence of vaginal dysbiosis during pregnancy. A lactobacilli-dominated vaginal microbiota was negatively associated with higher pre-pregnancy intake of animal-sourced protein. Conversely, a higher pre-pregnancy consumption of total carbohydrates and sugars seemed to be a protective factor for vaginal health. The vaginal environment of BV-women was characterized by higher levels of biogenic amines and organic acids, whereas higher levels of phenylpropionate and diverse amino acids were fingerprints of a healthy vaginal status. A significant association between a higher pre-pregnancy BMI and several dysbiosis-related vaginal metabolites was also found. Our study shed light on the role of pre-pregnancy BMI and diet on the vaginal environment during pregnancy, underlining the importance of limiting protein intake from animal foods to maintain a healthy lactobacilli-dominated microbiota.
Collapse
Affiliation(s)
- Margherita Dall'Asta
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica Del Sacro Cuore, Piacenza, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Cesena, Italy.,Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, Cesena, Italy
| | - Sara Morselli
- Unit of Microbiology (DIMES), University of Bologna, Bologna, Italy
| | - Maria Carla Re
- Unit of Microbiology (DIMES), University of Bologna, Bologna, Italy
| | | | | | - Claudio Foschi
- Unit of Microbiology (DIMES), University of Bologna, Bologna, Italy
| | | | - Vittorio Sambri
- Unit of Microbiology, Greater Romagna Hub Laboratory, Cesena, Italy
| | | | - Francesca Danesi
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, Cesena, Italy.,Human Nutrition Unit, Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Cesena, Italy
| |
Collapse
|
25
|
Costantini PE, Firrincieli A, Fedi S, Parolin C, Viti C, Cappelletti M, Vitali B. Insight into phenotypic and genotypic differences between vaginal Lactobacillus crispatus BC5 and Lactobacillus gasseri BC12 to unravel nutritional and stress factors influencing their metabolic activity. Microb Genom 2021; 7. [PMID: 34096840 PMCID: PMC8461478 DOI: 10.1099/mgen.0.000575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The vaginal microbiota, normally characterized by lactobacilli presence, is crucial for vaginal health. Members belonging to L. crispatus and L. gasseri species exert crucial protective functions against pathogens, although a total comprehension of factors that influence their dominance in healthy women is still lacking. Here we investigated the complete genome sequence and comprehensive phenotypic profile of L. crispatus strain BC5 and L. gasseri strain BC12, two vaginal strains featured by anti-bacterial and anti-viral activities. Phenotype microarray (PM) results revealed an improved capacity of BC5 to utilize different carbon sources as compared to BC12, although some specific carbon sources that can be associated to the human diet were only metabolized by BC12, i.e. uridine, amygdalin, tagatose. Additionally, the two strains were mostly distinct in the capacity to utilize the nitrogen sources under analysis. On the other hand, BC12 showed tolerance/resistance towards twice the number of stressors (i.e. antibiotics, toxic metals etc.) with respect to BC5. The divergent phenotypes observed in PM were supported by the identification in either BC5 or BC12 of specific genetic determinants that were found to be part of the core genome of each species. The PM results in combination with comparative genome data provide insights into the possible environmental factors and genetic traits supporting the predominance of either L. crispatus BC5 or L. gasseri BC12 in the vaginal niche, giving also indications for metabolic predictions at the species level.
Collapse
Affiliation(s)
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Marangoni A, Laghi L, Zagonari S, Patuelli G, Zhu C, Foschi C, Morselli S, Pedna MF, Sambri V. New Insights into Vaginal Environment During Pregnancy. Front Mol Biosci 2021; 8:656844. [PMID: 34079816 PMCID: PMC8165225 DOI: 10.3389/fmolb.2021.656844] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
During pregnancy, the vaginal ecosystem undergoes marked changes, including a significant enrichment with Lactobacillus spp. and profound alterations in metabolic profiles. A deep comprehension of the vaginal environment may shed light on the physiology of pregnancy and may provide novel biomarkers to identify subjects at risk of complications (e.g., miscarriage, preterm birth). In this study, we characterized the vaginal ecosystem in Caucasian women with a normal pregnancy (n = 64) at three different gestational ages (i.e., first, second and third trimester) and in subjects (n = 10) suffering a spontaneous first trimester miscarriage. We assessed the vaginal bacterial composition (Nugent score), the vaginal metabolic profiles (1H-NMR spectroscopy) and the vaginal levels of two cytokines (IL-6 and IL-8). Throughout pregnancy, the vaginal microbiota became less diverse, being mainly dominated by lactobacilli. This shift was clearly associated with marked changes in the vaginal metabolome: over the weeks, a progressive reduction in the levels of dysbiosis-associated metabolites (e.g., biogenic amines, alcohols, propionate, acetate) was observed. At the same time, several metabolites, typically found in healthy vaginal conditions, reached the highest concentrations at the end of pregnancy (e.g., lactate, glycine, phenylalanine, leucine, isoleucine). Lower levels of glucose were an additional fingerprint of a normal vaginal environment. The vaginal levels of IL-6 and IL-8 were significantly associated with the number of vaginal leukocytes, as well as with the presence of vaginal symptoms, but not with a condition of dysbiosis. Moreover, IL-8 concentration seemed to be a good predictor of the presence of vaginal Candida spp. Cytokine concentrations were negatively correlated to lactate, serine, and glycine concentrations, whereas the levels of 4-hydroxyphenyllactate, glucose, O-acetylcholine, and choline were positively correlated with Candida vaginal loads. Finally, we found that most cases of spontaneous abortion were associated with an abnormal vaginal microbiome, with higher levels of selected metabolites in the vaginal environment (e.g., inosine, fumarate, xanthine, benzoate, ascorbate). No association with higher pro-inflammatory cytokines was found. In conclusion, our analysis provides new insights into the pathophysiology of pregnancy and highlights potential biomarkers to enable the diagnosis of early pregnancy loss.
Collapse
Affiliation(s)
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | | | | | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Cesena, Italy
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Sara Morselli
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | | | - Vittorio Sambri
- Microbiology, DIMES, University of Bologna, Bologna, Italy.,Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina, Italy
| |
Collapse
|
27
|
Laghi L, Zagonari S, Patuelli G, Zhu C, Foschi C, Morselli S, Pedna MF, Sambri V, Marangoni A. Vaginal metabolic profiles during pregnancy: Changes between first and second trimester. PLoS One 2021; 16:e0249925. [PMID: 33831087 PMCID: PMC8031435 DOI: 10.1371/journal.pone.0249925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
During pregnancy, the vaginal microbiome plays an important role in both maternal and neonatal health outcomes. Throughout pregnancy, the vaginal microbial composition undergoes significant changes, including a decrease in overall diversity and enrichment with Lactobacillus spp. In turn, the modifications in the microbial profiles are associated with shifts in the composition of vaginal metabolites. In this study, we characterized the vaginal metabolic profiles throughout pregnancy at two different gestational ages, correlating them with a microscopic evaluation of the vaginal bacterial composition. A total of 67 Caucasian pregnant women presenting to the Family Advisory Health Centres of Ravenna (Italy) were enrolled and a vaginal swab was collected at gestational ages 9–13 weeks (first trimester) and 20–24 weeks (second trimester). The composition of the vaginal microbiome was assessed by Nugent score and women were divided in ‘H’ (normal lactobacilli-dominated microbiota), ‘I’ (intermediate microbiota), and ‘BV’ (bacterial vaginosis) groups. Starting from the cell-free supernatants of the vaginal swabs, a metabolomic analysis was performed by means of a 1H-NMR spectroscopy. From the first to the second trimester, a greater number of women showed a normal lactobacilli-dominated microbiota, with a reduction of cases of dysbiosis. These microbial shifts were associated with profound changes in the vaginal metabolic profiles. Over the weeks, a significant reduction in the levels of BV-associated metabolites (e.g. acetate, propionate, tyramine, methylamine, putrescine) was observed. At the same time, the vaginal metabolome was characterized by higher concentrations of lactate and of several amino acids (e.g. tryptophan, threonine, isoleucine, leucine), typically found in healthy vaginal conditions. Over time, the vaginal metabolome became less diverse and more homogeneous: in the second trimester, women with BV showed metabolic profiles more similar to the healthy/intermediate groups, compared to the first trimester. Our data could help unravel the role of vaginal metabolites in the pathophysiology of pregnancy.
Collapse
Affiliation(s)
- Luca Laghi
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | | | | | - Chenglin Zhu
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- * E-mail:
| | - Sara Morselli
- Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Maria Federica Pedna
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | - Vittorio Sambri
- Microbiology, DIMES, University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Pievesestina di Cesena, Italy
| | | |
Collapse
|
28
|
Polat IH, Marin S, Ríos J, Larroya M, Sánchez-García AB, Murillo C, Rueda C, Cascante M, Gratacós E, Cobo T. Exploratory and confirmatory analysis to investigate the presence of vaginal metabolome expression of microbial invasion of the amniotic cavity in women with preterm labor using high-performance liquid chromatography. Am J Obstet Gynecol 2021; 224:90.e1-90.e9. [PMID: 32717258 DOI: 10.1016/j.ajog.2020.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although the influence of microbial invasion of the amniotic cavity on the development of spontaneous preterm delivery is unquestionable, the use of an invasive procedure to diagnose the status of an infection limits its clinical translation. OBJECTIVE This study aimed to use exploratory and confirmatory analyses to investigate the presence of vaginal metabolome expression of microbial invasion of the amniotic cavity in women diagnosed as having preterm labor using high-performance liquid chromatography. STUDY DESIGN In 140 women with singleton pregnancies and a diagnosis of preterm labor at <34 weeks' gestation, we analyzed vaginal amino acid concentrations using high-performance liquid chromatography. Vaginal samples were collected shortly after the amniocentesis performed at admission to rule out microbial invasion of the amniotic cavity. Data were normalized for the median of all the amino acid concentrations evaluated. Microbial invasion of the amniotic cavity was defined as a positive aerobic or anaerobic amniotic fluid culture for the presence of bacteria or yeast or Ureaplasma species or Mycoplasma hominis in the mycoplasma culture or a positive polymerase chain reaction result for 16S rRNA gene sequence. Exploratory analysis was performed in half of the sample and confirmatory analysis in the other half. We compared vaginal amino acid concentrations between women with and without microbial invasion of the amniotic cavity in both cohorts. The area under the curve with 95% confidence interval values were calculated for vaginal amino acids with significant differences. RESULTS In the exploratory cohort (2014-2015), 17 of 76 women (22.3%) had microbial invasion of the amniotic cavity compared with 14 of 72 (19.4%) in the confirmatory cohort (2016-2017). In the exploratory cohort, we found significantly higher amino acid concentrations of vaginal taurine, lysine, and cysteine and significantly lower concentrations of vaginal glutamate, aspartate, and the aspartate to asparagine ratio. These significant differences were confirmed in the confirmatory cohort. The area under the curve of these vaginal amino acids to predict microbial invasion of the amniotic cavity ranged between 0.72 and 0.79, with cysteine being the amino acid with the best performance with an area under the curve of 0.79 (95% confidence interval, 0.71-0.88). CONCLUSION We found the vaginal metabolome expression of microbial invasion of the amniotic cavity in women with preterm labor and intact membranes. These findings might open the possibility to develop noninvasive diagnostic tools of microbial invasion of the amniotic cavity with the aim of selecting women who would most likely benefit from an amniocentesis for this indication.
Collapse
Affiliation(s)
- Ibrahim H Polat
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine and Consejo Superior de Investigaciones Cientificas-Associated Unit, University of Barcelona, Barcelona, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine and Consejo Superior de Investigaciones Cientificas-Associated Unit, University of Barcelona, Barcelona, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Ríos
- Medical Statistics Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer and Hospital Clinic, Universitat de Barcelona, Barcelon, Spain, and Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Marta Larroya
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), and Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Ana B Sánchez-García
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), and Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Clara Murillo
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), and Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Claudia Rueda
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), and Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine and Consejo Superior de Investigaciones Cientificas-Associated Unit, University of Barcelona, Barcelona, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduard Gratacós
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), and Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases, Barcelona, Spain
| | - Teresa Cobo
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), and Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases, Barcelona, Spain.
| |
Collapse
|
29
|
Li H, Zang Y, Wang C, Li H, Fan A, Han C, Xue F. The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol 2020; 10:609488. [PMID: 33425785 PMCID: PMC7785791 DOI: 10.3389/fcimb.2020.609488] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The female reproductive tract microenvironment includes microorganisms, metabolites, and immune components, and the balance of the interactions among them plays an important role in maintaining female reproductive tract homeostasis and health. When any one of the reproductive tract microorganisms, metabolites, or immunity is out of balance, it will affect the other two, leading to the occurrence and development of diseases and the appearance of corresponding symptoms and signs, such as infertility, miscarriage, premature delivery, and gynecological tumors caused by infectious diseases of the reproductive tract. Nutrients in the female reproductive tract provide symbiotic and pathogenic microorganisms with a source of nutrients for their own reproduction and utilization. At the same time, this interaction with the host forms a variety of metabolites. Changes in metabolites in the host reproductive tract are related not only to the interaction between the host and microbiota under dysbiosis but also to changes in host immunity or the environment, all of which will participate in the pathogenesis of diseases and lead to disease-related phenotypes. Microorganisms and their metabolites can also interact with host immunity, activate host immunity, and change the host immune status and are closely related to persistent genital pathogen infections, aggravation of infectious diseases, severe pregnancy outcomes, and even gynecological cancers. Therefore, studying the interaction between microorganisms, metabolites, and immunity in the reproductive tract cannot only reveal the pathogenic mechanisms that lead to inflammation of the reproductive tract, adverse pregnancy outcomes and tumorigenesis but also provide a basis for further research on the diagnosis and treatment of targets.
Collapse
Affiliation(s)
- Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Detection of Vaginal Metabolite Changes in Premature Rupture of Membrane Patients in Third Trimester Pregnancy: a Prospective Cohort Study. Reprod Sci 2020; 28:585-594. [PMID: 33025530 PMCID: PMC7537967 DOI: 10.1007/s43032-020-00338-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 10/25/2022]
Abstract
Premature rupture of membranes (PROM) is usually associated with pregnant and neonatal complications. Most of the PROM cases are caused by ascending asymptomatic genital infection. In China, PROM (15.3%) is more common than spontaneous preterm labor (7.3%) and leads to more adverse pregnancy outcomes. Here, we designed a prospective cohort study to measure the metabolomics changes in vaginal swab samples and explored their potential contribution to PROM. A total of 260 differentially expressed metabolites were identified and further analyzed. In the PROM group, N-acetyl-D-galactosamine and sucrose were downregulated (P = 0.0025, P = 0.0195, respectively), both of which are the upstream metabolites of the glycolysis pathway. Furthermore, estriol 3-sulfate 16-glucuronide (P = 0.0154) and 2-methoxy-17beta-estradiol 3-glucosiduronic acid (P = 0.004), two final metabolites in steroid hormone biosynthesis, were both downregulated in the PROM group. Finally, we found two catechin metabolites (epigallocatechin-7-glucuronide, P = 0.0009; 4'-methyl-epigallocatechin-7-glucuronide, P = 0.01) as well as DL-citrulline (P = 0.0393) were also significantly downregulated in the PROM group compared with the healthy control (HC) group, which are related to important antioxidant and anti-inflammatory activities in the human body. Altogether, metabolite changes in glycolysis, steroid hormone biosynthesis, and antioxidant/anti-inflammatory pathways may contribute to (or be a consequence of) vaginal dysbiosis and PROM. Metabolite pathway analysis is a new and promising approach to further investigate the mechanism of PROM and help prevent its unfavorable pregnant outcomes at a functional level. Trial registration number: ChiCTR2000034721.
Collapse
|
31
|
Redelinghuys MJ, Geldenhuys J, Jung H, Kock MM. Bacterial Vaginosis: Current Diagnostic Avenues and Future Opportunities. Front Cell Infect Microbiol 2020; 10:354. [PMID: 32850469 PMCID: PMC7431474 DOI: 10.3389/fcimb.2020.00354] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
A healthy female genital tract harbors a microbiome dominated by lactic acid and hydrogen peroxide producing bacteria, which provide protection against infections by maintaining a low pH. Changes in the bacterial compositions of the vaginal microbiome can lead to bacterial vaginosis (BV), which is often associated with vaginal inflammation. Bacterial vaginosis increases the risk of acquiring sexually transmitted infections (STIs) like human immunodeficiency virus (HIV) and affects women's reproductive health negatively. In pregnant women, BV can lead to chorioamnionitis and adverse pregnancy outcomes, including preterm premature rupture of the membranes and preterm birth. In order to manage BV effectively, good diagnostic procedures are required. Traditionally clinical and microscopic methods have been used to diagnose BV; however, these methods require skilled staff and time and suffer from reduced sensitivity and specificity. New diagnostics, including highly sensitive and specific point-of-care (POC) tests, treatment modalities and vaccines can be developed based on the identification of biomarkers from the growing pool of vaginal microbiome and vaginal metabolome data. In this review the current and future diagnostic avenues will be discussed.
Collapse
Affiliation(s)
- Mathys J. Redelinghuys
- School of Clinical Medicine, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Janri Geldenhuys
- UP-Ampath Translational Genomics Initiative, Department of Biochemistry, Genetics and Microbiology, Faculty of Health Sciences and Faculty of Natural and Agricultural Sciences, Division of Genetics, University of Pretoria, Pretoria, South Africa
| | - Hyunsul Jung
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
32
|
Borgogna JLC, Shardell MD, Yeoman CJ, Ghanem KG, Kadriu H, Ulanov AV, Gaydos CA, Hardick J, Robinson CK, Bavoil PM, Ravel J, Brotman RM, Tuddenham S. The association of Chlamydia trachomatis and Mycoplasma genitalium infection with the vaginal metabolome. Sci Rep 2020; 10:3420. [PMID: 32098988 PMCID: PMC7042340 DOI: 10.1038/s41598-020-60179-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/03/2020] [Indexed: 11/25/2022] Open
Abstract
Chlamydia trachomatis (CT) and Mycoplasma genitalium (MG) are two highly prevalent bacterial sexually transmitted infections (STIs) with a significant rate of co-infection in some populations. Vaginal metabolites are influenced by resident vaginal microbiota, affect susceptibility to sexually transmitted infections (STIs), and may impact local inflammation and patient symptoms. Examining the vaginal metabolome in the context of CT mono (CT+) and CT/MG co-infection (CT+/MG+) may identify biomarkers for infection or provide new insights into disease etiology and pathogenesis. Yet, the vaginal metabolome in the setting of CT infection is understudied and the composition of the vaginal metabolome in CT/MG co-infected women is unknown. Therefore, in this analysis, we used an untargeted metabolomic approach combined with 16S rRNA gene amplicon sequencing to characterize the vaginal microbiota and metabolomes of CT+, CT+/MG+, and uninfected women. We found that CT+ and CT+/MG+ women had distinct vaginal metabolomic profiles as compared to uninfected women both before and after adjustment for the vaginal microbiota. This study provides important foundational data documenting differences in the vaginal metabolome between CT+, CT+/MG+ and uninfected women. These data may guide future mechanistic studies that seek to provide insight into the pathogenesis of CT and CT/MG infections.
Collapse
Affiliation(s)
| | - Michelle D Shardell
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carl J Yeoman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
| | - Khalil G Ghanem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Herlin Kadriu
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL, USA
| | - Charlotte A Gaydos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin Hardick
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney K Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M Brotman
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Mechanistic insights into the action of probiotics against bacterial vaginosis and its mediated preterm birth: An overview. Microb Pathog 2020; 141:104029. [PMID: 32014462 DOI: 10.1016/j.micpath.2020.104029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
The human body is a reservoir of numerous micro-creatures; whose role is substantial and indispensable in the overall development of human beings. The advances in omic approaches have offered powerful means to decipher the core microbiome and metabolome diversities in a specific organ system. The establishment of lactobacilli in the female reproductive tract is thought to be a paramount prerequisite that maintains homeostatic conditions for a sustainable and healthy pregnancy. Nevertheless, a plethora of such Lactobacillus strains of vaginal source revealed probiotic phenotypes. The plummeting in the occurrence of lactobacilli in the vaginal ecosystem is associated with several adverse pregnancy outcomes (APOs). One such pathological condition is "Bacterial Vaginosis" (BV), a pathogen dominated gynecological threat. In this scenario, the ascending traffic of notorious Gram-negative/variable BV pathogens to the uterus is one of the proposed pathways that give rise to inflammation-related APOs like preterm birth. Since antibiotic resistance is aggravating among urogenital pathogens, the probiotics intervention remains one of the alternative biotherapeutic strategies to overcome BV and its associated APOs. Perhaps, the increased inclination towards the safer and natural biotherapeutic strategies rather than pharmaceutical drugs for maintaining gestational and reproductive health resulted in the use of probiotics in pregnancy diets. In this context, the current review is an attempt to highlight the microbiome and metabolites signatures of BV and non-BV vaginal ecosystem, inflammation or infection-related preterm birth, host-microbial interactions, role and effectiveness of probiotics to fight against aforesaid diseased conditions.
Collapse
|
34
|
Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nat Commun 2019; 10:5656. [PMID: 31827089 PMCID: PMC6906448 DOI: 10.1038/s41467-019-13468-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
The vaginal microbiota, dominated by Lactobacillus spp., plays a key role in preventing HIV-1 transmission. Here, we investigate whether the anti-HIV effect of lactobacilli is mediated by extracellular vesicles (EVs) released by these bacteria. Human cervico-vaginal and tonsillar tissues ex vivo, and cell lines were infected with HIV-1 and treated with EVs released by lactobacilli isolated from vaginas of healthy women. EVs released by L. crispatus BC3 and L. gasseri BC12 protect tissues ex vivo and isolated cells from HIV-1 infection. This protection is associated with a decrease of viral attachment to target cells and viral entry due to diminished exposure of Env that mediates virus-cell interactions. Inhibition of HIV-1 infection is associated with the presence in EVs of several proteins and metabolites. Our findings demonstrate that the protective effect of Lactobacillus against HIV-1 is, in part, mediated by EVs released by these symbiotic bacteria. If confirmed in vivo, this finding may lead to new strategies to prevent male-to-female sexual HIV-1 transmission. Lactobacillus associates with vaginal protection from HIV-1 infection. Here, the authors show that lactobacilli extracellular vesicles contain bacterial proteins and metabolites that inhibit HIV-1 infection in T cells and in human cervico-vaginal and tonsillar tissues ex vivo via altering viral Env proteins.
Collapse
|
35
|
Ceccarani C, Foschi C, Parolin C, D'Antuono A, Gaspari V, Consolandi C, Laghi L, Camboni T, Vitali B, Severgnini M, Marangoni A. Diversity of vaginal microbiome and metabolome during genital infections. Sci Rep 2019; 9:14095. [PMID: 31575935 PMCID: PMC6773718 DOI: 10.1038/s41598-019-50410-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
We characterized the vaginal ecosystem during common infections of the female genital tract, as vulvovaginal candidiasis (VVC, n = 18) and Chlamydia trachomatis infection (CT, n = 20), recruiting healthy (HC, n = 21) and bacterial vaginosis-affected (BV, n = 20) women as references of eubiosis and dysbiosis. The profiles of the vaginal microbiome and metabolome were studied in 79 reproductive-aged women, by means of next generation sequencing and proton based-nuclear magnetic resonance spectroscopy. Lactobacillus genus was profoundly depleted in all the genital infections herein considered, and species-level analysis revealed that healthy vaginal microbiome was dominated by L. crispatus. In the shift from HC to CT, VVC, and BV, L. crispatus was progressively replaced by L. iners. CT infection and VVC, as well as BV condition, were mainly characterised by anaerobe genera, e.g. Gardnerella, Prevotella, Megasphaera, Roseburia and Atopobium. The changes in the bacterial communities occurring during the genital infections resulted in significant alterations in the vaginal metabolites composition, being the decrease of lactate a common marker of all the pathological conditions. In conclusion, according to the taxonomic and metabolomics analysis, we found that each of the four conditions is characterized by a peculiar vaginal microbiome/metabolome fingerprint.
Collapse
Affiliation(s)
- Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy.,Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, Milan, Italy
| | - Claudio Foschi
- Microbiology, Experimental Diagnostic and Specialty Department (DIMES), University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | | | | | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Antonella Marangoni
- Microbiology, Experimental Diagnostic and Specialty Department (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Marziali G, Foschi C, Parolin C, Vitali B, Marangoni A. In-vitro effect of vaginal lactobacilli against group B Streptococcus. Microb Pathog 2019; 136:103692. [PMID: 31445119 DOI: 10.1016/j.micpath.2019.103692] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 01/31/2023]
Abstract
Streptococcus agalactiae(GBS) is a leading cause of infection during pregnancy, preterm birth and neonatal infection, with a significant clinical and socio-economic impact. To prevent maternal GBS vaginal colonization, new antibiotic-free approaches, based on lactobacilli probiotics, are advisable. The aim of this study was to assess the anti-GBS activity of 14 vaginal Lactobacillus strains, belonging to different species (L. crispatus, L. gasseri, L. vaginalis), isolated from healthy pre-menopausal women. In particular, we performed 'inhibition' experiments, evaluating the ability of both Lactobacillus cells and culture supernatants in reducing Streptococcus viability, after 60 min contact time. First, we demonstrated that the acidic milieu, produced by vaginal lactobacilli metabolism, is crucial in counteracting GBS growth in a pH-dependent manner. Experiments with organic/inorganic acid solutions confirmed the strict correlation between pH levels and the anti-GBS activity. GBS was more sensitive to lactic acid than to hydrochloric acid, indicating that the presence of H+ ions is necessary but not sufficient for the inhibitory activity. Moreover, experiments with Lactobacillus pH-adjusted supernatants led to exclude a direct role in the anti-GBS activity by other bioactive molecules. Second, we found that only a few Lactobacillus strains were able to reduce Streptococcus viability by means of cell pellets. The anti-GBS effect displayed by Lactobacillus cells was related to the their ability to interact and aggregate with Streptococcus cells. We found that the anti-GBS activity was retained after methanol/proteinase K treatment, but lost after lysozyme exposure of Lactobacillus cells. Therefore, we supposed that non-proteinaceous components of Lactobacillus cell wall could be responsible for the anti-GBS activity. In conclusion, we identified specific Lactobacillus strains able to interfere with GBS viability by multiple strategies and we elucidated some of the mechanisms of action. These strains could serve as probiotic formulations for the prevention of GBS vaginal colonization.
Collapse
Affiliation(s)
- Giacomo Marziali
- Microbiology, DIMES, University of Bologna, Via Massarenti 9, Bologna, Italy
| | - Claudio Foschi
- Microbiology, DIMES, University of Bologna, Via Massarenti 9, Bologna, Italy.
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, DIMES, University of Bologna, Via Massarenti 9, Bologna, Italy
| |
Collapse
|
37
|
Sanchez-Garcia EK, Contreras-Paredes A, Martinez-Abundis E, Garcia-Chan D, Lizano M, de la Cruz-Hernandez E. Molecular epidemiology of bacterial vaginosis and its association with genital micro-organisms in asymptomatic women. J Med Microbiol 2019; 68:1373-1382. [PMID: 31329097 DOI: 10.1099/jmm.0.001044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Bacterial vaginosis (BV) is dysbiosis associated with an increased risk of several sexually transmitted infections. It is primarily diagnosed via Gram staining, although molecular analyses have presented higher diagnostic accuracy.Aim. This study aimed to evaluate the molecular epidemiology of BV in asymptomatic women to determine its association with several commensal and pathogenic micro-organisms of the genitalia.Methodology. The prevalence of BV was investigated through semiquantitative assessment of 201 women recruited during their routine gynaecological inspection at an outpatient clinic in Tabasco, Mexico.Results. Women with BV showed an increased prevalence of Chlamydia trachomatis (P=0.021) and Mycoplasma hominis (P=0.001). Of the BV-associated micro-organisms, Gardnerella vaginalis was significantly associated with C. trachomatis (P=0.005) and/or Ureaplasma parvum (P=0.003), whereas Atopobium vaginae and Megasphaera type 1 correlated significantly with Mycoplasma hominis (P=0.001). No significant association was observed between human papillomavirus (HPV) infection and BV, although there was increased prevalence of HPV59, HPV73, HPV52 and HPV58 in women displaying cervical cytological abnormalities.Conclusion. Identification of BV-associated micro-organisms via molecular analysis may help to distinguish recurrent cases from new infections and identify micro-organisms potentially associated with pharmacological resistance.
Collapse
Affiliation(s)
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martinez-Abundis
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Magisterial, Mexico
| | - Dominga Garcia-Chan
- Unidad de Atencion Primaria de la Salud, Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, 86205 Jalpa de Méndez, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erick de la Cruz-Hernandez
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Magisterial, Mexico
| |
Collapse
|
38
|
Fuochi V, Coniglio MA, Laghi L, Rescifina A, Caruso M, Stivala A, Furneri PM. Metabolic Characterization of Supernatants Produced by Lactobacillus spp. With in vitro Anti- Legionella Activity. Front Microbiol 2019; 10:1403. [PMID: 31293545 PMCID: PMC6606692 DOI: 10.3389/fmicb.2019.01403] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022] Open
Abstract
Legionella pneumophila is an organism of public health interest for its presence in water supply systems and other humid thermal habitats. In this study, ten cell-free supernatants produced by Lactobacillus strains were evaluated for their ability to inhibit L. pneumophila strains isolated from hot tap water. Production of antimicrobial substances by Lactobacillus strains were assessed by agar well diffusion test on BCYE agar plates pre-inoculated with L. pneumophila. Cell-free supernatants (CFS) showed antimicrobial activity against all Legionella strains tested: L. rhamnosus and L. salivarius showed the highest activity. By means of a proton-based nuclear magnetic resonance (1H-NMR) spectroscopy, we detected and quantified the Lactobacillus metabolites of these CFSs, so to gain information about which metabolic pathway was likely to be connected to the observed inhibition activity. A panel of metabolites with variations in concentration were revealed, but considerable differences among inter-species were not showed as reported in a similar work by Foschi et al. (2018). More than fifty molecules belonging mainly to the groups of amino acids, organic acids, monosaccharides, ketones, and alcohols were identified in the metabolome. Significant differences were recorded comparing the metabolites found in the supernatants of strains grown in MRS with glycerol and the same strains grown in MRS without supplements. Indeed, pathway analysis revealed that glycine, serine and threonine, pyruvate, and sulfur metabolic pathways had a higher impact when strains were grown in MRS medium with a supplement such as glycerol. Among the metabolites identified, many were amino acids, suggesting the possible presence of bacteriocins which could be linked to the anti-Legionella activity shown by cell-free supernatants.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | | | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy.,Department of Clinical and Experimental Medicine (MEDCLIN), University of Catania, Catania, Italy
| | - Aldo Stivala
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| |
Collapse
|
39
|
Selected Immunological Mediators and Cervical Microbial Signatures in Women with Chlamydia trachomatis Infection. mSystems 2019; 4:4/4/e00094-19. [PMID: 31164450 PMCID: PMC6550367 DOI: 10.1128/msystems.00094-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the female genital ecosystem, the complex interplay between the host immune system and the resident microflora protects against urogenital pathogens, like Chlamydia trachomatis C. trachomatis is responsible for urethritis and cervicitis; however, most chlamydial infections are asymptomatic and, thus, not treated, potentially leading to severe reproductive sequelae. Here we investigated the interaction between the levels of selected immune mediators and the community state types of the cervical microbiota in C. trachomatis-infected women. Cervical samples from 42 C. trachomatis-positive women and 103 matched healthy controls were analyzed through the metagenomic analysis of the hypervariable region v4 of the 16S rRNA gene and the determination of lactoferrin, interleukin 1α (IL-1α), IL-6, alpha interferon (IFN-α), IFN-β, and IFN-γ by ELISA. Overall, C. trachomatis infection was significantly associated with a microbiota dominated by anaerobic bacteria (P = 0.000002). In addition, a network of Gardnerella vaginalis, Prevotella amnii, Prevotella buccalis, Prevotella timonensis, Aerococcus christensenii, and Variovorax guangxiensis has been identified as a potential biomarker of C. trachomatis infection through multiple statistical approaches. Again, chlamydial infection was significantly correlated with an increased production of lactoferrin, IL-6, IL-1α, IFN-α, and IFN-β (P < 0.05), whereas very low levels of IFN-γ were observed in C. trachomatis-infected women, levels similar to those detected in healthy women. Our findings show a distinctive signature of C. trachomatis genital infection, characterized by a specific bacterial network, constituted by anaerobes, as well as by increased levels of lactoferrin and proinflammatory cytokines (IL-1α, IL-6, IFN-α, and IFN-β), accompanied by low levels of IFN-γ.IMPORTANCE To our knowledge, this is the first study that investigated the association of C. trachomatis with the cervical levels of lactoferrin and selected inflammatory mediators and their correlation with the different community state types characterizing the female genital ecosystem. C. trachomatis, known as the leading cause of bacterial sexually transmitted diseases, continues to be an important public health problem worldwide for its increasing incidence and the risk of developing severe reproductive sequelae, like pelvic inflammatory disease and infertility. Specifically, C. trachomatis tend to persist in the female genital tract, leading to a chronic inflammatory state characterized by increased production of immune mediators responsible for tissue damage. Therefore, our study may help to broaden the knowledge on the complex interplay between the female genital microbiota and the host immune system in response to C. trachomatis infection.
Collapse
|
40
|
Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019; 7:microorganisms7050140. [PMID: 31100923 PMCID: PMC6560445 DOI: 10.3390/microorganisms7050140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| |
Collapse
|
41
|
Abdool Karim SS, Baxter C, Passmore JS, McKinnon LR, Williams BL. The genital tract and rectal microbiomes: their role in HIV susceptibility and prevention in women. J Int AIDS Soc 2019; 22:e25300. [PMID: 31144462 PMCID: PMC6541743 DOI: 10.1002/jia2.25300] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Young women in sub-Saharan Africa are disproportionately affected by HIV, accounting for 25% of all new infections in 2017. Several behavioural and biological factors are known to impact a young woman's vulnerability for acquiring HIV. One key, but lesser understood, biological factor impacting vulnerability is the vaginal microbiome. This review describes the vaginal microbiome and examines its alterations, its influence on HIV acquisition as well as the efficacy of HIV prevention technologies, the role of the rectal microbiome in HIV acquisition, advances in technologies to study the microbiome and some future research directions. DISCUSSION Although the composition of each woman's vaginal microbiome is unique, a microbiome dominated by Lactobacillus species is generally associated with a "healthy" vagina. Disturbances in the vaginal microbiota, characterized by a shift from a low-diversity, Lactobacillus-dominant state to a high-diversity non-Lactobacillus-dominant state, have been shown to be associated with a range of adverse reproductive health outcomes, including increasing the risk of genital inflammation and HIV acquisition. Gardnerella vaginalis and Prevotella bivia have been shown to contribute to both HIV risk and genital inflammation. In addition to impacting HIV risk, the composition of the vaginal microbiome affects the vaginal concentrations of some antiretroviral drugs, particularly those administered intravaginally, and thereby their efficacy as pre-exposure prophylaxis (PrEP) for HIV prevention. Although the role of rectal microbiota in HIV acquisition in women is less well understood, the composition of this compartment's microbiome, particularly the presence of species of bacteria from the Prevotellaceae family likely contribute to HIV acquisition. Advances in technologies have facilitated the study of the genital microbiome's structure and function. While next-generation sequencing advanced knowledge of the diversity and complexity of the vaginal microbiome, the emerging field of metaproteomics, which provides important information on vaginal bacterial community structure, diversity and function, is further shedding light on functionality of the vaginal microbiome and its relationship with bacterial vaginosis (BV), as well as antiretroviral PrEP efficacy. CONCLUSIONS A better understanding of the composition, structure and function of the microbiome is needed to identify opportunities to alter the vaginal microbiome and prevent BV and reduce the risk of HIV acquisition.
Collapse
Affiliation(s)
- Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
| | - Jo‐Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- National Health Laboratory ServiceCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
- Department of Medical MicrobiologyUniversity of NairobiNairobiKenya
| | - Brent L Williams
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
42
|
O'Connell CM, Brochu H, Girardi J, Harrell E, Jones A, Darville T, Seña AC, Peng X. Simultaneous profiling of sexually transmitted bacterial pathogens, microbiome, and concordant host response in cervical samples using whole transcriptome sequencing analysis. MICROBIAL CELL 2019; 6:177-183. [PMID: 30854394 PMCID: PMC6402362 DOI: 10.15698/mic2019.03.672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pelvic inflammatory disease (PID) is a female upper genital tract inflammatory disorder that arises after sexually transmitted bacterial infections (STI). Factors modulating risk for reproductive sequelae include co-infection, microbiota, host genetics and physiology. In a pilot study of cervical samples obtained from women at high risk for STIs, we examined the potential for unbiased characterization of host, pathogen and microbiome interactions using whole transcriptome sequencing analysis of ribosomal RNA-depleted total RNAs (Total RNA-Seq). Only samples from women with STI infection contained pathogen-specific sequences (3 to 38% transcriptome coverage). Simultaneously, we identified and quantified their active microbial communities. After integration with host-derived reads from the same data, we detected clustering of host transcriptional profiles that reflected microbiome differences and STI infection. Together, our study suggests that total RNA profiling will advance understanding of the interplay of pathogen, host and microbiota during natural infection and may reveal novel, outcome-relevant biomarkers.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hayden Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin Harrell
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Aiden Jones
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arlene C Seña
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
43
|
Abstract
The aim of this study was to analyze the metabolome of several Klebsiella pneumoniae strains characterized by different resistance patterns. A total of 59 bacterial strains (27 carbapenemase-negative and 32 carbapenemase-positive) were included and their metabolic features were assessed in basal conditions. Moreover, 8 isolates (4 wild-type and 4 KPC-producers) were randomly selected to evaluate the impact of sub-lethal concentrations of meropenem on bacterial metabolism. The metabolomic analysis was performed by 1H-NMR spectroscopy both on filtered supernatants and cell lysates. A total of 40 and 20 molecules were quantified in the intracellular and the extracellular metabolome, respectively. While in basal conditions only five metabolites showed significant differences between carbapenemase-positive and negative strains, the use of meropenem had a profound impact on the whole bacterial metabolism. In the intracellular compartment, a reduction of different overflow metabolites and organic acids (e.g. formate, acetate, isobutyrate) was noticed, whereas, in the extracellular metabolome, the levels of several organic acids (e.g. succinate, acetate, formate, lactate) and amino acids (aspartate, threonine, lysine, alanine) were modified by meropenem stimulation. Interestingly, carbapenemase-positive and negative strains reacted differently to meropenem in terms of number and type of perturbed metabolites. In wild-type strains, meropenem had great impact on the metabolic pathways related to methane metabolism and alanine, aspartate and glutamate metabolism, whereas in KPC-producers the effect was predominant on pyruvate metabolism. The knowledge about the bacterial metabolic profiles could help to set up innovative diagnostic methods and new antimicrobial strategies to fight the global crisis against carbapenemase-positive K. pneumoniae.
Collapse
|
44
|
Bazzano M, Laghi L, Zhu C, Magi GE, Serri E, Spaterna A, Tesei B, Laus F. Metabolomics of tracheal wash samples and exhaled breath condensates in healthy horses and horses affected by equine asthma. J Breath Res 2018; 12:046015. [PMID: 30168442 DOI: 10.1088/1752-7163/aade13] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present work characterized the metabolomic profile of tracheal wash (TW) and exhaled breath condensate (EBC) in healthy horses and horses with respiratory disease. Six asthma-affected horses (group A) and six healthy controls (group H) underwent clinical, endoscopic and cytologic examinations of upper airways to confirm the active phase of asthma. TW and EBC samples were collected from each animal and investigated by proton nuclear magnetic resonance (1H-NMR) metabolomic analysis. A total of ten out of 38 metabolites found in the TW were significantly different between the groups (p < 0.05). Higher concentrations of histamine and oxidant agents, such as glutamate, valine, leucine and isoleucine, as well as lower levels of ascorbate, methylamine, dimethylamine and O-phosphocholine, were found in group A compared to group H. Eight metabolites were found in equine EBC, namely methanol, ethanol, formate, trimethylamine, acetone, acetate, lactate and butanone, previously observed also in human EBC. Despite the fact that this was a pilot study, the results showed that the metabolomic analysis of TW and EBC has the potentiality to serve as a basis for diagnostic tools in horses with asthma.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | | | | | | | | | | | | | | |
Collapse
|