1
|
Wang H, Li H, Liu Z, Zhu Z, Cao Y. Activity of thonningianin A against Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 2024; 108:96. [PMID: 38212967 PMCID: PMC10784352 DOI: 10.1007/s00253-023-12996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Fungal infections are increasing rapidly, and antifungal agents used in clinics are limited. Therefore, novel antifungal agents with high efficiency are urgently required. In this study, we investigated the antifungal activity of thonningianin A (THA), a natural compound that is widely found in plants. We first determined the activity of THA against Candida albicans, one of the most common fungal pathogens, and found that THA showed antifungal activity against all C. albicans tested, including several fluconazole-resistant isolates. THA also inhibits the growth of non-Candida albicans species. In addition, THA displayed antibiofilm activity and could not only inhibit biofilm formation but also destroy mature biofilms. The in vivo antifungal efficacy of THA was confirmed in a Galleria mellonella infection model. Further studies revealed that THA could enhance intracellular reactive oxygen species (ROS) production and regulate the transcription of several redox-related genes. Specifically, caspase activity and expression of CaMCA1, a caspase-encoding gene in C. albicans, were remarkably increased upon THA treatment. Consistent with this, in the presence of THA, the Camca1 null mutant displayed higher survival rates and reduced caspase activity compared to the wild-type or CaMCA1-reintroduced strains, indicating an important role of CaMCA1 in the antifungal activity of THA. Taken together, our results indicate that THA possesses excellent antifungal activity and may be a promising novel antifungal candidate. KEY POINTS: • THA exhibits activity against Candida species, including fluconazole-resistant isolates • THA inhibits biofilm formation and destroys mature biofilm • Elevated ROS production and CaMCA1-mediated caspase activity are involved in the antifungal mechanisms of THA.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Hui Li
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, 200438, China
| | - ZhiWei Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - ZhenYu Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - YingYing Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
2
|
Cao X, Xiao N, Huang J, Li L, Zhong L, Zhang J, Wang F. Synergistic in vitro activity and mechanism of KBN lotion and miconazole nitrate against drug-resistant Candida albicans biofilms. Front Cell Infect Microbiol 2024; 14:1426791. [PMID: 39268490 PMCID: PMC11390680 DOI: 10.3389/fcimb.2024.1426791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background In the face of increasing antifungal resistance among Candida albicans biofilms, this study explores the efficacy of a combined treatment using Kangbainian lotion (KBN) and miconazole nitrate (MN) to address this challenge. Methods Using UPLC-Q-TOF/MS Analysis for Identification of Active Compounds in KBN Lotion; FICI for synergy evaluation, XTT and ROS assays for biofilm viability and oxidative stress, fluorescence and confocal laser scanning microscopy (CLSM) for structural and viability analysis, and real-time fluorescence for gene expression. Conclusion Our study indicates that the combined application of KBN and MN somewhat impacts the structural integrity of Candida albicans biofilms and affects the expression of several key genes involved in biofilm formation, including ALS1, ALS3, HWP1, HSP90, and CSH1. These preliminary findings suggest that there may be a synergistic effect between KBN and MN, potentially influencing not only the structural aspects of fungal biofilms but also involving the modulation of genetic pathways during their formation.
Collapse
Affiliation(s)
- Xiaoyu Cao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ni Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengyun Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Khan J, An H, Alam S, Kalsoom S, Huan Chen S, Ayano Begeno T, Du Z. Smart colorimetric indicator films prepared from chitosan and polyvinyl alcohol with high mechanical strength and hydrophobic properties for monitoring shrimp freshness. Food Chem 2024; 445:138784. [PMID: 38387319 DOI: 10.1016/j.foodchem.2024.138784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
This work aimed to develop and characterize a colorimetric indicator films based on chitosan (CS), polyvinyl alcohol (PVA), and shikonin (SKN) from radix Lithospermi by casting method. The prepared films can serve as smart packaging for monitoring shrimp freshness which having excellent antimicrobial and antioxidant activity. The shikonin containing films have better hydrophobicity, barrier properties, and tensile strength. The release kinetics analysis shows that the loading amount causes a prolonged release of SKN from the prepared films. Increasing SKN in the CS/PVA film from 1 wt% to 2 wt% improved antibacterial effect for 24 h. Additionally, pH-sensitive color shifts from reddish (pH 2) to purple-bluish (pH 13) were visually seen in shikonin based solutions as well as films. The CS/PVA/SKN film detected shrimp deterioration at three temperatures (25, -20, and 4 °C) through color change. This study introduces a favorable approach for smart packaging in the food industry using multifunctional films.
Collapse
Affiliation(s)
- Jehangir Khan
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haoyue An
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shah Alam
- Department of Entomology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Saima Kalsoom
- Department of Chemistry, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Shu Huan Chen
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Teshale Ayano Begeno
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
4
|
Yue D, Zheng D, Bai Y, Yang L, Yong J, Li Y. Insights into the anti-Candida albicans properties of natural phytochemicals: An in vitro and in vivo investigation. Phytother Res 2024; 38:2518-2538. [PMID: 38450815 DOI: 10.1002/ptr.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Invasive candidiasis, attributed to Candida albicans, has long been a formidable threat to human health. Despite the advent of effective therapeutics in recent decades, the mortality rate in affected patient populations remains discouraging. This is exacerbated by the emergence of multidrug resistance, significantly limiting the utility of conventional antifungals. Consequently, researchers are compelled to continuously explore novel solutions. Natural phytochemicals present a potential adjunct to the existing arsenal of agents. Previous studies have substantiated the efficacy of phytochemicals against C. albicans. Emerging evidence also underscores the promising application of phytochemicals in the realm of antifungal treatment. This review systematically delineates the inhibitory activity of phytochemicals, both in monotherapy and combination therapy, against C. albicans in both in vivo and in vitro settings. Moreover, it elucidates the mechanisms underpinning the antifungal properties, encompassing (i) cell wall and plasma membrane damage, (ii) inhibition of efflux pumps, (iii) induction of mitochondrial dysfunction, and (iv) inhibition of virulence factors. Subsequently, the review introduces the substantial potential of nanotechnology and photodynamic technology in enhancing the bioavailability of phytochemicals. Lastly, it discusses current limitations and outlines future research priorities, emphasizing the need for high-quality research to comprehensively establish the clinical efficacy and safety of phytochemicals in treating fungal infections. This review aims to inspire further contemplation and recommendations for the effective integration of natural phytochemicals in the development of new medicines for patients afflicted with C. albicans.
Collapse
Affiliation(s)
- Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Sumlu E, Aydin M, Korucu EN, Alyar S, Nsangou AM. Artemisinin May Disrupt Hyphae Formation by Suppressing Biofilm-Related Genes of Candida albicans: In Vitro and In Silico Approaches. Antibiotics (Basel) 2024; 13:310. [PMID: 38666986 PMCID: PMC11047306 DOI: 10.3390/antibiotics13040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to assess the antifungal and antibiofilm efficacy of artemisinin against Candida (C.) species, analyze its impact on gene expression levels within C. albicans biofilms, and investigate the molecular interactions through molecular docking. The antifungal efficacy of artemisinin on a variety of Candida species, including fluconazole-resistant and -susceptible species, was evaluated by the microdilution method. The effect of artemisinin on C. albicans biofilm formation was investigated by MTT and FESEM. The mRNA expression of the genes related to biofilm was analyzed by qRT-PCR. In addition, molecular docking analysis was used to understand the interaction between artemisinin and C. albicans at the molecular level with RAS1-cAMP-EFG1 and EFG1-regulated genes. Artemisinin showed higher sensitivity against non-albicans Candida strains. Furthermore, artemisinin was strongly inhibitory against C. albicans biofilms at 640 µg/mL. Artemisinin downregulated adhesion-related genes ALS3, HWP1, and ECE1, hyphal development genes UME6 and HGC1, and hyphal CAMP-dependent protein kinase regulators CYR1, RAS1, and EFG1. Furthermore, molecular docking analysis revealed that artemisinin and EFG1 had the highest affinity, followed by UME6. FESEM analysis showed that the fluconazole- and artemisinin-treated groups exhibited a reduced hyphal network, unusual surface bulges, and the formation of pores on the cell surfaces. Our study suggests that artemisinin may have antifungal potential and showed a remarkable antibiofilm activity by significantly suppressing adhesion and hyphal development through interaction with key proteins involved in biofilm formation, such as EFG1.
Collapse
Affiliation(s)
- Esra Sumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, 42020 Konya, Turkey;
| | - Merve Aydin
- Department of Medical Microbiology, Faculty of Medicine, KTO Karatay University, 42020 Konya, Turkey
| | - Emine Nedime Korucu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Turkey;
| | - Saliha Alyar
- Department of Chemistry, Faculty of Science, Karatekin University, 18100 Çankırı, Turkey;
| | - Ahmed Moustapha Nsangou
- Department of Medical Microbiology, Faculty of Medicine, Selçuk University, 42130 Konya, Turkey;
| |
Collapse
|
6
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
7
|
Kim YG, Lee JH, Kim SH, Park SY, Kim YJ, Ryu CM, Seo HW, Lee JT. Inhibition of Biofilm Formation in Cutibacterium acnes, Staphylococcus aureus, and Candida albicans by the Phytopigment Shikonin. Int J Mol Sci 2024; 25:2426. [PMID: 38397101 PMCID: PMC10888572 DOI: 10.3390/ijms25042426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Sang-Hun Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Sun-Young Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| | - Yu-Jeong Kim
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon Campus, Daejeon 34113, Republic of Korea; (Y.-J.K.); (C.-M.R.)
| | - Choong-Min Ryu
- Biosystems & Bioengineering Program, University of Science and Technology (UST), Daejeon Campus, Daejeon 34113, Republic of Korea; (Y.-J.K.); (C.-M.R.)
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hwi-Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Tae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea; (Y.-G.K.); (J.-H.L.); (S.-H.K.); (S.-Y.P.)
| |
Collapse
|
8
|
Ramesh S, Roy U, Roy S, Rudramurthy SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action. Appl Microbiol Biotechnol 2024; 108:161. [PMID: 38252130 DOI: 10.1007/s00253-023-12976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Emerging resistance of fungal pathogens and challenges faced in drug development have prompted renewed investigations into novel antifungal lipopeptides. The antifungal lipopeptide AF3 reported here is a natural lipopeptide isolated and purified from Bacillus subtilis. The AF3 lipopeptide's secondary structure, functional groups, and the presence of amino acid residues typical of lipopeptides were determined by circular dichroism, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The lipopeptide's low minimum inhibitory concentrations (MICs) of 4-8 mg/L against several fungal strains demonstrate its strong antifungal activity. Biocompatibility assays showed that ~ 80% of mammalian cells remained viable at a 2 × MIC concentration of AF3. The treated Candida albicans cells examined by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy clearly showed ultrastructural alterations such as the loss of the cell shape and cell membrane integrity. The antifungal effect of AF3 resulted in membrane permeabilization facilitating the uptake of the fluorescent dyes-acridine orange (AO)/propidium iodide (PI) and FUN-1. Using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 4-(2-[6-(dioctylamino)-2-naphthalenyl] ethenyl)-1-(3-sulfopropyl) pyridinium inner salt (di-8-ANEPPS), we observed that the binding of AF3 to the membrane bilayer results in membrane disruption and depolarization. Flow cytometry analyses revealed a direct correlation between lipopeptide activity, membrane permeabilization (~ 75% PI uptake), and reduced cell viability. An increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence demonstrates endogenous reactive oxygen species production. Lipopeptide treatment appears to induce late-stage apoptosis and alterations to nuclear morphology, suggesting that AF3-induced membrane damage may lead to a cellular stress response. Taken together, this study illustrates antifungal lipopeptide's potential as an antifungal drug candidate. KEY POINTS: • The studied lipopeptide variant AF3 displayed potent antifungal activity against C. albicans • Its biological activity was stable to proteolysis • Analytical studies demonstrated that the lipopeptide is essentially membranotropic and able to cause membrane dysfunction, elevated ROS levels, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India.
| | - Subhasish Roy
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
9
|
Ranđelović M, Dimitrijević M, Otašević S, Stanojević L, Išljamović M, Ignjatović A, Arsić-Arsenijević V, Stojanović-Radić Z. Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa. J Fungi (Basel) 2023; 9:1080. [PMID: 37998884 PMCID: PMC10672467 DOI: 10.3390/jof9111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: Vulvovaginal candidosis (VVC) is a major therapy issue due to its high resistance rate and virulence factors such as the ability to form biofilms. The possibility of combining commonly used antifungals with natural products might greatly improve therapeutic success. (2) Methods: A total of 49 vulvovaginal isolates, causative agents of recurrent VVC, were tested for their susceptibility to fluconazole, nystatin, and Melissa officinalis essential oil (MOEO). This examination included testing the antibiofilm potential of antifungals and MOEO and the determination of their types of interaction with mature biofilms. (3) Results: Antimicrobial testing showed that 94.4% of the Candida albicans isolates and all the Candida krusei isolates were resistant to fluconazole, while all strains showed resistance to nystatin. The same strains were susceptible to MOEO in 0.156-2.5 mg/mL concentrations. Additionally, the results revealed very limited action of fluconazole, while nystatin and MOEO reduced the amount of biofilm formed by as much as 17.7% and 4.6%, respectively. Testing of the combined effect showed strain-specific synergistic action. Furthermore, the lower concentrations exhibited antagonistic effects even in cases where synergism was detected. (4) Conclusions: This study showed that MOEO had a very good antibiofilm effect. However, combining MOEO with antimycotics demonstrated that the type of action depended on the choice of antifungal drugs as well as the applied concentration.
Collapse
Affiliation(s)
- Marina Ranđelović
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Marina Dimitrijević
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| | - Suzana Otašević
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Ljiljana Stanojević
- Department of Chemistry and Chemical Technology, Faculty of Technology, University of Nis, 18000 Nis, Serbia;
| | - Milica Išljamović
- Department of Dental Health Care, Health Center Niš, 18000 Nis, Serbia;
| | - Aleksandra Ignjatović
- Department of Medical Statistics and Informatics, Medical Faculty, University of Nis, 18000 Nis, Serbia;
| | | | - Zorica Stojanović-Radić
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| |
Collapse
|
10
|
Kaur K, Singh A, Monga A, Mohana P, Khosla N, Bedi N. Antimicrobial and antibiofilm effects of shikonin with tea tree oil nanoemulsion against Candida albicans and Staphylococcus aureus. BIOFOULING 2023; 39:962-979. [PMID: 38009008 DOI: 10.1080/08927014.2023.2281511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by Candida albicans and methicillin resistant Staphylococcus aureus (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of Candida albicans and Staphylococcus aureus.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Aditi Monga
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neha Khosla
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
11
|
Zhao Y, Cartabia A, Garcés-Ruiz M, Herent MF, Quetin-Leclercq J, Ortiz S, Declerck S, Lalaymia I. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in Alkanna tinctoria Tausch. grown in semi-hydroponic and pot cultivation systems. Front Microbiol 2023; 14:1216029. [PMID: 37637105 PMCID: PMC10447974 DOI: 10.3389/fmicb.2023.1216029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Alkanna tinctoria Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis. However, to the best of our knowledge, no study on the effects of AMF strains on the growth and production of A/Sd in A. tinctoria has been reported in the literature. Methods Here, three experiments were conducted. In Experiment 1, plants were associated with the GINCO strain Rhizophagus irregularis MUCL 41833 and, in Experiment 2, with two strains of GINCO (R. irregularis MUCL 41833 and Rhizophagus aggregatus MUCL 49408) and two native strains isolated from wild growing A. tinctoria (R. irregularis and Septoglomus viscosum) and were grown in a semi-hydroponic (S-H) cultivation system. Plants were harvested after 9 and 37 days in Experiment 1 and 9 days in Experiment 2. In Experiment 3, plants were associated with the two native AMF strains and with R. irregularis MUCL 41833 and were grown for 85 days in pots under greenhouse conditions. Quantification and identification of A/Sd were performed by HPLC-PDA and by HPLC-HRMS/MS, respectively. LePGT1, LePGT2, and GHQH genes involved in the A/Sd biosynthesis were analyzed through RT-qPCR. Results In Experiment 1, no significant differences were noticed in the production of A/Sd. Conversely, in Experiments 2 and 3, plants associated with the native AMF R. irregularis had the highest content of total A/Sd expressed as shikonin equivalent. In Experiment 1, a significantly higher relative expression of both LePGT1 and LePGT2 was observed in plants inoculated with R. irregularis MUCL 41833 compared with control plants after 37 days in the S-H cultivation system. Similarly, a significantly higher relative expression of LePGT2 in plants inoculated with R. irregularis MUCL 41833 was noticed after 9 versus 37 days in the S-H cultivation system. In Experiment 2, a significant lower relative expression of LePGT2 was observed in native AMF R. irregularis inoculated plants compared to the control. Discussion Overall, our study showed that the native R. irregularis strain increased A/Sd production in A. tinctoria regardless of the growing system used, further suggesting that the inoculation of native/best performing AMF is a promising method to improve the production of important SMs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-France Herent
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
- UMR 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Zhang K, Sun IG, Liao B, Yang Y, Ma H, Jiang A, Chen S, Guo Q, Ren B. Streptococcus mutans sigX-inducing peptide inhibits the virulence of Candida albicans and oral candidiasis through the Ras1-cAMP-Efg1 pathway. Int J Antimicrob Agents 2023; 62:106855. [PMID: 37211262 DOI: 10.1016/j.ijantimicag.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Oral candidiasis is the most common fungal infectious disease in the human oral cavity, and Candida albicans is the major pathogenic agent. Increasing drug resistance and the lack of new types of antifungals greatly increase the challenges for treating fungal infections. Targeting hyphal transition provides a promising strategy to inhibit the virulence of C. albicans and overcome drug resistance. This study aimed to investigate the effects and mechanisms of sigX-inducing peptide (XIP), a quorum-sensing signal peptide secreted by Streptococcus mutans, on C. albicans hyphal development and biofilm formation in vitro and oropharyngeal candidiasis in vivo. XIP significantly inhibited C. albicans yeast-to-hypha transition and biofilm formation in a dose-dependent manner from 0.01 to 0.1 µM. XIP significantly downregulated expression of genes from the Ras1-cAMP-Efg1 pathway (RAS1, CYR1, TPK2, EFG1 and UME6), a key pathway to regulate C. albicans hyphal development. Importantly, XIP reduced the levels of key molecules cAMP and ATP from this pathway, while the addition of exogenous cAMP and overexpression of RAS1 restored the hyphal development inhibited by XIP. XIP also lost its hyphal inhibitory effects on ras1Δ/Δ and efg1Δ/Δ strains. These results further confirmed that XIP inhibited hyphal development through downregulation of the Ras1-cAMP-Efg1 pathway. A murine oropharyngeal candidiasis model was employed to evaluate the therapeutic effects of XIP on oral candidiasis. XIP effectively reduced the infected epithelial area, fungal burden, hyphal invasion and inflammatory infiltrates. These results revealed the antifungal effects of XIP, and highlighted that XIP can be a potential antifungal peptide against C. albicans infection.
Collapse
Affiliation(s)
- Kaiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ivy Guofang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yichun Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aiming Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Pang C, Chen J, Yang L, Yang Y, Qi H, Li R, Cao Y, Miao H. Shikonin Inhibits Candida albicans Biofilms via the Ras1-cAMP-Efg1 Signalling Pathway. Int J Gen Med 2023; 16:2653-2662. [PMID: 37384115 PMCID: PMC10296564 DOI: 10.2147/ijgm.s417327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
Objective To investigate the influence of shikonin (SK) on the formation of Candida albicans biofilms and discuss the possible mechanism. Methods The inhibition of the formation of C. albicans biofilms by SK was observed by scanning electron microscopy. A silicone film method and a water-hydrocarbon two-phase assay were performed to investigate the effects of SK on cell adhesion. Real-time reverse-transcription polymerase chain reaction was used to analyse the expression of genes related to cell adhesion and Ras1-cyclic adenosine monophosphate (cAMP) - enhanced filamentous growth protein 1 (Efg1) signalling pathway. Finally, the level of cAMP in C. albicans was detected and exogenous cAMP rescue experiment was conducted. Results The results showed that SK could destroy the typical three-dimensional structure of the biofilms, inhibit cell surface hydrophobicity and cell adhesion, downregulate the expression of Ras1-cAMP-Efg1 signalling pathway-related genes (ECE1, HWP1, ALS3, RAS1, CYR1, EFG1 and TEC1) and effectively reduce the production of key messenger cAMP in the Ras1-cAMP-Efg1 pathway. Meanwhile, exogenous cAMP reversed the inhibitory effect of SK on biofilms formation. Conclusion Our results suggest that SK exhibits potential anti-C. albicans biofilms effects related to the inhibition of Ras1-cAMP-Efg1 pathway.
Collapse
Affiliation(s)
- Chong Pang
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde, Hebei, People’s Republic of China
| | - Jianshuang Chen
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde, Hebei, People’s Republic of China
| | - Lan Yang
- Hebei Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Yang Yang
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Haihua Qi
- Department of Dermatology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Ran Li
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| | - Yingying Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hao Miao
- School of Basic Medicine, Chengde Medical University, Chengde, Hebei, People’s Republic of China
| |
Collapse
|
14
|
Malik S, Brudzyńska P, Khan MR, Sytar O, Makhzoum A, Sionkowska A. Natural Plant-Derived Compounds in Food and Cosmetics: A Paradigm of Shikonin and Its Derivatives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4377. [PMID: 37374560 DOI: 10.3390/ma16124377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Shikonin and its derivatives are the natural naphthoquinone compounds produced in the roots of the Boraginaceae family. These red pigments have been used for a long time in coloring silk, as food colorants, and in the Chinese traditional system of medicines The resurgence of public interest in natural and plant-based products has led to this category of compounds being in high demand due to their wide range of biological activities including antioxidant, antitumor, antifungal, anti-inflammatory ones. Different researchers worldwide have reported various applications of shikonin derivatives in the area of pharmacology. Nevertheless, the use of these compounds in the food and cosmetics fields needs to be explored more in order to make them available for commercial utilization in various food industries as a packaging material and to enhance their shelf life without any side effects. Similarly, the antioxidant properties and skin whitening effects of these bioactive molecules may be used successfully in various cosmetic formulations. The present review delves into the updated knowledge on the various properties of shikonin derivatives in relation to food and cosmetics. The pharmacological effects of these bioactive compounds are also highlighted. Based on various studies, it can be concluded that these natural bioactive molecules have potential to be used in different sectors, including functional food, food additives, skin, health care, and to cure various diseases. Further research is required for the sustainable production of these compounds with minimum disturbances to the environment and in order to make them available in the market at an economic price. Simultaneous studies utilizing recent techniques in computational biology, bioinformatics, molecular docking, and artificial intelligence in laboratory and clinical trials would further help in making these potential candidates promising alternative natural bioactive therapeutics with multiple uses.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Woody Plants and Crops Biology (LBLGC), University of Orleans, 45067 Orléans, France
| | - Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Oksana Sytar
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Sciences and Technology, Palapye 10071, Botswana
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Balasaheb Patil S, Khanderao Jadhav A, Kumar Sharma R, Tushar Basrani S, Chandsaheb Gavandi T, Ashok Chougule S, Ramappa Yankanchi S, Mohan Karuppayil S. Antifungal activity of Allyl isothiocyanate by targeting signal transduction pathway, ergosterol biosynthesis, and cell cycle in Candida albicans. Curr Med Mycol 2023; 9:29-38. [PMID: 38375521 PMCID: PMC10874482 DOI: 10.22034/cmm.2023.345081.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024] Open
Abstract
Background and Purpose In recent years, the inclusion of Candida albicans on the list of infections that pose a threat due to drug resistance has urged researchers to look into cutting-edge and effective antifungal medications. In this regard, the current study investigated the probable mode of action of allyl isothiocyanate (AITC) against Candida albicans. Materials and Methods In this study, planktonic assay, germ tube inhibition assay, adhesion, and biofilm formation assay were performed to check the growth and virulence factors. Furthermore, ergosterol assay, reactive oxygen production analysis, cell cycle analysis, and quantitative real-time polymerase chain reaction analysis were performed with the aim of finding the mode of action. A biomedical model organism, like a silkworm, was used in an in vivo study to demonstrate AITC anti-infective ability against C. albicans infection. Results Allyl isothiocyanate completely inhibited ergosterol biosynthesis in C. albicans at 0.125 mg/ml. Allyl isothiocyanate produces reactive oxygen species in both planktonic and biofilm cells of C. albicans. At 0.125 mg/ml concentration, AITC arrested cells at the G2/M phase of the cell cycle, which may induce apoptosis in C. albicans. In quantitative real-time polymerase chain reaction analysis, it was found that AITC inhibited virulence factors, like germ tube formation, at 0.125 mg/ml concentration by downregulation of PDE2, CEK1, TEC1 by 2.54-, 1.91-, and 1.04-fold change, respectively, and upregulation of MIG1, NRG1, and TUP1 by 9.22-, 3.35-, and 7.80-fold change, respectively. The in vivo study showed that AITC treatment successfully protected silkworms against C. albicans infections and increased their survival rate by preventing internal colonization by C. albicans. Conclusion In vitro and in vivo studies revealed that AITC can be an alternative therapeutic option for the treatment of C. albicans infection.
Collapse
Affiliation(s)
- Shivani Balasaheb Patil
- Patil Education Society (Deemed to be University), Kolhapur-416-006, Maharashtra, India
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology Centre for Interdisciplinary Research, Maharashtra, India
| | - Ashwini Khanderao Jadhav
- Patil Education Society (Deemed to be University), Kolhapur-416-006, Maharashtra, India
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology Centre for Interdisciplinary Research, Maharashtra, India
| | - Rakesh Kumar Sharma
- Patil Medical College Hospital and Research Institute, Kadamwadi-416012-, Kolhapur, Maharashtra, India
| | - Sargun Tushar Basrani
- Patil Education Society (Deemed to be University), Kolhapur-416-006, Maharashtra, India
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology Centre for Interdisciplinary Research, Maharashtra, India
| | - Tanjila Chandsaheb Gavandi
- Patil Education Society (Deemed to be University), Kolhapur-416-006, Maharashtra, India
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology Centre for Interdisciplinary Research, Maharashtra, India
| | - Sayali Ashok Chougule
- Patil Education Society (Deemed to be University), Kolhapur-416-006, Maharashtra, India
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology Centre for Interdisciplinary Research, Maharashtra, India
| | | | - Sankunny Mohan Karuppayil
- Patil Education Society (Deemed to be University), Kolhapur-416-006, Maharashtra, India
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology Centre for Interdisciplinary Research, Maharashtra, India
| |
Collapse
|
16
|
do Rosário Esteves Guimarães C, de Freitas HF, Barros TF. Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies. Braz J Microbiol 2023; 54:37-52. [PMID: 36576671 PMCID: PMC9944165 DOI: 10.1007/s42770-022-00876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Biofilms are communities of microbial cells surrounded by an extracellular polysaccharide matrix, recognized as a fungal source for local and systemic infections and less susceptible to antifungal drugs. Thus, treatment of biofilm-related Candida spp. infections with popular antifungals such as fluconazole is limited and species-dependent and alternatively demands the use of expensive and high toxic drugs. In this sense, molecules with antibiofilm activity have been studied but without care regarding the use of important criteria such as antibiofilm concentration lower than antifungal concentration when considering the process of inhibition of formation and concentrations equal to or lower than 300 µM. Therefore, this review tries to gather the most promising molecules regarding the activity against the C. albicans biofilm described in the last 10 years, considering the activity of inhibition and eradication. From January 2011 to July 2021, articles were searched on Scopus, PubMed, and Science Direct, combining the keywords "antibiofilm," "candida albicans," "compound," and "molecule" with AND and OR operators. After 3 phases of selection, 21 articles describing 42 molecules were discussed in the review. Most of them were more promising for the inhibition of biofilm formation, with SM21 (24) being an interesting molecule for presenting inhibitory and eradication activity in biofilms with 24 and 48 h, as well as alizarin (26) and chrysazine (27), with concentrations well below the antifungal concentration. Despite the detection of these molecules and the attempts to determine the mechanisms of action by microscopic analysis and gene expression, no specific target has been determined. Thus, a gap is signaled, requiring further studies such as proteomic analyses to clarify it.
Collapse
Affiliation(s)
- Carolina do Rosário Esteves Guimarães
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Humberto Fonseca de Freitas
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Tânia Fraga Barros
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil.
| |
Collapse
|
17
|
Ramesh S, Madduri M, Rudramurthy SM, Roy U. Functional Characterization of a Bacillus-Derived Novel Broad-Spectrum Antifungal Lipopeptide Variant against Candida tropicalis and Candida auris and Unravelling Its Mode of Action. Microbiol Spectr 2023; 11:e0158322. [PMID: 36744953 PMCID: PMC10100908 DOI: 10.1128/spectrum.01583-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/22/2022] [Indexed: 02/07/2023] Open
Abstract
Limited treatment options, recalcitrance, and resistance to existing therapeutics encourage the discovery of novel antifungal leads for alternative therapeutics. Antifungal lipopeptides have emerged as potential candidates for developing new and alternative antifungal therapies. In our previous studies, we isolated and identified the lipopeptide variant AF4 and purified it to homogeneity via chromatography from the cell-free supernatant of Bacillus subtilis. AF4 was found to have broad-spectrum antifungal activity against more than 110 fungal isolates. In this study, we found that clinical isolates of Candida tropicalis and Candida auris exposed to AF4 exhibited low MICs of 4 to 8 mg/L. Time-kill assays indicated the in vitro pharmacodynamic potential of AF4. Biocompatibility assays demonstrated ~75% cell viability at 8 mg/L of AF4, indicating the lipopeptide's minimally cytotoxic nature. In lipopeptide-treated C. tropicalis and C. auris cells, scanning electron microscopy revealed damage to the cell surface, while confocal microscopy with acridine orange(AO)/propidium iodide (PI) and FUN-1 indicated permeabilization of the cell membrane, and DNA damage upon DAPI (4',6-diamidino-2-phenylindole) staining. These observations were corroborated using flow cytometry (FC) in which propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and rhodamine 123 (Rh123) staining of cells treated with AF4 revealed loss of membrane integrity, increased reactive oxygen species (ROS) production, and mitochondrial membrane dysfunction, respectively. Membrane perturbation was also observed in the 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence study and the interaction with ergosterol was observed by an ergosterol binding assay. Decreased membrane dipole potential also indicated the probable binding of lipopeptide to the cell membrane. Collectively, these findings describe the mode of action of AF4 against fungal isolates by membrane disruption and ROS generation, demonstrating its antifungal potency. IMPORTANCE C. tropicalis is a major concern for candidiasis in India and C. auris has emerged as a resistant yeast causing difficult-to-treat infections. Currently, amphotericin B (AMB) and 5-flucytosine (5-FC) are the main therapeutics for systemic fungal infections; however, the nephrotoxicity of AMB and resistance to 5-FC is a serious concern. Antifungal lead molecules with low adverse effects are the need of the hour. In this study, we briefly describe the antifungal potential of the AF4 lipopeptide and its mode of action using microscopy, flow cytometry, and fluorescence-based assays. Our investigation reveals the basic mode of action of the investigated lipopeptide. This lipopeptide with broad-spectrum antifungal potency is apparently membrane-active, and there is a smaller chance that organisms exposed to such a compound will develop drug resistance. It could potentially act as a lead molecule for the development of an alternative antifungal agent to combat candidiasis.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| | - Madhuri Madduri
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
18
|
Zou Y, Sun Y, Shi W, Wan B, Zhang H. Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chem 2023; 399:133962. [DOI: 10.1016/j.foodchem.2022.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
|
19
|
Zhong H, Han L, Lu RY, Wang Y. Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Antibiotics (Basel) 2022; 12:antibiotics12010048. [PMID: 36671249 PMCID: PMC9855100 DOI: 10.3390/antibiotics12010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Fungal infections have become a growing public health challenge due to the clinical transmission of pathogenic fungi. The currently available antifungal drugs leave very limited choices for clinical physicians to deal with such situation, not to mention the long-standing problems of emerging drug resistance, side effects and heavy economic burdens imposed to patients. Therefore, new antifungal drugs are urgently needed. Screening drugs from natural products and using synthetic biology strategies are very promising for antifungal drug development. Chinese medicine is a vast library of natural products of biologically active molecules. According to traditional Chinese medicine (TCM) theory, preparations used to treat fungal diseases usually have antifungal and immunomodulatory functions. This suggests that if antifungal drugs are used in combination with immunomodulatory drugs, better results may be achieved. Studies have shown that the active components of TCM have strong antifungal or immunomodulatory effects and have broad application prospects. In this paper, the latest research progress of antifungal and immunomodulatory components of TCM is reviewed and discussed, hoping to provide inspiration for the design of novel antifungal compounds and to open up new horizons for antifungal treatment strategies.
Collapse
Affiliation(s)
- Hua Zhong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Han
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
20
|
Yan Y, Liao Z, Shen J, Zhu Z, Cao Y. Nicotinamide potentiates amphotericin B activity against Candida albicans. Virulence 2022; 13:1533-1542. [PMID: 36068709 PMCID: PMC9467617 DOI: 10.1080/21505594.2022.2119656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amphotericin B (AmB) is a widely used antifungal agent especially for the therapy of systemic fungal infections. However, the severe side effects of AmB often leads to the premature termination of the treatment. So it is imperative to find the drugs that can both reduce the dosage and enhance the antifungal efficacy of AmB. Here we demonstrated that Nicotinamide (NAM), a cheap and safe vitamin, could enhance the antifungal activities of AmB. We demonstrated the synergistic interaction of NAM and AmB against Candida albicans as well as other Candida spp. and Cryptococcus neoformans. Moreover, NAM could enhance of the activity of AmB against biofilm. This enhancement was also observed in disseminated candidiasis in vivo. Our further study revealed that AmB could induce oxidative damage through the modification of histone acetylation. AmB could inhibit the expression of HST3, an H3K56 deacetylase in C. albicans. The immunoblotting test revealed excessive H3K56ac in AmB-treated fungal cells. Consistantly, the hst3Δ mutant displayed high sensitivity to AmB, while addition of NAM, an H3K56 deacetylation inhibitor, resulted in an even severe inhibition in the growth of this strain. These results indicated that AmB could execute antifungal activity via boosting H3K56ac which was mediated by HST3, and the mechanism for the synergistic interaction of NAM and AmB was based on exacerbating this process, which led to even excessive H3K56ac and oxidative damage. This finding provided theoretical basis for better understanding the antifungal mechanisms of AmB and clinical application of this drug.
Collapse
Affiliation(s)
- Yu Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - ZeBin Liao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Juan Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022. CHINESE HERBAL MEDICINES 2022; 14:511-527. [DOI: 10.1016/j.chmed.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
|
22
|
Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins (Basel) 2022; 14:toxins14090596. [PMID: 36136534 PMCID: PMC9503233 DOI: 10.3390/toxins14090596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
As a common functional gastrointestinal disorder, irritable bowel syndrome (IBS) significantly affects personal health and imposes a substantial economic burden on society, but the current understanding of its occurrence and treatment is still inadequate. Emerging evidence suggests that IBS is associated with gut microbial dysbiosis, but most studies focus on the bacteria and neglect other communities of the microbiota, including fungi, viruses, archaea, and other parasitic microorganisms. This review summarizes the latest findings that link the nonbacterial microbiota with IBS. IBS patients show less fungal and viral diversity but some alterations in mycobiome, virome, and archaeome, such as an increased abundance of Candida albicans. Moreover, fungi and methanogens can aid in diagnosis. Fungi are related to distinct IBS symptoms and induce immune responses, intestinal barrier disruption, and visceral hypersensitivity via specific receptors, cells, and metabolites. Novel therapeutic methods for IBS include fungicides, inhibitors targeting fungal pathogenic pathways, probiotic fungi, prebiotics, and fecal microbiota transplantation. Additionally, viruses, methanogens, and parasitic microorganisms are also involved in the pathophysiology and treatment. Therefore, the gut nonbacterial microbiota is involved in the pathogenesis of IBS, which provides a novel perspective on the noninvasive diagnosis and precise treatment of this disease.
Collapse
|
23
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
24
|
Boahen A, Than LTL, Loke YL, Chew SY. The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Front Microbiol 2022; 13:787119. [PMID: 35694318 PMCID: PMC9179178 DOI: 10.3389/fmicb.2022.787119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
“Unity in strength” is a notion that can be exploited to characterize biofilms as they bestow microbes with protection to live freely, escalate their virulence, confer high resistance to therapeutic agents, and provide active grounds for the production of biofilms after dispersal. Naturally, fungal biofilms are inherently resistant to many conventional antifungals, possibly owing to virulence factors as their ammunitions that persistently express amid planktonic transition to matured biofilm state. These ammunitions include the ability to form polymicrobial biofilms, emergence of persister cells post-antifungal treatment and acquisition of resistance genes. One of the major disorders affecting vaginal health is vulvovaginal candidiasis (VVC) and its reoccurrence is termed recurrent VVC (RVVC). It is caused by the Candida species which include Candida albicans and Candida glabrata. The aforementioned Candida species, notably C. albicans is a biofilm producing pathogen and habitually forms part of the vaginal microbiota of healthy women. Latest research has implicated the role of fungal biofilms in VVC, particularly in the setting of treatment failure and RVVC. Consequently, a plethora of studies have advocated the utilization of probiotics in addressing these infections. Specifically, the excreted or released compounds of probiotics which are also known as postbiotics are being actively researched with vast potential to be used as therapeutic options for the treatment and prevention of VVC and RVVC. These potential sources of postbiotics are harnessed due to their proven antifungal and antibiofilm. Hence, this review discusses the role of Candida biofilm formation in VVC and RVVC. In addition, we discuss the application of pro-, pre-, post-, and synbiotics either individually or in combined regimen to counteract the abovementioned problems. A clear understanding of the role of biofilms in VVC and RVVC will provide proper footing for further research in devising novel remedies for prevention and treatment of vaginal fungal infections.
Collapse
|
25
|
Kaypetch R, Rudrakanjana P, Churnjitapirom P, Tua-Ngam P, Tonput P, Tantivitayakul P. Geraniol and thymoquinone inhibit Candida spp. biofilm formation on acrylic denture resin without affecting surface roughness or color. J Oral Sci 2022; 64:161-166. [PMID: 35321964 DOI: 10.2334/josnusd.21-0435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study was designed to investigate the in vitro effects of geraniol (GE) and thymoquinone (TQ) on Candida biofilms on denture acrylic and any accompanying changes in acrylic surface roughness or color. METHODS The susceptibility of Candida species to GE and TQ was determined using the broth microdilution method and time-kill assay. A minimum biofilm eradication concentration (MBEC) assay was performed using 7-day Candida biofilms grown on denture acrylic. RESULTS The minimum inhibitory concentration (MIC) of GE and TQ for Candida spp. was 256 and 32 µg/mL, respectively. The Candida strain complete kill rates for GE and TQ at 5-fold MIC were determined after 1 h of incubation. At 5-fold MIC, GE and TQ inhibited the preformed biofilm activity (MBEC80) of all Candida strains on denture acrylic by more than 80% after treatment for 3 h. At sub-MIC levels, GE and TQ prevented the development of C. albicans and C. tropicalis hyphae. SEM images demonstrated that GE and TQ damaged the fungal cell membrane and induced cell lysis. On the other hand, GE and TQ at 10-fold MIC did not alter the surface roughness or color of the denture acrylic. CONCLUSION GE and TQ are interesting natural substances that could be developed as promising disinfectants for removable dentures.
Collapse
Affiliation(s)
| | | | | | | | - Pairin Tonput
- Research Office, Faculty of Dentistry, Mahidol University
| | | |
Collapse
|
26
|
Synergistic Antibiofilm Effects of Pseudolaric Acid A Combined with Fluconazole against Candida albicans via Inhibition of Adhesion and Yeast-To-Hypha Transition. Microbiol Spectr 2022; 10:e0147821. [PMID: 35297651 PMCID: PMC9045105 DOI: 10.1128/spectrum.01478-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Candida albicans biofilms are resistant to several clinical antifungal agents. Thus, it is necessary to develop new antibiofilm intervention measures. Pseudolaric acid A (PAA), a diterpenoid mainly derived from the pine bark of Pseudolarix kaempferi, has been reported to have an inhibitory effect on C. albicans. The primary aim of the current study was to investigate the antibiofilm effect of PAA when combined with fluconazole (FLC) and explore the underlying mechanisms. Biofilm activity was assessed by tetrazolium {XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt]} reduction assays. PAA (4 μg/mL) combined with FLC (0.5 μg/mL) significantly inhibited early, developmental, and mature biofilm formation compared with the effect of PAA or FLC alone (P < 0.05). Furthermore, PAA (4 μg/mL) combined with FLC (0.5 μg/mL) produced a 56% reduction in C. albicans biofilm adhesion. The combination of PAA (4 μg/mL) and FLC (0.5 μg/mL) also performed well in inhibiting yeast-to-hypha transition. Transcriptome analysis using RNA sequencing and quantitative reverse transcription PCR indicated that the PAA-FLC combination treatment produced a strong synergistic inhibitory effect on the expression of genes involved in adhesion (ALS1, ALS4, and ALS2) and yeast-to-hypha transition (ECE1, PRA1, and TEC1). Notably, PAA, rather than FLC, may have a primary role in suppressing the expression of ALS1. In conclusion, these findings demonstrate, for the first time, that the combination of PAA and FLC has an improved antibiofilm effect against the formation of C. albicans biofilms by inhibiting adhesion and yeast-to-hypha transition; this may provide a novel therapeutic strategy for treating C. albicans biofilm-associated infection. IMPORTANCE Biofilms are the primary cause of antibiotic-resistant candida infections associated with medical implants and devices worldwide. Treating biofilm-associated infections is a challenge for clinicians because these infections are intractable and persistent. Candida albicans readily forms extensive biofilms on the surface of medical implants and mucosa. In this study, we demonstrated, for the first time, an inhibitory effect of pseudolaric acid A alone and in combination with fluconazole on C. albicans biofilms. Moreover, pseudolaric acid A in combination with fluconazole exerted an antibiofilm effect through multiple pathways, including inhibition of yeast-to-hypha transition and adhesion. This research not only provides new insights into the synergistic mechanisms of antifungal drug combinations but also brings new possibilities for addressing C. albicans drug resistance.
Collapse
|
27
|
Mahendra CK, Ser HL, Pusparajah P, Htar TT, Chuah LH, Yap WH, Tang YQ, Zengin G, Tang SY, Lee WL, Liew KB, Ming LC, Goh BH. Cosmeceutical Therapy: Engaging the Repercussions of UVR Photoaging on the Skin's Circadian Rhythm. Int J Mol Sci 2022; 23:2884. [PMID: 35270025 PMCID: PMC8911461 DOI: 10.3390/ijms23052884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; or
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia;
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
28
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
29
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Chen Z, Luo T, Huang F, Yang F, Luo W, Chen G, Cao M, Wang F, Zhang J. Kangbainian Lotion Ameliorates Vulvovaginal Candidiasis in Mice by Inhibiting the Growth of Fluconazole-Resistant Candida albicans and the Dectin-1 Signaling Pathway Activation. Front Pharmacol 2022; 12:816290. [PMID: 35140608 PMCID: PMC8819624 DOI: 10.3389/fphar.2021.816290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is an infectious disease caused by Candida species, which affects millions of women worldwide every year. The resistance to available antifungal drugs for clinical treatment is a growing problem. The treatment of refractory VVC caused by azole-resistant Candida is still facing challenges. However, research on new antifungal drugs is progressing slowly. Although a lot of reports on new antifungal drugs, only three new antifungal drugs (Isavuconazole, ibrexafungerp, and rezafungin) and two new formulations of posaconazole were marketed over the last decade. Chinese botanical medicine has advantages in the treatment of drug-resistant VVC, such as outstanding curative effects and low adverse reactions, which can improve patients’ comfort and adherence to therapy. Kangbainian lotion (KBN), a Chinese botanical formulation, has achieved very good clinical effects in the treatment of VVC. In this study, we investigated the antifungal and anti-inflammatory effects of KBN at different doses in fluconazole-resistant (FLC-resistant) VVC model mice. We further studied the antifungal mechanism of KBN against FLC-resistant Candida albicans (C. albicans) and the anti-inflammatory mechanism correlated with the Dectin-1 signaling pathway. In vivo and in vitro results showed that KBN had strong antifungal and anti-inflammatory effects in FLC-resistant VVC, such as inhibiting the growth of C. albicans and vaginal inflammation. Further studies showed that KBN inhibited the biofilm and hypha formation, reduced adhesion, inhibited ergosterol synthesis and the expression of ergosterol synthesis-related genes ERG11, and reduced the expression of drug-resistant efflux pump genes MDR1 and CDR2 of FLC-resistant C. albicans in vitro. In addition, in vivo results showed that KBN reduced the expression of inflammatory factor proteins TNF-α, IL-1β, and IL-6 in vaginal tissues, and inhibited the expression of proteins related to the Dectin-1 signaling pathway. In conclusion, our study revealed that KBN could ameliorate vaginal inflammation in VVC mice caused by FLC-resistance C. albicans. This effect may be related to inhibiting the growth of FLC-resistance C. albicans and Dectin-1 signaling pathway activation.
Collapse
Affiliation(s)
- Zewei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengshuo Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fengke Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuzhen Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanfeng Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengfei Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengyun Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jun Zhang, ; Fengyun Wang,
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jun Zhang, ; Fengyun Wang,
| |
Collapse
|
31
|
Mu Z, Guo J, Zhang D, Xu Y, Zhou M, Guo Y, Hou Y, Gao X, Han X, Geng L. Therapeutic Effects of Shikonin on Skin Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1871-1895. [PMID: 34961421 DOI: 10.1142/s0192415x21500889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shikonin is one of the primary active components extracted from the dried root ofZicao (Lithospermum erythrorhizon, Onosma paniculata, or Arnebia euchroma), a traditional Chinese herbal medicine. Shikonin is known to not only exert anti-proliferative, anti-inflammatory, and anti-angiogenic activities, but also play a crucial role in triggering the production of reactive oxygen species, suppressing the release of exosomes, and inducing apoptosis. Increasing evidence suggests that shikonin has a protective effect against skin diseases, including psoriasis, melanoma, and hypertrophic scars. In order to evaluate the application potential of shikonin in the treatment of skin diseases, this review is the first of its kind to provide comprehensive and up-to-date information regarding the uses of shikonin and its derivatives on skin diseases and its underlying mechanisms. In this review, we have focused on the signaling pathways and cellular targets involved in the anti-dermatosis effects of shikonin to bridge the gaps in the literature, thereby providing scientific support for the research and development of new drugs from a traditional medicinal plant.
Collapse
Affiliation(s)
- Zhenzhen Mu
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, Shengjing Hospital of China Medical University, 36N, Sanhao Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Jinrong Guo
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, Jincheng People's Hospital, 456N, Wenchang East Street, Jincheng, Shanxi 048000, P. R. China
| | - Dongxia Zhang
- Department of Dermatology, Zhongshan Torch Development Zone Hospital, 123N, Yixian Road, Torch Zone, Zhongshan 528400, Guangdong, P. R. China
| | - Yuanyuan Xu
- Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Mingming Zhou
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Yimeng Guo
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Yuzhu Hou
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, 36N, Sanhao Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Long Geng
- Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| |
Collapse
|
32
|
Su LY, Ni GH, Liao YC, Su LQ, Li J, Li JS, Rao GX, Wang RR. Antifungal Activity and Potential Mechanism of 6,7, 4'-O-Triacetylscutellarein Combined With Fluconazole Against Drug-Resistant C. albicans. Front Microbiol 2021; 12:692693. [PMID: 34484140 PMCID: PMC8415886 DOI: 10.3389/fmicb.2021.692693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
The increased resistance of Candida albicans to conventional antifungal drugs poses a huge challenge to the clinical treatment of this infection. In recent years, combination therapy, a potential treatment method to overcome C. albicans resistance, has gained traction. This study assessed the effect of 6,7,4′-O-triacetylscutellarein (TA) combined with fluconazole (FLC) on C. albicans in vitro and in vivo. TA combined with FLC showed good synergistic antifungal activity against drug-resistant C. albicans in vitro, with a partial inhibitory concentration index (FICI) of 0.0188–0.1800. In addition, the time-kill curve confirmed the synergistic effect of TA and FLC. TA combined with FLC showed a strong synergistic inhibitory effect on the biofilm formation of resistant C. albicans. The combined antifungal efficacy of TA and FLC was evaluated in vivo in a mouse systemic fungal infection model. TA combined with FLC prolonged the survival rate of mice infected with drug-resistant C. albicans and reduced tissue invasion. TA combined with FLC also significantly inhibited the yeast-hypha conversion of C. albicans and significantly reduced the expression of RAS-cAMP-PKA signaling pathway-related genes (RAS1 and EFG1) and hyphal-related genes (HWP1 and ECE1). Furthermore, the mycelium growth on TA combined with the FLC group recovered after adding exogenous db-cAMP. Collectively, these results show that TA combined with FLC inhibits the formation of hyphae and biofilms through the RAS-cAMP-PKA signaling pathway, resulting in reduced infectivity and resistance of C. albicans. Therefore, this study provides a basis for the treatment of drug-resistant C. albicans infections.
Collapse
Affiliation(s)
- Liu-Yan Su
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guang-Hui Ni
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China.,Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yi-Chuan Liao
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Liu-Qing Su
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jun Li
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jia-Sheng Li
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Gao-Xiong Rao
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China.,Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rui-Rui Wang
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China.,Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
33
|
Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi-Latest Findings. Antibiotics (Basel) 2021; 10:antibiotics10091053. [PMID: 34572635 PMCID: PMC8471798 DOI: 10.3390/antibiotics10091053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these entities. The present review provides an update (2017-May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them including studies of the mechanism of action and five dealing with natural compounds included in nanosystems. Thirty-seven manuscripts evaluated Candida spp. biofilms and two tested Fusarium and Cryptococcus spp. Only one manuscript involved Aspergillus fumigatus. From the data presented here, it is clear that the search of natural products with activity against fungal biofilms has been a highly active area of research in recent years. However, it also reveals the necessity of deepening the studies by (i) evaluating the effect of natural products on biofilms formed by the newly emerged and worrisome health-care associated fungi, C. auris, as well as on other non-albicans Candida spp., Cryptococcus sp. and filamentous fungi; (ii) elucidating the mechanisms of action of the most active natural products; (iii) increasing the in vivo testing.
Collapse
|
34
|
Ahmad M, Leroy T, Krigas N, Temsch EM, Weiss-Schneeweiss H, Lexer C, Sehr EM, Paun O. Spatial and Ecological Drivers of Genetic Structure in Greek Populations of Alkanna tinctoria (Boraginaceae), a Polyploid Medicinal Herb. FRONTIERS IN PLANT SCIENCE 2021; 12:706574. [PMID: 34335669 PMCID: PMC8317432 DOI: 10.3389/fpls.2021.706574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 06/08/2023]
Abstract
Background and Aims: Quantifying genetic variation is fundamental to understand a species' demographic trajectory and its ability to adapt to future changes. In comparison with diploids, however, genetic variation and factors fostering genetic divergence remain poorly studied in polyploids due to analytical challenges. Here, by employing a ploidy-aware framework, we investigated the genetic structure and its determinants in polyploid Alkanna tinctoria (Boraginaceae), an ancient medicinal herb that is the source of bioactive compounds known as alkannin and shikonin (A/S). From a practical perspective, such investigation can inform biodiversity management strategies. Methods: We collected 14 populations of A. tinctoria within its main distribution range in Greece and genotyped them using restriction site-associated DNA sequencing. In addition, we included two populations of A. sieberi. By using a ploidy-aware genotype calling based on likelihoods, we generated a dataset of 16,107 high-quality SNPs. Classical and model-based analysis was done to characterize the genetic structure within and between the sampled populations, complemented by genome size measurements and chromosomal counts. Finally, to reveal the drivers of genetic structure, we searched for associations between allele frequencies and spatial and climatic variables. Key Results: We found support for a marked regional structure in A. tinctoria along a latitudinal gradient in line with phytogeographic divisions. Several analyses identified interspecific admixture affecting both mainland and island populations. Modeling of spatial and climatic variables further demonstrated a larger contribution of neutral processes and a lesser albeit significant role of selection in shaping the observed genetic structure in A. tinctoria. Conclusion: Current findings provide evidence of strong genetic structure in A. tinctoria mainly driven by neutral processes. The revealed natural genomic variation in Greek Alkanna can be used to further predict variation in A/S production, whereas our bioinformatics approach should prove useful for the study of other non-model polyploid species.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Eva M. Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Eva Maria Sehr
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
36
|
Fazal A, Yang M, Wen Z, Ali F, Ren R, Hao C, Chen X, Fu J, Wang X, Jie W, Yin T, Lu G, Qi J, Yang Y. Differential microbial assemblages associated with shikonin-producing Borage species in two distinct soil types. Sci Rep 2021; 11:10788. [PMID: 34031500 PMCID: PMC8144371 DOI: 10.1038/s41598-021-90251-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/10/2021] [Indexed: 01/11/2023] Open
Abstract
Shikonin and its derivatives are the main components of traditional Chinese medicine, Zicao. The pharmacological potential of shikonin and its derivatives have been extensively studied. Yet, less is known about the microbial assemblages associated with shikonin producing Borage plants. We studied microbial profiles of two Borage species, Echium plantagineum (EP) and Lithospermum erythrorhizon (LE), to identify the dynamics of microbial colonization pattern within three rhizo-compatments and two distinct soil types. Results of α and β-diversity via PacBio sequencing revealed significantly higher microbial richness and diversity in the natural soil along with a decreasing microbial gradient across rhizosphere to endosphere. Our results displayed genotype and soil type-dependent fine-tuning of microbial profiles. The host plant was found to exert effects on the physical and chemical properties of soil, resulting in reproducibly different micro-biota. Analysis of differentially abundant microbial OTUs displayed Planctomycetes and Bacteroidetes to be specifically enriched in EP and LE rhizosphere while endosphere was mostly prevailed by Cyanobacteria. Network analysis to unfold co-existing microbial species displayed different types of positive and negative interactions within different communities. The data provided here will help to identify microbes associated with different rhizo-compartments of potential host plants. In the future, this might be helpful for manipulating the keystone microbes for ecosystem functioning.
Collapse
Affiliation(s)
- Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Farman Ali
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ran Ren
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chenyu Hao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xingyu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jiangyan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- School of Life Sciences, Huaiyin Normal University, No.111 Changjiang West Road, Huaian, 223300, People's Republic of China.
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
37
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
38
|
Shen J, Lu R, Cai Q, Fan L, Yan W, Zhu Z, Yang L, Cao Y. Mangiferin enhances the antifungal activities of caspofungin by destroying polyamine accumulation. Virulence 2021; 12:217-230. [PMID: 33404349 PMCID: PMC7801120 DOI: 10.1080/21505594.2020.1870079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The incidence of fungal infections has increased continuously in recent years. Caspofungin (CAS) is one of the first-line drugs for the treatment of systemic fungal infection. However, the emerging CAS-resistant clinical isolates and high economic cost for CAS administration hamper the wide application of this drug. Thus, the combined administration of CAS with other compounds that can enhance the antifungal activity and reduce the dose of CAS has gained more and more attention. In this study, we investigated the effect of mangiferin (MG) on the antifungal activities of CAS. Our results showed that MG acted synergistically with CAS against various Candida spp., including CAS-resistant C. albicans. Moreover, MG could enhance the activity of CAS against biofilm. The in vivo synergism of MG and CAS was further confirmed in a mouse model of disseminated candidiasis. To explore the mechanisms, we found that SPE1-mediated polyamine biosynthesis pathway was involved in the fungal cell stress to caspofungin. Treatment of CAS alone could stimulate SPE1 expression and accumulation of polyamines, while combined treatment of MG and CAS inhibited SPE1 expression and destroyed polyamine accumulation, which might contribute to increased oxidative damage and cell death. These results provided a promising strategy for high efficient antifungal therapies and revealed novel mechanisms for CAS resistance.
Collapse
Affiliation(s)
- Juan Shen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - RenYi Lu
- School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Qing Cai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - LingZhi Fan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - WanNian Yan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - LianJuan Yang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai, P.R. China
| |
Collapse
|
39
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
40
|
Wang X, He H, Liu J, Xie S, Han J. Inhibiting roles of farnesol and HOG in morphological switching of Candida albicans. Am J Transl Res 2020; 12:6988-7001. [PMID: 33312346 PMCID: PMC7724324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/18/2020] [Indexed: 06/12/2023]
Abstract
Candida albicans is a major opportunistic fungal pathogen of humans, especially in the oral cavity it involves in precancerous lesions. Numerous transcriptional regulators and hypha-specific genes involved in the morphogenesis mechanisms have been identified. Its virulence is predominantly attributed to the potentiality of morphological switching from yeast and pseudohyphae to hyphal growth. Giving attention in farnesol for prevention or intervention of its virulence sense and possible etiologic role in some uncovered premalignant diseases, in addition, to be a quorum-sensing signal molecule and relationship with HOG pathway, although its morphological switching inhibiting function has attracted high attention and got great progress in being elucidated, their exact mode of action is not completely understood. This report provides a review of characteristic aspects of farnesol signaling and HOG pathway during hyphal development. It also includes other associated pathways, molecules, and novel drug development based on the latest researches over the last decade. Furthermore, farnesol as immunomodulatory to host is an important inferring.
Collapse
Affiliation(s)
- Xueting Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Hong He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceHangzhou 310020, Zhejiang, China
| | - Jiamei Liu
- Zhejiang HospitalHangzhou 310013, Zhejiang, China
| | - Shangfeng Xie
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, School of Medicine395 Yan’an Road, Hangzhou 310006, Zhejiang, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang UniversityHangzhou 310012, Zhejiang, China
| |
Collapse
|
41
|
Kanchanapiboon J, Kongsa U, Pattamadilok D, Kamponchaidet S, Wachisunthon D, Poonsatha S, Tuntoaw S. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113193. [PMID: 32730867 DOI: 10.1016/j.jep.2020.113193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Boesenbergia rotunda (L.) Mansf. (Zingiberaceae) is an indigenous plant of Southeast Asia. Based on ethnopharmacological use, the rhizome is recommended in the treatment of stomachache, leukoplakia, abscesses, and leukorrhea in Thailand primary health care system. Candida albicans often causes leukorrhea, and infection of many mucosal sites. Its infection leads to serious illness. AIM OF THE STUDY This study aimed to investigate the effects of the ethanolic extract of the B. rotunda rhizome on C. albicans ATCC10231 in the stages of planktonic and biofilm formation and to explore the underlying mechanisms. MATERIALS AND METHODS The chemical composition of the extract was determined using ultra-performance liquid chromatography (UPLC). The planktonic growth of C. albicans was evaluated by the microdilution method, following EUCAST guidelines. For each stage of biofilm formation, the biofilm was assessed by the MTT assay. The biofilm structure was examined under a light microscope. The degree of cell surface hydrophobicity was measured. The mRNA levels of ALS1, ALS3, and ACT1 were determined by RT-qPCR. RESULTS The extract of B. rotunda consisted of 25% (w/w) pinostrobin and 12% (w/w) pinocembrin. All stages of C. albicans biofilm formation were significantly inhibited by the extract, whereas the planktonic growth did not change. Biofilm development greatly decreased due to the extract in a concentration-dependent manner, with an IC50 value of 17.7 μg/mL. Pinostrobin and pinocembrin demonstrated inhibitory effects during this stage. These results were in accordance with the microscopic evaluation. The filamentous form decreased with pinocembrin rather than pinostrobin. Moreover, the cell surface hydrophobicity was significantly decreased by 6.25 and 12.5 μg/mL of the extract and 100 μM of pinocembrin. The ALS3 mRNA level was noticeably decreased by 12.5 μg/mL of the extract, 100 μM of pinostrobin, and 100 μM of pinocembrin. The ACT1 mRNA level decreased significantly with pinocembrin. However, the ALS1 mRNA level was not altered following all treatments. CONCLUSION The ethanolic extract of B. rotunda could inhibit biofilm formation of C. albicans, especially during the biofilm development stage, by means of reducing the cell surface hydrophobicity and suppressing the ALS3 mRNA expression. Pinocembrin had a stronger effect on ALS3 mRNA expression than pinostrobin. Only pinocembrin significantly decreased the ACT1 mRNA level.
Collapse
Affiliation(s)
- Jamras Kanchanapiboon
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand.
| | - Ubonphan Kongsa
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Duangpen Pattamadilok
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Sunisa Kamponchaidet
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Detmontree Wachisunthon
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Subhadhcha Poonsatha
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Sasiwan Tuntoaw
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| |
Collapse
|
42
|
Heredero-Bermejo I, Gómez-Casanova N, Quintana S, Soliveri J, de la Mata FJ, Pérez-Serrano J, Sánchez-Nieves J, Copa-Patiño JL. In Vitro Activity of Carbosilane Cationic Dendritic Molecules on Prevention and Treatment of Candida Albicans Biofilms. Pharmaceutics 2020; 12:E918. [PMID: 32992733 PMCID: PMC7601597 DOI: 10.3390/pharmaceutics12100918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022] Open
Abstract
Candida spp. are one of the most common fungal pathogens. Biofilms formed by Candidaalbicans offer resistance mechanisms against most antifungal agents. Therefore, development of new molecules effective against these microorganisms, alone or in combination with antifungal drugs, is extremely necessary. In the present work, we carried out a screening process of different cationic carbosilane dendritic molecules against C. albicans. In vitro activity against biofilm formation and biofilms was tested in both Colección Española de Cultivos Tipo (CECT) 1002 and clinical C. albicans strains. Cytotoxicity was studied in human cell lines, and biofilm alterations were observed by scanning electron microscopy (SEM). Antifungal activity of the carbosilane dendritic molecules was assessed by monitoring cell viability using both established and novel cell viability assays. One out of 14 dendritic molecules tested, named BDSQ024, showed the highest activity with a minimum biofilm inhibitory concentration (MBIC) for biofilm formation and a minimum biofilm damaging concentration (MBDC) for existing biofilm of 16-32 and 16 mg/L, respectively. Synergy with amphotericin (AmB) and caspofungin (CSF) at non-cytotoxic concentrations was found. Therefore, dendritic compounds are exciting new antifungals effective at preventing Candida biofilm formation and represent a potential novel therapeutic agent for treatment of C. albicans infection in combination with existing clinical antifungals.
Collapse
Affiliation(s)
- Irene Heredero-Bermejo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (J.S.); (J.P.-S.); (J.L.C.-P.)
| | - Natalia Gómez-Casanova
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (J.S.); (J.P.-S.); (J.L.C.-P.)
| | - Sara Quintana
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (S.Q.); (F.J.d.l.M.); (J.S.-N.)
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Juan Soliveri
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (J.S.); (J.P.-S.); (J.L.C.-P.)
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (S.Q.); (F.J.d.l.M.); (J.S.-N.)
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jorge Pérez-Serrano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (J.S.); (J.P.-S.); (J.L.C.-P.)
| | - Javier Sánchez-Nieves
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (S.Q.); (F.J.d.l.M.); (J.S.-N.)
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (J.S.); (J.P.-S.); (J.L.C.-P.)
| |
Collapse
|
43
|
Guevara-Lora I, Bras G, Karkowska-Kuleta J, González-González M, Ceballos K, Sidlo W, Rapala-Kozik M. Plant-Derived Substances in the Fight Against Infections Caused by Candida Species. Int J Mol Sci 2020; 21:ijms21176131. [PMID: 32854425 PMCID: PMC7504544 DOI: 10.3390/ijms21176131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Yeast-like fungi from the Candida genus are predominantly harmless commensals that colonize human skin and mucosal surfaces, but under conditions of impaired host immune system change into dangerous pathogens. The pathogenicity of these fungi is typically accompanied by increased adhesion and formation of complex biofilms, making candidal infections challenging to treat. Although a variety of antifungal drugs have been developed that preferably attack the fungal cell wall and plasma membrane, these pathogens have acquired novel defense mechanisms that make them resistant to standard treatment. This causes an increase in the incidence of candidiasis and enforces the urgent need for an intensified search for new specifics that could be helpful, alone or synergistically with traditional drugs, for controlling Candida pathogenicity. Currently, numerous reports have indicated the effectiveness of plant metabolites as potent antifungal agents. These substances have been shown to inhibit growth and to alter the virulence of different Candida species in both the planktonic and hyphal form and during the biofilm formation. This review focuses on the most recent findings that provide evidence of decreasing candidal pathogenicity by different substances of plant origin, with a special emphasis on the mechanisms of their action. This is a particularly important issue in the light of the currently increasing frequency of emerging Candida strains and species resistant to standard antifungal treatment.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Miriam González-González
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30–387 Krakow, Poland
| | - Kinga Ceballos
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Wiktoria Sidlo
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Correspondence:
| |
Collapse
|
44
|
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 2020; 15:1075-1090. [PMID: 32854542 DOI: 10.2217/fmb-2019-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.
Collapse
Affiliation(s)
- Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- Department of Pharmacy, Qilu Children’s Hospital, Shandong University, Jinan 250022, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Yiman Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| |
Collapse
|
45
|
Ahmad M, Lazic D, Hansel‐Hohl K, Lexer C, Sehr EM. Development of novel microsatellite markers for Alkanna tinctoria by comparative transcriptomics. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11296. [PMID: 31667024 PMCID: PMC6814220 DOI: 10.1002/aps3.11296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/09/2019] [Indexed: 06/08/2023]
Abstract
PREMISE Alkanna tinctoria (Boraginaceae) is an important medicinal herb with its main distribution across the Mediterranean region. To reveal its genetic variation and population structure, microsatellite markers were developed and validated in four Greek populations. METHODS AND RESULTS RNA-Seq data of the related species Arnebia euchroma and Echium plantagineum were assembled and mined to identify conserved ortholog sets containing simple sequence repeat motifs. Fifty potential loci were identified and then tested on A. tinctoria, of which 17 loci were polymorphic. The number of alleles ranged from one to nine, and the levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and 0.000 to 0.820, respectively. Most of these loci could be successfully amplified in eight other species of Boraginaceae (Alkanna graeca, A. hellenica, A. sfikasiana, Echium vulgare, E. plantagineum, Lithospermum officinale, Borago officinalis, and Anchusa officinalis). CONCLUSIONS This study provides the first set of microsatellite loci for studying the genetic variation and population structure of A. tinctoria and shows their potential usefulness in other Boraginaceae species.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of Vienna1030ViennaAustria
| | - Desanka Lazic
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
| | - Karin Hansel‐Hohl
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
| | - Christian Lexer
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of Vienna1030ViennaAustria
| | - Eva Maria Sehr
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
| |
Collapse
|
46
|
Singla RK, Dubey AK. Molecules and Metabolites from Natural Products as Inhibitors of Biofilm in Candida spp. pathogens. Curr Top Med Chem 2019; 19:2567-2578. [PMID: 31654510 PMCID: PMC7403689 DOI: 10.2174/1568026619666191025154834] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Biofilm is a critical virulence factor associated with the strains of Candida spp. pathogens as it confers significant resistance to the pathogen against antifungal drugs. METHODS A systematic review of the literature was undertaken by focusing on natural products, which have been reported to inhibit biofilms produced by Candida spp. The databases explored were from PubMed and Google Scholar. The abstracts and full text of the manuscripts from the literature were analyzed and included if found significant. RESULTS Medicinal plants from the order Lamiales, Apiales, Asterales, Myrtales, Sapindales, Acorales, Poales and Laurales were reported to inhibit the biofilms formed by Candida spp. From the microbiological sources, lactobacilli, Streptomyces chrestomyceticus and Streptococcus thermophilus B had shown the strong biofilm inhibition potential. Further, the diverse nature of the compounds from classes like terpenoids, phenylpropanoid, alkaloids, flavonoids, polyphenol, naphthoquinone and saponin was found to be significant in inhibiting the biofilm of Candida spp. CONCLUSION Natural products from both plant and microbial origins have proven themselves as a goldmine for isolating the potential biofilm inhibitors with a specific or multi-locus mechanism of action. Structural and functional characterization of the bioactive molecules from active extracts should be the next line of approach along with the thorough exploration of the mechanism of action for the already identified bioactive molecules.
Collapse
Affiliation(s)
| | - Ashok K. Dubey
- Address correspondence to this author at the Drug Discovery Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi-110078, India; Emails: ;
| |
Collapse
|