1
|
Leandro A, Maciel-de-Freitas R. Development of an Integrated Surveillance System to Improve Preparedness for Arbovirus Outbreaks in a Dengue Endemic Setting: Descriptive Study. JMIR Public Health Surveill 2024; 10:e62759. [PMID: 39588736 PMCID: PMC11611802 DOI: 10.2196/62759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 11/27/2024] Open
Abstract
Background Dengue fever, transmitted by Aedes aegypti and Aedes albopictus mosquitoes, poses a significant public health challenge in tropical and subtropical regions. Dengue surveillance involves monitoring the incidence, distribution, and trends of infections through systematic data collection, analysis, interpretation, and dissemination. It supports public health decision-making, guiding interventions like vector control, vaccination campaigns, and public education. Objective Herein, we report the development of a surveillance system already in use to support public health managers against dengue transmission in Foz do Iguaçu, a dengue-endemic Brazilian city located in the Triple Border with Argentina and Paraguay. Methods We present data encompassing the fieldwork organization of more than 100 health agents; epidemiological and entomological data were gathered from November 2022 to April 2024, totalizing 18 months of data collection. Results By registering health agents, we were able to provide support for those facing issues to fill their daily milestone of inspecting 16 traps per working day. We filtered dengue transmission in the city by patient age, gender, and reporting units, as well as according to dengue virus serotype. The entomological indices presented a strong seasonal pattern, as expected. Several longtime established routines in Foz do Iguaçu have been directly impacted by the adoption of Vigilância Integrada com Tecnologia (VITEC). Conclusions The implementation of VITEC has enabled more efficient and accurate diagnostics of local transmission risk, leading to a better understanding of operational activity patterns and risks. Lately, local public health managers can easily identify hot spots of dengue transmission and optimize interventions toward those highly sensitive areas.
Collapse
Affiliation(s)
- André Leandro
- Centro de Controle de Zoonoses, Secretaria Municipal de Saúde de Foz do Iguaçu, Foz do Iguaçu, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Straße 74, Hamburg, 20359, Germany, 49 40 2853800
| |
Collapse
|
2
|
Tatsinkou Maffo CG, Sandeu MM, Tchoupo M, Dondji Kamga FM, Mugenzi LMJ, Njiokou F, Hughes GL, Wondji CS. Contrasting patterns of Asaia association with Plasmodium falciparum between field-collected Anopheles gambiae and Anopheles coluzzii from Cameroon. Microbiol Spectr 2024; 12:e0056724. [PMID: 39530680 PMCID: PMC11619320 DOI: 10.1128/spectrum.00567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
The widespread prevalence of Asaia in mosquitoes makes it a potential candidate for paratrangenic control in Anopheles. To better understand whether this bacterium could be used for malaria control, we quantified Asaia in An. gambiae s.l populations in malaria endemic regions examining co-infection with Plasmodium falciparum. Adult Anopheles mosquitoes were collected across two different eco-geographical localities in Cameroon, during both the dry and wet seasons. DNA was extracted from whole individual mosquitoes, and real time-qPCR amplification of the 16S ribosomal RNA was used to quantify Asaia in both An. gambiae and An. coluzzii samples. We also detected and quantified P. falciparum infection in the same mosquitoes. The density of Asaia was successfully quantified in a total of 864 field mosquitoes, comprising of 439 An. gambiae from Bankeng and 424 An. coluzii collected from Gounougou. Interestingly, a higher prevalence of Asaia in An. gambiae (88.3%) compared to An. coluzzii (80.9%) was observed. Moreover, the density of Asaia in both species was significantly affected by seasonal changes in the two localities. Furthermore, a significant difference between the infection densities of Asaia and the Plasmodium infection status in the two species was recorded. However, no correlation was observed between the number of Asaia and P. falciparum infections. This study provides evidence that naturally occurring Asaia infection is not correlated to P. falciparum development within An. gambiae and An. coluzzii. Nevertheless, further studies incorporating experimental infections are required to better investigate the correlation between Anopheles mosquitoes, Asaia, and Plasmodium.IMPORTANCEThe symbiont Asaia has emerged as a promising candidate for paratransgenic control of malaria, but further analysis of its biology and genetics across Africa is necessary. In this study, we investigated and quantified the influence of Asaia in naturally infected An. gambiae s.l. populations with the malaria parasite Plasmodium falciparum. Genomic DNA was extracted from whole individual mosquitoes collected from two localities, and Asaia was quantified using real-time qPCR by amplification of the 16S ribosomal RNA gene. We also detected and quantified Plasmodium falciparum infection in the same mosquitoes and established the correlation between Asaia and Plasmodium coinfection. This study provides evidence that naturally occurring Asaia infection is not correlated with P. falciparum development within An. gambiae and An. coluzzii mosquitoes.
Collapse
Affiliation(s)
- Claudine Grâce Tatsinkou Maffo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Micareme Tchoupo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Fleuriane Metissa Dondji Kamga
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Leon M. J. Mugenzi
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
| | - Flobert Njiokou
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
3
|
Foo A, Brettell LE, Nichols HL, Medina Muñoz M, Lysne JA, Dhokiya V, Hoque AF, Brackney DE, Caragata EP, Hutchinson ML, Jacobs-Lorena M, Lampe DJ, Martin E, Valiente Moro C, Povelones M, Short SM, Steven B, Xu J, Paustian TD, Rondon MR, Hughes GL, Coon KL, Heinz E. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLoS Biol 2024; 22:e3002897. [PMID: 39546548 PMCID: PMC11633956 DOI: 10.1371/journal.pbio.3002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.
Collapse
Affiliation(s)
- Aidan Foo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura E. Brettell
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Holly L. Nichols
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Miguel Medina Muñoz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica A. Lysne
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vishaal Dhokiya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ananya F. Hoque
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Doug E. Brackney
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Eric P. Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Michael L. Hutchinson
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, United States of America
- Division of Plant Health, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Timothy D. Paustian
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Rondon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
4
|
Aželytė J, Maitre A, Abuin-Denis L, Wu-Chuang A, Žiegytė R, Mateos-Hernandez L, Obregon D, Palinauskas V, Cabezas-Cruz A. Nested patterns of commensals and endosymbionts in microbial communities of mosquito vectors. BMC Microbiol 2024; 24:434. [PMID: 39455905 PMCID: PMC11520040 DOI: 10.1186/s12866-024-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Mosquitoes serve as vectors for numerous pathogens, posing significant health risks to humans and animals. Understanding the complex interactions within mosquito microbiota is crucial for deciphering vector-pathogen dynamics and developing effective disease management strategies. Here, we investigated the nested patterns of Wolbachia endosymbionts and Escherichia-Shigella within the microbiota of laboratory-reared Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes. We hypothesized that Wolbachia would exhibit a structured pattern reflective of its co-evolved relationship with both mosquito species, while Escherichia-Shigella would display a more dynamic pattern influenced by environmental factors. RESULTS Our analysis revealed different microbial compositions between the two mosquito species, although some microorganisms were common to both. Network analysis revealed distinct community structures and interaction patterns for these bacteria in the microbiota of each mosquito species. Escherichia-Shigella appeared prominently within major network modules in both mosquito species, particularly in module P4 of Cx. pipiens f. molestus, interacting with 93 nodes, and in module Q3 of Cx. quinquefasciatus, interacting with 161 nodes, sharing 55 nodes across both species. On the other hand, Wolbachia appeared in disparate modules: module P3 in Cx. pipiens f. molestus and a distinct module with a single additional taxon in Cx. quinquefasciatus, showing species-specific interactions and no shared taxa. Through computer simulations, we evaluated how the removal of Wolbachia or Escherichia-Shigella affects network robustness. In Cx. pipiens f. molestus, removal of Wolbachia led to a decrease in network connectivity, while Escherichia-Shigella removal had a minimal impact. Conversely, in Cx. quinquefasciatus, removal of Escherichia-Shigella resulted in decreased network stability, whereas Wolbachia removal had minimal effect. CONCLUSIONS Contrary to our hypothesis, the findings indicate that Wolbachia displays a more dynamic pattern of associations within the microbiota of Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes, than Escherichia-Shigella. The differential effects on network robustness upon Wolbachia or Escherichia-Shigella removal suggest that these bacteria play distinct roles in maintaining community stability within the microbiota of the two mosquito species.
Collapse
Affiliation(s)
- Justė Aželytė
- Nature Research Centre, Akademijos 2, Vilnius, LT-08412, Lithuania
| | - Apolline Maitre
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
- Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), INRAE, UR 0045, Corte, 20250, France
- Laboratoire de Virologie, Université de Corse, EA 7310, Corte, France
| | - Lianet Abuin-Denis
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana, 10600, Cuba
| | - Alejandra Wu-Chuang
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, Vilnius, LT-08412, Lithuania
| | - Lourdes Mateos-Hernandez
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Alejandro Cabezas-Cruz
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France.
| |
Collapse
|
5
|
Clervil E, Guidez A, Talaga S, Carinci R, Gaborit P, Lavergne A, Tirera S, Duchemin JB. Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping. Microorganisms 2024; 12:1994. [PMID: 39458303 PMCID: PMC11509720 DOI: 10.3390/microorganisms12101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Wolbachia are the most spread bacterial endosymbionts in the world. These bacteria can manipulate host reproduction or block virus transmission in mosquitoes. For this reason, Wolbachia-based strategies for vector control are seriously considered or have already been applied in several countries around the world. In South America, Wolbachia have been studied in human pathogen vectors such as sand flies and mosquitoes. In French Guiana, the diversity and distribution of Wolbachia are not well known in mosquitoes. In this study, we screened for Wolbachia natural infection in mosquitoes in French Guiana by using 16S rRNA, Wolbachia surface protein (WSP), and multi-locus sequence typing (MLST) molecular assays. A total of 29 out of 44 (65.9%) mosquito species were positive for natural Wolbachia infection according to the PCR results, and two Wolbachia strains co-infected three specimens of Mansonia titillans. Then, we analyzed the phylogenetic relationships among the Wolbachia detected. All of the tested specimens of Aedes aegypti, the major dengue vector of French Guiana, were negative. These results regarding Wolbachia strain, distribution, and prevalence in mosquitoes from French Guiana highlight Wolbachia-mosquito associations and pave the way for a future Wolbachia-based strategy for vector control in this Amazonian territory.
Collapse
Affiliation(s)
- Emmanuelle Clervil
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Amandine Guidez
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Stanislas Talaga
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Romuald Carinci
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Pascal Gaborit
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| | - Anne Lavergne
- Laboratoire d’Interaction Hôte-Virus, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Sourakhata Tirera
- Laboratoire d’Interaction Hôte-Virus, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Jean-Bernard Duchemin
- Unité d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana; (E.C.)
| |
Collapse
|
6
|
Sun Y, Li T, Zhou G, Zhou Y, Wu Y, Xu J, Chen J, Zhong S, Zhong D, Liu R, Lu G, Li Y. Relationship between deltamethrin resistance and gut symbiotic bacteria of Aedes albopictus by 16S rDNA sequencing. Parasit Vectors 2024; 17:330. [PMID: 39103931 DOI: 10.1186/s13071-024-06421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes' metabolic resistance against insecticides. METHODS We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies.
Collapse
Affiliation(s)
- Yingbo Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yunfei Zhou
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Yuhong Wu
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Jiabao Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiarong Chen
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Saifeng Zhong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China.
| | - Yiji Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Salgado JFM, Premkrishnan BNV, Oliveira EL, Vettath VK, Goh FG, Hou X, Drautz-Moses DI, Cai Y, Schuster SC, Junqueira ACM. The dynamics of the midgut microbiome in Aedes aegypti during digestion reveal putative symbionts. PNAS NEXUS 2024; 3:pgae317. [PMID: 39157462 PMCID: PMC11327924 DOI: 10.1093/pnasnexus/pgae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/02/2024] [Indexed: 08/20/2024]
Abstract
Blood-feeding is crucial for the reproductive cycle of the mosquito Aedes aegypti, as well as for the transmission of arboviruses to hosts. It is postulated that blood meals may influence the mosquito microbiome but shifts in microbial diversity and function during digestion remain elusive. We used whole-genome shotgun metagenomics to monitor the midgut microbiome in 60 individual females of A. aegypti throughout digestion, after 12, 24, and 48 h following blood or sugar meals. Additionally, ten individual larvae were sequenced, showing microbiomes dominated by Microbacterium sp. The high metagenomic coverage allowed for microbial assignments at the species taxonomic level, also providing functional profiling. Females in the post-digestive period and larvae displayed low microbiome diversities. A striking proliferation of Enterobacterales was observed during digestion in blood-fed mosquitoes. The compositional shift was concomitant with enrichment in genes associated with carbohydrate and protein metabolism, as well as virulence factors for antimicrobial resistance and scavenging. The bacterium Elizabethkingia anophelis (Flavobacteriales), a known human pathogen, was the dominant species at the end of blood digestion. Phylogenomics suggests that its association with hematophagous mosquitoes occurred several times. We consider evidence of mutually beneficial host-microbe interactions raised from this association, potentially pivotal for the mosquito's resistance to arbovirus infection. After digestion, the observed shifts in blood-fed females' midguts shifted to a sugar-fed-like microbial profile. This study provides insights into how the microbiome of A. aegypti is modulated to fulfil digestive roles following blood meals, emphasizing proliferation of potential symbionts in response to the dynamic midgut environment.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch str. 10, Marburg 35043, Germany
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| | - Balakrishnan N V Premkrishnan
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Elaine L Oliveira
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vineeth Kodengil Vettath
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Daniela I Drautz-Moses
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Stephan C Schuster
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
8
|
Zhu YX, Wang XY, Yang TY, Zhang HH, Li TP, Du YZ. Mechanisms of bacterial and fungal community assembly in leaf miners during transition from natural to laboratory environments. Front Microbiol 2024; 15:1424568. [PMID: 39091307 PMCID: PMC11291455 DOI: 10.3389/fmicb.2024.1424568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Environmental heterogeneity partly drives microbial succession in arthropods, while the microbial assembly mechanisms during environmental changes remain largely unknown. Here, we explored the temporal dynamics and assembly mechanisms within both bacterial and fungal communities in Liriomyza huidobrensis (Blanchard) during the transition from field to laboratory conditions. We observed a decrease in bacterial diversity and complexity of bacterial-fungal co-occurrence networks in leaf miners transitioning from wild to captive environments. Both neutral and null models revealed that stochastic processes, particularly drift (contributing over 70%), play a crucial role in governing bacterial and fungal community assembly. The relative contribution of ecological processes such as dispersal, drift, and selection varied among leaf miners transitioning from wild to captive states. Furthermore, we propose a hypothetical scenario for the assembly and succession of microbial communities in the leaf miner during the short- and long-term transition from the wild to captivity. Our findings suggest that environmental heterogeneity determines the ecological processes governing bacterial and fungal community assembly in leaf miners, offering new insights into microbiome and mycobiome assembly mechanisms in invasive pests amidst environmental change.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xin-Yu Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tian-Yue Yang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huan-Huan Zhang
- Institute of Vegetable, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yu-Zhou Du
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R. Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N. Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J. López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
10
|
Ross PA, Hoffmann AA. Revisiting Wolbachia detections: Old and new issues in Aedes aegypti mosquitoes and other insects. Ecol Evol 2024; 14:e11670. [PMID: 38957696 PMCID: PMC11219197 DOI: 10.1002/ece3.11670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
11
|
Tokash-Peters AG, Niyonzima JD, Kayirangwa M, Muhayimana S, Tokash IW, Jabon JD, Lopez SG, Kearns PJ, Woodhams DC. Mosquito Microbiomes of Rwanda: Characterizing Mosquito Host and Microbial Communities in the Land of a Thousand Hills. MICROBIAL ECOLOGY 2024; 87:64. [PMID: 38691215 PMCID: PMC11062966 DOI: 10.1007/s00248-024-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.
Collapse
Affiliation(s)
- Amanda G Tokash-Peters
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
- Center of Excellence in Biodiversity, University of Rwanda, Huye, Rwanda
| | | | | | - Simon Muhayimana
- Center of Excellence in Biodiversity, University of Rwanda, Huye, Rwanda
| | - Ivan W Tokash
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Jaimy D Jabon
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Sergio G Lopez
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Patrick J Kearns
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Douglas C Woodhams
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
12
|
McGrath AH, Lema K, Egan S, Wood G, Gonzalez SV, Kjelleberg S, Steinberg PD, Marzinelli EM. Disentangling direct vs indirect effects of microbiome manipulations in a habitat-forming marine holobiont. NPJ Biofilms Microbiomes 2024; 10:33. [PMID: 38553475 PMCID: PMC10980776 DOI: 10.1038/s41522-024-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Host-associated microbiota are critical for eukaryotic host functioning, to the extent that hosts and their associated microbial communities are often considered "holobionts". Most studies of holobionts have focused on descriptive approaches or have used model systems, usually in the laboratory, to understand host-microbiome interactions. To advance our understanding of host-microbiota interactions and their wider ecological impacts, we need experimental frameworks that can explore causation in non-model hosts, which often have highly diverse microbiota, and in their natural ecological setting (i.e. in the field). We used a dominant habitat-forming seaweed, Hormosira banksii, to explore these issues and to experimentally test host-microbiota interactions in a non-model holobiont. The experimental protocols were aimed at trying to disentangle microbially mediated effects on hosts from direct effects on hosts associated with the methods employed to manipulate host-microbiota. This was done by disrupting the microbiome, either through removal/disruption using a combination of antimicrobial treatments, or additions of specific taxa via inoculations, or a combination of thew two. The experiments were done in mesocosms and in the field. Three different antibiotic treatments were used to disrupt seaweed-associated microbiota to test whether disturbances of microbiota, particularly bacteria, would negatively affect host performance. Responses of bacteria to these disturbances were complex and differed substantially among treatments, with some antibacterial treatments having little discernible effect. However, the temporal sequence of responses antibiotic treatments, changes in bacterial diversity and subsequent decreases in host performance, strongly suggested an effect of the microbiota on host performance in some treatments, as opposed to direct effects of the antibiotics. To further test these effects, we used 16S-rRNA-gene sequencing to identify bacterial taxa that were either correlated, or uncorrelated, with poor host performance following antibiotic treatment. These were then isolated and used in inoculation experiments, independently or in combination with the previously used antibiotic treatments. Negative effects on host performance were strongest where specific microbial antimicrobials treatments were combined with inoculations of strains that were correlated with poor host performance. For these treatments, negative host effects persisted the entire experimental period (12 days), even though treatments were only applied at the beginning of the experiment. Host performance recovered in all other treatments. These experiments provide a framework for exploring causation and disentangling microbially mediated vs. direct effects on hosts for ecologically important, non-model holobionts in the field. This should allow for better predictions of how these systems will respond to, and potentially mitigate, environmental disturbances in their natural context.
Collapse
Affiliation(s)
- Alexander Harry McGrath
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia.
- Sydney Institute of Marine Science, Mosman, NSW, Australia.
| | - Kimberley Lema
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Suhelen Egan
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Georgina Wood
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- UWA Oceans Institute & School of Biological Sciences, Indian Ocean Marine Research Centre, The University of Western Australia, Sydney, Australia
| | - Sebastian Vadillo Gonzalez
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
| | - Peter D Steinberg
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
| | - Ezequiel M Marzinelli
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
| |
Collapse
|
13
|
Hegde S, Khanipov K, Hornett EA, Nilyanimit P, Pimenova M, Saldaña MA, de Bekker C, Golovko G, Hughes GL. Interkingdom interactions shape the fungal microbiome of mosquitoes. Anim Microbiome 2024; 6:11. [PMID: 38454530 PMCID: PMC10921588 DOI: 10.1186/s42523-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The mosquito microbiome is an important modulator of vector competence and vectoral capacity. Unlike the extensively studied bacterial microbiome, fungal communities in the mosquito microbiome (the mycobiome) remain largely unexplored. To work towards getting an improved understanding of the fungi associated with mosquitoes, we sequenced the mycobiome of three field-collected and laboratory-reared mosquito species (Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus). RESULTS Our analysis showed both environment and host species were contributing to the diversity of the fungal microbiome of mosquitoes. When comparing species, Ae. albopictus possessed a higher number of diverse fungal taxa than Cx. quinquefasciatus, while strikingly less than 1% of reads from Ae. aegypti samples were fungal. Fungal reads from Ae. aegypti were < 1% even after inhibiting host amplification using a PNA blocker, indicating that this species lacked a significant fungal microbiome that was amplified using this sequencing approach. Using a mono-association mosquito infection model, we confirmed that mosquito-derived fungal isolates colonize Aedes mosquitoes and support growth and development at comparable rates to their bacterial counterparts. Strikingly, native bacterial taxa isolated from mosquitoes impeded the colonization of symbiotic fungi in Ae. aegypti suggesting interkingdom interactions shape fungal microbiome communities. CONCLUSION Collectively, this study adds to our understanding of the fungal microbiome of different mosquito species, that these fungal microbes support growth and development, and highlights that microbial interactions underpin fungal colonization of these medically relevent species.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Life Sciences, Keele University, Newcastle, UK.
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine , Chulalongkorn University, Bangkok, Thailand
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Charissa de Bekker
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
14
|
Njoroge TM, Berenbaum MR, Stone CM, Kim CH, Dunlap C, Muturi EJ. Culex pipiens and Culex restuans larval interactions shape the bacterial communities in container aquatic habitats. FEMS MICROBES 2024; 5:xtae002. [PMID: 38450098 PMCID: PMC10917442 DOI: 10.1093/femsmc/xtae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Container aquatic habitats host a community of aquatic insects, primarily mosquito larvae that browse on container surface microbial biofilm and filter-feed on microorganisms in the water column. We examined how the bacterial communities in these habitats respond to feeding by larvae of two container-dwelling mosquito species, Culex pipiens and Cx. restuans. We also investigated how the microbiota of these larvae is impacted by intra- and interspecific interactions. Microbial diversity and richness were significantly higher in water samples when mosquito larvae were present, and in Cx. restuans compared to Cx. pipiens larvae. Microbial communities of water samples clustered based on the presence or absence of mosquito larvae and were distinct from those of mosquito larvae. Culex pipiens and Cx. restuans larvae harbored distinct microbial communities when reared under intraspecific conditions and similar microbial communities when reared under interspecific conditions. These findings demonstrate that mosquito larvae play a major role in structuring the microbial communities in container habitats and that intra- and interspecific interactions in mosquito larvae may shape their microbiota. This has important ecological and public health implications since larvae of the two mosquito species are major occupants of container habitats while the adults are vectors of West Nile virus.
Collapse
Affiliation(s)
- Teresia M Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin- Carmichael Hall, 1234 N. Notre Dame Ave, South Bend, IN 46617, United States
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL 61801, United States
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL 61801, United States
| | - Christopher M Stone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - Chang-Hyun Kim
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL 61820, United States
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, Agricultural Research Service, US Department of Agriculture, 1815 N. University St., Peoria, IL 61604, United States
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, US Department of Agriculture, 1815 N. University St., Peoria, IL 61604, United States
| |
Collapse
|
15
|
Hegde S, Brettell LE, Quek S, Etebari K, Saldaña MA, Asgari S, Coon KL, Heinz E, Hughes GL. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field-caught or laboratory-reared mosquitoes. Environ Microbiol 2024; 26:e16576. [PMID: 38192175 PMCID: PMC11022138 DOI: 10.1111/1462-2920.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or the field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, many more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities is associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique for investigating host-microbe interactions in mosquitoes.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Laura E. Brettell
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- School of Science, Engineering and Environment, University of Salford, Manchester M4 4WT, UK
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel A. Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
16
|
Lu Y, Chu S, Shi Z, You R, Chen H. Marked variations in diversity and functions of gut microbiota between wild and domestic stag beetle Dorcus Hopei Hopei. BMC Microbiol 2024; 24:24. [PMID: 38238710 PMCID: PMC10795464 DOI: 10.1186/s12866-023-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although stag beetles are a popular saprophytic insect, their gut microbiome has been poorly studied. Here, 16 S rRNA gene sequencing was employed to reveal the gut microbiota composition and functional variations between wild and domestic Dorcus hopei hopei (Dhh) larval individuals. RESULTS The results indicated a significant difference between the wild and domestic Dhh gut microbiota., the domestic Dhh individuals contained more gut microbial taxa (e.g. genera Ralstonia and Methyloversatilis) with xenobiotic degrading functions. The wild Dhh possesses gut microbiota compositions (e.g. Turicibacter and Tyzzerella ) more appropriate for energy metabolism and potential growth. This study furthermore assigned all Dhh individuals by size into groups for data analysis; which indicated limited disparities between the gut microbiota of different-sized D. hopei hopei larvae. CONCLUSION The outcome of this study illustrated that there exists a significant discrepancy in gut microbiota composition between wild and domestic Dhh larvae. In addition, the assemblage of gut microbiome in Dhh was primarily attributed to environmental influences instead of individual differences such as developmental potential or size. These findings will provide a valuable theoretical foundation for the protection of wild saprophytic insects and the potential utilization of the insect-associated intestinal microbiome in the future.
Collapse
Affiliation(s)
- Yikai Lu
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zhiyuan Shi
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Ruobing You
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
17
|
Kriefall NG, Seabourn PS, Yoneishi NM, Davis K, Nakayama KK, Weber DE, Hynson NA, Medeiros MCI. Abiotic factors shape mosquito microbiomes that enhance host development. THE ISME JOURNAL 2024; 18:wrae181. [PMID: 39315733 PMCID: PMC11481732 DOI: 10.1093/ismejo/wrae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Metazoans rely on interactions with microorganisms through multiple life stages. For example, developmental trajectories of mosquitoes can vary depending on the microorganisms available during their aquatic larval phase. However, the role that the local environment plays in shaping such host-microbe dynamics and the consequences for the host organism remain inadequately understood. Here, we examine the influence of abiotic factors, locally available bacteria, and their interactions on the development and associated microbiota of the mosquito Aedes albopictus. Our findings reveal that leaf detritus infused into the larval habitat water, sourced from native Hawaiian tree 'ōhi'a lehua Metrosideros polymorpha, invasive strawberry guava Psidium cattleianum, or a pure water control, displayed a more substantial influence than either temperature variations or simulated microbial dispersal regimes on bacterial community composition in adult mosquitoes. However, specific bacteria exhibited divergent patterns within mosquitoes across detrital infusions that did not align with their abundance in the larval habitat. Specifically, we observed a higher relative abundance of a Chryseobacterium sp. strain in mosquitoes from the strawberry guava infusion than the pure water control, whereas the opposite trend was observed for a Pseudomonas sp. strain. In a follow-up experiment, we manipulated the presence of these two bacterial strains and found larval developmental success was enhanced by including the Chryseobacterium sp. strain in the strawberry guava infusion and the Pseudomonas sp. strain in the pure water control. Collectively, these data suggest that interactions between abiotic factors and microbes of the larval environment can help shape mosquito populations' success.
Collapse
Affiliation(s)
- Nicola G Kriefall
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Priscilla S Seabourn
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole M Yoneishi
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kahiwahiwa Davis
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Danya E Weber
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| |
Collapse
|
18
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
19
|
LaReau JC, Hyde J, Brackney DE, Steven B. Introducing an environmental microbiome to axenic Aedes aegypti mosquitoes documents bacterial responses to a blood meal. Appl Environ Microbiol 2023; 89:e0095923. [PMID: 38014951 PMCID: PMC10734439 DOI: 10.1128/aem.00959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The blood meal of the female mosquito serves as a nutrition source to support egg development, so is an important aspect of its biology. Yet, the roles the microbiome may play in blood digestion are poorly characterized. We employed axenic mosquitoes to investigate how the microbiome differs between mosquitoes reared in the insectary versus mosquitoes that acquire their microbiome from the environment. Environmental microbiomes were more diverse and showed larger temporal shifts over the course of blood digestion. Importantly, only bacteria from the environmental microbiome performed hemolysis in culture, pointing to functional differences between bacterial populations. These data highlight that taxonomic differences between the microbiomes of insectary-reared and wild mosquitoes are potentially also related to their functional ecology. Thus, axenic mosquitoes colonized with environmental bacteria offer a way to investigate the role of bacteria from the wild in mosquito processes such as blood digestion, under controlled laboratory conditions.
Collapse
Affiliation(s)
- Jacquelyn C. LaReau
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Josephine Hyde
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Doug E. Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Griffin CD, Weber DE, Seabourn P, Waianuhea LK, Medeiros MCI. Filtration of environmentally sourced aquatic media impacts laboratory-colonised Aedes albopictus early development and adult bacteriome composition. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:693-704. [PMID: 37340616 PMCID: PMC10650568 DOI: 10.1111/mve.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/22/2023] [Indexed: 06/22/2023]
Abstract
Microorganisms form close associations with metazoan hosts forming symbiotic communities, known as microbiomes, that modulate host physiological processes. Mosquitoes are of special interest in exploring microbe-modulated host processes due to their oversized impact on human health. However, most mosquito work is done under controlled laboratory conditions where natural microbiomes are not present and inferences from these studies may not extend to natural populations. Here we attempt to assemble a wild-resembling bacteriome under laboratory conditions in an established laboratory colony of Aedes albopictus using aquatic media from environmentally-exposed and differentially filtered larval habitats. While we did not successfully replicate a wild bacteriome using these filtrations, we show that these manipulations alter the bacteriomes of mosquitoes, generating a unique composition not seen in wild populations collected from and near our source water or in our laboratory colony. We also demonstrate that our filtration regimens impact larval development times, as well as impact adult survival on different carbohydrate diets.
Collapse
Affiliation(s)
- Chasen D Griffin
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Danya E Weber
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Priscilla Seabourn
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Lorraine K Waianuhea
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
21
|
Pascar J, Middleton H, Dorus S. Aedes aegypti microbiome composition covaries with the density of Wolbachia infection. MICROBIOME 2023; 11:255. [PMID: 37978413 PMCID: PMC10655336 DOI: 10.1186/s40168-023-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Wolbachia is a widespread bacterial endosymbiont that can inhibit vector competency when stably transinfected into the mosquito, Aedes aegypti, a primary vector of the dengue virus (DENV) and other arboviruses. Although a complete mechanistic understanding of pathogen blocking is lacking, it is likely to involve host immunity induction and resource competition between Wolbachia and DENV, both of which may be impacted by microbiome composition. The potential impact of Wolbachia transinfection on host fitness is also of importance given the widespread release of mosquitos infected with the Drosophila melanogaster strain of Wolbachia (wMel) in wild populations. Here, population-level genomic data from Ae. aegypti was surveyed to establish the relationship between the density of wMel infection and the composition of the host microbiome. RESULTS Analysis of genomic data from 172 Ae. aegypti females across six populations resulted in an expanded and quantitatively refined, species-level characterization of the bacterial, archaeal, and fungal microbiome. This included 844 species of bacteria across 23 phyla, of which 54 species were found to be ubiquitous microbiome members across these populations. The density of wMel infection was highly variable between individuals and negatively correlated with microbiome diversity. Network analyses revealed wMel as a hub comprised solely of negative interactions with other bacterial species. This contrasted with the large and highly interconnected network of other microbiome species that may represent members of the midgut microbiome community in this population. CONCLUSION Our bioinformatic survey provided a species-level characterization of Ae. aegypti microbiome composition and variation. wMel load varied substantially across populations and individuals and, importantly, wMel was a major hub of a negative interactions across the microbiome. These interactions may be an inherent consequence of heightened pathogen blocking in densely infected individuals or, alternatively, may result from antagonistic Wolbachia-incompatible bacteria that could impede the efficacy of wMel as a biological control agent in future applications. The relationship between wMel infection variation and the microbiome warrants further investigation in the context of developing wMel as a multivalent control agent against other arboviruses. Video Abstract.
Collapse
Affiliation(s)
- Jane Pascar
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Henry Middleton
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
22
|
Flores GAM, Lopez RP, Cerrudo CS, Perotti MA, Consolo VF, Berón CM. Wolbachia dominance influences the Culex quinquefasciatus microbiota. Sci Rep 2023; 13:18980. [PMID: 37923779 PMCID: PMC10624681 DOI: 10.1038/s41598-023-46067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Microorganisms present in mosquitoes and their interactions are key factors affecting insect development. Among them, Wolbachia is closely associated with the host and affects several fitness parameters. In this study, the bacterial and fungal microbiota from two laboratory Culex quinquefasciatus isolines (wild type and tetracycline-cured) were characterized by metagenome amplicon sequencing of the ITS2 and 16S rRNA genes at different developmental stages and feeding conditions. We identified 572 bacterial and 61 fungal OTUs. Both isolines presented variable bacterial communities and different trends in the distribution of diversity among the groups. The lowest bacterial richness was detected in sugar-fed adults of the cured isoline, whereas fungal richness was highly reduced in blood-fed mosquitoes. Beta diversity analysis indicated that isolines are an important factor in the differentiation of mosquito bacterial communities. Considering composition, Penicillium was the dominant fungal genus, whereas Wolbachia dominance was inversely related to that of Enterobacteria (mainly Thorsellia and Serratia). This study provides a more complete overview of the mosquito microbiome, emphasizing specific highly abundant components that should be considered in microorganism manipulation approaches to control vector-borne diseases.
Collapse
Affiliation(s)
- Guillermo A M Flores
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| | - Rocio P Lopez
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| | - Carolina S Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular (LIGBCM), Area Virosis de Insectos (AVI), Departamento Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Argentina
| | - M Alejandra Perotti
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, UK
| | - V Fabiana Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina.
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
24
|
Fitzmeyer EA, Gallichotte EN, Weger-Lucarelli J, Kapuscinski ML, Abdo Z, Pyron K, Young MC, Ebel GD. Loss of West Nile virus genetic diversity during mosquito infection due to species-dependent population bottlenecks. iScience 2023; 26:107711. [PMID: 37701570 PMCID: PMC10494182 DOI: 10.1016/j.isci.2023.107711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Vector competence (VC) refers to the efficiency of pathogen transmission by vectors. Each step in the infection of a mosquito vector constitutes a barrier to transmission that may impose bottlenecks on virus populations. West Nile virus (WNV) is maintained by multiple mosquito species with varying VC. However, the extent to which bottlenecks and VC are linked is poorly understood. Similarly, quantitative analyses of mosquito-imposed bottlenecks on virus populations are limited. We used molecularly barcoded WNV to quantify tissue-associated population bottlenecks in three variably competent WNV vectors. Our results confirm strong population bottlenecks during mosquito infection that are capable of dramatically reshaping virus population structure in a non-selective manner. In addition, we found that mosquitoes with differing VC uniquely shape WNV population structure: highly competent vectors are more likely to contribute to the maintenance of rare viral genotypes. These findings have important implications for arbovirus emergence and evolution.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Marylee L. Kapuscinski
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kyra Pyron
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael C. Young
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
25
|
Houwenhuyse S, Callens M, Bulteel L, Decaestecker E. Comparison between the gut bacterial community of laboratory cultured and wild Daphnia. FEMS Microbiol Ecol 2023; 99:fiad116. [PMID: 37740575 DOI: 10.1093/femsec/fiad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The fitness of an organism is often impacted by the composition and biological activity of its associated bacterial community. Many factors, including host genetics, diet, and temperature can influence the bacterial community composition. Furthermore, these factors can differ strongly between natural and laboratory environments. Consequently, several studies have highlighted results from laboratory experiments investigating host-associated bacterial communities to be conflicting with those obtained under field conditions. Here, we compared the Daphnia magna gut bacterial communities in natural host populations with those of laboratory cultured hosts. We further analyzed changes in the gut bacterial communities after transferring hosts from natural populations to the laboratory on the short- and long-term. Results show that, in general, the gut bacterial communities from natural populations differ from those of laboratory cultures and that their composition and diversity changed one hour after being transferred to the laboratory. Over the following 14 days, the composition and diversity changed gradually. On the longer term (after two years of rearing hosts in the laboratory) the composition and diversity of the gut bacterial communities was strongly altered compared to the initial state. Our findings indicate that the gut bacterial communities of Daphnia magna in laboratory experiments is not representative for natural field conditions, and that caution should be taken when interpreting results from laboratory experiments for natural settings.
Collapse
Affiliation(s)
- Shira Houwenhuyse
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Gent University, Karel Lodewijk Ledeganckstraat 35, 9000, Gent, Belgium
| | - Martijn Callens
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
- Animal Sciences Unit - Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende 8400, Belgium
| | - Lore Bulteel
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
26
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DY, Khanipov K, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype-dependent. PLoS Pathog 2023; 19:e1011727. [PMID: 37903174 PMCID: PMC10635568 DOI: 10.1371/journal.ppat.1011727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can have carry-over effects on adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we showed that the bacterial community structure differs between the two genotypes of Ae. aegypti when given identical microbiomes, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific larval microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti. We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Laura C. Multini
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Babakar Diouf
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques Sine Saloum University El Hadji Ibrahima NIASS (USSEIN), Kaffrine, Senegal
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mawlouth Diallo
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Alioune Gaye
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
27
|
Mercant Osuna A, Gidley A, Mayi MPA, Bamou R, Dhokiya V, Antonio-Nkondjio C, Jeffries CL, Walker T. Diverse novel Wolbachia bacteria strains and genera-specific co-infections with Asaia bacteria in Culicine mosquitoes from ecologically diverse regions of Cameroon. Wellcome Open Res 2023; 8:267. [PMID: 37799509 PMCID: PMC10548110 DOI: 10.12688/wellcomeopenres.18580.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Background: The endosymbiotic bacterium Wolbachia infects numerous species of insects and Wolbachia transinfection of Aedes mosquito species is now being used for biocontrol programs as Wolbachia strains can both inhibit arboviruses and invade wild mosquito populations. The discovery of novel, resident Wolbachia strains in mosquito species warrants further investigation as potential candidate strains for biocontrol strategies. Methods: We obtained mosquito specimens from diverse Culicine mosquitoes from Cameroon including ecologically diverse locations in the Central and West Regions. Wolbachia prevalence rates were assessed in addition to the environmentally acquired bacterial species Asaia in major Culicine genera. PCR-based methods were also used with phylogenetic analysis to confirm identities of host mosquito species and Wolbachia strains were classified using multi-locus sequence typing (MLST). Results: We report high Wolbachia prevalence rates for Culicine species, including in a large cohort of Aedes africanus collected from west Cameroon in which 100% of mono-specific pools were infected. Furthermore, co-infections with Asaia bacteria were observed across multiple genera, demonstrating that these two bacteria can co-exist in wild mosquito populations. Wolbachia strain MLST and phylogenetic analysis provided evidence for diverse Wolbachia strains in 13 different mosquito species across seven different genera. Full or partial MLST profiles were generated from resident Wolbachia strains in six Culex species ( quinquefasciatus, watti, cinerus, nigripalpus, perexiguus and rima), two Aedes species (africanus and denderensis) and in Mansonia uniformis, Catageiomyia argenteopunctata, Lutzia tigripes, Eretmapodites chrysogaster and Uranotaenia bilineata. Conclusions: Our study provides further evidence that Wolbachia is widespread within wild mosquito populations of diverse Culicine species and provides further candidate strains that could be investigated as future options for Wolbachia-based biocontrol to inhibit arbovirus transmission.
Collapse
Affiliation(s)
- Aina Mercant Osuna
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Alexandra Gidley
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Marie Paul Audrey Mayi
- Department of Microbiology, University of Yaounde 1, Yaoundé, Cameroon
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roland Bamou
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, USA
- IHU Méditerranée Infection, Marseille, France
- Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix Marseille University, Marseille, France
- Vector Borne Diseases Laboratory of the Research Unit of Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, University of Dschang, Dschang, Cameroon
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Vishaal Dhokiya
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
28
|
Accoti A, Quek S, Vulcan J, Cansado-Utrilla C, Anderson ER, Abu AEI, Alsing J, Narra HP, Khanipov K, Hughes GL, Dickson LB. Variable microbiomes between mosquito lines are maintained across different environments. PLoS Negl Trop Dis 2023; 17:e0011306. [PMID: 37747880 PMCID: PMC10553814 DOI: 10.1371/journal.pntd.0011306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The composition of the microbiome is shaped by both environment and host in most organisms, but in the mosquito Aedes aegypti the role of the host in shaping the microbiome is poorly understood. Previously, we had shown that four lines of Ae. aegypti harbored different microbiomes when reared in the same insectary under identical conditions. To determine whether these lines differed from each other across time and in different environments, we characterized the microbiome of the same four lines of Ae. aegypti reared in the original insectary and at another institution. While it was clear that the environment influenced the microbiomes of these lines, we did still observe distinct differences in the microbiome between lines within each insectary. Clear differences were observed in alpha diversity, beta diversity, and abundance of specific bacterial taxa. To determine if the line specific differences in the microbiome were maintained across environments, pair-wise differential abundances of taxa was compared between insectaries. Lines were most similar to other lines from the same insectary than to the same line reared in a different insectary. Additionally, relatively few differentially abundant taxa identified between pairs of lines were shared across insectaries, indicating that line specific properties of the microbiome are not conserved across environments, or that there were distinct microbiota within each insectary. Overall, these results demonstrate that mosquito lines under the same environmental conditions have different microbiomes across microbially- diverse environments and host by microbe interactions affecting microbiome composition and abundance is dependent on environmentally available bacteria.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Enyia R. Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angel Elma I. Abu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Jessica Alsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
- Center of Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
29
|
Hegde S, Rauch HE, Hughes GL, Shariat N. Identification and characterization of two CRISPR/Cas systems associated with the mosquito microbiome. Access Microbiol 2023; 5:acmi000599.v4. [PMID: 37691844 PMCID: PMC10484321 DOI: 10.1099/acmi.0.000599.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
The microbiome profoundly influences many traits in medically relevant vectors such as mosquitoes, and a greater functional understanding of host-microbe interactions may be exploited for novel microbial-based approaches to control mosquito-borne disease. Here, we characterized two novel clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems in Serratia sp. Ag1, which was isolated from the gut of an Anopheles gambiae mosquito. Two distinct CRISPR/Cas systems were identified in Serratia Ag1, CRISPR1 and CRISPR2. Based on cas gene composition, CRISPR1 is classified as a type I-E CRISPR/Cas system and has a single array, CRISPR1. CRISPR2 is a type I-F system with two arrays, CRISPR2.1 and CRISPR2.2. RT-PCR analyses show that all cas genes from both systems are expressed during logarithmic growth in culture media. The direct repeat sequences of CRISPRs 2.1 and 2.2 are identical and found in the arrays of other Serratia spp., including S. marcescens and S. fonticola , whereas CRISPR1 is not. We searched for potential spacer targets and revealed an interesting difference between the two systems: only 9 % of CRISPR1 (type I-E) targets are in phage sequences and 91 % are in plasmid sequences. Conversely, ~66 % of CRISPR2 (type I-F) targets are found within phage genomes. Our results highlight the presence of CRISPR loci in gut-associated bacteria of mosquitoes and indicate interplay between symbionts and invasive mobile genetic elements over evolutionary time.
Collapse
Affiliation(s)
- Shivanand Hegde
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Disease, Liverpool, UK
- Present address: School of Life Sciences, University of Keele, Newcastle, UK
| | - Hallie E. Rauch
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - Grant L. Hughes
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Disease, Liverpool, UK
| | - Nikki Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Baltar JMC, Pavan MG, Corrêa-Antônio J, Couto-Lima D, Maciel-de-Freitas R, David MR. Gut Bacterial Diversity of Field and Laboratory-Reared Aedes albopictus Populations of Rio de Janeiro, Brazil. Viruses 2023; 15:1309. [PMID: 37376609 DOI: 10.3390/v15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The mosquito microbiota impacts different parameters in host biology, such as development, metabolism, immune response and vector competence to pathogens. As the environment is an important source of acquisition of host associate microbes, we described the microbiota and the vector competence to Zika virus (ZIKV) of Aedes albopictus from three areas with distinct landscapes. METHODS Adult females were collected during two different seasons, while eggs were used to rear F1 colonies. Midgut bacterial communities were described in field and F1 mosquitoes as well as in insects from a laboratory colony (>30 generations, LAB) using 16S rRNA gene sequencing. F1 mosquitoes were infected with ZIKV to determine virus infection rates (IRs) and dissemination rates (DRs). Collection season significantly affected the bacterial microbiota diversity and composition, e.g., diversity levels decreased from the wet to the dry season. Field-collected and LAB mosquitoes' microbiota had similar diversity levels, which were higher compared to F1 mosquitoes. However, the gut microbiota composition of field mosquitoes was distinct from that of laboratory-reared mosquitoes (LAB and F1), regardless of the collection season and location. A possible negative correlation was detected between Acetobacteraceae and Wolbachia, with the former dominating the gut microbiota of F1 Ae. albopictus, while the latter was absent/undetectable. Furthermore, we detected significant differences in infection and dissemination rates (but not in the viral load) between the mosquito populations, but it does not seem to be related to gut microbiota composition, as it was similar between F1 mosquitoes regardless of their population. CONCLUSIONS Our results indicate that the environment and the collection season play a significant role in shaping mosquitoes' bacterial microbiota.
Collapse
Affiliation(s)
- João M C Baltar
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Márcio G Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Mariana R David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
31
|
Foo A, Cerdeira L, Hughes GL, Heinz E. Recovery of metagenomic data from the Aedes aegypti microbiome using a reproducible snakemake pipeline: MINUUR. Wellcome Open Res 2023; 8:131. [PMID: 37577055 PMCID: PMC10412942 DOI: 10.12688/wellcomeopenres.19155.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Ongoing research of the mosquito microbiome aims to uncover novel strategies to reduce pathogen transmission. Sequencing costs, especially for metagenomics, are however still significant. A resource that is increasingly used to gain insights into host-associated microbiomes is the large amount of publicly available genomic data based on whole organisms like mosquitoes, which includes sequencing reads of the host-associated microbes and provides the opportunity to gain additional value from these initially host-focused sequencing projects. Methods: To analyse non-host reads from existing genomic data, we developed a snakemake workflow called MINUUR (Microbial INsights Using Unmapped Reads). Within MINUUR, reads derived from the host-associated microbiome were extracted and characterised using taxonomic classifications and metagenome assembly followed by binning and quality assessment. We applied this pipeline to five publicly available Aedes aegypti genomic datasets, consisting of 62 samples with a broad range of sequencing depths. Results: We demonstrate that MINUUR recovers previously identified phyla and genera and is able to extract bacterial metagenome assembled genomes (MAGs) associated to the microbiome. Of these MAGS, 42 are high-quality representatives with >90% completeness and <5% contamination. These MAGs improve the genomic representation of the mosquito microbiome and can be used to facilitate genomic investigation of key genes of interest. Furthermore, we show that samples with a high number of KRAKEN2 assigned reads produce more MAGs. Conclusions: Our metagenomics workflow, MINUUR, was applied to a range of Aedes aegypti genomic samples to characterise microbiome-associated reads. We confirm the presence of key mosquito-associated symbionts that have previously been identified in other studies and recovered high-quality bacterial MAGs. In addition, MINUUR and its associated documentation are freely available on GitHub and provide researchers with a convenient workflow to investigate microbiome data included in the sequencing data for any applicable host genome of interest.
Collapse
Affiliation(s)
- Aidan Foo
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Louise Cerdeira
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L. Hughes
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
32
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DAY, Khanipov K, Weaver SC, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540191. [PMID: 37215022 PMCID: PMC10197687 DOI: 10.1101/2023.05.10.540191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can influence adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we show that similarities in bacterial community structures when given identical microbiomes between different genetic backgrounds of Ae. aegypti was dependent on the source microbiome, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti . We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
|
33
|
Zhao SY, Hughes GL, Coon KL. A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. PLoS Negl Trop Dis 2023; 17:e0011234. [PMID: 37018374 PMCID: PMC10109488 DOI: 10.1371/journal.pntd.0011234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/17/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti-a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity.
Collapse
Affiliation(s)
- Serena Y. Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
34
|
Ferreira QR, Lemos FFB, Moura MN, Nascimento JODS, Novaes AF, Barcelos IS, Fernandes LA, Amaral LSDB, Barreto FK, de Melo FF. Role of the Microbiome in Aedes spp. Vector Competence: What Do We Know? Viruses 2023; 15:779. [PMID: 36992487 PMCID: PMC10051417 DOI: 10.3390/v15030779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the vectors of important arboviruses: dengue fever, chikungunya, Zika, and yellow fever. Female mosquitoes acquire arboviruses by feeding on the infected host blood, thus being able to transmit it to their offspring. The intrinsic ability of a vector to infect itself and transmit a pathogen is known as vector competence. Several factors influence the susceptibility of these females to be infected by these arboviruses, such as the activation of the innate immune system through the Toll, immunodeficiency (Imd), JAK-STAT pathways, and the interference of specific antiviral response pathways of RNAi. It is also believed that the presence of non-pathogenic microorganisms in the microbiota of these arthropods could influence this immune response, as it provides a baseline activation of the innate immune system, which may generate resistance against arboviruses. In addition, this microbiome has direct action against arboviruses, mainly due to the ability of Wolbachia spp. to block viral genome replication, added to the competition for resources within the mosquito organism. Despite major advances in the area, studies are still needed to evaluate the microbiota profiles of Aedes spp. and their vector competence, as well as further exploration of the individual roles of microbiome components in activating the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
35
|
Hegde S, Brettell LE, Quek S, Etebari K, Saldaña MA, Asgari S, Coon KL, Heinz E, Hughes GL. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field-caught or laboratory-reared mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532926. [PMID: 36993663 PMCID: PMC10055144 DOI: 10.1101/2023.03.16.532926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, far more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities are associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura E Brettell
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
36
|
Rodpai R, Boonroumkaew P, Sadaow L, Sanpool O, Janwan P, Thanchomnang T, Intapan PM, Maleewong W. Microbiome Composition and Microbial Community Structure in Mosquito Vectors Aedes aegypti and Aedes albopictus in Northeastern Thailand, a Dengue-Endemic Area. INSECTS 2023; 14:184. [PMID: 36835753 PMCID: PMC9961164 DOI: 10.3390/insects14020184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Bacterial content in mosquito larvae and adults is altered by dynamic interactions during life and varies substantially in variety and composition depending on mosquito biology and ecology. This study aimed to identify the microbiota in Aedes aegypti and Aedes albopictus and in water from their breeding sites in northeastern Thailand, a dengue-endemic area. Bacterial diversity in field-collected aquatic larvae and subsequently emerged adults of both species from several locations were examined. The microbiota was characterized based on analysis of DNA sequences from the V3-V4 region of the 16S rRNA gene and exhibited changes during development, from the mosquito larval stage to the adult stage. Aedes aegypti contained a significantly higher number of bacterial genera than did Ae. albopictus, except for the genus Wolbachia, which was present at significantly higher frequencies in male Ae. albopictus (p < 0.05). Our findings also indicate likely transstadial transmission from larva to adult and give better understanding of the microbial diversity in these mosquitoes, informing future control programs against mosquito-borne diseases.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Penchom Janwan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | | | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
37
|
Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, Du Y, Xing D, Li C, Zhao T, Jiang Y, Dong Y, Guo X, Zhao T. Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China. Front Cell Infect Microbiol 2022; 12:1082809. [PMID: 36530420 PMCID: PMC9748079 DOI: 10.3389/fcimb.2022.1082809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China. Methods A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied. Results 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%. Conclusions Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - XiaoXia Guo
- *Correspondence: XiaoXia Guo, ; TongYan Zhao,
| | | |
Collapse
|
38
|
Adegoke A, Kumar D, Budachetri K, Karim S. Hematophagy and tick-borne Rickettsial pathogen shape the microbial community structure and predicted functions within the tick vector, Amblyomma maculatum. Front Cell Infect Microbiol 2022; 12:1037387. [PMID: 36478675 PMCID: PMC9719966 DOI: 10.3389/fcimb.2022.1037387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Ticks are the primary vectors of emerging and resurging pathogens of public health significance worldwide. Analyzing tick bacterial composition, diversity, and functionality across developmental stages and tissues is crucial for designing new strategies to control ticks and prevent tick-borne diseases. Materials and methods Here, we explored the microbial communities across the developmental timeline and in different tissues of the Gulf-Coast ticks (Amblyomma maculatum). Using a high-throughput sequencing approach, the influence of blood meal and Rickettsia parkeri, a spotted fever group rickettsiae infection in driving changes in microbiome composition, diversity, and functionality was determined. Results This study shows that the core microbiome of Am. maculatum comprises ten core bacterial genera. The genus Rickettsia, Francisella, and Candidatus_Midichloria are the key players, with positive interactions within each developmental stage and adult tick organ tested. Blood meal and Rickettsia parkeri led to an increase in the bacterial abundance in the tissues. According to functional analysis, the increase in bacterial numbers is positively correlated to highly abundant energy metabolism orthologs with blood meal. Correlation analysis identified an increase in OTUs identified as Candidatus Midichloria and a subsequent decrease in Francisella OTUs in Rickettsia parkeri infected tick stages and tissues. Results demonstrate the abundance of Rickettsia and Francisella predominate in the core microbiome of Am. maculatum, whereas Candidatus_Midichloria and Cutibacterium prevalence increase with R. parkeri-infection. Network analysis and functional annotation suggest that R. parkeri interacts positively with Candidatus_Midichloria and negatively with Francisella. Conclusion We conclude that tick-transmitted pathogens, such as R. parkeri establishes infection by interacting with the core microbiome of the tick vector.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
39
|
Bacterial Community Diversity and Bacterial Interaction Network in Eight Mosquito Species. Genes (Basel) 2022; 13:genes13112052. [DOI: 10.3390/genes13112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Mosquitoes (Diptera: Culicidae) are found widely throughout the world. Several species can transmit pathogens to humans and other vertebrates. Mosquitoes harbor great amounts of bacteria, fungi, and viruses. The bacterial composition of the microbiota of these invertebrates is associated with several factors, such as larval habitat, environment, and species. Yet little is known about bacterial interaction networks in mosquitoes. This study investigates the bacterial communities of eight species of Culicidae collected in Vale do Ribeira (Southeastern São Paulo State) and verifies the bacterial interaction network in these species. Sequences of the 16S rRNA region from 111 mosquito samples were analyzed. Bacterial interaction networks were generated from Spearman correlation values. Proteobacteria was the predominant phylum in all species. Wolbachia was the predominant genus in Haemagogus leucocelaenus. Aedes scapularis, Aedes serratus, Psorophora ferox, and Haemagogus capricornii were the species that showed a greater number of bacterial interactions. Bacterial positive interactions were found in all mosquito species, whereas negative correlations were observed in Hg. leucocelaenus, Ae. scapularis, Ae. serratus, Ps. ferox, and Hg. capricornii. All bacterial interactions with Asaia and Wolbachia were negative in Aedes mosquitoes.
Collapse
|
40
|
Sandeu MM, Maffo CGT, Dada N, Njiokou F, Hughes GL, Wondji CS. Seasonal variation of microbiota composition in Anopheles gambiae and Anopheles coluzzii in two different eco-geographical localities in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:269-282. [PMID: 35579271 DOI: 10.1111/mve.12583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Understanding the environmental factors affecting the microbiota in malaria vectors may help in the development of novel vector control interventions, similar to paratransgenesis. This study evaluated seasonal and geographical variations in the microbial community of the two major malaria vectors. Adult Anopheles mosquitoes were collected across two different eco-geographical settings in Cameroon, during the dry and wet seasons. DNA was extracted from the whole individual mosquitoes from each group and processed for microbial analysis using Illumina Miseq sequencing of the V3-V4 region of the 16S rRNA gene. Data analysis was performed using QIIME2 and R software programs. A total of 1985 mosquitoes were collected and among them, 120 were selected randomly corresponding to 30 mosquitoes per season and locality. Overall, 97 bacterial taxa were detected across all mosquito samples, with 86 of these shared between dry and wet seasons in both localities and species. There were significant differences in bacterial composition between both seasons, with a clear separation observed between the dry and wet seasons (PERMANOVA comparisons of beta diversity, Pseudo-F = 10.45; q-value = 0.01). This study highlights the influence of seasonal variation on microbial communities and this variation's impact on mosquito biology and vectorial capacity should be further investigated.
Collapse
Affiliation(s)
- Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Claudine Grâce Tatsinkou Maffo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Science, Aas, Norway
- Tropical Infectious Disease Research Center, University of Abomey-Calavi, Cotonou, Benin
| | - Flobert Njiokou
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Charles S Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
41
|
Bukhari T, Pevsner R, Herren JK. Microsporidia: a promising vector control tool for residual malaria transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.957109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have resulted in a major decrease in malaria transmission. However, it has become apparent that malaria can be effectively transmitted despite high coverage of LLINs/IRS. Residual transmission can occur due to Plasmodium-carrying Anopheles mosquitoes that are insecticide resistant and have feeding and resting behavior that reduces their chance of encountering the currently deployed indoor malaria control tools. Residual malaria transmission is likely to be the most significant hurdle to achieving the goal of malaria eradication and research and development towards new tools and strategies that can control residual malaria transmission is therefore critical. One of the most promising strategies involves biological agents that are part of the mosquito microbiome and influence the ability of Anopheles to transmit Plasmodium. These differ from biological agents previously used for vector control in that their primary effect is on vectoral capacity rather than the longevity and fitness of Anopheles (which may or may not be affected). An example of this type of biological agent is Microsporidia MB, which was identified in field collected Anopheles arabiensis and caused complete inhibition of Plasmodium falciparum transmission without effecting the longevity and fitness of the host. Microsporidia MB belongs to a unique group of rapidly adapting and evolving intracellular parasites and symbionts called microsporidia. In this review we discuss the general biology of microsporidians and the inherent characteristics that make some of them particularly suitable for malaria control. We then discuss the research priorities for developing a transmission blocking strategy for the currently leading microsporidian candidate Microsporidia MB for malaria control.
Collapse
|
42
|
Pérez-Ramos DW, Ramos MM, Payne KC, Giordano BV, Caragata EP. Collection Time, Location, and Mosquito Species Have Distinct Impacts on the Mosquito Microbiota. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.896289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mosquito microbiota affects many aspects of mosquito biology including development and reproduction. It also strongly impacts interactions between the mosquito host and pathogens that cause important disease in humans, such as dengue and malaria. Critically, the mosquito microbiota is highly diverse and can vary in composition in response to multiple environmental variables, but these effects are not always consistent. Understanding how the environment shapes mosquito microbial diversity is a critical step in elucidating the ubiquity of key host-microbe-pathogen interactions in nature. To that end, we examined the role of time of collection, collection location and host species on mosquito microbial diversity by repeating collections at two-month intervals on a trapping grid spanning three distinct biomes. We then used 16S rRNA sequencing to compare the microbiomes of Aedes taeniorhynchus, Anopheles crucians, and Culex nigripalpus mosquitoes from those collections. We saw that mosquito diversity was strongly affected by both time and collection location. We also observed that microbial richness and diversity increased from March to May, and that An. crucians and Cx. nigripalpus had greater microbial diversity than Ae. taeniorhynchus. However, we also observed that collection location had no impact on microbial diversity except for significantly lower bacterial richness observed in mosquitoes collected from the mangrove wetlands. Our results highlight that collection time, collection location, and mosquito species each affect aspects of mosquito microbial diversity, but their importance is context dependent. We also demonstrate that these variables have differing impacts on mosquito diversity and mosquito microbial diversity. Our findings suggest that the environment likely plays an important but variable role in influencing the composition of the mosquito microbiota.
Collapse
|
43
|
Tokash-Peters AG, Jabon JD, Fung ME, Peters JA, Lopez SG, Woodhams DC. Trans-Generational Symbiont Transmission Reduced at High Temperatures in a West Nile Virus Vector Mosquito Culex quinquefasciatus. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.762132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The influence of environmental factors on the efficacy of the endosymbiont Wolbachia used in mosquito and pathogen control are poorly characterized and may be critical for disease control. We studied the vector mosquito Culex pipiens quinquefasciatus (Say) to determine the effect of temperature on the composition of the relative abundance of Wolbachia spp. and the microbiome, as well as key immune genes of interest in the Toll and IMD pathways. 16S barcode sequencing was used to determine the microbiome composition and qPCR was used to determine the relative abundance of Wolbachia spp. based on the highly utilized marker Wolbachia surface protein (wsp) gene. We found no effect of temperature within a single generation on the relative abundance of Wolbachia or immune gene expression, nor on the alpha or beta diversity of the microbiome. However, there was a significant difference in the abundance of Wolbachia between generations at high temperatures (≥ 28°C), but not at lower temperatures (≤ 23°C). These results support the idea that Wolbachia are reduced at higher temperatures between generations, which has an influence on the establishment of pathogens including West Nile Virus (WNV). Modulation of the Toll or IMD mosquito immune pathways was not indicated. Wolbachia endosymbiosis and trans-generation transmission appears especially sensitive to high temperatures, which may have implications for Wolbachia-based vector control strategies under climate change scenarios.
Collapse
|
44
|
Coon KL, Hegde S, Hughes GL. Interspecies microbiome transplantation recapitulates microbial acquisition in mosquitoes. MICROBIOME 2022; 10:58. [PMID: 35410630 PMCID: PMC8996512 DOI: 10.1186/s40168-022-01256-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Mosquitoes harbor microbial communities that play important roles in their growth, survival, reproduction, and ability to transmit human pathogens. Microbiome transplantation approaches are often used to study host-microbe interactions and identify microbial taxa and assemblages associated with health or disease. However, no such approaches have been developed to manipulate the microbiota of mosquitoes. RESULTS Here, we developed an approach to transfer entire microbial communities between mosquito cohorts. We undertook transfers between (Culex quinquefasciatus to Aedes aegypti) and within (Ae. aegypti to Ae. aegypti) species to validate the approach and determine the number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored mosquito development and microbiota dynamics throughout the life cycle. Typical holometabolous lifestyle-related microbiota structures were observed, with higher dynamics of microbial structures in larval stages, including the larval water, and less diversity in adults. Microbiota diversity in recipient adults was also more similar to the microbiota diversity in donor adults. CONCLUSIONS This study provides the first evidence for successful microbiome transplantation in mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe interactions and lay the foundation for future studies to elucidate the factors underlying microbiota acquisition, assembly, and function in mosquitoes under controlled conditions. Video Abstract.
Collapse
Affiliation(s)
- Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
45
|
Zhou Z, Huang H, Che X. Bacterial Communities in the Feces of Laboratory Reared Gampsocleis gratiosa (Orthoptera: Tettigoniidae) across Different Developmental Stages and Sexes. INSECTS 2022; 13:insects13040361. [PMID: 35447806 PMCID: PMC9024567 DOI: 10.3390/insects13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Many insects host a diverse gut microbial community, ranging from pathogenic to obligate mutualistic organisms. Little is known about the bacteria associated with katydids. Gampsocleis gratiosa (Orthoptera, Tettigoniidae) is an economically important singing pet in China. In the present study, the bacterial communities of the laboratory-reared G. gratiosa feces were characterized using Illumina sequencing of the 16S rDNA V3-V4 region. Abstract We used Illumina sequencing of the 16S rDNA V3-V4 region to identify the bacterial community in laboratory-reared G. gratiosa feces across different developmental stages (1st–7th instar nymph day 0, and 0-, 7-, 14-, and 21-day adult) and sexes. In total, 14,480,559 high-quality reads were clustered into 2982 species-level operational taxonomic units (OTUs), with an average of 481.197 (±137.366) OTUs per sample. These OTUs were assigned into 25 phyla, 42 classes, 60 orders, 116 families, 241 genera, and some unclassified groups. Only 21 core OTUs were shared by all samples. The most representative phylum was Proteobacteria, followed by Firmicutes, Bacteroidetes, and Acidobacteria. At the genus level, Kluyvera (387 OTUs), Obesumbacterium (339 OTUs), Buttiauxella (296 OTUs), Lactobacillus (286 OTUs), and Hafnia (152 OTUs) were dominant bacteria. The early-instar nymphs harbored a similar bacterial community with other developmental stages, which contain higher species diversity. Both principal coordinate analysis (PCoA) and non-metric multidimensional scaling analysis (NMDS) failed to provide a clear clustering based on the developmental stages and sexes. Overall, we assume that G. gratiosa transmits bacteria vertically by eating contaminated eggshells, and both developmental stages and sexes had no significant effect on the fecal bacterial community.
Collapse
Affiliation(s)
- Zhijun Zhou
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence:
| | - Huimin Huang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| | - Xuting Che
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.H.); (X.C.)
| |
Collapse
|
46
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
47
|
do Nascimento RM, Campolina TB, Chaves BA, Delgado JLF, Godoy RSM, Pimenta PFP, Secundino NFC. The influence of culture-dependent native microbiota in Zika virus infection in Aedes aegypti. Parasit Vectors 2022; 15:57. [PMID: 35177110 PMCID: PMC8851793 DOI: 10.1186/s13071-022-05160-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/10/2022] [Indexed: 01/26/2023] Open
Abstract
Background Emerging and re-emerging vector-borne diseases (VBDs) pose a recurring threat to tropical countries, mainly due to the abundance and distribution of the Aedes aegypti mosquito, which is a vector of the Zika, dengue, chikungunya, and yellow fever arboviruses. Methods Female 3–5 day-old Ae. aegypti were distributed into two experimental groups: group I—survey of cultivable bacteria; sucrose group: fed only on sucrose, i.e., non-blood-fed (UF); blood-fed group: (i) fed with non-infected blood (BF); (ii) fed with blood infected with the Zika virus (BZIKV); (iii) pretreated with penicillin/streptomycin (pen/strep), and fed with non-infected blood (TBF); (iv) pretreated with pen/strep and fed blood infected with ZIKV, i.e., gravid with developed ovaries, (TGZIKV); group II—experimental co-infections: bacteria genera isolated from the group fed on sucrose, i.e., non-blood-fed (UF). Results Using the cultivable method and the same mosquito colony and ZIKV strain described by in a previous work, our results reveled 11 isolates (Acinetobacter, Aeromonas, Cedecea, Cellulosimicrobium, Elizabethkingia, Enterobacter, Lysinibacillus, Pantoea, Pseudomonas, Serratia, and Staphylococcus). Enterobacter was present in all evaluated groups (i.e., UF, BF, BZIKV, TBF, and TGZIKV), whereas Elizabethkingia was present in the UF, BZIKV, and TBF groups. Pseudomonas was present in the BZIKV and TBF groups, whereas Staphylococcus was present in the TBF and TGZIKV groups. The only genera of bacteria that were found to be present in only one group were Aeromonas, Lysinibacillus, and Serratia (UF); Cedacea, Pantoea and Acinetobacter (BF); and Cellulosimicrobium (BZIKV). The mosquitoes co-infected with ZIKV plus the isolates group fed on sucrose (UF) showed interference in the outcome of infection. Conclusions We demonstrate that the distinct feeding aspects assessed herein influence the composition of bacterial diversity. In the co-infection, among ZIKV, Ae. aegypti and the bacterial isolates, the ZIKV/Lysinibacillus–Ae. aegypti had the lowest number of viral copies in the head-SG, which means that it negatively affects vector competence. However, when the saliva was analyzed after forced feeding, no virus was detected in the mosquito groups ZIKV/Lysinibacillus–Lu. longipalpis and Ae. aegypti; the combination of ZIKV/Serratia may interfere in salivation. This indicates that the combinations do not produce viable viruses and may have great potential as a method of biological control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05160-7.
Collapse
Affiliation(s)
- Rêgila Mello do Nascimento
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Thais Bonifácio Campolina
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, IRR-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Aparecida Chaves
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | - Raquel Soares Maia Godoy
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, IRR-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Nagila Francinete Costa Secundino
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil. .,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde, IRR-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
48
|
Frankel-Bricker J, Frankel LK. Re-Analysis of 16S rRNA Gene Sequence Data Sets Uncovers Disparate Laboratory-Specific Microbiomes Associated with the Yellow Fever Mosquito (Aedes aegypti). MICROBIAL ECOLOGY 2022; 83:167-181. [PMID: 33797563 DOI: 10.1007/s00248-021-01739-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Host-microbiome dynamics occurring in the yellow fever mosquito (Aedes aegypti) contribute to host life history traits, and particular bacterial taxa are proposed to comprise a "core" microbiota that influences host physiology. Laboratory-based studies are frequently performed to investigate these processes; however, experimental results are often presumed to be generalizable across laboratories, and few efforts have been made to independently reproduce and replicate significant findings. A recent study by Muturi et al. (FEMS Microbiol Ecol 95 (1):213, 2019) demonstrated the food source imbibed by laboratory-reared adult female mosquitoes significantly impacted the host-associated microbiota-a foundational finding in the field of mosquito biology worthy of independent evaluation. Here, we coalesce these data with two additional mosquito-derived 16S rRNA gene sequence data sets using a unifying bioinformatics pipeline to reproduce the characterization of these microbiota, test for a significant food source effect when independent samples were added to the analyses, assess whether similarly fed mosquito microbiomes were comparable across laboratories, and identify conserved bacterial taxa. Our pipeline characterized similar microbiome composition and structure from the data published previously, and a significant food source effect was detected with the addition of independent samples, increasing the robustness of this previously discovered component of mosquito biology. However, distinct microbial communities were identified from similarly fed but independently reared mosquitoes, and surveys across all samples did not identify conserved bacterial taxa. These findings demonstrated that while the main effect of the food source was supported, laboratory-specific conditions may produce inherently differential microbiomes across independent laboratory environments.
Collapse
Affiliation(s)
| | - Laurie K Frankel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
49
|
Caragata EP, Otero LM, Tikhe CV, Barrera R, Dimopoulos G. Microbial Diversity of Adult Aedes aegypti and Water Collected from Different Mosquito Aquatic Habitats in Puerto Rico. MICROBIAL ECOLOGY 2022; 83:182-201. [PMID: 33860847 PMCID: PMC11328149 DOI: 10.1007/s00248-021-01743-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/19/2021] [Indexed: 05/06/2023]
Abstract
Mosquitoes, the major vectors of viruses like dengue, are naturally host to diverse microorganisms, which play an important role in their development, fecundity, immunity, and vector competence. The composition of their microbiota is strongly influenced by the environment, particularly their aquatic larval habitat. In this study, we used 2×300 bp 16s Illumina sequencing to compare the microbial profiles of emerging adult Aedes aegypti mosquitoes and the water collected from common types of aquatic habitat containers in Puerto Rico, which has endemic dengue transmission. We sequenced 141 mosquito and 46 water samples collected from plastic containers, septic tanks, discarded tires, underground trash cans, tree holes, or water meters. We identified 9 bacterial genera that were highly prevalent in the mosquito microbiome, and 77 for the microbiome of the aquatic habitat. The most abundant mosquito-associated bacterial OTUs were from the families Burkholderiaceae, Pseudomonadaceae, Comamonadaceae, and Xanthomonadaceae. Microbial profiles varied greatly between mosquitoes, and there were few major differences explained by container type; however, the microbiome of mosquitoes from plastic containers was more diverse and contained more unique taxa than the other groups. Container water was significantly more diverse than mosquitoes, and our data suggest that mosquitoes filter out many bacteria, with Alphaproteobacteria in particular being far more abundant in water. These findings provide novel insight into the microbiome of mosquitoes in the region and provide a platform to improve our understanding of the fundamental mosquito-microbe interactions.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - L M Otero
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - R Barrera
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
50
|
Schrieke H, Maignien L, Constancias F, Trigodet F, Chakloute S, Rakotoarivony I, Marie A, L'Ambert G, Makoundou P, Pages N, Murat Eren A, Weill M, Sicard M, Reveillaud J. The mosquito microbiome includes habitat-specific but rare symbionts. Comput Struct Biotechnol J 2021; 20:410-420. [PMID: 35140881 PMCID: PMC8803474 DOI: 10.1016/j.csbj.2021.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022] Open
Abstract
Microbial communities are known to influence mosquito lifestyles by modifying essential metabolic and behavioral processes that affect reproduction, development, immunity, digestion, egg survival, and the ability to transmit pathogens. Many studies have used 16S rRNA gene amplicons to characterize mosquito microbiota and investigate factors that influence host-microbiota dynamics. However, a relatively low taxonomic resolution due to clustering methods based on arbitrary threshold and the overall dominance of Wolbachia or Asaia symbionts obscured the investigation of rare members of mosquito microbiota in previous studies. Here, we used high resolution Shannon entropy-based oligotyping approach to analyze the microbiota of Culex pipiens, Culex quinquefasciatus and Aedes individuals from continental Southern France and overseas Guadeloupe as well as from laboratories with or without antibiotics treatment. Our experimental design that resulted in a series of mosquito samples with a gradient of Wolbachia density and relative abundance along with high-resolution analyses of amplicon sequences enabled the recovery of a robust signal from typically less accessible bacterial taxa. Our data confirm species-specific mosquito-bacteria associations with geography as a primary factor that influences bacterial community structure. But interestingly, they also reveal co-occurring symbiotic bacterial variants within single individuals for both Elizabethkingia and Erwinia genera, distinct and specific Asaia and Chryseobacterium in continental and overseas territories, and a putative rare Wolbachia variant. Overall, our study reveals the presence of previously overlooked microdiversity and multiple closely related symbiotic strains within mosquito individuals with a remarkable habitat-specificity.
Collapse
Affiliation(s)
- Hans Schrieke
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Loïs Maignien
- Univ Brest, CNRS, IFREMER, Microbiology of Extreme Environments Laboratory, Plouzané, France
| | | | | | - Sarah Chakloute
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | | | - Albane Marie
- EID Méditerranée, 165 Avenue Paul Rimbaud, 34184 Montpellier, France
| | - Gregory L'Ambert
- EID Méditerranée, 165 Avenue Paul Rimbaud, 34184 Montpellier, France
| | - Patrick Makoundou
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nonito Pages
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Guadeloupe, France
| | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Julie Reveillaud
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| |
Collapse
|