1
|
Grit JL, Turner L, Essenburg CJ, Gallik KL, Dischinger PS, Shurlow ND, Pate MJ, Graveel CR, Steensma MR. Ex Vivo Patient-Derived Explant Model for Neurofibromatosis Type 1-Related Cutaneous Neurofibromas. J Invest Dermatol 2024; 144:2052-2065.e8. [PMID: 38395106 DOI: 10.1016/j.jid.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Cutaneous neurofibromas (CNFs) are benign tumors that occur in the dermis of individuals with the inherited tumor predisposition disorder, neurofibromatosis type 1. CNFs cause disfigurement, pain, burning, and itching, resulting in substantially reduced QOL in patients with neurofibromatosis type 1. CNFs are benign tumors that exhibit cellular and molecular heterogeneity, making it difficult to develop tractable in vitro or in vivo models. As a result, CNF research and drug discovery efforts have been limited. To address this need, we developed a reproducible patient-derived explant (PDE) ex vivo culture model using CNF tumors from patients with neurofibromatosis type 1. CNF PDEs remain viable in culture for over 9 days and recapitulate the cellular composition and molecular signaling of CNFs. Using CNF PDEs as a model system, we found that proliferation was associated with increased T-cell infiltration. Furthermore, we identified a pattern of reciprocal inflammatory signaling in CNF PDEs in which tumors rely on prostaglandin or leukotriene-mediated signaling pathways. As proof of principle, we show that ex vivo glucocorticoid treatment reduced the expression of proinflammatory genes, confirming that CNF PDEs are a useful model for both mechanistic studies and preclinical drug testing.
Collapse
Affiliation(s)
- Jamie L Grit
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Lisa Turner
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Curt J Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Kristin L Gallik
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Patrick S Dischinger
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | | | - Carrie R Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Matthew R Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA; Corwell Health System, Grand Rapids, Michigan, USA; College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.
| |
Collapse
|
2
|
Baumbach CM, Anantama NA, Savkovic V, Mülling CKW, Schinköthe J, Michler JK. 3D Approaches to Culturing Bovine Skin: Explant Culture versus Organotypic Skin Model. Cells Tissues Organs 2024; 213:424-438. [PMID: 38508156 PMCID: PMC11446480 DOI: 10.1159/000538438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION Digital dermatitis (DD) in cattle appears with high prevalence; nevertheless, the knowledge on its pathogenesis is still limited. In this context, in vitro skin models represent a valuable tool to facilitate the study of DD. METHODS Two in vitro skin models were established using bovine distal limb skin: a skin explant model and an organotypic skin model. For the skin explant model, skin samples were cultured with an air-liquid interface for up to 7 days. Besides routine histopathological examination, readout parameters were Ki-67 and cleaved Caspase-3 stainings. For the organotypic model, primary keratinocytes were layered on top of a dermal equivalent containing mainly mitotically inactive fibroblasts and maintained for up to 21 days. At regular intervals (days 7, 14, and 21), cultured skin samples were taken for (immuno)histological analysis. RESULTS Both cultures could be maintained for the entire duration of the intended culture period. In the histopathological assessment, explant skin cultures showed ballooning degeneration of keratinocytes and segmental necrosis starting at day 5 of culturing. Initially, basal keratinocytes in the organotypic model differentiated as demonstrated by positive Keratin 14, Desmoglein-1, Loricrin, and Involucrin immunofluorescent stainings. Ki-67 was observed occasionally and suprabasally still after 21 days of culture. CONCLUSION Both in vitro models proved dependable and constitute a viable option for replacing experiments on live animals, each with its own benefits. Whereas skin explants include all cell types available in vivo and can therefore reflect realistic cell-cell interactions and signaling pathways, the organotypic model offers a higher standardization and reproducibility. Depending on the focus of future studies, both models can be used for specific experimental purposes of bovine dermatological research in general or specialized questions concerning (infectious) claw diseases as, e.g., DD.
Collapse
Affiliation(s)
- Christina-Marie Baumbach
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Nadia Ayurini Anantama
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Vuk Savkovic
- Department of Oral and Maxillofacial Surgery, Leipzig University Medical Center, Leipzig, Germany
| | - Christoph K W Mülling
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jule Kristin Michler
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
4
|
Cleaver L, Garnett JA. How to study biofilms: technological advancements in clinical biofilm research. Front Cell Infect Microbiol 2023; 13:1335389. [PMID: 38156318 PMCID: PMC10753778 DOI: 10.3389/fcimb.2023.1335389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Biofilm formation is an important survival strategy commonly used by bacteria and fungi, which are embedded in a protective extracellular matrix of organic polymers. They are ubiquitous in nature, including humans and other animals, and they can be surface- and non-surface-associated, making them capable of growing in and on many different parts of the body. Biofilms are also complex, forming polymicrobial communities that are difficult to eradicate due to their unique growth dynamics, and clinical infections associated with biofilms are a huge burden in the healthcare setting, as they are often difficult to diagnose and to treat. Our understanding of biofilm formation and development is a fast-paced and important research focus. This review aims to describe the advancements in clinical biofilm research, including both in vitro and in vivo biofilm models, imaging techniques and techniques to analyse the biological functions of the biofilm.
Collapse
Affiliation(s)
- Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S. TrCla4 promotes actin polymerization at the hyphal tip and mycelial growth in Trichophyton rubrum. Microbiol Spectr 2023; 11:e0292323. [PMID: 37905917 PMCID: PMC10714743 DOI: 10.1128/spectrum.02923-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Superficial fungal infections, such as athlete's foot, affect more than 10% of the world's population and have a significant impact on quality of life. Despite the fact that treatment-resistant fungi are a concern, there are just a few antifungal drug targets accessible, as opposed to the wide range of therapeutic targets found in bacterial infections. As a result, additional alternatives are sought. In this study, we generated a PAK TrCla4 deletion strain (∆Trcla4) of Trichophyton rubrum. The ∆Trcla4 strain exhibited deficiencies in mycelial growth, hyphal morphology, and polarized actin localization at the hyphal tip. IPA-3 and FRAX486, small chemical inhibitors of mammalian PAK, were discovered to limit fungal mycelial proliferation. According to our findings, fungal PAKs are interesting therapeutic targets for the development of new antifungal medicines.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Hachioji, Tokyo, Japan
| | - Hideko Uga
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Toshiaki Katada
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
6
|
Cohen G, Jakus J, Portillo M, Gvirtz R, Ogen-Shtern N, Silberstein E, Ayzenberg T, Rozenblat S. In vitro, ex vivo, and clinical evaluation of anti-aging gel containing EPA and CBD. J Cosmet Dermatol 2023; 22:3047-3057. [PMID: 37264742 DOI: 10.1111/jocd.15815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Skin aging manifestation, such as coarse wrinkles, loss of elasticity, pigmentation, and rough-textured appearance, is a multifactorial process that can be exacerbated by air pollution, smoking, poor nutrition, and sun exposure. Exposure to UV radiation is considered the primary cause of extrinsic skin aging and accounts for about 80% of facial aging. Extrinsic skin aging signs can be reduced with demo-cosmetic formulations. Both cannabidiol (CBD) and eicosapentaenoic acid (EPA) have been previously suggested as potent active dermatological ingredients. AIMS The objective of the current research was to evaluate the compatibility of both agents in the prevention and treatment of skin aging. First, the impact of both agents was assessed using standard photoaging models of UV-induced damage, both in vitro (HaCaT cells) and ex vivo (human skin organ culture). Then, a clinical validation study (n = 33) was performed using an optimized topical cream formulation tested at different time points (up to Day 56). RESULTS EPA was found to potentiate the protective effects of CBD by reducing the secretion of prostaglandin E2 (PGE2 ) and interleukin-8 (IL-8), two primary inflammatory agents associated with photoaging. In addition, a qualitative histological examination signaled that applying the cream may result in an increase in extracellular matrix (ECM) remodeling following UV radiation. This was also evidenced clinically by a reduction of crow's feet wrinkle area and volume, as well as a reduction of fine line wrinkle volume as measured by the AEVA system. The well-established age-dependent subepidermal low-echogenic band (SLEB) was also reduced by 8.8%. Additional clinical results showed significantly reduced red spots area and count, and an increase in skin hydration and elasticity by 31.2% and 25.6% following 56 days of cream application, respectively. These impressive clinical results correlated with high satisfaction ratings by the study participants. DISCUSSION AND CONCLUSIONS Collectively, the results show a profound anti-aging impact of the developed formulation and strengthen the beneficial derm-cosmetic properties of CBD-based products.
Collapse
Affiliation(s)
- Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, Israel
- Ben Gurion University of the Negev, Eilat, Israel
| | - Jeannette Jakus
- SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Raanan Gvirtz
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, Israel
| | - Navit Ogen-Shtern
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, Israel
- Ben Gurion University of the Negev, Eilat, Israel
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Ayzenberg
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
7
|
Cousin I, Misery L, de Vries P, Lebonvallet N. Emergence of New Concepts in Skin Physiopathology through the Use of in vitro Human Skin Explants Models. Dermatology 2023; 239:849-859. [PMID: 37717565 DOI: 10.1159/000533261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/20/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND This review summarizes uses and new applications for dermatological research of in vitro culture models of human skin explants (HSEs). In the last decade, many innovations have appeared in the literature and an exponential number of studies have been recorded in various fields of application such as process culture engineering, stem cell extractions methodology, or cell-to-cell interaction studies under physiological and pathological conditions, wound-healing, and inflammation. Most studies also concerned pharmacology, cosmetology, and photobiology. However, these topics will not be considered in our review. SUMMARY A better understanding of the mechanisms driving intercellular relationships, at work in the maintenance of 3D tissue architectures has led to the improvement of cell culture techniques. Many papers have focused on the physiological ways that govern in vitro tissue maintenance of HSEs. The analysis of the necessary mechanical stress, intercellular and cell-matrix interactions, allows the maintenance and prolonged use of HSEs in culture for up to 15 days, regardless of the great variability of study protocols from one laboratory to another and in accordance with the objectives set. Because of their close similarities to fresh skin, HSEs are increasingly used to study skin barrier repair and wound healing physiology. Easy to use in co-culture, this model allows a better understanding of the connections and interactions between the peripheral nervous system, the skin and the immune system. The development of the concept of an integrated neuro-immuno-cutaneous system at work in skin physiology and pathology highlighted by this article represents one of the new technical challenges in the field of in vitro culture of HSE. This review of the literature also reveals the importance of using such models in pathology. As sources of stem cells, HSEs are the basis for the development of new tissue engineering models such as organoids or optical clearing tissues technology. This study identifies the main advances and cross-cutting issues in the use of HSE.
Collapse
Affiliation(s)
- Ianis Cousin
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
- Service de chirurgie pédiatrique CHRU de Brest, Brest, France
| | - Laurent Misery
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
- Service de dermatologie CHRU de Brest, Brest, France
| | - Philine de Vries
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
- Service de chirurgie pédiatrique CHRU de Brest, Brest, France
| | - Nicolas Lebonvallet
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
8
|
Bateman LM, Hebert KA, Nunziata JA, Streeter SS, Barth CW, Wang LG, Gibbs SL, Henderson ER. Preclinical evaluation of molecularly targeted fluorescent probes in perfused amputated human limbs. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082802. [PMID: 36619496 PMCID: PMC9813435 DOI: 10.1117/1.jbo.28.8.082802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE This first-in-kind, perfused, and amputated human limb model allows for the collection of human data in preclinical selection of lead fluorescent agents. The model facilitates more accurate selection and testing of fluorophores with human-specific physiology, such as differential uptake and signal in fat between animal and human models with zero risk to human patients. Preclinical testing using this approach may also allow for the determination of tissue toxicity, clearance time of fluorophores, and the production of harmful metabolites. AIM This study was conducted to determine the fluorescence intensity values and tissue specificity of a preclinical, nerve tissue targeted fluorophore, as well as the capacity of this first-in-kind model to be used for lead fluorescent agent selection in the future. APPROACH Freshly amputated human limbs were perfused for 30 min prior to in situ and ex vivo imaging of nerves with both open-field and closed-field commercial fluorescence imaging systems. RESULTS In situ, open-field imaging demonstrated a signal-to-background ratio (SBR) of 4.7 when comparing the nerve with adjacent muscle tissue. Closed-field imaging demonstrated an SBR of 3.8 when the nerve was compared with adipose tissue and 4.8 when the nerve was compared with muscle. CONCLUSIONS This model demonstrates an opportunity for preclinical testing, evaluation, and selection of fluorophores for use in clinical trials as well as an opportunity to study peripheral pathologies in a controlled environment.
Collapse
Affiliation(s)
- Logan M. Bateman
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Kendra A. Hebert
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Jenna A. Nunziata
- Dartmouth Health, Heart and Vascular Center, Lebanon, New Hampshire, United States
| | - Samuel S. Streeter
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Connor W. Barth
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Lei G. Wang
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Summer L. Gibbs
- Oregon Health and Science University, Department of Biomedical Engineering, Portland, Oregon, United States
| | - Eric R. Henderson
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| |
Collapse
|
9
|
Galvan A, Cappellozza E, Pellequer Y, Conti A, Pozza ED, Vigato E, Malatesta M, Calderan L. An Innovative Fluid Dynamic System to Model Inflammation in Human Skin Explants. Int J Mol Sci 2023; 24:ijms24076284. [PMID: 37047256 PMCID: PMC10094544 DOI: 10.3390/ijms24076284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Skin is a major administration route for drugs, and all transdermal formulations must be tested for their capability to overcome the cutaneous barrier. Therefore, developing highly reliable skin models is crucial for preclinical studies. The current in vitro models are unable to replicate the living skin in all its complexity; thus, to date, excised human skin is considered the gold standard for in vitro permeation studies. However, skin explants have a limited life span. In an attempt to overcome this problem, we used an innovative bioreactor that allowed us to achieve good structural and functional preservation in vitro of explanted human skin for up to 72 h. This device was then used to set up an in vitro inflammatory model by applying two distinct agents mimicking either exogenous or endogenous stimuli: i.e., dithranol, inducing the contact dermatitis phenotype, and the substance P, mimicking neurogenic inflammation. Our in vitro system proved to reproduce inflammatory events observed in vivo, such as vasodilation, increased number of macrophages and mast cells, and increased cytokine secretion. This bioreactor-based system may therefore be suitably and reliably used to simulate in vitro human skin inflammation and may be foreseen as a promising tool to test the efficacy of drugs and cosmetics.
Collapse
|
10
|
Ong J, Godfrey R, Nazarian A, Tam J, Drake L, Isaacson B, Pasquina P, Williams D. Antimicrobial blue light as a biofilm management therapy at the skin-implant interface in an ex vivo percutaneous osseointegrated implant model. J Orthop Res 2023. [PMID: 36815575 DOI: 10.1002/jor.25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Biofilm contamination is often present at the skin-implant interface of transfemoral osseointegrated implants leading to frequent infection, irritation, and discomfort. New biofilm management regimens are needed as the current standard of washing the site with soap and water is inadequate to manage infection rates. We investigated the potential of antimicrobial blue light, which has reduced risk of resistance development and broad antimicrobial mechanisms. Our lab developed an antimicrobial blue light (aBL) device uniquely designed for an ex vivo system based on an established ovine osseointegrated (OI) implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Samples were irradiated with aBL or washed for three consecutive days after which they were quantified. Colony-forming unit (CFU) counts were compared with a control group (bacterial inocula without treatment). After 1 day, aBL administered as a single 6 h dose or two 1 h doses spaced 6 h apart both reduced the CFU count by 1.63 log10 ± 0.02 CFU. Over 3 days of treatment, a positive aBL trend was observed with a maximum reduction of ~2.7 log10 CFU following 6 h of treatment, indicating a relation between multiple days of irradiation and greater CFU reductions. aBL was more effective at reducing the biofilm burden at the skin-implant interface compared with the wash group, demonstrating the potential of aBL as a biofilm management option.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Rose Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Drake
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brad Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Geneva Foundation, Tacoma, Washington, USA.,Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness (MIRROR), Uniformed Services University, Bethesda, Maryland, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA
| | - Paul Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Zhou L, Ji W, Dicolandrea T, Finlay D, Supp D, Boyce S, Wei K, Kadekaro AL, Zhang Y. An improved human skin explant culture method for testing and assessing personal care products. J Cosmet Dermatol 2023; 22:1585-1594. [PMID: 36606380 DOI: 10.1111/jocd.15607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cultured human skin models have been widely used in the evaluation of dermato-cosmetic products as alternatives to animal testing and expensive clinical testing. The most common in vitro skin culture approach is to maintain skin biopsies in an airlifted condition at the interface of the supporting culture medium and the air phase. This type of ex vivo skin explant culture is not, however, adequate for the testing of cleansing products, such as shampoos and body washes. One major deficiency is that cleansing products would not remain confined on top of the epidermis and have a high chance of running off toward the dermal side, thus compromising the experimental procedure and data interpretation. MATERIALS AND METHODS Here, we describe an improved ex vivo method for culturing full-thickness human skin for the effective testing and evaluation of skin care products by topical application. RESULTS This newly developed ex vivo human skin culture method has the ability to maintain healthy skin tissues for up to 14 days in culture. Importantly, the model provides a quick and safe way to evaluate skin care products at different time points after single or repetitive topical applications using a combined regimen of leave-on and wash-off. We found that the results obtained using the new skin culture method are reproducible and consistent with the data collected from clinical testing. CONCLUSION Our new ex vivo skin explant method offers a highly efficient and cost-effective system for the evaluation and testing of a variety of personal care products and new formulations.
Collapse
Affiliation(s)
- Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wei Ji
- Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | | | - Deborah Finlay
- Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Dorothy Supp
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, Ohio, USA.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven Boyce
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, Ohio, USA.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Karl Wei
- Procter and Gamble Company, Mason Business Center, Mason, Ohio, USA
| | - Ana Luisa Kadekaro
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Corzo Leon DE, Scheynius A, MacCallum DM, Munro CA. Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin. FEMS Yeast Res 2023; 23:foad028. [PMID: 37188635 PMCID: PMC10281499 DOI: 10.1093/femsyr/foad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.
Collapse
Affiliation(s)
- Dora E Corzo Leon
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Donna M MacCallum
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Carol A Munro
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
13
|
Bateman LM, Hebert KA, Streeter SS, Nunziata JA, Barth CW, Wang LG, Gibbs SL, Henderson ER. Use of Freshly Amputated Human Limbs for Pre-Clinical Evaluation of Molecular-Targeted Fluorescent Probes. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12361:1236109. [PMID: 37009433 PMCID: PMC10065840 DOI: 10.1117/12.2650356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
We have co-developed a first-in-kind model of fluorophore testing in freshly amputated human limbs. Ex vivo human tissue provides a unique opportunity for the testing of pre-clinical fluorescent agents, collection of imaging data, and histopathologic examination in human tissue prior to performing in vivo experiments. Existing pre-clinical fluorescent agent studies rely primarily on animal models, which do not directly predict fluorophore performance in humans and can result in wasted resources and time if an agent proves ineffective in early human trials. Because fluorophores have no desired therapeutic effect, their clinical utility is based solely on their safety and ability to highlight tissues of interest. Advancing to human trials even via the FDA's phase 0/microdose pathway still requires substantial resources, single-species pharmacokinetic testing, and toxicity testing. In a recently concluded study using amputated human lower limbs, we were able to test successfully a nerve-specific fluorophore in pre-clinical development. This study used systemic administration via vascular cannulization and a cardiac perfusion pump. We envision that this model may assist with early lead agent testing selection for fluorophores with various targets and mechanisms.
Collapse
Affiliation(s)
- Logan M Bateman
- Department of Orthopaedics, Dartmouth Health, Lebanon, New Hampshire, United States
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Kendra A Hebert
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Samuel S Streeter
- Department of Orthopaedics, Dartmouth Health, Lebanon, New Hampshire, United States
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States
| | - Jenna A Nunziata
- Heart and Vascular Center, Dartmouth Health, Lebanon, New Hampshire, United States
| | - Connor W Barth
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
| | - Lei G Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
| | - Summer L Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
| | - Eric R Henderson
- Department of Orthopaedics, Dartmouth Health, Lebanon, New Hampshire, United States
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States
| |
Collapse
|
14
|
A Bioluminescence-Based Ex Vivo Burn Wound Model for Real-Time Assessment of Novel Phage-Inspired Enzybiotics. Pharmaceutics 2022; 14:pharmaceutics14122553. [PMID: 36559047 PMCID: PMC9781546 DOI: 10.3390/pharmaceutics14122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The silent pandemic of antibiotic resistance is thriving, prompting the urgent need for the development of new antibacterial drugs. However, within the preclinical pipeline, in vitro screening conditions can differ significantly from the final in vivo settings. To bridge the gap between in vitro and in vivo assays, we developed a pig-skin-based bioluminescent ex vivo burn wound infection model, enabling real-time assessment of antibacterials in a longitudinal, non-destructive manner. We provide a proof-of-concept for A. baumannii NCTC13423, a multidrug-resistant clinical isolate, which was equipped with the luxCDABE operon as a reporter using a Tn7-based tagging system. This bioluminescence model provided a linear correlation between the number of bacteria and a broad dynamic range (104 to 109 CFU). This longitudinal model was subsequently validated using a fast-acting enzybiotic, 1D10. Since this model combines a realistic, clinically relevant yet strictly controlled environment with real-time measurement of bacterial burden, we put forward this ex vivo model as a valuable tool to assess the preclinical potential of novel phage-inspired enzybiotics.
Collapse
|
15
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
16
|
Marine Compounds with Anti-Candida sp. Activity: A Promised “Land” for New Antifungals. J Fungi (Basel) 2022; 8:jof8070669. [PMID: 35887426 PMCID: PMC9320905 DOI: 10.3390/jof8070669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is still the major yeast causing human fungal infections. Nevertheless, in the last decades, non-Candida albicans Candida species (NCACs) (e.g., Candida glabrata, Candida tropicalis, and Candida parapsilosis) have been increasingly linked to Candida sp. infections, mainly in immunocompromised and hospitalized patients. The escalade of antifungal resistance among Candida sp. demands broadly effective and cost-efficient therapeutic strategies to treat candidiasis. Marine environments have shown to be a rich source of a plethora of natural compounds with substantial antimicrobial bioactivities, even against resistant pathogens, such as Candida sp. This short review intends to briefly summarize the most recent marine compounds that have evidenced anti-Candida sp. activity. Here, we show that the number of compounds discovered in the last years with antifungal activity is growing. These drugs have a good potential to be used for the treatment of candidiasis, but disappointedly the reports have devoted a high focus on C. albicans, neglecting the NCACs, highlighting the need to perform outspreading studies in the near future.
Collapse
|
17
|
Bandou R, Hirose R, Nakaya T, Miyazaki H, Watanabe N, Yoshida T, Daidoji T, Itoh Y, Ikegaya H. Higher Viral Stability and Ethanol Resistance of Avian Influenza A(H5N1) Virus on Human Skin. Emerg Infect Dis 2022; 28:639-649. [PMID: 35202523 PMCID: PMC8888214 DOI: 10.3201/eid2803.211752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Evaluating the stability of highly pathogenic avian influenza viruses on human skin and measuring the effectiveness of disinfectants are crucial for preventing contact disease transmission. We constructed an evaluation model using autopsy skin samples and evaluated factors that affect the stability and disinfectant effectiveness for various subtypes. The survival time of the avian influenza A(H5N1) virus on plastic surfaces was ≈26 hours and on skin surfaces ≈4.5 hours, >2.5-fold longer than other subtypes. The effectiveness of a relatively low ethanol concentration (32%–36% wt/wt) against the H5N1 subtype was substantially reduced compared with other subtypes. Moreover, recombinant viruses with the neuraminidase gene of H5N1 survived longer on plastic and skin surfaces than other recombinant viruses and were resistant to ethanol. Our results imply that the H5N1 subtype poses a higher contact transmission risk because of its higher stability and ethanol resistance, which might depend on the neuraminidase protein.
Collapse
|
18
|
Corzo-León DE, Mark C, MacCallum DM, Munro CA. A Human Ex Vivo Skin Model to Study Candida auris Biofilms. Methods Mol Biol 2022; 2517:259-267. [PMID: 35674961 DOI: 10.1007/978-1-0716-2417-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Candida auris can persist for long periods on hospital surfaces and on the skin. C. auris has the ability to form drug-resistant biofilms, which can substantially impact on patient outcome. In comparison to Candida albicans, C. auris has a lower capacity to form biofilms in in vitro models and a higher capacity when tested on animal skin models. Intraspecies variation is shown to exist, with some clinical isolates having greater biofilm capabilities than others. There is a need for models that closely mimic the real niches where infection occurs on human patients. This protocol describes, in detail, a human skin model to study C. auris biofilm formation using catheterized and non-catheterized skin.
Collapse
Affiliation(s)
- Dora E Corzo-León
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.
- Unidad de Epidemiología Hospitalaria e Infectologia, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.
| | - Catherine Mark
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Donna M MacCallum
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Carol A Munro
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
19
|
Hirose R, Itoh Y, Ikegaya H, Miyazaki H, Watanabe N, Yoshida T, Bandou R, Daidoji T, Nakaya T. Evaluation of the Residual Disinfection Effects of Commonly Used Skin Disinfectants against Viruses: An Innovative Contact Transmission Control Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16044-16055. [PMID: 34841856 DOI: 10.1021/acs.est.1c05296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lasting disinfection effects, that is, the residual disinfection effects (RDEs), of skin-coated disinfectants have rarely been considered for infection control owing to the challenges involved in the accurate evaluation of RDEs. In this study, we constructed a new skin evaluation model and determined the RDEs of existing disinfectants against viruses. Our results showed that ethanol and isopropanol had no RDE, whereas povidone-iodine, chlorhexidine gluconate, and benzalkonium chloride (BAC) exhibited RDEs, with 10% povidone-iodine and 0.2% BAC showing particularly strong RDEs. The RDE of 0.2% BAC was strong enough to reduce the median survival times of severe acute respiratory syndrome coronavirus-2, human coronavirus-OC43, and influenza virus from 670 to 5.2, 1300 to 12, and 120 to 4.2 min, respectively. Additionally, this strong RDE was maintained even 4 h after coating the skin. Clinical data also showed that the strong RDE of 0.2% BAC was maintained for more than 2 h. Thus, applying disinfectants with strong RDEs on the skin correlates with a reduction in virus survival time and appears to create a skin surface environment that is not conducive to virus survival. A prolonged reduction in virus survival decreases the contact transmission risk, thereby enabling stronger infection control.
Collapse
Affiliation(s)
- Ryohei Hirose
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hajime Miyazaki
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoto Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takuma Yoshida
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Risa Bandou
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
20
|
Kahremany S, Hofmann L, Eretz-Kdosha N, Silberstein E, Gruzman A, Cohen G. SH-29 and SK-119 Attenuates Air-Pollution Induced Damage by Activating Nrf2 in HaCaT Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312371. [PMID: 34886097 PMCID: PMC8656889 DOI: 10.3390/ijerph182312371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Air pollution has been repeatedly linked to numerous health-related disorders, including skin sensitization, oxidative imbalance, premature extrinsic aging, skin inflammation, and increased cancer prevalence. Nrf2 is a key player in the endogenous protective mechanism of the skin. We hypothesized that pharmacological activation of Nrf2 might reduce the deleterious action of diesel particulate matter (DPM), evaluated in HaCaT cells. SK-119, a recently synthesized pharmacological agent as well as 2,2′-((1E,1′E)-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(benzene-1,3,5-triol) (SH-29) were first evaluated in silico, suggesting a potent Nrf2 activation capacity that was validated in vitro. In addition, both compounds were able to attenuate key pathways underlying DPM damage, including cytosolic and mitochondrial reactive oxygen species (ROS) generation, tested by DC-FDA and MitoSOX fluorescent dye, respectively. This effect was independent of the low direct scavenging ability of the compounds. In addition, both SK-119 and SH-29 were able to reduce DPM-induced IL-8 hypersecretion in pharmacologically relevant concentrations. Lastly, the safety of both compounds was evaluated and demonstrated in the ex vivo human skin organ culture model. Collectively, these results suggest that Nrf2 activation by SK-119 and SH-29 can revert the deleterious action of air pollution.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.K.); (L.H.)
- The Dead Sea and Arava Science Center, The Skin Research Institute, Masada 8691000, Israel;
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.K.); (L.H.)
| | - Noy Eretz-Kdosha
- The Dead Sea and Arava Science Center, The Skin Research Institute, Masada 8691000, Israel;
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 8410100, Israel;
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.K.); (L.H.)
- Correspondence: (A.G.); (G.C.)
| | - Guy Cohen
- The Dead Sea and Arava Science Center, The Skin Research Institute, Masada 8691000, Israel;
- Eilat Campus, Ben Gurion University of the Negev, Eilat 8855630, Israel
- Correspondence: (A.G.); (G.C.)
| |
Collapse
|
21
|
Gorzalczany SB, Rodriguez Basso AG. Strategies to apply 3Rs in preclinical testing. Pharmacol Res Perspect 2021; 9:e00863. [PMID: 34609088 PMCID: PMC8491455 DOI: 10.1002/prp2.863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Animal experimentation has been fundamental in biological and biomedical research. To guarantee the maximum quality, efficacy and/or safety of products intended for the use in humans in vivo testing is necessary; however, for over 60 years, alternative methods have been developed in response to the necessity to reduce the number of animals used in experimentation, to guarantee their welfare; resorting to animal models only when strictly necessary. The three Rs (Replacement, Reduction, and Refinement), seek to ensure the rational and respectful use of laboratory animals and maintain an adequate projection in terms of bioethical considerations. This article describes different approaches to apply 3Rs in preclinical experimentation for either research or regulatory purposes.
Collapse
Affiliation(s)
- Susana B. Gorzalczany
- Universidad de Buenos AiresFacultad de Farmacia y Bioquímica, Pharmacology DepartmentBuenos AiresArgentina
| | - Angeles G. Rodriguez Basso
- Universidad de Buenos AiresFacultad de Farmacia y Bioquímica, Pharmacology DepartmentBuenos AiresArgentina
| |
Collapse
|
22
|
Su Y, McCarthy A, Wong SL, Hollins RR, Wang G, Xie J. Simultaneous Delivery of Multiple Antimicrobial Agents by Biphasic Scaffolds for Effective Treatment of Wound Biofilms. Adv Healthc Mater 2021; 10:e2100135. [PMID: 33887126 PMCID: PMC8222186 DOI: 10.1002/adhm.202100135] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/21/2021] [Indexed: 12/19/2022]
Abstract
Biofilms pose a major challenge to control wound-associated infections. Due to biofilm impenetrability, traditional antimicrobial agents are often ineffective in combating biofilms. Herein, a biphasic scaffold is reported as an antimicrobial delivery system by integrating nanofiber mats with dissolvable microneedle arrays for the effective treatment of bacterial biofilms. Different combinations of antimicrobial agents, including AgNO3 , Ga(NO3 )3 , and vancomycin, are incorporated into nanofiber mats by coaxial electrospinning, which enables sustained delivery of these drugs. The antimicrobial agents-incorporated dissolvable microneedle arrays allow direct penetration of drugs into biofilms. By optimizing the administration strategies, drug combinations, and microneedle densities, biphasic scaffolds are able to eradicate both methicillin-resistant Staphylococcus aureus (MRSA) and MRSA/Pseudomonas aeruginosa blend biofilms in an ex vivo human skin wound infection model without necessitating surgical debridement. Taken together, the combinatorial system comprises of nanofiber mats and microneedle arrays can provide an efficacious delivery of multiple antimicrobial agents for the treatment of bacterial biofilms in wounds.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ronald R Hollins
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
23
|
Khodadadi H, Zomorodian K, Nouraei H, Zareshahrabadi Z, Barzegar S, Zare MR, Pakshir K. Prevalence of superficial-cutaneous fungal infections in Shiraz, Iran: A five-year retrospective study (2015-2019). J Clin Lab Anal 2021; 35:e23850. [PMID: 34028857 PMCID: PMC8274978 DOI: 10.1002/jcla.23850] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background Superficial and cutaneous fungal infections are common in tropical areas. The aim of this study was to provide a basic database of superficial and cutaneous mycoses and the most common etiological agents among patients. Methods Between 2015 and 2019, a total of 1807 patients suspected of superficial and cutaneous mycosis referring to the mycology laboratory of Shiraz medical school, Fars, Iran were evaluated. Specimens were taken from the patients’ affected area, and clinical samples were examined by direct microscopy and culture. The epidemiological profile of the patients was collected. Results A total of 750 patients were confirmed with mycoses. Positive samples totaled 750 cases consisting of the nail (373/49.7%), skin (323/43%), head (47/6.26%), and mucosal membrane (4/0.5%). The yeasts group included 304 Candida spp. (70.3%), 123 Malassezia spp. (28.47%), and 5 Rhodotorula spp. (1.1%). The filamentous fungi were distributed as 34.8% dermatophytes and 7.5% non‐dermatophyte. The clinical types of dermatophytosis were tinea unguium (110/261), tinea capitis (50/261), tinea pedis (48/261), tinea corporis (37/261), and tinea cruris (16/261). Non‐dermatophyte molds included A. flavus 17, A. niger 4, Aspergillus spp. 15, Penicillium. 10, Fusarium 6, Mucor 2, Stemphylium 1, and Alternaria 1. Conclusion This study provides useful data for the study trends of superficial and cutaneous fungal infections in a specific area. The mycological data confirmed higher incidence of candidiasis (mainly onychomycosis) and dermatophytosis in patients affected by fungal pathogens, which helped to better understand the epidemiological aspects of these mycoses.
Collapse
Affiliation(s)
- Hossein Khodadadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Nouraei
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Reza Zare
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Boero E, Mnich ME, Manetti AGO, Soldaini E, Grimaldi L, Bagnoli F. Human Three-Dimensional Models for Studying Skin Pathogens. Curr Top Microbiol Immunol 2021; 430:3-27. [PMID: 32601967 DOI: 10.1007/82_2020_219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin is the most exposed surface of the human body, separating the microbe-rich external environment, from the sterile inner part. When skin is breached or its homeostasis is perturbed, bacterial, fungal and viral pathogens can cause local infections or use the skin as an entry site to spread to other organs. In the last decades, it has become clear that skin provides niches for permanent microbial colonization, and it actively interacts with microorganisms. This crosstalk promotes skin homeostasis and immune maturation, preventing expansion of harmful organisms. Skin commensals, however, are often found to be skin most prevalent and dangerous pathogens. Despite the medical interest, mechanisms of colonization and invasion for most skin pathogens are poorly understood. This limitation is due to the lack of reliable skin models. Indeed, animal models do not adequately mimic neither the anatomy nor the immune response of human skin. Human 3D skin models overcome these limitations and can provide new insights into the molecular mechanisms of microbial pathogenesis. Herein, we address the strengths and weaknesses of different types of human skin models and we review the main findings obtained using these models to study skin pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Luca Grimaldi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | |
Collapse
|
25
|
Sardana K, Gupta A, Mathachan SR. Immunopathogenesis of Dermatophytoses and Factors Leading to Recalcitrant Infections. Indian Dermatol Online J 2021; 12:389-399. [PMID: 34211904 PMCID: PMC8202482 DOI: 10.4103/idoj.idoj_503_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 12/20/2020] [Indexed: 11/11/2022] Open
Abstract
The pathogenesis of dermatophytic infections involves the interplay of three major factors: the dermatophyte, the inherent host defense, and the adaptive host immune response. The fungal virulence factors determine the adhesion and invasion of the skin while the immune response depends on an interaction of the pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMP) with pattern recognition receptors (PRRs) of the host, which lead to a differential Th (T helper) 1, Th2, Th17, and Treg response. While anthropophilic dermatophytes Trichophyton rubrum and now increasingly by T. interdigitale subvert the immune response via mannans, zoophilic species are eliminated due to a brisk immune response. Notably, delayed-type hypersensitivity (Th1) response of T lymphocytes causes the elimination of fungal infection, while chronic disease caused by anthropophilic species corresponds to toll-like receptor 2 mediated IL (interleukin)-10 release and generation of T-regulatory cells with immunosuppressive potential. Major steps that determine the ultimate clinical course and chronicity include genetic susceptibility factors, impaired epidermal and immunological barriers, variations in the composition of sebum and sweat, carbon dioxide tension, skin pH, and topical steroid abuse. It is important to understand these multifarious aspects to surmount the problem of recalcitrant dermatophytosis when the disorder fails conventional therapeutic agents.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Aastha Gupta
- Department of Dermatology, Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sinu Rose Mathachan
- Department of Dermatology, Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
26
|
|
27
|
Loomis KH, Wu SK, Ernlund A, Zudock K, Reno A, Blount K, Karig DK. A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. MICROBIOME 2021; 9:22. [PMID: 33482907 PMCID: PMC7825201 DOI: 10.1186/s40168-020-00963-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/06/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions, wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these microbe-host interactions. Towards this direction, recent efforts using mouse models point to pronounced changes in the transcriptional profiles of the skin in response to the presence of a microbial community. However, there is a need to quantify the roles of microorganisms at both the individual and community-level in healthy human skin. In this study, we utilize human skin equivalents to study the effects of individual taxa and a microbial community in a precisely controlled context. Through transcriptomics analysis, we identify key genes and pathways influenced by skin microbes, and we also characterize higher-level impacts on skin processes and properties through histological analyses. RESULTS The presence of a microbiome on a 3D skin tissue model led to significantly altered patterns of gene expression, influencing genes involved in the regulation of apoptosis, proliferation, and the extracellular matrix (among others). Moreover, microbiome treatment influenced the thickness of the epidermal layer, reduced the number of actively proliferating cells, and increased filaggrin expression. Many of these findings were evident upon treatment with the mixed community, but either not detected or less pronounced in treatments by single microorganisms, underscoring the impact that a diverse skin microbiome has on the host. CONCLUSIONS This work contributes to the understanding of how microbiome constituents individually and collectively influence human skin processes and properties. The results show that, while it is important to understand the effect of individual microbes on the host, a full community of microbes has unique and pronounced effects on the skin. Thus, in its impacts on the host, the skin microbiome is more than the sum of its parts. Video abstract.
Collapse
Affiliation(s)
- Kristin H. Loomis
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Susan K. Wu
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Amanda Ernlund
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Kristina Zudock
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Allison Reno
- Department of Bioengineering, Clemson University, Clemson, SC USA
| | - Kianna Blount
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - David K. Karig
- Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
- Department of Bioengineering, Clemson University, Clemson, SC USA
| |
Collapse
|
28
|
Corzo-León DE, MacCallum DM, Munro CA. Host Responses in an Ex Vivo Human Skin Model Challenged With Malassezia sympodialis. Front Cell Infect Microbiol 2021; 10:561382. [PMID: 33552997 PMCID: PMC7859105 DOI: 10.3389/fcimb.2020.561382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malassezia species are a major part of the normal mycobiota and colonize mainly sebum-rich skin regions of the body. This group of fungi cause a variety of infections such as pityriasis versicolor, folliculitis, and fungaemia. In particular, Malassezia sympodialis and its allergens have been associated with non-infective inflammatory diseases such as seborrheic dermatitis and atopic eczema. The aim of this study was to investigate the host response to M. sympodialis on oily skin (supplemented with oleic acid) and non-oily skin using an ex vivo human skin model. Host-pathogen interactions were analyzed by SEM, histology, gene expression, immunoassays and dual species proteomics. The skin response to M. sympodialis was characterized by increased expression of the genes encoding β-defensin 3 and RNase7, and by high levels of S100 proteins in tissue. Supplementation of oleic acid onto skin was associated with direct contact of yeasts with keratinocytes and epidermal damage. In oily conditions, there was increased expression of IL18 but no expression of antimicrobial peptide genes in the skin’s response to M. sympodialis. In supernatants from inoculated skin plus oleic acid, TNFα, IL-6, and IL1-β levels were decreased and IL-18 levels were significantly increased.
Collapse
Affiliation(s)
- Dora E Corzo-León
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Donna M MacCallum
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Carol A Munro
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
29
|
Active neutrophil responses counteract Candida albicans burn wound infection of ex vivo human skin explants. Sci Rep 2020; 10:21818. [PMID: 33311597 PMCID: PMC7732850 DOI: 10.1038/s41598-020-78387-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Burn wounds are highly susceptible sites for colonization and infection by bacteria and fungi. Large wound surface, impaired local immunity, and broad-spectrum antibiotic therapy support growth of opportunistic fungi such as Candida albicans, which may lead to invasive candidiasis. Currently, it remains unknown whether depressed host defenses or fungal virulence drive the progression of burn wound candidiasis. Here we established an ex vivo burn wound model, where wounds were inflicted by applying preheated soldering iron to human skin explants, resulting in highly reproducible deep second-degree burn wounds. Eschar removal by debridement allowed for deeper C. albicans penetration into the burned tissue associated with prominent filamentation. Active migration of resident tissue neutrophils towards the damaged tissue and release of pro-inflammatory cytokine IL-1β accompanied the burn. The neutrophil recruitment was further increased upon supplementation of the model with fresh immune cells. Wound area and depth decreased over time, indicating healing of the damaged tissue. Importantly, prominent neutrophil presence at the infected site correlated to the limited penetration of C. albicans into the burned tissue. Altogether, we established a reproducible burn wound model of candidiasis using ex vivo human skin explants, where immune responses actively control the progression of infection and promote tissue healing.
Collapse
|
30
|
Rosselle L, Cantelmo AR, Barras A, Skandrani N, Pastore M, Aydin D, Chambre L, Sanyal R, Sanyal A, Boukherroub R, Szunerits S. An 'on-demand' photothermal antibiotic release cryogel patch: evaluation of efficacy on an ex vivo model for skin wound infection. Biomater Sci 2020; 8:5911-5919. [PMID: 32996926 DOI: 10.1039/d0bm01535k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A myriad of topical therapies and dressings are available to the clinicians for wound healing skin, but only a very few have shown their effectiveness in promoting wound repair due to challenges in controlling drug release. To address this issue, in this work, a near infrared (NIR)-light activable cryogel based on butyl methacrylate (BuMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) incorporated with reduced graphene oxide (rGO) was fabricated. The obtained cryogel provides the required hydrophilicity beneficial for wound treatment. The excellent photo-thermal properties of rGO allow for heating the cryogel, which results in subsequent swelling of the cryogel (CG) followed by release of the encapsulated drug load, cefepime in our case. Without photothermal activation, no release of payload was observed. The potential of this bandage for wound healing was examined using an ex vivo human skin model infected with Staphylococcus aureus (S. aureus). Apart from the efficacy of the cryogel based wound healing system, our results also suggest that the ex vivo wound model evaluated here provides a rapid and valuable tool to study superficial skin infections in humans and test the efficacy of antimicrobial agents.
Collapse
Affiliation(s)
- Léa Rosselle
- Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Torres JP, Senejani AG, Gaur G, Oldakowski M, Murali K, Sapi E. Ex Vivo Murine Skin Model for B. burgdorferi Biofilm. Antibiotics (Basel) 2020; 9:E528. [PMID: 32824942 PMCID: PMC7558507 DOI: 10.3390/antibiotics9090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has been recently shown to form biofilm structures in vitro and in vivo. Biofilms are tightly clustered microbes characterized as resistant aggregations that allow bacteria to withstand harsh environmental conditions, including the administration of antibiotics. Novel antibiotic combinations have recently been identified for B. burgdorferi in vitro, however, due to prohibiting costs, those agents have not been tested in an environment that can mimic the host tissue. Therefore, researchers cannot evaluate their true effectiveness against B. burgdorferi, especially its biofilm form. A skin ex vivo model system could be ideal for these types of experiments due to its cost effectiveness, reproducibility, and ability to investigate host-microbial interactions. Therefore, the main goal of this study was the establishment of a novel ex vivo murine skin biopsy model for B. burgdorferi biofilm research. Murine skin biopsies were inoculated with B. burgdorferi at various concentrations and cultured in different culture media. Two weeks post-infection, murine skin biopsies were analyzed utilizing immunohistochemical (IHC), reverse transcription PCR (RT-PCR), and various microscopy methods to determine B. burgdorferi presence and forms adopted as well as whether it remained live in the skin tissue explants. Our results showed that murine skin biopsies inoculated with 1 × 107 cells of B. burgdorferi and cultured in BSK-H + 6% rabbit serum media for two weeks yielded not just significant amounts of live B. burgdorferi spirochetes but biofilm forms as well. IHC combined with confocal and atomic force microscopy techniques identified specific biofilm markers and spatial distribution of B. burgdorferi aggregates in the infected skin tissues, confirming that they are indeed biofilms. In the future, this ex vivo skin model can be used to study development and antibiotic susceptibility of B. burgdorferi biofilms in efforts to treat Lyme disease effectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Road, West Haven, CT 06516, USA; (J.P.T.); (A.G.S.); (G.G.); (M.O.); (K.M.)
| |
Collapse
|
32
|
Sparber F, Ruchti F, LeibundGut-Landmann S. Host Immunity to Malassezia in Health and Disease. Front Cell Infect Microbiol 2020; 10:198. [PMID: 32477963 PMCID: PMC7232612 DOI: 10.3389/fcimb.2020.00198] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
The microbiota plays an integral role in shaping physical and functional aspects of the skin. While a healthy microbiota contributes to the maintenance of immune homeostasis, dysbiosis can result in the development of diverse skin pathologies. This dichotomous feature of the skin microbiota holds true not only for bacteria, but also for fungi that colonize the skin. As such, the yeast Malassezia, which is by far the most abundant component of the skin mycobiota, is associated with a variety of skin disorders, of which some can be chronic and severe and have a significant impact on the quality of life of those affected. Understanding the causative relationship between Malassezia and the development of such skin disorders requires in-depth knowledge of the mechanism by which the immune system interacts with and responds to the fungus. In this review, we will discuss recent advances in our understanding of the immune response to Malassezia and how the implicated cells and cytokine pathways prevent uncontrolled fungal growth to maintain commensalism in the mammalian skin. We also review how the antifungal response is currently thought to affect the development and severity of inflammatory disorders of the skin and at distant sites.
Collapse
Affiliation(s)
- Florian Sparber
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Kinetic Cytokine Secretion Profile of LPS-Induced Inflammation in the Human Skin Organ Culture. Pharmaceutics 2020; 12:pharmaceutics12040299. [PMID: 32218380 PMCID: PMC7238050 DOI: 10.3390/pharmaceutics12040299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 01/13/2023] Open
Abstract
Several in vitro models that mimic different aspects of local skin inflammation exist. The use of ex vivo human skin organ culture (HSOC) has been reported previously. However, comprehensive evaluation of the cytokine secretory capacity of the system and its kinetics has not been performed. Objective: the aim of the current study was to investigate the levels and secretion pattern of key cytokine from human skin tissue upon lipopolysaccharide (LPS) stimulation. HSOC maintained in an air–liquid interface was used. Epidermal and tissue viability was monitored by MTT and Lactate Dehydrogenase (LDH) activity assay, respectively. Cytokine levels were examined by ELISA and multiplex array. HSOCs were treated without or with three different LPS subtypes and the impact on IL-6 and IL-8 secretion was evaluated. The compounds enhanced the secreted levels of both cytokines. However, differences were observed in their efficacy and potency. Next, a kinetic multiplex analysis was performed on LPS-stimulated explants taken from three different donors to evaluate the cytokine secretion pattern during 0–72 h post-induction. The results revealed that the pro-inflammatory cytokines IL-6, IL-8, TNFα and IL-1β were up-regulated by LPS stimuli. IL-10, an anti-inflammatory cytokine, was also induced by LPS, but exhibited a different secretion pattern, peak time and maximal stimulation values. IL-1α and IL-15 showed donor-specific changes. Lastly, dexamethasone attenuated cytokine secretion in five independent repetitions, supporting the ability of the system to be used for drug screening. The collective results demonstrate that several cytokines can be used as valid inflammatory markers, regardless of changes in the secretion levels due to donor’s specific alterations.
Collapse
|
34
|
Evaluation of an Explanted Porcine Skin Model to Investigate Infection with the Dermatophyte Trichophyton rubrum. Mycopathologia 2020; 185:233-243. [PMID: 32108288 DOI: 10.1007/s11046-020-00438-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023]
Abstract
Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections.
Collapse
|
35
|
Jahanshahi M, Hamdi D, Godau B, Samiei E, Sanchez-Lafuente CL, Neale KJ, Hadisi Z, Dabiri SMH, Pagan E, Christie BR, Akbari M. An Engineered Infected Epidermis Model for In Vitro Study of the Skin's Pro-Inflammatory Response. MICROMACHINES 2020; 11:mi11020227. [PMID: 32102205 PMCID: PMC7074829 DOI: 10.3390/mi11020227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022]
Abstract
Wound infection is a major clinical challenge that can significantly delay the healing process, can create pain, and requires prolonged hospital stays. Pre-clinical research to evaluate new drugs normally involves animals. However, ethical concerns, cost, and the challenges associated with interspecies variation remain major obstacles. Tissue engineering enables the development of in vitro human skin models for drug testing. However, existing engineered skin models are representative of healthy human skin and its normal functions. This paper presents a functional infected epidermis model that consists of a multilayer epidermis structure formed at an air-liquid interface on a hydrogel matrix and a three-dimensionally (3D) printed vascular-like network. The function of the engineered epidermis is evaluated by the expression of the terminal differentiation marker, filaggrin, and the barrier function of the epidermis model using the electrical resistance and permeability across the epidermal layer. The results showed that the multilayer structure enhances the electrical resistance by 40% and decreased the drug permeation by 16.9% in the epidermis model compared to the monolayer cell culture on gelatin. We infect the model with Escherichia coli to study the inflammatory response of keratinocytes by measuring the expression level of pro-inflammatory cytokines (interleukin 1 beta and tumor necrosis factor alpha). After 24 h of exposure to Escherichia coli, the level of IL-1β and TNF-α in control samples were 125 ± 78 and 920 ± 187 pg/mL respectively, while in infected samples, they were 1429 ± 101 and 2155.5 ± 279 pg/mL respectively. However, in ciprofloxacin-treated samples the levels of IL-1β and TNF-α without significant difference with respect to the control reached to 246 ± 87 and 1141.5 ± 97 pg/mL respectively. The robust fabrication procedure and functionality of this model suggest that the model has great potential for modeling wound infections and drug testing.
Collapse
Affiliation(s)
- Maryam Jahanshahi
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
| | - David Hamdi
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
| | - Brent Godau
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
| | - Ehsan Samiei
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
| | - Carla Liria Sanchez-Lafuente
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada; (C.L.S.-L.); (K.J.N.); (B.R.C.)
| | - Katie J. Neale
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada; (C.L.S.-L.); (K.J.N.); (B.R.C.)
| | - Zhina Hadisi
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
| | - Erik Pagan
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada; (C.L.S.-L.); (K.J.N.); (B.R.C.)
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.J.); (D.H.); (B.G.); (E.S.); (Z.H.); (S.M.H.D.); (E.P.)
- Correspondence:
| |
Collapse
|
36
|
Vallhov H, Johansson C, Veerman RE, Scheynius A. Extracellular Vesicles Released From the Skin Commensal Yeast Malassezia sympodialis Activate Human Primary Keratinocytes. Front Cell Infect Microbiol 2020; 10:6. [PMID: 32039038 PMCID: PMC6993562 DOI: 10.3389/fcimb.2020.00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) released from fungi have been shown to participate in inter-organismal communication and in cross-kingdom modulation of host defense. Malassezia species are the dominant commensal fungal members of the human skin microbiota. We have previously found that Malassezia sympodialis releases EVs. These EVs, designated MalaEx, carry M. sympodialis allergens and induce a different inflammatory cytokine response in peripheral blood mononuclear cells (PBMC) from patients with atopic dermatitis compared to healthy controls. In this study, we explored the host-microbe interaction between MalaEx and human keratinocytes with the hypothesis that MalaEx might be able to activate human keratinocytes to express the intercellular adhesion molecule-1 (ICAM-1, CD54). MalaEx were prepared from M. sympodialis (ATCC 42132) culture supernatants by a combination of centrifugation, filtration and serial ultracentrifugation. The MalaEx showed a size range of 70–580 nm with a mean of 154 nm using nanoparticle tracking analysis. MalaEx were found to induce a significant up-regulation of ICAM-1 expression on primary human keratinocytes isolated from human ex vivo skin (p = 0.026, n = 3), compared to the unstimulated keratinocytes. ICAM-1 is a counter ligand for the leukocyte integrins lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1), of which induced expression on epithelial cells leads to the attraction of immune competent cells. Thus, the capacity of MalaEx to activate keratinocytes with an enhanced ICAM-1 expression indicates an important step in the cutaneous defense against M. sympodialis. How this modulation of host cells by a fungus is balanced between the commensal, pathogenic, or beneficial states on the skin in the interplay with the host needs to be further elucidated.
Collapse
Affiliation(s)
- Helen Vallhov
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Catharina Johansson
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Rosanne E Veerman
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Castellanos A, Hernandez MG, Tomic-Canic M, Jozic I, Fernandez-Lima F. Multimodal, in Situ Imaging of Ex Vivo Human Skin Reveals Decrease of Cholesterol Sulfate in the Neoepithelium during Acute Wound Healing. Anal Chem 2019; 92:1386-1394. [PMID: 31789498 DOI: 10.1021/acs.analchem.9b04542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skin repair is a significant aspect of human health. While the makeup of healthy stratum corneum and epidermis is generally understood, the mobilization of molecular components during skin repair remains largely unknown. In the present work, we utilize multimodal, in situ, mass spectrometry, and immunofluorescence imaging for the characterization of newly formed epidermis, following an initial acute wound for the first 96 h of epithelization. In particular, TOF-SIMS and confirmatory MALDI FT-ICR MS (/MS) analysis permitted the mapping of several lipid classes, including phospholipids, neutral lipids, cholesterol, ceramides, and free fatty acids. Endogenous lipid species were localized in discrete epidermal skin layers, including the stratum corneum (SC), stratum granulosum (SG), stratum basale (SB), and dermis. Experiments revealed that healthy re-epithelializing skin is characterized by diminished cholesterol sulfate signal along the stratum corneum toward the migrating epithelial tongue. The spatial distribution and relative abundances of cholesterol sulfate are reported and correlated with the healing time. The multimodal imaging approach enabled in situ high-confidence chemical mapping based on accurate mass and fragmentation pattern of molecular components. The use of postanalysis immunofluorescence imaging from the same tissue confirmed the localization of endogenous lipid species and Filaggrin and Cav-1 proteins at high spatial resolution (approximately a few microns).
Collapse
Affiliation(s)
- Anthony Castellanos
- Department of Chemistry and Biochemistry , Florida International University , 11200 SW Eighth Street, AHC4-233 , Miami , Florida 33199 , United States
| | - Mario Gomez Hernandez
- Department of Chemistry and Biochemistry , Florida International University , 11200 SW Eighth Street, AHC4-233 , Miami , Florida 33199 , United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery , University of Miami Miller School of Medicine , 1600 NW 10th Avenue, RMSB 6056 , Miami , Florida 33136 , United States
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery , University of Miami Miller School of Medicine , 1600 NW 10th Avenue, RMSB 6056 , Miami , Florida 33136 , United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry , Florida International University , 11200 SW Eighth Street, AHC4-233 , Miami , Florida 33199 , United States.,Biomolecular Sciences Institute , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|