1
|
Devi CJ, Saikia K, Mazumdar R, Das R, Bharadwaj P, Thakur D. Identification, Biocontrol and Plant Growth Promotion Potential of Endophytic Streptomyces sp. a13. Curr Microbiol 2025; 82:64. [PMID: 39751911 DOI: 10.1007/s00284-024-04009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp. A13 through whole genome sequencing (WGS) and 16S rRNA sequencing, showing 88% (ANI; Average Nucleotide Identity) and 99.78% sequence similarity with Streptomyces olivaceus. The strain A13 exhibited a prominent broad-spectrum antifungal activity against nine phytopathogens. It was observed that the ethyl acetate (EtAc) extract of A13 inhibits the spore germination rate of phytopathogen Nigrospora sphaerica (NSP) and also damages the fungal cell wall and cell structure. Additionally, the A13 strain exhibits several plant growth-promoting (PGP) traits, such as nitrogen fixation, ammonia production (4.7 µmol/ml), indole-acetic acid (IAA) production (8.91 µg/ml), siderophore production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity Gas chromatography mass spectrometry (GC-MS) analysis revealed that Phenol, 3,5-bis(1,1-dimethylethyl) was found to be the major chemical constituent in the EtAc extract of the A13 strain, accounting for 50.15% of the area percentage. Whole genome sequencing and subsequent genome analysis utilizing bioinformatics techniques such as Antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) and Rapid Annotation using Subsystem Technology (RAST) revealed a wide array of biologically active secondary metabolite biosynthesis gene clusters (smBGCs) with different physiologically significant roles. These findings emphasize the potential of the A13 strain as a biocontrol agent with the capability to enhance plant growth and prevent diseases.
Collapse
Affiliation(s)
- Chingakham Juliya Devi
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Kangkon Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Rajkumari Mazumdar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhu C, Li X, Gao Y, Yang X, Gao Y, Li K. Potential of Streptomyces rochei G-6 for Biocontrol of Cucumber Wilt Disease and Growth Enhancement. J Fungi (Basel) 2024; 10:885. [PMID: 39728381 DOI: 10.3390/jof10120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Cucumber wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), is a major threat to cucumber production, especially in greenhouses. This study used a fermentation product derived from a new strain of Streptomyces rochei (G-6) to investigate the potential for biocontrol of cucumber wilt disease and the effect on promoting cucumber growth. In the first experiment, the inhibitory effect of S. rochei G-6 fermentation product (SGFP) on FOC growth was evaluated, then the effect of SGFP on wilt incidence and severity, as well as cucumber growth, antioxidant system, and soil nutrient conversion capacity were investigated. The results showed that SGFP inhibited FOC growth by 85.3% in the antimicrobial experiment. In the potting experiment, the incidence rate in the FOC group reached 88.7%, but it was only 56.0% in the SGFP1 group and 64.7% in the SGFP2 group, indicating the efficient inhibitory effect of SGFP on cucumber wilt, with the biocontrol effect of SGFP1 being higher than that of SGFP2. In addition, the disease index decreased significantly (p < 0.05) in both SGFP treatments, which was significantly (p < 0.05) lower in the SGFP1 group than in the SGFP2 group, indicating that pre-treatment was better than post-treatment in reducing the disease severity. In addition, SGFP promoted the growth of cucumber seedlings, as indicated by indicators related to the growth of aboveground and underground parts. Furthermore, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in the cucumber seedlings increased after SGFP treatment and the malondialdehyde level was decreased, indicating a reduction in oxidative stress. SGFP also improved the soil nutrient conversion capacity by increasing the activities of urease, phosphatase, and sucrase, which may enhance nutrient uptake by cucumber seedling. The findings of this study suggest that SGFP is an effective biocontrol agent against cucumber wilt and also promotes cucumber growth by regulating the antioxidant system and soil environment, and its application is a promising solution to reduce wilt incidence in cucumber production.
Collapse
Affiliation(s)
- Chengyu Zhu
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xin Li
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yan Gao
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xueying Yang
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuliang Gao
- Vegetable Research Institute of Yanbian Agricultural Sciences Academy, Longjing 133400, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji 133002, China
| |
Collapse
|
3
|
Zhang Y, Cao X, Liu Q, Chen Y, Wang Y, Cong H, Li C, Li Y, Wang Y, Jiang J, Li L. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol 2024; 122:104557. [PMID: 38839221 DOI: 10.1016/j.fm.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.
Collapse
Affiliation(s)
- Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qiao Liu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yujie Chen
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yanting Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yixuan Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
4
|
Guo H, Liu Y, Wu X, Cai M, Jiang M, Hu H. Study on the inhibitory effect of fermentation extract of Microporus vernicipes on Candida albicans. Int Microbiol 2024; 27:1181-1193. [PMID: 38147155 DOI: 10.1007/s10123-023-00467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Candida albicans is one of the most common species of Candida, which cause various mucosal and systemic infectious diseases. However, the resistance rate to existing clinical antifungal drugs gradually increases in C. albicans. Therefore, new antifungal drugs must be developed to solve the current problem. This study discovered that the solid fermented ethyl acetate crude extract of Microporus vernicipes had inhibitory activity on C. albicans. This study determined that the Mv5 components had significantly inhibited the activity of C. albicans using column chromatography separation component screening. The components included 23 compounds of fatty acids and their derivatives, alkaloids, phenols, and other classes using ultra-high performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HR-MS) analysis, with fatty acids constituting the primary components. The mechanism of action showed that the minimum inhibitory concentration (MIC) of Mv5 components against C. albicans was 15.63 μg/mL, while minimum fungicidal concentration (MFC) was 31.25 μg/mL. Mv5 components can inhibit the early biofilm formation and destroy the mature biofilm structure. It can inhibit the germ tube growth of C. albicans, thereby inhibiting the transformation of yeast morphology to hyphae. We detected 193 differentially expressed genes, including 156 upregulated and 37 downregulated genes in the Mv5 components of the MIC concentration group. We detected 391 differentially expressed genes, including 334 upregulated and 57 downregulated expression genes in the MFC concentration group. Among these differentially expressed genes, the genes related to mycelium and biofilm formation were significantly downregulated. GO enrichment analysis presented that single-organism process metabolic process, and cellular processes were the biological processes with the most gene enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG)of Mv5 components were mainly enriched in metabolic pathways, such as meiosis yeast and amino acid metabolism. Therefore, it is believed that the fermentation extract of M. vernicipes inhibits C. albicans, which can provide clues for developing effective antifungal drugs.
Collapse
Affiliation(s)
- Huiyang Guo
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, Heilongjiang, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yuanchao Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaoxian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Manjun Cai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, Heilongjiang, China.
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
5
|
Kumar P, Parveen, Khatoon S, Kumar M, Raj N, Harsha, Solanki R, Manzoor N, Kapur MK. In vitro antifungal activity analysis of Streptomyces sp. strain 196 against Candida albicans and Aspergillus flavus. Int Microbiol 2024:10.1007/s10123-024-00562-2. [PMID: 39068607 DOI: 10.1007/s10123-024-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Numerous bioactive compounds have been reported to be produced by the members of the genus Streptomyces. During our previous studies, Streptomyces sp. strain 196 was tested for its antimicrobial activity, and bioactive compounds produced by this strain were characterized LC-MS and 1H NMR. To examine the antifungal potential of strain 196 is the goal of the current investigation. Present investigation is focused on exploring antifungal activity of extract of strain 196 (196EA) on membrane disruption potential against two fungi Candida albicans ATCC 90028 and Aspergillus flavus ITCC 5599. Results revealed that the MIC value is higher for A. flavus than for C. albicans which is 450 µg/mL and 250 µg/mL, respectively. Disc diffusion and spot assay also correspond to the values of the MIC for their respective pathogen. In growth curve analysis, lag and log phase are significantly affected by the extract of strain 196. The effects of extract from strain 196 on plasma membrane disruption of Candida albicans and Aspergillus flavus were analyzed in terms of ergosterol quantification assay, cellular leakage, proton efflux measurement (PM-ATPase), plasma membrane integrity assay (PI), and DNA damage assay (DAPI). Results shown that the extract of strain 196 has the potential to inhibit the cell membrane of the both pathogenic fungi which was further confirmed with the help of scanning electron microscopic (SEM) studies.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Zoology, University of Allahabad, Uttar Pradesh, Prayagraj, 211 002, India
| | - Parveen
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shabana Khatoon
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Munendra Kumar
- Department of Zoology, Rajiv Gandhi University, Doimukh, 791112, Arunachal Pradesh, India
| | - Nafis Raj
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Harsha
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, New Delhi, 110 019, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110 078, India
| | - Nikhat Manzoor
- Medical Mycology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Monisha Khanna Kapur
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, New Delhi, 110 019, India.
| |
Collapse
|
6
|
Buenrostro-Muñoz J, Jarmusch SA, Souza V, Martínez-Cárdenas A, Fajardo-Hernández CA, Yeverino IR, Eguiarte LE, Figueroa M. Metabolomic Diversity in Microbial Mats Under Different Environmental Conditions: A Tool to Test Microbial Ecosystem Chemical Change. Chem Biodivers 2024; 21:e202300829. [PMID: 37721179 DOI: 10.1002/cbdv.202300829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Microbial mats are microbial communities capable of recycling the essential elements of life and considered to be the oldest evidence of microbial communities on Earth. Due to their uniqueness and limited sampling material, analyzing their metabolomic profile in different seasons or conditions is challenging. In this study, microbial mats from a small pond in the Cuatro Cienegas Basin in Coahuila, Mexico, were collected in wet and dry seasons. In addition to these samples, mesocosm experiments from the wet samples were set. These mats are elastic and rise after heavy rainfall by forming gas domes structures known as "Archean domes", by the outgassing of methanogenic bacteria, archaea, and sulfur bacteria. Extracts from all mats and mesocosms were subjected to untargeted mass spectrometry-based metabolomics and molecular networking analysis. Interestingly, each mat showed high chemical diversity that may be explained by the temporal dynamic processes in which they were sampled.
Collapse
Affiliation(s)
- Jhoselinne Buenrostro-Muñoz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
- Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800, Kongens Lyngby, Denmark
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Anahí Martínez-Cárdenas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | | | - Itzel R Yeverino
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| |
Collapse
|
7
|
Du Y, Wang T, Lv C, Yan B, Wan X, Wang S, Kang C, Guo L, Huang L. Whole Genome Sequencing Reveals Novel Insights about the Biocontrol Potential of Burkholderia ambifaria CF3 on Atractylodes lancea. Microorganisms 2024; 12:1043. [PMID: 38930425 PMCID: PMC11205678 DOI: 10.3390/microorganisms12061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Root rot caused by Fusarium spp. is the most destructive disease on Atractylodes lancea, one of the large bulks and most common traditional herbal plants in China. In this study, we isolated a bacterial strain, CF3, from the rhizosphere soil of A. lancea and determined its inhibitory effects on F. oxysporum in both in vitro and in vivo conditions. To deeply explore the biocontrol potential of CF3, we sequenced the whole genome and investigated the key pathways for the biosynthesis of many antibiotic compounds. The results revealed that CF3 is a member of Burkholderia ambifaria, harboring two chromosomes and one plasmid as other strains in this species. Five antibiotic compounds were found that could be synthesized due to the existence of the bio-synthesis pathways in the genome. Furthermore, the synthesis of antibiotic compounds should be confirmed by in vitro experiments and novel compounds should be purified and characterized in further studies.
Collapse
Affiliation(s)
- Yongxi Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chaogeng Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Luqi Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (T.W.); (C.L.); (B.Y.); (X.W.); (S.W.); (C.K.)
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| |
Collapse
|
8
|
Giacomelli Ribeiro H, Teresinha Van Der Sand S. Exploring the Trends in Actinobacteria as Biological Control Agents of Phytopathogenic Fungi: A (Mini)-Review. Indian J Microbiol 2024; 64:70-81. [PMID: 38468744 PMCID: PMC10924869 DOI: 10.1007/s12088-023-01166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024] Open
Abstract
Biological control has been considered a sustainable alternative to combat phytopathogens. The increase of studies in the past few years involving Actinobacteria as biological control agents of phytopathogenic fungi has motivated us to search for which Actinobacteria genus that have been studied in the last five years and explore their mechanisms of antifungal activity. The accesses were carried out on three multidisciplinary digital platforms: PubMED/MedLine, Web of Science and Scopus. Actinobacteria from genus Amycolatopsis, Curtobacterium, Kocuria, Nocardioides, Nocardiopsis, Saccharopolyspora, Streptoverticillium and especially Streptomyces showed a broad antifungal spectrum through several antibiosis mechanisms such as the production of natural antifungal compounds, siderophores, extracellular hydrolytic enzymes and activation of plant defense system. We observed the formation of a methodology based on antagonistic compounds bioactivity to select efficient Actinobacteria to be used as biological control agents against phytopathogenic fungi. The use of multifunctional Actinobacteria has been proven to be efficient, not only by its natural protective activity against phytopathogenic fungi but also because of their ability to act as plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Heloísa Giacomelli Ribeiro
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2600, Porto Alegre, RS 90035-003 Brazil
| | - Sueli Teresinha Van Der Sand
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2600, Porto Alegre, RS 90035-003 Brazil
| |
Collapse
|
9
|
Abdelghany WR, Yassin AS, Abu-Ellail FFB, Al-Khalaf AA, Omara RI, Hozzein WN. Combatting Sugar Beet Root Rot: Streptomyces Strains' Efficacy against Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2024; 13:311. [PMID: 38276766 PMCID: PMC10820957 DOI: 10.3390/plants13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23's intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies.
Collapse
Affiliation(s)
- Walaa R. Abdelghany
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abeer S. Yassin
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | | | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reda I. Omara
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
10
|
Song L, Wang F, Liu C, Guan Z, Wang M, Zhong R, Xi H, Zhao Y, Wen C. Isolation and Evaluation of Streptomyces melanogenes YBS22 with Potential Application for Biocontrol of Rice Blast Disease. Microorganisms 2023; 11:2988. [PMID: 38138134 PMCID: PMC10745888 DOI: 10.3390/microorganisms11122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Chuang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Zhengzhe Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Rongrong Zhong
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Huijun Xi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| |
Collapse
|
11
|
Zhang L, Hu Y, Chen Y, Qi D, Cai B, Zhao Y, Li Z, Wang Y, Nie Z, Xie J, Wang W. Cadmium-tolerant Bacillus cereus 2-7 alleviates the phytotoxicity of cadmium exposure in banana plantlets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166645. [PMID: 37657542 DOI: 10.1016/j.scitotenv.2023.166645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/05/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Bananas are the world's important fruit and staple crop in the developing countries. Cadmium (Cd) contamination in soils results in the decrease of crop yield and food safety. Bioremediation is an environmental-friendly and effective measure using Cd-tolerant plant growth promoting rhizobacteria (PGPR). In our study, a Cd-resistant PGPR Bacillus cereus 2-7 was isolated and identified from a discarded gold mine. It could produce multiple plant growth promoting biomolecules such as siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and phosphatase. The extracellular accumulation was a main manner of Cd removal. Surplus Cd induced the expression of Cd resistance/transport genes of B. cereus 2-7 to maintain the intracellular Cd homeostasis. The pot experiment showed that Cd contents decreased by 50.31 % in soil, 45.43 % in roots, 56.42 % in stems and 79.69 % in leaves after the strain 2-7 inoculation for 40 d. Bacterial inoculation alleviated the Cd-induced oxidative stress to banana plantlets, supporting by the increase of chlorophyll contents, plant height and total protein contents. The Cd remediation mechanism revealed that B. cereus 2-7 could remodel the rhizosphere bacterial community structure and improve soil enzyme activities to enhance the immobilization of Cd. Our study provides a Cd-bioremediation strategy using Cd-resistant PGPR in tropical and subtropical area.
Collapse
Affiliation(s)
- Lu Zhang
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yulin Hu
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangzhou 524091, China
| | - Yufeng Chen
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dengfeng Qi
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Bingyu Cai
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yankun Zhao
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zhuoyang Li
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Zongyu Nie
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Jianghui Xie
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Wei Wang
- National Key Laboratory of Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
12
|
Quach NT, Vu THN, Nguyen TTA, Le PC, Do HG, Nguyen TD, Thao PTH, Nguyen TTL, Chu HH, Phi QT. Metabolic and genomic analysis deciphering biocontrol potential of endophytic Streptomyces albus RC2 against crop pathogenic fungi. Braz J Microbiol 2023; 54:2617-2626. [PMID: 37792269 PMCID: PMC10689689 DOI: 10.1007/s42770-023-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Plant diseases caused by phytopathogenic fungi are one of the leading factors affecting crop loss. In the present study, sixty-one Streptomyces strains were screened for their antifungal activity against relevant wide range fungal pathogens prominent in Vietnam, namely Lasiodiplodia theobromae, Fusarium fujikuroi, and Scopulariopsis gossypii. Endophytic strain RC2 was the most effective strain in the mycelial inhibition of the tested fungi. Based on phenotypic characteristics, 16S rDNA gene analysis, and genomic analysis, strain RC2 belonged to Streptomyces albus. An ethyl acetate extract of S. albus RC2 led to the strong growth inhibition of S. gossypii Co1 and F. fujikuroi L3, but not L. theobromae N13. The crude extract also suppressed the spore germination of S. gossypii Co1 and F. fujikuroi L3 to 92.4 ± 3.2% and 87.4% ± 1.9%, respectively. In addition, the RC2 extract displayed potent and broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and the phytopathogenic bacteria Ralstonia solanacearum and Xanthomonas oryzae. The genome of strain RC2 was sequenced and revealed the presence of 15 biosynthetic gene clusters (BGCs) with similarities ≥ 45% to reference BGCs available in the antiSMASH database. The UPLC-HRMS analysis led to the identification of 8 other secondary metabolites, which have not been reported in S. albus. The present study indicated that RC2 could be a potent biocontrol agent against phytopathogenic fungi. Further attention should be paid to antifungal metabolites without functional annotation, development of product prototypes, and greenhouse experiments to demonstrate effective control of the plant diseases.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phuong Chi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phan Thi Hong Thao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thanh Loi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
| |
Collapse
|
13
|
Klaysubun C, Butdee W, Suriyachadkun C, Igarashi Y, Duangmal K. Streptomyces silvisoli sp. nov., a polyene producer, and Streptomyces tropicalis sp. nov., two novel actinobacterial species from peat swamp forests in Thailand. Int J Syst Evol Microbiol 2023; 73. [PMID: 37768174 DOI: 10.1099/ijsem.0.006063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Two novel actinobacterial strains, designated RB6PN23T and K1PA1T, were isolated from peat swamp soil samples in Thailand and characterized using a polyphasic taxonomic approach. The strains were filamentous Gram-stain-positive bacteria containing ll-diaminopimelic acid in their whole-cell hydrolysates. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strain RB6PN23T was most closely related to Streptomyces rubrisoli (99.1 % sequence similarity) and Streptomyces ferralitis (98.5%), while strain K1PA1T showed 98.8 and 98.7% sequence similarities to Streptomyces coacervatus and Streptomyces griseoruber, respectively. However, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96 % ANI and 70 % dDDH). The genomes of strains RB6PN23T and K1PA1T were estimated to be 7.88 Mbp and 7.39 Mbp in size, respectively, with DNA G+C contents of 70.2 and 73.2 mol%. Moreover, strains RB6PN23T and K1PA1T encode 37 and 24 putative biosynthetic gene clusters, respectively, and in silico analysis revealed that these new species have a high potential to produce unique natural products. Genotypic and phenotypic characteristics confirmed that strains RB6PN23T and K1PA1T represented two novel species in the genus Streptomyces. The names proposed for these strains are Streptomyces silvisoli sp. nov. (type strain RB6PN23T=TBRC 17040T=NBRC 116113T) and Streptomyces tropicalis sp. nov. (type strain K1PA1T=TBRC 17041T=NBRC 116114T). Additionally, a giant linear polyene compound, neotetrafibricin A, exhibiting antifungal activity in strain RB6PN23T, was identified through HPLC and quadrupole time-of-flight MS analysis. The crude extract from the culture broth of strain RB6PN23T exhibited strong antifungal activity against Fusarium verticillioides, Fusarium fujikuroi and Bipolaris zeicola. This finding suggests that strain RB6PN23T could be a promising candidate for biological control of fungal diseases.
Collapse
Affiliation(s)
- Chollachai Klaysubun
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Waranya Butdee
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
14
|
Basavarajappa DS, Kumar RS, Nagaraja SK, Perumal K, Nayaka S. Exogenous application of antagonistic Streptomyces sp. SND-2 triggers defense response in Vigna radiata (L.) R. Wilczek (mung bean) against anthracnose infection. ENVIRONMENTAL RESEARCH 2023; 231:116212. [PMID: 37244496 DOI: 10.1016/j.envres.2023.116212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Anthracnose is a devastating disease caused by the fungus Colletotrichum lindemuthianum (CL) in Vigna radiata (L.) R. Wilczek (mung bean). In the present study, an eco-friendly approach to control anthracnose infection, growth promotion and enhancement of defense response in mung bean plants using endophytic actinomycetes was performed. Among the 24 actinomycetes isolates from the Cleome rutidosperma plant, the isolate SND-2 exhibited a broad spectrum of antagonistic activity with 63.27% of inhibition against CL in the dual culture method. Further, the isolate SND-2 was identified as Streptomyces sp. strain SND-2 (SND-2) through the 16S rRNA gene sequence. In-vitro screening of plant growth trials confirmed that SND-2 has the potential to produce indole acetic acid, hydrogen cyanide, ammonia, phosphate solubilization, and siderophore. The in-vivo biocontrol study was performed with exogenous application of wettable talcum-based formulation of SND-2 strain to mitigate CL infection in mung bean seedlings. The results displayed maximum seed germination, vigor index, increased growth parameters, and lowest disease severity (43.63 ± 0.73) in formulation treated and pathogen challenged mung bean plants. Further, the application of SND-2 formulation with pathogen witnessed increased cellular defense through the maximum accumulation of lignin, hydrogen peroxide and phenol deposition in mung bean leaves compared with control treatments. Biochemical defense response exhibited upregulation of antioxidant enzymes such as phenylalanine ammonia-lyase, β-1,-3-Glucanase, and peroxidase enzymes activities with increased phenolic (3.64 ± 0.11 mg/g fresh weight) and flavonoid (1.14 ± 0.05 mg/g fresh weight) contents in comparison with other treatments at 0, 4, 12, 24, 36, and 72 h post pathogen inoculation. This study demonstrated that formulation of Streptomyces sp. strain SND-2 is a potential source as a suppressive agent and plant growth promoter in mung bean plants upon C. lindemuthianum infestation and witnesses the elevation in cellular and biochemical defense against anthracnose disease.
Collapse
Affiliation(s)
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA.
| | - Sreenivasa Nayaka
- PG Department of Studies in Botany, Karnatak University, Dharwad, 580003, Karnataka, India.
| |
Collapse
|
15
|
Nuanjohn T, Suphrom N, Nakaew N, Pathom-Aree W, Pensupa N, Siangsuepchart A, Dell B, Jumpathong J. Actinomycins from Soil-Inhabiting Streptomyces as Sources of Antibacterial Pigments for Silk Dyeing. Molecules 2023; 28:5949. [PMID: 37630201 PMCID: PMC10459128 DOI: 10.3390/molecules28165949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Actinobacteria produce a broad spectrum of bioactive substances that are used in the pharmaceutical, agricultural, and biotechnology industries. This study investigates the production of bioactive substances in Streptomyces, isolated from soil under five tropical plants, focusing on their potential as natural antibacterial dyes for silk fabrics. Out of 194 isolates, 44 produced pigments on broken rice as a solid substrate culture. Eight antibacterial pigmented isolates from under Magnolia baillonii (TBRC 15924, TBRC 15927, TBRC 15931), Magnolia rajaniana (TBRC 15925, TBRC 15926, TBRC 15928, TBRC 15930), and Cinnamomum parthenoxylon (TBRC 15929) were studied in more detail. TBRC 15927 was the only isolate where all the crude extracts inhibited the growth of the test organisms, Staphylococcus epidermidis TISTR 518 and S. aureus DMST 4745. The bioactive compounds present in TBRC 15927 were identified through LC-MS/MS analysis as belonging to the actinomycin group, actinomycin D (or X1), X2, and X0β. Also, the ethyl acetate crude extract exhibited non-toxicity at an IC50 value of 0.029 ± 0.008 µg/mL on the mouse fibroblast L-929 assay. From the 16S rRNA gene sequence analysis, TBRC 15927 had 100% identity with Streptomyces gramineus JR-43T. Raw silk dyed with the positive antimicrobial TBRC 15927 extract (8.35 mg/mL) had significant (>99.99%) antibacterial properties. Streptomyces gramineus TBRC 15927 is the first actinomycin-producing strain reported to grow on broken rice and shows promise for antibacterial silk dyeing.
Collapse
Affiliation(s)
- Tananya Nuanjohn
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Nareeluk Nakaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wasu Pathom-Aree
- Research Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattha Pensupa
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Apiradee Siangsuepchart
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Phrae 54140, Thailand
| | - Bernard Dell
- School of Agricultural Sciences, Murdoch University, Perth 6150, Australia
| | - Juangjun Jumpathong
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
16
|
El-Sayed MH, Alshammari FA, Sharaf MH. Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens. J Microbiol Biotechnol 2023; 33:61-74. [PMID: 36597590 PMCID: PMC9896001 DOI: 10.4014/jmb.2211.11026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 μg/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis( 3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 μg/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt,Corresponding author Phone: +20 111 91 070 44 E-mail:
| | - Fahdah A. Alshammari
- Department of Biology, College of Science and Arts, Northern Border University, Saudi Arabia
| | - Mohammed H. Sharaf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
17
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Ribeiro I, Antunes JT, Alexandrino DAM, Tomasino MP, Almeida E, Hilário A, Urbatzka R, Leão PN, Mucha AP, Carvalho MF. Actinobacteria from Arctic and Atlantic deep-sea sediments-Biodiversity and bioactive potential. Front Microbiol 2023; 14:1158441. [PMID: 37065153 PMCID: PMC10100589 DOI: 10.3389/fmicb.2023.1158441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
The deep-sea covers over 70% of the Earth's surface and harbors predominantly uncharacterized bacterial communities. Actinobacteria are the major prokaryotic source of bioactive natural products that find their way into drug discovery programs, and the deep-sea is a promising source of biotechnologically relevant actinobacteria. Previous studies on actinobacteria in deep-sea sediments were either regionally restricted or did not combine a community characterization with the analysis of their bioactive potential. Here we characterized the actinobacterial communities of upper layers of deep-sea sediments from the Arctic and the Atlantic (Azores and Madeira) ocean basins, employing 16S rRNA metabarcoding, and studied the biosynthetic potential of cultivable actinobacteria retrieved from those samples. Metabarcoding analysis showed that the actinobacterial composition varied between the sampled regions, with higher abundance in the Arctic samples but higher diversity in the Atlantic ones. Twenty actinobacterial genera were detected using metabarcoding, as a culture-independent method, while culture-dependent methods only allowed the identification of nine genera. Isolation of actinobacteria resulted on the retrieval of 44 isolates, mainly associated with Brachybacterium, Microbacterium, and Brevibacterium genera. Some of these isolates were only identified on a specific sampled region. Chemical extracts of the actinobacterial isolates were subsequently screened for their antimicrobial, anticancer and anti-inflammatory activities. Extracts from two Streptomyces strains demonstrated activity against Candida albicans. Additionally, eight extracts (obtained from Brachybacterium, Brevibacterium, Microbacterium, Rhodococcus, and Streptomyces isolates) showed significant activity against at least one of the tested cancer cell lines (HepG2 and T-47D). Furthermore, 15 actinobacterial extracts showed anti-inflammatory potential in the RAW 264.4 cell model assay, with no concomitant cytotoxic response. Dereplication and molecular networking analysis of the bioactive actinobacterial extracts showed the presence of some metabolites associated with known natural products, but one of the analyzed clusters did not show any match with the natural products described as responsible for these bioactivities. Overall, we were able to recover taxonomically diverse actinobacteria with different bioactivities from the studied deep-sea samples. The conjugation of culture-dependent and -independent methods allows a better understanding of the actinobacterial diversity of deep-sea environments, which is important for the optimization of approaches to obtain novel chemically-rich isolates.
Collapse
Affiliation(s)
- Inês Ribeiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Inês Ribeiro,
| | - Jorge T. Antunes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Diogo A. M. Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Environmental Health, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Paola Tomasino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Eduarda Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ralph Urbatzka
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro N. Leão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Ana P. Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Maria F. Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Cao M, Cheng Q, Cai B, Chen Y, Wei Y, Qi D, Li Y, Yan L, Li X, Long W, Liu Q, Xie J, Wang W. Antifungal Mechanism of Metabolites from Newly Isolated Streptomyces sp. Y1-14 against Banana Fusarium Wilt Disease Using Metabolomics. J Fungi (Basel) 2022; 8:jof8121291. [PMID: 36547623 PMCID: PMC9784640 DOI: 10.3390/jof8121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most destructive banana diseases in the world, which limits the development of the banana industry. Compared with traditional physical and chemical practices, biological control becomes a promising safe and efficient strategy. In this study, strain Y1-14 with strong antagonistic activity against Foc TR4 was isolated from the rhizosphere soil of a banana plantation, where no disease symptom was detected for more than ten years. The strain was identified as Streptomyces according to the morphological, physiological, and biochemical characteristics and the phylogenetic tree of 16S rRNA. Streptomyces sp. Y1-14 also showed a broad-spectrum antifungal activity against the selected 12 plant pathogenic fungi. Its extracts inhibited the growth and spore germination of Foc TR4 by destroying the integrity of the cell membrane and the ultrastructure of mycelia. Twenty-three compounds were identified by gas chromatography-mass spectrometry (GC-MS). The antifungal mechanism was investigated further by metabolomic analysis. Strain Y1-14 extracts significantly affect the carbohydrate metabolism pathway of Foc TR4 by disrupting energy metabolism.
Collapse
Affiliation(s)
- Miaomiao Cao
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qifeng Cheng
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuqi Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Liu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Xiaojuan Li
- College of Horticulture/College of Tropical Crops, Hainan University, Haikou 570228, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weiqiang Long
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture and Forestry Sciences/Faculty of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiao Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Horticulture and Forestry Sciences/Faculty of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (J.X.); (W.W.)
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (J.X.); (W.W.)
| |
Collapse
|
20
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
21
|
Zeyad MT, Tiwari P, Ansari WA, Kumar SC, Kumar M, Chakdar H, Srivastava AK, Singh UB, Saxena AK. Bio-priming with a consortium of Streptomyces araujoniae strains modulates defense response in chickpea against Fusarium wilt. Front Microbiol 2022; 13:998546. [PMID: 36160196 PMCID: PMC9493686 DOI: 10.3389/fmicb.2022.998546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is one of the major diseases of chickpea affecting the potential yield significantly. Productivity and biotic stress resilience are both improved by the association and interaction of Streptomyces spp. with crop plants. In the present study, we evaluated two Streptomyces araujoniae strains (TN11 and TN19) for controlling the wilt of chickpea individually and as a consortium. The response of Foc challenged chickpea to inoculation with S. araujoniae TN11 and TN19 individually and as a consortium was recorded in terms of changes in physio-biochemical and expression of genes coding superoxide dismutase (SOD), peroxidase, and catalase. Priming with a consortium of TN11 and TN19 reduced the disease severity by 50–58% when challenged with Foc. Consortium primed-challenged plants recorded lower shoot dry weight to fresh weight ratio and root dry weight to fresh weight ratio as compared to challenged non-primed plants. The pathogen-challenged consortium primed plants recorded the highest accumulation of proline and electrolyte leakage. Similarly, total chlorophyll and carotenoids were recorded highest in the consortium treatment. Expression of genes coding SOD, peroxidase, and catalase was up-regulated which corroborated with higher activities of SOD, peroxidase, and catalase in consortium primed-challenged plants as compared to the challenged non-primed plants. Ethyl acetate extracts of TN11 and TN19 inhibited the growth of fungal pathogens viz., Fusarium oxysporum f. sp. ciceris. Macrophomina phaseolina, F. udum, and Sclerotinia sclerotiarum by 54–73%. LC–MS analyses of the extracts showed the presence of a variety of antifungal compounds like erucamide and valinomycin in TN11 and valinomycin and dinactin in TN19. These findings suggest that the consortium of two strains of S. araujoniae (TN11 and TN19) can modulate defense response in chickpea against wilt and can be explored as a biocontrol strategy.
Collapse
|
22
|
Du Y, Wang T, Jiang J, Wang Y, Lv C, Sun K, Sun J, Yan B, Kang C, Guo L, Huang L. Biological control and plant growth promotion properties of Streptomyces albidoflavus St-220 isolated from Salvia miltiorrhiza rhizosphere. FRONTIERS IN PLANT SCIENCE 2022; 13:976813. [PMID: 36110364 PMCID: PMC9468599 DOI: 10.3389/fpls.2022.976813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 05/02/2023]
Abstract
Root rot disease caused by Fusarium oxysporum is a devastating disease of Salvia miltiorrhiza and dramatically affected the production and quality of Sa. miltiorrhiza. Besides the agricultural and chemical control, biocontrol agents can be utilized as an additional solution. In the present study, an actinomycete that highly inhibited F. oxysporum was isolated from rhizosphere soil and identified as based on morphological and molecular characteristics. Greenhouse assay proved that the strain had significant biological control effect against Sa. miltiorrhiza root rot disease and growth-promoting properties on Sa. miltiorrhiza seedlings. To elucidate the biocontrol and plant growth-promoting properties of St-220, we employed an analysis combining genome mining and metabolites detection. Our analyses based on genome sequence and bioassays revealed that the inhibitory activity of St-220 against F. oxysporum was associated with the production of enzymes targeting fungal cell wall and metabolites with antifungal activities. Strain St-220 possesses phosphate solubilization activity, nitrogen fixation activity, siderophore and indole-3-acetic acid production activity in vitro, which may promote the growth of Sa. miltiorrhiza seedlings. These results suggest that St. albidoflavus St-220 is a promising biocontrol agent and also a biofertilizer that could be used in the production of Sa. miltiorrhiza.
Collapse
Affiliation(s)
- Yongxi Du
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tielin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Jingyi Jiang
- National Agricultural Technology Extension and Service Center, Beijing, China
| | - Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chaogeng Lv
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kai Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Binbin Yan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chuanzhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
23
|
Behera HT, Mojumdar A, Behera SS, Das S, Ray L. Biocontrol of Wilt disease of rice seedlings incited by Fusarium oxysporum through soil application of Streptomyces chilikensis RC1830. Lett Appl Microbiol 2022; 75:1366-1382. [PMID: 35972435 DOI: 10.1111/lam.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
The genus Streptomyces includes many antifungal metabolite producing novel strains. Fusarium oxysporum a soil-inhabiting pathogenic fungi, that affects rice to cause wilt disease. This work demonstrates the efficacy of novel Streptomyces chilikensis strain RC1830, previously isolated from estuarine habitat Chilika Lake in preventing the F. oxysporum wilting/root rot disease and promoting the growth of rice (Var. Swarna) seedlings. A total of 25 different compounds were identified from crude extracts of S. chilikensis RC1830 by GC-MS. In pot trial experiments, Streptomyces treated rice seedlings showed significantly reduced Disease severity index (DSI) by 80.51%. The seedlings growth parameters (root length, root fresh weight and root dry weight )were also increased by 53.91%, 62.5%, 73.46% respectively in Streptomyces treated groups of seedlings compared to Fusarium infected seedlings. Similarly, the shoot length, shoot dry weight and shoot fresh weight were also increased by 26%, 58% and 34.4% respectively in Streptomyces treated groups of seedlings compared to Fusarium infected seedlings. Formulations of the strain were prepared using seven organic & inorganic wastes as the carrier material and the shelf lives of the propagules were also monitored. Vermiculite and activated charcoal formulations stored at 4°C exhibited a higher viable cell count after 3 months of storage.
Collapse
Affiliation(s)
- Himadri Tanaya Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Abhik Mojumdar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Subhransu Shekhar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Smrutiranjan Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Lopamudra Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India.,School of Law, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| |
Collapse
|
24
|
El-Sharkawy HHA, Rashad YM, Elazab NT. Synergism between Streptomyces viridosporus HH1 and Rhizophagus irregularis Effectively Induces Defense Responses to Fusarium Wilt of Pea and Improves Plant Growth and Yield. J Fungi (Basel) 2022; 8:683. [PMID: 35887440 PMCID: PMC9318455 DOI: 10.3390/jof8070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium wilt is a detrimental disease of pea crop, resulting in severe damage and a reduction in its yield. Developing synergistically enhanced bioagents for disease management and growth promotion is pivotal for food safety, security, and sustainability. In this study, biocontrol potential of treating pea plants with Streptomycesviridosporus HH1 and/or their colonization with Rhizophagusirregularis against infection with Fusarium wilt was investigated. Impacts on the expression profiles of defense-related genes, biochemical, and ultrastructural levels, as well as the growth and yield of pea plants in response to these treatments, were also investigated. Data obtained indicated the antifungal activity of S. viridosporus HH1 against F. oxysporum f.sp. pisi in vitro. Furthermore, the GC-MS analysis revealed production of different bioactive compounds by S. viridosporus HH1, including 2,3-butanediol, thioglycolic acid, and phthalic acid. The results from the greenhouse experiment exhibited a synergistic biocontrol activity, resulting in a 77% reduction in disease severity in pea plants treated with S. viridosporus HH1 and colonized with R. irregularis. In this regard, this dual treatment overexpressed the responsive factor JERF3 (5.6-fold) and the defense-related genes β-1,3-glucanase (8.2-fold) and the pathogenesis-related protein 1 (14.5-fold), enhanced the total phenolic content (99.5%), induced the antioxidant activity of peroxidase (64.3%) and polyphenol oxidase (31.6%) enzymes in pea plants, reduced the antioxidant stress, and improved their hypersensitivity at the ultrastructural level in response to the Fusarium wilt pathogen. Moreover, a synergistic growth-promoting effect was also recorded in pea plants in response to this dual treatment. In this regard, due to this dual treatment, elevated levels of photosynthetic pigments and improved growth parameters were observed in pea leaves, leading to an increment in the yield (113%). In addition, application of S. viridosporus enhanced the colonization levels with R. irregularis in pea roots. Based on the obtained data, we can conclude that treating pea plants with S. viridosporus HH1 and colonization with R. irregularis have synergistic biocontrol activity and growth-promoting effects on pea plants against Fusarium wilt. Despite its eco-safety and effectiveness, a field evaluation of this treatment before a use recommendation is quite necessary.
Collapse
Affiliation(s)
- Hany H. A. El-Sharkawy
- Mycology Research and Plant Disease Survey Department, Agricultural Research Center, Plant Pathology Research Institute, Giza 12211, Egypt;
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Nahla T. Elazab
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
25
|
Liu W, Wang J, Li S, Zhang H, Meng L, Liu L, Ping W, Du C. Genomic and Biocontrol Potential of the Crude Lipopeptide by Streptomyces bikiniensis HD-087 Against Magnaporthe oryzae. Front Microbiol 2022; 13:888645. [PMID: 35756060 PMCID: PMC9218715 DOI: 10.3389/fmicb.2022.888645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive plant diseases. The secondary metabolites of Streptomyces have potential as biological control agents against M. oryzae. However, no commercial secondary antimicrobial products of Streptomyces have been found by gene prediction, and, particularly relevant for this study, a biocontrol agent obtained from Streptomyces bikiniensis has yet to be found. In this research, genomic analysis was used to predict the secondary metabolites of Streptomyces, and the ability to develop biocontrol pharmaceuticals rapidly was demonstrated. The complete genome of the S. bikiniensis HD-087 strain was sequenced and revealed a number of key functional gene clusters that contribute to the biosynthesis of active secondary metabolites. The crude extract of lipopeptides (CEL) predicted by NRPS gene clusters was extracted from the fermentation liquid of S. bikiniensis HD-087 by acid precipitation followed by methanol extraction, and surfactins, iturins, and fengycins were identified by liquid chromatography-mass spectrometry (LC–MS). In vitro, the CEL of this strain inhibited spore germination and appressorial formation of M. oryzae by destroying membrane integrity and through the leakage of cellular components. In vivo, this CEL reduced the disease index of rice blast by approximately 76.9% on detached leaves, whereas its control effect on leaf blast during pot experiments was approximately 60%. Thus, the S. bikiniensis CEL appears to be a highly suitable alternative to synthetic chemical fungicides for controlling M. oryzae.
Collapse
Affiliation(s)
- Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jiawen Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Shan Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Huaqian Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Liping Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
26
|
Boubekri K, Soumare A, Mardad I, Lyamlouli K, Ouhdouch Y, Hafidi M, Kouisni L. Multifunctional role of Actinobacteria in agricultural production sustainability: a review. Microbiol Res 2022; 261:127059. [DOI: 10.1016/j.micres.2022.127059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 05/01/2022] [Indexed: 12/13/2022]
|
27
|
Świecimska M, Golińska P, Goodfellow M. Genome-based classification of Streptomyces pinistramenti sp. nov., a novel actinomycete isolated from a pine forest soil in Poland with a focus on its biotechnological and ecological properties. Antonie van Leeuwenhoek 2022; 115:783-800. [DOI: 10.1007/s10482-022-01734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
28
|
Bano N, Siddiqui S, Amir M, Zia Q, Banawas S, Iqbal D, Roohi. Bioprospecting of the novel isolate Microbacterium proteolyticum LA2(R) from the rhizosphere of Rauwolfia serpentina. Saudi J Biol Sci 2022; 29:1858-1868. [PMID: 35280579 PMCID: PMC8913384 DOI: 10.1016/j.sjbs.2021.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/02/2022] Open
Abstract
The study aimed to assess the proficiency of secondary metabolites (SMs) synthesized by actinobacteria isolated from the rhizospheric soil of Rauwolfia serpentina for its antimicrobial and anti-biofilm activity. After morphological and biochemical identification of actinobacteria, primary and secondary screening was done for specific metabolite production. The secondary metabolites were then tested for their antioxidant, antibacterial, and antibiofilm potential. Out of 29 bacterial colonies isolated, only one emerged as a novel isolate, Microbacterium LA2(R). Partial 16S rRNA gene sequence of the isolate LA2(R) was deposited in NCBI GenBank with accession number MN560041. The highest antioxidant capacity of the methanolic extract the novel isolate was found to be 474.183 µL AAE/mL and 319.037 µL AAE/mL by DPPH assay and ABTS assay respectively; three folds higher than the control. These results were further supported by the high total phenolic (194.95 gallic acid equivalents/mL) and flavonoid contents (332.79 µL quercetin equivalents/mL) of the methanolic extract. GC–MS analysis revealed the abundance of antibacterial compounds; where, n-Hexadecanoic acid was found to be the major compound present with a peak of 14 min retention time (RT) and 95% similarity index. MIC value of the metabolite was noted to be around 132.28 ± 84.48 μg/mL. The IC50 value was found to be 74.37, 71.33, 66.28 and 84.48 μg/mL against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Salmonella abony, respectively. Treatment with IC50 of the extract decreased the biofilm formation up to 70%–80% against pathogenic strains viz. Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Salmonella abony. These significant activities of Microbacterium sp. LA2(R) suggests that it could be utilized for antibiotic production for human welfare and in various important industrial applications.
Collapse
|
29
|
Biocontrol potential and antifungal mechanism of a novel Streptomyces sichuanensis against Fusarium oxysporum f. sp. cubense tropical race 4 in vitro and in vivo. Appl Microbiol Biotechnol 2022; 106:1633-1649. [PMID: 35141868 DOI: 10.1007/s00253-022-11788-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/01/2023]
Abstract
Most commercial banana cultivars are highly susceptible to Fusarium wilt caused by soilborne fungus Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4). Biological control using antagonistic microorganism has been considered as an alternative method to fungicide. Our previous study showed that Streptomyces sp. SCA3-4 T had a broad-spectrum antifungal activity from the rhizosphere soil of Opuntia stricta in a dry hot valley. Here, the sequenced genome of strain SCA3-4 T contained 6614 predicted genes with 72.38% of G + C content. A polymorphic tree was constructed using the multilocus sequence analysis (MLSA) of five house-keeping gene alleles (atpD, gyrB, recA, rpoB, and trpB). Strain SCA3-4 T formed a distinct clade with Streptomyces mobaraensis NBRC 13819 T with 71% of bootstrap. Average nucleotide identity (ANI) values between genomes of strain SCA3-4 T and S. mobaraensis NBRC 13819 T was 85.83% below 95-96% of the novel species threshold, and named after Streptomyces sichuanensis sp. nov. The type strain is SCA3-4 T (= GDMCC 4.214 T = JCM 34964 T). Genomic analysis revealed that strain SCA3-4 T contained 36 known biosynthetic gene clusters of secondary metabolites. Antifungal activity of strain SCA3-4 T was closely associated with the production of siderophore and its extracts induced the apoptosis of Foc TR4 cells. A total of 12 potential antifungal metabolites including terpenoids, esters, acid, macrolides etc. were obtained by the gas chromatography-mass spectrometry (GC-MS). Greenhouse experiment indicated that strain SCA3-4 T could significantly inhibit infection of Foc TR4 in the roots and corms of banana seedlings and reduce disease index. Therefore, strain SCA3-4 T is an important microbial resource for exploring novel natural compounds and developing biopesticides to manage Foc TR4. KEY POINTS: • Strain SCA3-4 T was identified as a novel species of Streptomyces. • Siderophore participates in the antifungal regulation. • Secondary metabolites of strain SCA3-4 T improves the plant resistance to Foc TR4.
Collapse
|
30
|
Zhang L, Liu Z, Wang Y, Zhang J, Wan S, Huang Y, Yun T, Xie J, Wang W. Biocontrol Potential of Endophytic Streptomyces malaysiensis 8ZJF-21 From Medicinal Plant Against Banana Fusarium Wilt Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. FRONTIERS IN PLANT SCIENCE 2022; 13:874819. [PMID: 35646017 PMCID: PMC9131080 DOI: 10.3389/fpls.2022.874819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/11/2022] [Indexed: 05/15/2023]
Abstract
Banana (Musa spp.) is an important fruit crop cultivated in most tropical countries. Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the most destructive fungal disease. Biocontrol using endophytic microorganisms is considered as a safety and sustainable strategy. Actinomycetes have a potential for the production of diverse metabolites. Isolation of endophytic actinomycetes with high efficiency and broad-spectrum antagonism is key for exploring biocontrol agents. Our previous study showed that a total of 144 endophytic actinomycetes were isolated from different tissues of medicinal plants in Hainan, China. Especially, strain 8ZJF-21 exhibited a broad-spectrum antifungal activity. Its morphological, physiological, and biochemical characteristics were consistent with the genus Streptomyces. The phylogenetic tree demonstrated that strain 8ZJF-21 formed a distinct clade with Streptomyces malaysiensis. Average nucleotide identity (ANI) was 98.49% above the threshold of novel species. The pot experiment revealed that endophytic Streptomyces malaysiensis 8ZJF-21 could improve the plant resistance to Foc TR4 by enhancing the expression levels of defense-related and antioxidant enzyme genes. It also promoted the plant growth by producing several extracellular enzymes and metabolites. Antifungal mechanism assays showed that S. malaysiensis 8ZJF-21 extract inhibited mycelial growth and spore germination of Foc TR4 in vitro. Pathogenic cells occurred cytoplasmic heterogeneity, disappeared organelles, and ruptured ultrastructure. Sequencing and annotation of genome suggested that S. malaysiensis 8ZJF-21 had a potential of producing novel metabolites. Nineteen volatile organic compounds were obtained from the extract by Gas Chromatography-Mass Spectrometry (GC-MS). Hence, endophytic Streptomyces strains will become essential biocontrol agents of modern agricultural practice.
Collapse
Affiliation(s)
- Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ziyu Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jiaqi Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Shujie Wan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yating Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Tianyan Yun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, China
- *Correspondence: Wei Wang,
| |
Collapse
|
31
|
Gubišová M, Hudcovicová M, Matušinský P, Ondreičková K, Klčová L, Gubiš J. Superabsorbent Polymer Seed Coating Reduces Leaching of Fungicide but Does Not Alter Their Effectiveness in Suppressing Pathogen Infestation. Polymers (Basel) 2021; 14:76. [PMID: 35012099 PMCID: PMC8747295 DOI: 10.3390/polym14010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Superabsorbent polymers (SAPs) applied to soil have been recognized as water reservoirs that allow plants to cope with periods of drought. Their application as a seed coat makes water available directly to the seeds during their germination and early growth phase, but on the other hand, it can affect the efficiency of plant protection substances used in seed dressing. In our experiments, we evaluated the effect of seed coating with SAP on fungicide leaching and changes in their effectiveness in suppressing Fusarium culmorum infestation. Leaching of fungicide from wheat seeds coated with SAP after fungicide dressing, as measured by the inhibition test of mycelium growth under in vitro conditions, was reduced by 14.2-15.8% compared to seeds without SAP coating. Germination of maize seeds and growth of juvenile plants in artificially infected soil did not differ significantly between seeds dressed with fungicide alone and seeds treated with SAP and fungicide. In addition, plants from the seeds coated with SAP alone grew significantly better compared to untreated seeds. Real-time PCR also confirmed this trend by measuring the amount of pathogen DNA in plant tissue. Winter wheat was less tolerant to F. culmorum infection and without fungicide dressing, the seeds were unable to germinate under strong pathogen attack. In the case of milder infection, similar results were observed as in the case of maize seeds.
Collapse
Affiliation(s)
- Marcela Gubišová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Pavel Matušinský
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; or
- Department of Plant Pathology, Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kromeriz, Czech Republic
| | - Katarína Ondreičková
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Lenka Klčová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Jozef Gubiš
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| |
Collapse
|
32
|
Shahid M, Singh BN, Verma S, Choudhary P, Das S, Chakdar H, Murugan K, Goswami SK, Saxena AK. Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Braz J Microbiol 2021; 52:1687-1699. [PMID: 34591293 PMCID: PMC8578481 DOI: 10.1007/s42770-021-00625-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
Actinomycetes due to their unique repertoire of antimicrobial secondary metabolites can be an eco-friendly and sustainable alternative to agrochemicals to control plant pathogens. In the present study, antifungal activity of twenty different actinomycetes was evaluated via dual culture plate assay against six different phytopathogens, viz., Alternaria alternata, Aspergillus flavus, Fusarium oxysporum f. sp. lycopersici, Sarocladium oryzae, Sclerotinia sclerotiorum, and Rhizoctonia solani. Two potential isolates, Streptomyces amritsarensis V31 and Kribella karoonensis MSCA185 showing high antifungal activity against all six fungal pathogens, were further evaluated after extraction of bioactive metabolites in different solvents. Metabolite extracted from S. amritsarensis V31 in different solvents inhibited Rhizoctonia solani (7.5-65%), Alternaria alternata (5.5-52.7%), Aspergillus flavus (8-30.7%), Fusarium oxysporum f. sp. lycopersici (25-44%), Sarocladium oryzae (11-55.5%), and Sclerotinia sclerotiorum (29.7-40.5%); 1000 D diluted methanolic extract of S. amritsarensis V31 showed growth inhibition against R. solani (23.3%), A. flavus (7.7%), F. oxysporum (22.2%), S. oryzae (16.7%), and S. sclerotiorum (19.0%). Metabolite extracts of S. amritsarensis V31 significantly reduced the incidence of rice sheath blight both as preventive and curative sprays. Chemical profiling of the metabolites in DMSO extract of S. amritsarensis V31 revealed 6-amino-5-nitrosopyrimidine-2,4-diol as the predominant compound present. It was evident from the LC-MS analyses that S. amritsarensis V31 produced a mixture of potential antifungal compounds which inhibited the growth of different phytopathogenic fungi. The results of this study indicated that metabolite extracts of S. amritsarensis V31 can be exploited as a bio-fungicide to control phytopathogenic fungi.
Collapse
Affiliation(s)
- Mohammad Shahid
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Bansh Narayan Singh
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Shaloo Verma
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Sudipta Das
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India.
| | - Kumar Murugan
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Sanjay Kumar Goswami
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
- ICAR-Indian Institute of Sugarcane Research (IISR), Uttar Pradesh, Lucknow, 226002, India
| | - Anil Kumar Saxena
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| |
Collapse
|
33
|
Qi D, Zou L, Zhou D, Zhang M, Wei Y, Zhang L, Xie J, Wang W. Identification and Antifungal Mechanism of a Novel Actinobacterium Streptomyces huiliensis sp. nov. Against Fusarium oxysporum f. sp. cubense Tropical Race 4 of Banana. Front Microbiol 2021; 12:722661. [PMID: 34803941 PMCID: PMC8600237 DOI: 10.3389/fmicb.2021.722661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
Banana is an important fruit crop. Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) seriously threatens the global banana industry. It is difficult to control the disease spread using chemical measures. In addition, commercial resistant cultivars are also lacking. Biological control is considered as a promising strategy using antagonistic microbes. Actinomycetes, especially Streptomyces, are potential sources of producing novel bioactive secondary metabolites. Here, strain SCA2-4 T with strong antifungal activity against Foc TR4 was isolated from the rhizospheric soil of Opuntia stricta in a dry hot valley. The morphological, physiological and chemotaxonomic characteristics of the strain were consistent with the genus Streptomyces. Based on the homology alignment and phylogenetic trees of 16S rRNA gene, the taxonomic status of strain SCA2-4 T exhibited a paradoxical result and low bootstrap value using different algorithms in the MEGA software. It prompted us to further discriminate this strain from the closely related species by the multilocus sequence analysis (MLSA) using five house-keeping gene alleles (atpD, gyrB, recA, rpoB, and trpB). The MLSA trees calculated by three algorithms demonstrated that strain SCA2-4 T formed a distinct clade with Streptomyces mobaraensis NBRC 13819 T . The MLSA distance was above 0.007 of the species cut-off. Average nucleotide identity (ANI) values between strain SCA2-4 T genome and two standard strain genomes were below 95-96% of the novel species threshold. Strain SCA2-4 T was assigned to a novel species of the genus Streptomyces and named as Streptomyces huiliensis sp. nov. The sequenced complete genome of SCA2-4 T encoded 51 putative biosynthetic gene clusters of secondary metabolites. Genome alignment revealed that ten gene clusters were involved in the biosynthesis of antimicrobial metabolites. It was supported that strain SCA2-4 T showed strong antifungal activities against the pathogens of banana fungal diseases. Extracts abstracted from the culture filtrate of strain SCA2-4 T seriously destroyed cell structure of Foc TR4 and inhibited mycelial growth and spore germination. These results implied that strain SCA2-4 T could be a promising candidate for biological control of banana Fusarium wilt.
Collapse
Affiliation(s)
- Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liangping Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lu Zhang
- College of Life Science, Hainan Normal University, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
34
|
Zhang L, Zhang H, Huang Y, Peng J, Xie J, Wang W. Isolation and Evaluation of Rhizosphere Actinomycetes With Potential Application for Biocontrolling Fusarium Wilt of Banana Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. Front Microbiol 2021; 12:763038. [PMID: 34759913 PMCID: PMC8573349 DOI: 10.3389/fmicb.2021.763038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) is globally one of the most destructive soil-borne fungal diseases. Biological control using environmental microorganisms is considered as an alternative and sustainable strategy. Actinomycetes have the potential to explore biocontrol agents due to their production of diverse metabolites. The isolation and identification of high-efficiency and broad-spectrum antagonistic actinomycetes are the key for the application of biocontrol agents. In the present study, 60 actinomycetes were obtained from the rhizosphere soil of Machilus pingii in the primitive ecological natural reserve of Hainan province, China. Seventeen isolates and their extracts exhibited significant antifungal activity against F. oxysporum TR4. Particularly, strain BITDG-11 with the strongest inhibition ability had a broad-spectrum antifungal activity. The assay of its physiological and biochemical profiles showed that strain BITDG-11 had the ability to produce IAA and siderophores and had a positive response to gelatin liquefaction and nitrate reduction. Enzyme activities of chitinase, β-1,3-glucanase, lipase, and urease were also detected. Average nucleotide identity calculated by comparison with the standard strain genome of Streptomyces albospinus JCM3399 was 86.55% below the novel species threshold, suggesting that the strain could be a novel species. In addition, Streptomyces BITDG-11 obviously reduced the disease index of banana plantlets and promoted plant growth at 45 days post inoculation. The higher and lasting expression levels of defense genes and activities of antioxidant enzymes were induced in the roots of banana. Genome sequencing revealed that the Streptomyces BITDG-11 chromosome contained large numbers of conserved biosynthesis gene clusters encoding terpenes, non-ribosomal peptides, polyketides, siderophores, and ectoines. Fifteen bioactive secondary metabolites were further identified from Streptomyces BITDG-11 extract by gas chromatography-mass spectrometry. Dibutyl phthalate demonstrating a strong antifungal activity was the major compound with the highest peak area. Hence, Streptomyces sp. BITDG-11 has a great potential to become an essential constituent of modern agricultural practice as biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Huixi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yating Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jun Peng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
35
|
Chen J, Hu L, Chen N, Jia R, Ma Q, Wang Y. The Biocontrol and Plant Growth-Promoting Properties of Streptomyces alfalfae XN-04 Revealed by Functional and Genomic Analysis. Front Microbiol 2021; 12:745766. [PMID: 34630371 PMCID: PMC8493286 DOI: 10.3389/fmicb.2021.745766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt of cotton, caused by the pathogenic fungal Fusarium oxysporum f. sp. vasinfectum (Fov), is a devastating disease of cotton, dramatically affecting cotton production and quality. With the increase of pathogen resistance, controlling Fusarium wilt disease has become a significant challenge. Biocontrol agents (BCAs) can be used as an additional solution to traditional crop breeding and chemical control. In this study, an actinomycete with high inhibitory activity against Fov was isolated from rhizosphere soil and identified as Streptomyces alfalfae based on phylogenetic analyses. Next, an integrative approach combining genome mining and metabolites detection was applied to decipher the significant biocontrol and plant growth-promoting properties of XN-04. Bioinformatic analysis and bioassays revealed that the antagonistic activity of XN-04 against Fov was associated with the production of various extracellular hydrolytic enzymes and diffusible antifungal metabolites. Genome analysis revealed that XN-04 harbors 34 secondary metabolite biosynthesis gene clusters. The ability of XN-04 to promote plant growth was correlated with an extensive set of genes involved in indoleacetic acid biosynthesis, 1-aminocyclopropane-1-carboxylic acid deaminase activity, phosphate solubilization, and iron metabolism. Colonization experiments indicated that EGFP-labeled XN-04 had accumulated on the maturation zones of cotton roots. These results suggest that S. alfalfae XN-04 could be a multifunctional BCA and biofertilizer used in agriculture.
Collapse
Affiliation(s)
- Jing Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Na Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
36
|
Li X, Zhang M, Qi D, Zhou D, Qi C, Li C, Liu S, Xiang D, Zhang L, Xie J, Wang W. Biocontrol Ability and Mechanism of a Broad-Spectrum Antifungal Strain Bacillus safensis sp. QN1NO-4 Against Strawberry Anthracnose Caused by Colletotrichum fragariae. Front Microbiol 2021; 12:735732. [PMID: 34603266 PMCID: PMC8486013 DOI: 10.3389/fmicb.2021.735732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Strawberry is a very popular fruit with a special taste, color, and nutritional value. Anthracnose caused by Colletotrichum fragariae severely limits fruit shelf life during post-harvest storage. Use of traditional chemical fungicides leads to serious environment pollution and threatens food safety. Biocontrol is considered as a promising strategy to manage the post-harvest fruit diseases. Here, strain QN1NO-4 isolated from noni (Morinda citrifolia L.) fruit exhibited a high antifungal activity against C. fragariae. Based on its physicochemical profiles and phylogenetic tree of the 16S rRNA sequence, strain QN1NO-4 belonged to the genus Bacillus. The average nucleotide identity (ANI) calculated by comparing two standard strain genomes was below 95-96%, suggesting that the strain might be a novel species of the genus Bacillus and named as Bacillus safensis sp. QN1NO-4. Its extract effectively reduced the incidence of strawberry anthracnose of harvested fruit. Fruit weight and TSS contents were also maintained significantly. The antifungal mechanism assays indicated that the extract of the test antagonist inhibited mycelial growth and spore germination of C. fragariae in vitro. Cells of strain QN1NO-4 demonstrated the cytoplasmic heterogeneity, disappeared organelles, and ruptured ultrastructure. Notably, the strain extract also had a broad-spectrum antifungal activity. Compared with the whole genome of strain QN1NO-4, several functional gene clusters involved in the biosynthesis of active secondary metabolites were observed. Fifteen compounds were identified by gas chromatography-mass spectrometry (GC-MS). Hence, the fruit endophyte B. safensis sp. QN1NO-4 is a potential bio-agent identified for the management of post-harvest disease of strawberry fruit.
Collapse
Affiliation(s)
- Xiaojuan Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China.,College of Ecology and Environment, Hainan University, Haikou, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunlin Qi
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dandan Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
37
|
Fan H, Li S, Zeng L, He P, Xu S, Bai T, Huang Y, Guo Z, Zheng SJ. Biological Control of Fusarium oxysporum f. sp. cubense Tropical Race 4 Using Natively Isolated Bacillus spp. YN0904 and YN1419. J Fungi (Basel) 2021; 7:jof7100795. [PMID: 34682217 PMCID: PMC8537417 DOI: 10.3390/jof7100795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Fusarium wilt of banana (FWB) is the main threatening factor for banana production worldwide. To explore bacterial biocontrol resources for FWB, the antagonistic effective strains were isolated from banana-producing areas in Yunnan Province, China. Two isolates (YN0904 and YN1419) displaying strong antagonism against Tropical Race 4 (TR4) were identified from a total of 813 strains of endophytic bacteria. TR4 inhibition rates of YN0904 and YN1419 were 79.6% and 81.3%, respectively. By looking at morphological, molecular, physiological and biochemical characteristics, YN0904 was identified as Bacillus amyloliquefaciens, while YN1419 was identified as B. subtillis. The control effects of YN0904 and YN1419 on TR4 in greenhouse experiments were 82.6% and 85.6%, respectively. Furthermore, YN0904 obviously promoted the growth of banana plantlets. In addition, biocontrol marker genes related to the biosynthesis of antibiotics synthesized and auxin key synthetase genes could be detected in YN0904. Surprisingly, the marker gene sboA could be exclusively detected in YN1419, while other marker genes were all absent. Molecular characterization results could provide a theoretical basis for expounding the biocontrol mechanisms of these two strains. We concluded that natively antagonistic strains derived from local banana plantations could provide new biological control resources for FWB.
Collapse
Affiliation(s)
- Huacai Fan
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Shu Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Li Zeng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
- Correspondence: (L.Z.); (S.-J.Z.)
| | - Ping He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Shengtao Xu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Yuling Huang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Zhixiang Guo
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China; (H.F.); (S.L.); (P.H.); (S.X.); (T.B.); (Y.H.); (Z.G.)
- Bioversity International, 2238 Beijing Road, Kunming 650205, China
- Correspondence: (L.Z.); (S.-J.Z.)
| |
Collapse
|
38
|
Zou N, Zhou D, Chen Y, Lin P, Chen Y, Wang W, Xie J, Wang M. A Novel Antifungal Actinomycete Streptomyces sp. Strain H3-2 Effectively Controls Banana Fusarium Wilt. Front Microbiol 2021; 12:706647. [PMID: 34497593 PMCID: PMC8419470 DOI: 10.3389/fmicb.2021.706647] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Banana Fusarium wilt disease caused by Fusarium oxyspoum f. sp. cubense (Foc) seriously threatens the banana industry. Foc tropical race 4 (Foc TR4) can infect almost all banana cultivars. Compared with traditional physical and chemical practices, biocontrol strategy using beneficial microbes is considered as an environmentally sound option to manage fungal disease. In this study, a strain, H3-2, isolated from a non-infected banana orchard, exhibited high antifungal activity against Foc TR4. According to its morphological, physiological, and biochemical characteristics, the strain H3-2 was identified as Streptomyces sp. and convinced by the polymorphic phylogenic analysis of 16S rRNA sequences. Extracts of the strain H3-2 suppressed the growth and spore germination of Foc TR4 in vitro by destroying cell membrane integrity and mycelial ultrastructure. Notably, the strain and its extracts showed broad-spectrum antifungal activity against the selected seven fungal phytopathogens. Fourteen chemical compounds in the extracts were identified by gas chromatography–mass spectrometer (GC-MS), primarily phenolic compounds. Additional pot inoculation experiment demonstrated that the fermentation broth of the strain H3-2 promoted the growth of banana seedlings by efficiently inhibiting the spread of banana Fusarium wilt disease. This study demonstrated the potential application of the novel Streptomyces sp. H3-2 for the management of banana Fusarium wilt.
Collapse
Affiliation(s)
- Niexia Zou
- Institute of Horticultural Science and Engineering, Huaqiao University, Xiamen, China.,Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Ping Lin
- Institute of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Mingyuan Wang
- Institute of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
39
|
Al-shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, Al-Mekhlafi NA, Zin NM. Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications. Molecules 2021; 26:molecules26154504. [PMID: 34361657 PMCID: PMC8347454 DOI: 10.3390/molecules26154504] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/08/2022] Open
Abstract
The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.
Collapse
Affiliation(s)
- Muhanna Mohammed Al-shaibani
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Radin Maya Saphira Radin Mohamed
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Nik Marzuki Sidik
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Hesham Ali El Enshasy
- Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia;
- City of Scientific Research and Technology Applications (SRTA), 21934 New Burg Al Arab, Alexandria, Egypt
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Efaq Noman
- Applied Microbiology Department, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen;
| | - Nabil Ali Al-Mekhlafi
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia;
- Biochemical Technology Program, Department of Chemistry Faculty of Applied Science, Thamar University, Thamar P.O. Box 87246, Yemen
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
40
|
Yang D, Wang L, Wang T, Zhang Y, Zhang S, Luo Y. Plant Growth-Promoting Rhizobacteria HN6 Induced the Change and Reorganization of Fusarium Microflora in the Rhizosphere of Banana Seedlings to Construct a Healthy Banana Microflora. Front Microbiol 2021; 12:685408. [PMID: 34354685 PMCID: PMC8329250 DOI: 10.3389/fmicb.2021.685408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Streptomyces aureoverticillatus HN6 was isolated in our previous study and effectively controlled banana Fusarium wilt. We explored the role of HN6 in constructing a healthy rhizosphere microflora of banana seedlings. The method of antibiotic resistance was used to determine the colonization ability of HN6. The effect of HN6 on the rhizosphere microbial communities was assessed using culture-dependent and high-throughput sequencing. The effect of HN6 on the infection process of the pathogen was evaluated using a pot experiment and confocal laser scanning microscopy. The results showed that HN6 could prevent pathogen infection; it increased the nutrient content and diversity of the bacterial community in the rhizosphere, promoted plant growth, and decreased the mycotoxin fusaric acid content and abundance of pathogens in the banana rhizosphere. Thus, HN6 decreased the relative abundance of Fusarium species, increased the diversity of fungi, and increased the relative abundance of bacteria in the rhizosphere. HN6 induced the change and reorganization of the microbial community dominated by Fusarium in the rhizosphere of banana seedlings, and it evolved into a community dominated that was not conducive to the occurrence of diseases, shaping the rhizosphere microflora and promoting the growth of banana.
Collapse
Affiliation(s)
- Deyou Yang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Lanying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Tianhao Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Yunfei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Shujing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| | - Yanping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
41
|
Siupka P, Hansen FT, Schier A, Rocco S, Sørensen T, Piotrowska-Seget Z. Antifungal Activity and Biosynthetic Potential of New Streptomyces sp. MW-W600-10 Strain Isolated from Coal Mine Water. Int J Mol Sci 2021; 22:ijms22147441. [PMID: 34299061 PMCID: PMC8303363 DOI: 10.3390/ijms22147441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Crop infections by fungi lead to severe losses in food production and pose risks for human health. The increasing resistance of pathogens to fungicides has led to the higher usage of these chemicals, which burdens the environment and highlights the need to find novel natural biocontrol agents. Members of the genus Streptomyces are known to produce a plethora of bioactive compounds. Recently, researchers have turned to extreme and previously unexplored niches in the search for new strains with antimicrobial activities. One such niche are underground coal mine environments. We isolated the new Streptomyces sp. MW-W600-10 strain from coal mine water samples collected at 665 m below ground level. We examined the antifungal activity of the strain against plant pathogens Fusarium culmorum DSM62188 and Nigrospora oryzae roseF7. Furthermore, we analyzed the strain’s biosynthetic potential with the antiSMASH tool. The strain showed inhibitory activity against both fungi strains. Genome mining revealed that it has 39 BGCs, among which 13 did not show similarity to those in databases. Additionally, we examined the activity of the Streptomyces sp. S-2 strain isolated from black soot against F. culmorum DSM62188. These results show that coal-related strains could be a source of novel bioactive compounds. Future studies will elucidate their full biotechnological potential.
Collapse
Affiliation(s)
- Piotr Siupka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
- Correspondence:
| | - Frederik Teilfeldt Hansen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Aleksandra Schier
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Simone Rocco
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Trine Sørensen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Zofia Piotrowska-Seget
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| |
Collapse
|
42
|
Diffusible Compounds Produced by Hanseniaspora osmophila and Gluconobacter cerinus Help to Control the Causal Agents of Gray Rot and Summer Bunch Rot of Table Grapes. Antibiotics (Basel) 2021; 10:antibiotics10060664. [PMID: 34199335 PMCID: PMC8230015 DOI: 10.3390/antibiotics10060664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gray and summer bunch rot are important diseases of table grapes due to the high economic and environmental cost of their control with synthetic fungicides. The ability to produce antifungal compounds against the causal agents Botrytis, Aspergillus, Penicillium, and Rhizopus of two microorganisms isolated from table grapes and identified as Hanseniaspora osmophila and Gluconobacter cerinus was evaluated. In dual cultures, both biocontrol agents (together and separately) inhibited in vitro mycelial growth of these pathogens. To identify the compounds responsible for the inhibitory effect, extractions were carried out with organic solvents from biocontrol agents separately. Through dual cultures with pathogens and pure extracts, only the hexane extract from H. osmophila showed an inhibitory effect against Botrytis cinerea. To further identify these compounds, the direct bioautography technique was used. This technique made it possible to determine the band displaying antifungal activity at Rf = 0.05–0.2. The compounds present in this band were identified by GC-MS and compared to the NIST library. The most abundant compounds, not previously reported, corresponded to alkanes, ketones, alcohols, and terpenoids. H. osmophila and G. cerinus have the potential to control the causal agents of gray and summer bunch rot of table grapes.
Collapse
|
43
|
Devi TS, Vijay K, Vidhyavathi RM, Kumar P, Govarthanan M, Kavitha T. Antifungal activity and molecular docking of phenol, 2,4-bis(1,1-dimethylethyl) produced by plant growth-promoting actinobacterium Kutzneria sp. strain TSII from mangrove sediments. Arch Microbiol 2021; 203:4051-4064. [PMID: 34046705 DOI: 10.1007/s00203-021-02397-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
The present study reveals the plant growth-promoting (PGP) potentials and characterizes the antifungal metabolites of Kutzneria sp. strain TSII isolated from mangrove sediment soil through in vitro and in silico studies. In this study, Kutzneria sp. strain TSII was screened for PGP activities and the antifungal activities against Pithomyces atro-olivaceous, a leaf spot-associated pathogen in groundnut plants. The ethyl acetate extract of Kutzneria sp. strain TSII was purified using column chromatography, and the presence of various antimicrobial compounds was studied by gas chromatography-mass spectrometry (GC-MS) analysis. In silico modeling and docking were carried out to evaluate the antifungal potent of bioactive compound. Kutzneria sp. strain TSII produced proteases, phosphatases, ammonia, siderophores, cellulases, indole acetic acid (IAA), lipases, and amylases, indicating its ability to enhance the growth of plants. The ethyl acetate extract of Kutzneria sp strain TSII was found to be a potent inhibitor of fungal mycelial growth in the potato dextrose agar (PDA) plates. The GC-MS spectral study showed 24 antimicrobial compounds belonging to five chemical groups: phenolics, phthalates, fatty acid methyl esters (FAME), spiro, and fatty alcohols. In silico docking studies showed that phenol, 2,4-bis(1,1-dimethylethyl)-effectively attaches with the active site of mitochondrial F1F0 Adenosine triphosphate synthase enzymes of Pithomyces atro-olivaceous. Hence, it is clear that these antifungal compounds shall be formulated shortly to treat many plant fungal diseases in an eco-friendly manner.
Collapse
Affiliation(s)
- Thangarasu Suganya Devi
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - R M Vidhyavathi
- Department of Bioinformatics Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India.
| |
Collapse
|
44
|
Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis. Molecules 2021; 26:molecules26092510. [PMID: 33923072 PMCID: PMC8123281 DOI: 10.3390/molecules26092510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
The present research aimed to enhance the pharmaceutically active compounds’ (PhACs’) productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
Collapse
|
45
|
Haruna A, Yahaya SM. Recent Advances in the Chemistry of Bioactive Compounds from Plants and Soil Microbes: a Review. CHEMISTRY AFRICA 2021. [PMCID: PMC7869076 DOI: 10.1007/s42250-020-00213-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioactive compounds derived from plants and microbial sources are required for the survival of the human race and groundbreaking research must continue in this line. Plants and microbes are the major sources of naturally occurring bioactive compounds for numerous biotechnological applications. Recent progress in the fields of bioactive compounds and soil chemistry in agriculture has since given man a lead to the discovery of potent drugs that combat both human and plant diseases. The soil provides the medium for the growth of medicinal plants, but its contamination greatly affects the quality of drugs, food crops, and other essential elements present in the plants which give strength to the body. This area has attracted the attention of scientists and the drug industry toward developing more potent drugs from medicinal plants grown in different soil. The studies of the effect of various parameters and the properties of soil such as; effect of heavy metals, pH, soil organic matter, and phytoremediation process have given a measure of some quality dependence of the soil producing secondary metabolites and soil containing microbes. The information provided will be useful in determine the action of microbes and their interaction with the soil and all true plants producing drugs. Some active compounds in plants and microbes, their properties, and applications have been described in this review. The soil microbes, activities and their interactions, effects of soil particle size, dispersibility and stability of microbes in the soil, and the future outlook for the development of novel active compounds have been reported.
Collapse
|
46
|
Jing T, Zhou D, Zhang M, Yun T, Qi D, Wei Y, Chen Y, Zang X, Wang W, Xie J. Newly Isolated Streptomyces sp. JBS5-6 as a Potential Biocontrol Agent to Control Banana Fusarium Wilt: Genome Sequencing and Secondary Metabolite Cluster Profiles. Front Microbiol 2020; 11:602591. [PMID: 33343545 PMCID: PMC7744762 DOI: 10.3389/fmicb.2020.602591] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Banana is a key staple food and fruit in countries all over the world. However, the development of the global banana industry is seriously threatened by Fusarium wilt disease, which is caused by Fusarium oxysporum f. sp. cubense (Foc). In particular, Foc tropical race 4 (Foc TR4) could infect more than 80% of global banana and plantain crops. Until now, there were no commercial chemicals or resistant cultivars available to control the disease. Biological control using actinomycetes is considered a promising strategy. In this study, 88 actinomycetes were isolated from a banana orchard without symptoms of Fusarium wilt disease for more than 10 years. An actinobacterial strain labeled as JBS5-6 has exhibited strong antifungal activities against Foc TR4 and other selected 10 phytopathogenic fungi. Based on phenotypic and biochemical traits as well as complete genome analysis, strain JBS5-6 was assigned to Streptomyces violaceusniger. Extracts of the strain inhibited the mycelial growth and spore germination of Foc TR4 by destroying membrane integrity and the ultrastructure of cells. The complete genome of strain JBS5-6 was sequenced and revealed a number of key function gene clusters that contribute to the biosynthesis of active secondary metabolites. Sixteen chemical compounds were further identified by gas chromatography-mass spectrometry (GC-MS). 5-hydroxymethyl-2-furancarboxaldehyde was one of the dominant components in strain JBS5-6 extracts. Moreover, fermentation broth of strain JBS5-6 significantly reduced the disease index of banana seedlings by inhibiting the infection of Foc TR4 in a pot experiment. Hence, strain JBS5-6 is a potential biocontrol agent for the management of disease and the exploitation of biofertilizer.
Collapse
Affiliation(s)
- Tao Jing
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tianyan Yun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoping Zang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
47
|
Protection of surplus food from fungal spoilage using Streptomyces spp.: a green approach. Arch Microbiol 2020; 203:941-950. [PMID: 33089339 DOI: 10.1007/s00203-020-02087-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
Consortia of Streptomyces spp. (colonies 169, 194, 165 and 130) used in this study are an efficient producer of secondary metabolites like chitinases and antifungal compounds, which may help in the protection of surplus food from spoilage. Qualitative screening for chitinase production and taxonomy of these colonies were undertaken in our previous studies. In the current study, GC-MS analysis of extract produced from the consortia of Streptomyces strains was done for the identification of antifungal compounds. Treatment of surplus food with activated consortia of Streptomyces spp. has protected powdered food for a month, whereas fresh food (unpowdered) was preserved for two days. A control sample of surplus food (untreated) was kept to check the contamination, which resulted in the growth of three fungi (FP-1, FG-1, and FB-1). Taxonomic characterization of fungi and identification of toxic compounds produced from them were done by ITS amplification and GC-MS analysis, respectively. The study shows that the secondary metabolites from Streptomyces spp. have the potential to protect the food from mycotoxin contamination. Based on literature reports, this is for the first time that bioactive compounds and chitinases produced from Streptomyces are being used for the protection and management of surplus food.
Collapse
|
48
|
Wei Y, Zhao Y, Zhou D, Qi D, Li K, Tang W, Chen Y, Jing T, Zang X, Xie J, Wang W. A Newly Isolated Streptomyces sp. YYS-7 With a Broad-Spectrum Antifungal Activity Improves the Banana Plant Resistance to Fusarium oxysporum f. sp. cubense Tropical Race 4. Front Microbiol 2020; 11:1712. [PMID: 32903773 PMCID: PMC7438861 DOI: 10.3389/fmicb.2020.01712] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive diseases, severely limiting the development of banana industry. Especially, Foc tropical race 4 (Foc TR4) can infect and destroy almost all banana cultivars. Until now, there is still a lack of an effective method for controlling fusarium wilt. A biocontrol strategy using Actinobacteria is considered as a promising method for management of disease and pest. In this study, 229 Actinobacteria were isolated from rhizosphere soil samples of a primitive ecological mountain. An actinobacterium strain marked with YYS-7 exhibited a high antifungal activity against Foc TR4. Combining the physiological and biochemical characteristics as well as alignment of the 16S rRNA sequence, the strain YYS-7 was assigned to Streptomyces sp. The crude extracts of Streptomyces sp. YYS-7 obviously inhibited the mycelial growth of Foc TR4. The cell integrity and ultrastructure were seriously destroyed. In addition, Streptomyces sp. YYS-7 and crude extracts also showed a broad-spectrum antifungal activity against the selected seven phytopathogenic fungi. A gas chromatography-mass spectrometry (GC-MS) was used to predict the antifungal metabolites. A total of eleven different compounds were identified, including phenolic compounds, hydrocarbons, esters and acids. In the pot experiment, the crude extracts can significantly improve the banana plant’s resistance to Foc TR4. Hence, Streptomyces sp. YYS-7 will be a potential biocontrol agent for the biofertilizer exploitation and the discovery of new bioactive substances.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yankun Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kai Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wen Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tao Jing
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoping Zang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
49
|
Vijay K, Devi TS, Sree KK, Elgorban AM, Kumar P, Govarthanan M, Kavitha T. In vitro screening and in silico prediction of antifungal metabolites from rhizobacterium Achromobacter kerstersii JKP9. Arch Microbiol 2020; 202:2855-2864. [PMID: 32691101 DOI: 10.1007/s00203-020-01982-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/13/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
The main objective of this study was to identify the antifungal metabolites from Achromobacter kerstersii JKP9, a rhizosphere bacterium isolated from tomato cultivations, inhibiting the melanin biosynthetic pathways in vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol). To achieve this objective, all the rhizobacterial morphotypes were screened for plant-growth-promoting and antagonistic activities. Ethyl acetate extract of Achromobacter kerstersii JKP9 was purified in HPLC and predicted for antifungals in GC-MS equipped with Wiley library. After identification, molecular docking of useful ligands with modeled Short-chain Dehydrogenase/ Reductase (SDR) of Fol (Locus: FOXG_00472). Results were indicated that the potential strain Achromobacter kerstersii JKP9 exclusively secreted five pyrrole analogs notable for their antifungal role with no extracellular antifungal enzyme production as seen in other rhizobacterial isolates. In silico docking studies identified, Pyrrolo[1, 2-a]pyrazine-1,4-dione, hexahydro- as effective for SDR in Fol. From these results, we conclude that bacterial pyrroles can be used as an effective fungicide to control Fusarium wilt in tomatoes. In the future, these pyrrole derivatives can directly be employed as eco-friendly fungicides or may be used as antifungal supplements in agrochemical products for the sustainable production of tomatoes.
Collapse
Affiliation(s)
- Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Thangarasu Suganya Devi
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Karthikeyan Kirupa Sree
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Tamilnadu, Karaikudi, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 41566, Daegu, Republic of Korea
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India.
| |
Collapse
|
50
|
P M, D CD, Mostafa AA, Alsamhary KI, Abdel-Raouf N, Nageh Sholkamy E. Antimicrobial efficacy of Nocardiopsis sp. MK_MSt033 against selected multidrug resistant clinical microbial pathogens. J Infect Public Health 2020; 13:1522-1532. [PMID: 32646772 DOI: 10.1016/j.jiph.2020.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Actinomycetes show an active role in microbial disease control and antimicrobial metabolism production and were shown the greatest potentialities as sources of antimicrobial agents. The past few decades, an extensive literature has accumulated on the production of bioactive compounds from actinomycetes, particularily genus Streptomyces. METHODS The actinomycetes were isolated with starch casein nitrate (SCN) agar medium. The prospective isolate was subjected to antimicrobial metabolites production. Further, the bio-extract was evaluated their biological properites by agar well diffusion assay and finally the extract was anaylized through GC-MS. RESULTS In the present study, isolated 9 actinomycetes and the isolates were examined for their antifungal activities. Of these nine isolates, the isolate MK_MSt033 picked out from the rest, hences, it showed significant control towards the selected microbial pathogens. The prospective strain MK_MSt033 was determined as Nocardiopsis sp. The strain displayed effective antimicrobial activities against both bacterial and fungal pathgoens such as Escherichia coli, Staphylococcus aureus, Pencillium sp., and Aspergillus flavus respectively. Subsequently the chemical nature of the compounds produced by the potential isolate MK_MSt033 and it was successfully determined by GC-MS and it were 18 compounds with different retention time. CONCLUSION The identified isolate Nocardiopsis sp. MK_MSt033 exhibited potential antimicrobial activities against selected microbial pathogens. Thus, the soil inhabiting Nocardiopsis sp. has explored for pharmaceutically active compounds with promising medical applications.
Collapse
Affiliation(s)
- Muthukrishnan P
- Department of Microbiology, P.S.G. College of Arts and Science, Coimbatore 641 014, Tamil Nadu, India
| | - Chithra Devi D
- Department of Microbiology, P.S.G. College of Arts and Science, Coimbatore 641 014, Tamil Nadu, India
| | - Ashraf A Mostafa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khawla Ibrahim Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Neveen Abdel-Raouf
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Seuf University, Beni-Seuf 65211, Egypt
| | - Essam Nageh Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|