1
|
Biswas S, Niedzwiedzki DM, Liberton M, Pakrasi HB. Phylogenetic and spectroscopic insights on the evolution of core antenna proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 162:197-210. [PMID: 37737529 DOI: 10.1007/s11120-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
2
|
Alvarez D, Yang Y, Saito Y, Balakrishna A, Goto K, Gojobori T, Al-Babili S. Characterization of a β-carotene isomerase from the cyanobacterium Cyanobacteria aponinum. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230360. [PMID: 39343012 PMCID: PMC11449226 DOI: 10.1098/rstb.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024] Open
Abstract
Carotenoids are essential components of the photosynthetic apparatus and precursors of plant hormones, such as strigolactones (SLs). SLs are involved in various aspects of plant development and stress-response processes, including the establishment of root and shoot architecture. SL biosynthesis begins with the reversible isomerization of all-trans-carotene into 9-cis-β-carotene, catalysed by DWARF27 β-carotene isomerase (D27). Sequence comparisons have revealed the presence of D27-related proteins in photosynthetic eukaryotes and cyanobacteria lacking SLs. To gain insight into the evolution of SL biosynthesis, we characterized the activity of a cyanobacterial D27 protein (CaD27) from Cyanobacterim aponinum, using carotenoid-accumulating Escherichia coli cells and in vitro enzymatic assays. Our results demonstrate that CaD27 is an all-trans/cis and cis/cis-β-carotene isomerase, with a cis/cis conversion preference. CaD27 catalysed 13-cis/15-cis-, all-trans/9-cis-β-carotene, and neurosporene isomerization. Compared with plant enzymes, it exhibited a lower 9-cis-/all-trans-β-carotene conversion ratio. A comprehensive genome survey revealed the presence of D27 as a single-copy gene in the genomes of 20 out of 200 cyanobacteria species analysed. Phylogenetic and enzymatic analysis of CaD27 indicated that cyanobacterial D27 genes form a single orthologous group, which is considered an ancestral type of those found in photosynthetic eukaryotes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Derry Alvarez
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Yu Yang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Yoshimoto Saito
- Marine Open Innovation (MaOI) Institute, 9-25 Hinodecho, Shimizu-ku, Shizuoka424-0922, Japan
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Kosuke Goto
- Marine Open Innovation (MaOI) Institute, 9-25 Hinodecho, Shimizu-ku, Shizuoka424-0922, Japan
| | - Takashi Gojobori
- Marine Open Innovation (MaOI) Institute, 9-25 Hinodecho, Shimizu-ku, Shizuoka424-0922, Japan
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Ray M, Manu S, Rastogi G, Umapathy G. Cyanobacterial Genomes from a Brackish Coastal Lagoon Reveal Potential for Novel Biogeochemical Functions and Their Evolution. J Mol Evol 2024; 92:121-137. [PMID: 38489069 DOI: 10.1007/s00239-024-10159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Cyanobacteria are recognised for their pivotal roles in aquatic ecosystems, serving as primary producers and major agents in diazotrophic processes. Currently, the primary focus of cyanobacterial research lies in gaining a more detailed understanding of these well-established ecosystem functions. However, their involvement and impact on other crucial biogeochemical cycles remain understudied. This knowledge gap is partially attributed to the challenges associated with culturing cyanobacteria in controlled laboratory conditions and the limited understanding of their specific growth requirements. This can be circumvented partially by the culture-independent methods which can shed light on the genomic potential of cyanobacterial species and answer more profound questions about the evolution of other key biogeochemical functions. In this study, we assembled 83 cyanobacterial genomes from metagenomic data generated from environmental DNA extracted from a brackish water lagoon (Chilika Lake, India). We taxonomically classified these metagenome-assembled genomes (MAGs) and found that about 92.77% of them are novel genomes at the species level. We then annotated these cyanobacterial MAGs for all the encoded functions using KEGG Orthology. Interestingly, we found two previously unreported functions in Cyanobacteria, namely, DNRA (Dissimilatory Nitrate Reduction to Ammonium) and DMSP (Dimethylsulfoniopropionate) synthesis in multiple MAGs using nirBD and dsyB genes as markers. We validated their presence in several publicly available cyanobacterial isolate genomes. Further, we identified incongruities between the evolutionary patterns of species and the marker genes and elucidated the underlying reasons for these discrepancies. This study expands our overall comprehension of the contribution of cyanobacteria to the biogeochemical cycling in coastal brackish ecosystems.
Collapse
Affiliation(s)
- Manisha Ray
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
4
|
Sendker FL, Lo YK, Heimerl T, Bohn S, Persson LJ, Mais CN, Sadowska W, Paczia N, Nußbaum E, Del Carmen Sánchez Olmos M, Forchhammer K, Schindler D, Erb TJ, Benesch JLP, Marklund EG, Bange G, Schuller JM, Hochberg GKA. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024; 628:894-900. [PMID: 38600380 PMCID: PMC11041685 DOI: 10.1038/s41586-024-07287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpiński triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.
Collapse
Affiliation(s)
- Franziska L Sendker
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Stefan Bohn
- Cryo-EM Platform and Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
| | - Louise J Persson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | - Wiktoria Sadowska
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Nicole Paczia
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eva Nußbaum
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany
| | | | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- MaxGENESYS Biofoundry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Fellow Group Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Evans SE, Franks AE, Bergman ME, Sethna NS, Currie MA, Phillips MA. Plastid ancestors lacked a complete Entner-Doudoroff pathway, limiting plants to glycolysis and the pentose phosphate pathway. Nat Commun 2024; 15:1102. [PMID: 38321044 PMCID: PMC10847513 DOI: 10.1038/s41467-024-45384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
The Entner-Doudoroff (ED) pathway provides an alternative to glycolysis. It converts 6-phosphogluconate (6-PG) to glyceraldehyde-3-phosphate and pyruvate in two steps consisting of a dehydratase (EDD) and an aldolase (EDA). Here, we investigate its distribution and significance in higher plants and determine the ED pathway is restricted to prokaryotes due to the absence of EDD genes in eukaryotes. EDDs share a common origin with dihydroxy-acid dehydratases (DHADs) of the branched chain amino acid pathway (BCAA). Each dehydratase features strict substrate specificity. E. coli EDD dehydrates 6-PG to 2-keto-3-deoxy-6-phosphogluconate, while DHAD only dehydrates substrates from the BCAA pathway. Structural modeling identifies two divergent domains which account for their non-overlapping substrate affinities. Coupled enzyme assays confirm only EDD participates in the ED pathway. Plastid ancestors lacked EDD but transferred metabolically promiscuous EDA, which explains the absence of the ED pathway from the Viridiplantae and sporadic persistence of EDA genes across the plant kingdom.
Collapse
Affiliation(s)
- Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Anya E Franks
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Nasha S Sethna
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mark A Currie
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
6
|
Schluchter WM, Babin CH, Liu X, Bieller A, Shen G, Alvey RM, Bryant DA. Loss of Biliverdin Reductase Increases Oxidative Stress in the Cyanobacterium Synechococcus sp. PCC 7002. Microorganisms 2023; 11:2593. [PMID: 37894251 PMCID: PMC10608806 DOI: 10.3390/microorganisms11102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxygenic photosynthesis requires metal-rich cofactors and electron-transfer components that can produce reactive oxygen species (ROS) that are highly toxic to cyanobacterial cells. Biliverdin reductase (BvdR) reduces biliverdin IXα to bilirubin, which is a potent scavenger of radicals and ROS. The enzyme is widespread in mammals but is also found in many cyanobacteria. We show that a previously described bvdR mutant of Synechocystis sp. PCC 6803 contained a secondary deletion mutation in the cpcB gene. The bvdR gene from Synechococcus sp. PCC 7002 was expressed in Escherichia coli, and recombinant BvdR was purified and shown to reduce biliverdin to bilirubin. The bvdR gene was successfully inactivated in Synechococcus sp. PCC 7002, a strain that is naturally much more tolerant of high light and ROS than Synechocystis sp. PCC 6803. The bvdR mutant strain, BR2, had lower total phycobiliprotein and chlorophyll levels than wild-type cells. As determined using whole-cell fluorescence at 77 K, the photosystem I levels were also lower than those in wild-type cells. The BR2 mutant had significantly higher ROS levels compared to wild-type cells after exposure to high light for 30 min. Together, these results suggest that bilirubin plays an important role as a scavenger for ROS in Synechococcus sp. PCC 7002. The oxidation of bilirubin by ROS could convert bilirubin to biliverdin IXα, and thus BvdR might be important for regenerating bilirubin. These results further suggest that BvdR is a key component of a scavenging cycle by which cyanobacteria protect themselves from the toxic ROS byproducts generated during oxygenic photosynthesis.
Collapse
Affiliation(s)
- Wendy M. Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Courtney H. Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Xindi Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Amori Bieller
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA; (C.H.B.); (X.L.); (A.B.)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
| | - Richard M. Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
- Biology Department, Bloomington, Illinois Wesleyan University, Bloomington, IL 61702, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA (R.M.A.); (D.A.B.)
| |
Collapse
|
7
|
Ogonkov A, Dieterich CL, Meoded RA, Piel J, Fraley AE, Sasso S. Characterization of an Unusual α-Oxoamine Synthase Off-Loading Domain from a Cyanobacterial Type I Fatty Acid Synthase. Chembiochem 2023; 24:e202300209. [PMID: 37144248 DOI: 10.1002/cbic.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l-serine and a fatty acyl thioester. While the AOS domain was strictly specific for l-serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl-coenzyme A (C18 ). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l-serine by a FAS with a cis-acting AOS off-loading domain.
Collapse
Affiliation(s)
- Andrei Ogonkov
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| | - Cora L Dieterich
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Roy A Meoded
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jörn Piel
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Amy E Fraley
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Severin Sasso
- Institute of Biology, Leipzig University, Johannisallee 23, 04107, Leipzig, Germany
| |
Collapse
|
8
|
Wong CKF, Chong TY, Tan J, Wong WL. Isolation and Characterisation of Culturable Thermophilic Cyanobacteria from Perak Hot Springs and their Plant Growth Promoting Properties Effects on Rice Seedlings ( Oryza sativa L.). Trop Life Sci Res 2023; 34:1-22. [PMID: 37860094 PMCID: PMC10583845 DOI: 10.21315/tlsr2023.34.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/02/2023] [Indexed: 10/21/2023] Open
Abstract
Malaysia is home to a number of hot springs that are rich in microbial diversity including the photosynthetic cyanobacteria. Although this microbial community has been characterised based on metagenomics approach, the culturable thermophilic isolates have not been isolated and characterised extensively. Compared to the mesophiles, information on plant growth promoting (PGP) properties of these thermophiles remain largely untapped. As the amount of arable land for microbial bioprospecting is decreasing due to extensive human activities, the search for alternative source for microbial strains with PGP properties is important for the development of potential biofertilisers. This study sought to isolate and characterise culturable cyanobacteria strains from two local hot springs - Sungai Klah (SK) and Lubuk Timah (LT) located in Perak using morphological and molecular methods. The IAA production from the axenic cultures were measured. The PGP properties were also measured by priming the rice seeds with cyanobacterial water extracts. A total of six strains were isolated from both hot springs. Strains LTM and LTW from LT were identified as Leptolyngbya sp. whereas strains SEM, SEH, STH and STM were identified as Thermosynechococcus elongatus. All six strains produced IAA ranged from 670.10 pg/μL to 2010 pg/μL. The water extracts were found to increase the seed amylase activity of the rice seeds from 5th day of germination (DAG) to 10th DAG. In general, the IAA production and increased seed amylase activity might have contributed in enhancing the longest root length, shoot length and root-to-shoot (RS) ratio. To conclude, the thermophilic cyanobacteria from hot springs can be further exploited as a novel source of PGP microbes for the development of biofertilsers.
Collapse
Affiliation(s)
- Clement Kiing Fook Wong
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| | - Tzu Yee Chong
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| | - Ji Tan
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| | - Wey Lim Wong
- Department of Biological Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar Perak, Malaysia
| |
Collapse
|
9
|
Gulay A, Fournier G, Smets BF, Girguis PR. Proterozoic Acquisition of Archaeal Genes for Extracellular Electron Transfer: A Metabolic Adaptation of Aerobic Ammonia-Oxidizing Bacteria to Oxygen Limitation. Mol Biol Evol 2023; 40:msad161. [PMID: 37440531 PMCID: PMC10415592 DOI: 10.1093/molbev/msad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of β-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that β-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant.
Collapse
Affiliation(s)
- Arda Gulay
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Greg Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
10
|
Padovan A, Kennedy K, Gibb K. A microcystin synthesis mcyE/ndaF gene assay enables early detection of microcystin production in a tropical wastewater pond. HARMFUL ALGAE 2023; 127:102476. [PMID: 37544676 DOI: 10.1016/j.hal.2023.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 08/08/2023]
Abstract
Cyanobacteria can dominate the algal community in wastewater ponds, which can lead to the production of cyanotoxins and their release into the environment. We applied traditional and molecular techniques to identify cyanotoxin hazards and high-risk periods in a tropical wastewater treatment system. Potentially toxic cyanobacteria were identified by microscopy and amplicon sequencing over the course of a year. Toxin gene levels were monitored and compared to toxin production to identify likely toxin producing species and high-risk periods. Cyanobacteria were persistent in the effluent year-round, with Planktothrix and Microcystis the most abundant genera; Microcystis could not be resolved beyond genus using amplicon sequencing, but M. flos-aquae was identified as a dominant species by microscopy. Microcystin toxin was detected for the first time in treated effluent at the beginning of the wet season (December 2018), which correlated with an increase in Microcystis amplicon sequence abundance and elevated microcystin toxin gene (mcyE/ndaF) levels. Concomitantly, microscopy data showed an increase in M. flos-aquae but not M. aeruginosa. These data informed a refined sampling campaign in 2019 and results showed a strong correlation between mcyE/ndaF gene abundance, microcystin toxin levels and Microcystis amplicon sequence abundance. Microscopy data showed that in addition to M. flos-aquae, M. aeruginosa was also abundant in February and March 2019, with highest levels coinciding with toxin detection and toxin gene levels. M. aeruginosa was the most abundant Microcystis species detected in selected treated effluent samples by metagenomics analysis, and elevated levels coincided with toxin production. All microcystin genes in the biosynthesis pathway were detected, but microcystin genes from Planktothrix agardhii were not detected. Gene toxin assays were successfully used to predict microcystin production in this wastewater system. Changes in amplicon sequence relative abundance were a useful indicator of changes in the cyanobacterial community. We found that metagenomics was useful not just for identifying the most abundant Microcystis species, but the detection of microcystin biosynthesis genes helped confirm this genus as the most likely toxin producer in this system. We recommend toxin gene testing for the early detection of potential toxin producing cyanobacteria to manage the risk of toxicity and allow the implementation of risk management strategies.
Collapse
Affiliation(s)
- Anna Padovan
- Research Institute for the Environment and Livelihoods, Ellengowan Drive, Casuarina, Charles Darwin University, Darwin, NT, Australia.
| | - Karen Kennedy
- Power and Water Corporation, Water Services, P.O. Box 37471, Winnellie, NT, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Ellengowan Drive, Casuarina, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
11
|
Pessi IS, Popin RV, Durieu B, Lara Y, Tytgat B, Savaglia V, Roncero-Ramos B, Hultman J, Verleyen E, Vyverman W, Wilmotte A. Novel diversity of polar Cyanobacteria revealed by genome-resolved metagenomics. Microb Genom 2023; 9:mgen001056. [PMID: 37417735 PMCID: PMC10438808 DOI: 10.1099/mgen.0.001056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.
Collapse
Affiliation(s)
- Igor S. Pessi
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | - Rafael V. Popin
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Benoit Durieu
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Yannick Lara
- Early Life Traces & Evolution-Astrobiology, UR-Astrobiology, University of Liège, Liège, Belgium
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Valentina Savaglia
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Beatriz Roncero-Ramos
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Annick Wilmotte
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Barlow AN, Manu MS, Saladi SM, Tarr PT, Yadav Y, Thinn AMM, Zhu Y, Laganowsky AD, Clemons WM, Ramasamy S. Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis. J Biol Chem 2023; 299:104752. [PMID: 37100288 PMCID: PMC10248533 DOI: 10.1016/j.jbc.2023.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs. Get3d is conserved across land plants and photosynthetic bacteria and includes a distinctive C-terminal α-crystallin domain. After tracing the evolutionary origin of Get3d, we solve the Arabidopsis thaliana Get3d crystal structure, identify its localization to the chloroplast, and provide evidence for a role in TA protein binding. The structure is identical to that of a cyanobacterial Get3 homolog, which is further refined here. Distinct features of Get3d include an incomplete active site, a "closed" conformation in the apo-state, and a hydrophobic chamber. Both homologs have ATPase activity and are capable of binding TA proteins, supporting a potential role in TA protein targeting. Get3d is first found with the development of photosynthesis and conserved across 1.2 billion years into the chloroplasts of higher plants across the evolution of photosynthesis suggesting a role in the homeostasis of photosynthetic machinery.
Collapse
Affiliation(s)
- Alexandra N Barlow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - M S Manu
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Paul T Tarr
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yashpal Yadav
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Aye M M Thinn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
| |
Collapse
|
13
|
Rockwell NC, Lagarias JC. GUN4 appeared early in cyanobacterial evolution. PNAS NEXUS 2023; 2:pgad131. [PMID: 37152672 PMCID: PMC10156173 DOI: 10.1093/pnasnexus/pgad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Photosynthesis relies on chlorophylls, which are synthesized via a common tetrapyrrole trunk pathway also leading to heme, vitamin B12, and other pigmented cofactors. The first committed step for chlorophyll biosynthesis is insertion of magnesium into protoporphyrin IX by magnesium chelatase. Magnesium chelatase is composed of H-, I-, and D-subunits, with the tetrapyrrole substrate binding to the H-subunit. This subunit is rapidly inactivated in the presence of substrate, light, and oxygen, so oxygenic photosynthetic organisms require mechanisms to protect magnesium chelatase from similar loss of function. An additional protein, GUN4, binds to the H-subunit and to tetrapyrroles. GUN4 has been proposed to serve this protective role via its ability to bind linear tetrapyrroles (bilins). In the current work, we probe the origins of bilin binding by GUN4 via comparative phylogenetic analysis and biochemical validation of a conserved bilin-binding motif. Based on our results, we propose that bilin-binding GUN4 proteins arose early in cyanobacterial evolution and that this early acquisition represents an ancient adaptation for maintaining chlorophyll biosynthesis in the presence of light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
14
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
15
|
Steube N, Moldenhauer M, Weiland P, Saman D, Kilb A, Ramírez Rojas AA, Garg SG, Schindler D, Graumann PL, Benesch JLP, Bange G, Friedrich T, Hochberg GKA. Fortuitously compatible protein surfaces primed allosteric control in cyanobacterial photoprotection. Nat Ecol Evol 2023; 7:756-767. [PMID: 37012377 PMCID: PMC10172135 DOI: 10.1038/s41559-023-02018-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Highly specific interactions between proteins are a fundamental prerequisite for life, but how they evolve remains an unsolved problem. In particular, interactions between initially unrelated proteins require that they evolve matching surfaces. It is unclear whether such surface compatibilities can only be built by selection in small incremental steps, or whether they can also emerge fortuitously. Here, we used molecular phylogenetics, ancestral sequence reconstruction and biophysical characterization of resurrected proteins to retrace the evolution of an allosteric interaction between two proteins that act in the cyanobacterial photoprotection system. We show that this interaction between the orange carotenoid protein (OCP) and its unrelated regulator, the fluorescence recovery protein (FRP), evolved when a precursor of FRP was horizontally acquired by cyanobacteria. FRP's precursors could already interact with and regulate OCP even before these proteins first encountered each other in an ancestral cyanobacterium. The OCP-FRP interaction exploits an ancient dimer interface in OCP, which also predates the recruitment of FRP into the photoprotection system. Together, our work shows how evolution can fashion complex regulatory systems easily out of pre-existing components.
Collapse
Affiliation(s)
- Niklas Steube
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marcus Moldenhauer
- Institute of Chemistry PC14, Technische Universität Berlin, Berlin, Germany
| | - Paul Weiland
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Dominik Saman
- Department of Chemistry, Oxford University, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford University, Oxford, UK
| | - Alexandra Kilb
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Sriram G Garg
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Peter L Graumann
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Justin L P Benesch
- Department of Chemistry, Oxford University, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford University, Oxford, UK
| | - Gert Bange
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Thomas Friedrich
- Institute of Chemistry PC14, Technische Universität Berlin, Berlin, Germany.
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Department of Chemistry, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
16
|
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. TRENDS IN PLANT SCIENCE 2023; 28:312-329. [PMID: 36328872 DOI: 10.1016/j.tplants.2022.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
17
|
Priyadarshini N, Steube N, Wiens D, Narikawa R, Wilde A, Hochberg GKA, Enomoto G. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00387-4. [PMID: 36781703 DOI: 10.1007/s43630-023-00387-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Phytochromes are linear tetrapyrrole-binding photoreceptors in eukaryotes and bacteria, primarily responding to red and far-red light signals reversibly. Among the GAF domain-based phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show various optical properties covering the entire visible region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here, we utilize ancestral sequence reconstruction and biochemical verification to show that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore is crucial to perceive green light. The ancestral cyanobacteriochromes show only modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense the incident green/red light ratio. Many cyanobacteria can utilize green light for photosynthesis using phycobilisome light-harvesting complexes. The green/red sensing cyanobacteriochromes may have allowed better acclimation to changing light environments by rearranging the absorption capacity of the phycobilisome through chromatic acclimation.
Collapse
Affiliation(s)
- Nibedita Priyadarshini
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albertstr. 19, 79104, Freiburg, Germany
| | - Niklas Steube
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Dennis Wiens
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany. .,Faculty of Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Gen Enomoto
- Faculty of Biology, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany. .,Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
18
|
Evseev P, Tikhonova I, Krasnopeev A, Sorokovikova E, Gladkikh A, Timoshkin O, Miroshnikov K, Belykh O. Tychonema sp. BBK16 Characterisation: Lifestyle, Phylogeny and Related Phages. Viruses 2023; 15:442. [PMID: 36851656 PMCID: PMC9958718 DOI: 10.3390/v15020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial expansion is harmful to the environment, the ecology of Lake Baikal and the economy of nearby regions and can be dangerous to people and animals. Since 2011, the process of colonisation of the lake with potentially toxic cyanobacteria belonging to the genus Tychonema has continued. An understanding of the mechanism of successful expansion of Tychonema requires scrutiny of biological and genomic features. Tychonema sp. BBK16 was isolated from the coastal zone of Lake Baikal. The morphology of BBK16 biofilm was studied with light, scanning electron and confocal microscopy. The biofilm is based on filaments of cyanobacteria, which are intertwined like felt; there are also dense fascicles of rope-like twisted filaments that impart heterogeneity to the surface of the biofilm. Genome sequencing, intergenomic comparisons and phylogenetic analyses indicated that Tychonema sp. BBK16 represent a new species related to planktic cyanobacterium Tychonema bourrellyi, isolated from Alpine lentic freshwater. Genome investigation revealed the genes possibly responsible for the mixotrophic lifestyle. The presence of CRISPR-Cas and restriction modification defence mechanisms allowed to suggest the existence of phages infecting Tychonema sp. BBK16. Analysis of CRISPR spacers and prophage-derived regions allowed to suggest related cyanophages. Genomic analysis supported the assumption that mobile elements and horizontal transfer participate in shaping the Tychonema sp. BBK16 genome. The findings of the current research suggest that the aptitude of Tychonema sp. BBK16 for biofilm formation and, possibly, its mixotrophic lifestyle provide adaptation advantages that lead to the successful expansion of this cyanobacterium in the Baikal's conditions of freshwater lake environments.
Collapse
Affiliation(s)
- Peter Evseev
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, Moscow 117997, Russia
| | - Irina Tikhonova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Andrei Krasnopeev
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Ekaterina Sorokovikova
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Anna Gladkikh
- Saint-Petersburg Pasteur Institute, 14 Mira Str., Saint-Petersburg 197101, Russia
| | - Oleg Timoshkin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, Moscow 117997, Russia
| | - Olga Belykh
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., Irkutsk 664033, Russia
| |
Collapse
|
19
|
Moore KR, Daye M, Gong J, Williford K, Konhauser K, Bosak T. A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert. GEOBIOLOGY 2023; 21:3-27. [PMID: 36268586 PMCID: PMC10092529 DOI: 10.1111/gbi.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The record of life during the Proterozoic is preserved by several different lithologies, but two in particular are linked both spatially and temporally: chert and carbonate. These lithologies capture a snapshot of dominantly peritidal environments during the Proterozoic. Early diagenetic chert preserves some of the most exceptional Proterozoic biosignatures in the form of microbial body fossils and mat textures. This fossiliferous and kerogenous chert formed in shallow marine environments, where chert nodules, layers, and lenses are often surrounded by and encased within carbonate deposits that themselves often contain kerogen and evidence of former microbial mats. Here, we review the record of biosignatures preserved in peritidal Proterozoic chert and chert-hosting carbonate and discuss this record in the context of experimental and environmental studies that have begun to shed light on the roles that microbes and organic compounds may have played in the formation of these deposits. Insights gained from these studies suggest temporal trends in microbial-environmental interactions and place new constraints on past environmental conditions, such as the concentration of silica in Proterozoic seawater, interactions among organic compounds and cations in seawater, and the influence of microbial physiology and biochemistry on selective preservation by silicification.
Collapse
Affiliation(s)
- Kelsey R. Moore
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Mirna Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jian Gong
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Kurt Konhauser
- Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
20
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
21
|
Cornet L, Durieu B, Baert F, D'hooge E, Colignon D, Meunier L, Lupo V, Cleenwerck I, Daniel HM, Rigouts L, Sirjacobs D, Declerck S, Vandamme P, Wilmotte A, Baurain D, Becker P. The GEN-ERA toolbox: unified and reproducible workflows for research in microbial genomics. Gigascience 2022; 12:giad022. [PMID: 37036103 PMCID: PMC10084500 DOI: 10.1093/gigascience/giad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Microbial culture collections play a key role in taxonomy by studying the diversity of their strains and providing well-characterized biological material to the scientific community for fundamental and applied research. These microbial resource centers thus need to implement new standards in species delineation, including whole-genome sequencing and phylogenomics. In this context, the genomic needs of the Belgian Coordinated Collections of Microorganisms were studied, resulting in the GEN-ERA toolbox. The latter is a unified cluster of bioinformatic workflows dedicated to both bacteria and small eukaryotes (e.g., yeasts). FINDINGS This public toolbox allows researchers without a specific training in bioinformatics to perform robust phylogenomic analyses. Hence, it facilitates all steps from genome downloading and quality assessment, including genomic contamination estimation, to tree reconstruction. It also offers workflows for average nucleotide identity comparisons and metabolic modeling. TECHNICAL DETAILS Nextflow workflows are launched by a single command and are available on the GEN-ERA GitHub repository (https://github.com/Lcornet/GENERA). All the workflows are based on Singularity containers to increase reproducibility. TESTING The toolbox was developed for a diversity of microorganisms, including bacteria and fungi. It was further tested on an empirical dataset of 18 (meta)genomes of early branching Cyanobacteria, providing the most up-to-date phylogenomic analysis of the Gloeobacterales order, the first group to diverge in the evolutionary tree of Cyanobacteria. CONCLUSION The GEN-ERA toolbox can be used to infer completely reproducible comparative genomic and metabolic analyses on prokaryotes and small eukaryotes. Although designed for routine bioinformatics of culture collections, it can also be used by all researchers interested in microbial taxonomy, as exemplified by our case study on Gloeobacterales.
Collapse
Affiliation(s)
- Luc Cornet
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, 1050, Brussels, Belgium
| | - Benoit Durieu
- InBioS, Physiology and Bacterial Genetics, University of Liège, 4000, Liège, Belgium
| | - Frederik Baert
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, 1050, Brussels, Belgium
| | - Elizabet D'hooge
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, 1050, Brussels, Belgium
| | - David Colignon
- Applied and Computational Electromagnetics (ACE), University of Liège, 4000, Liège, Belgium
| | - Loic Meunier
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000, Liège, Belgium
| | - Valérian Lupo
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000, Liège, Belgium
| | - Ilse Cleenwerck
- BCCM/LMG and Laboratory of Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Heide-Marie Daniel
- BCCM/MUCL and Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, ELIM 1348, Louvain-la-Neuve, Belgium
| | - Leen Rigouts
- BCCM/ITM, Mycobacteriology Unit, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Damien Sirjacobs
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000, Liège, Belgium
| | - Stéphane Declerck
- BCCM/MUCL and Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, ELIM 1348, Louvain-la-Neuve, Belgium
| | - Peter Vandamme
- BCCM/LMG and Laboratory of Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Annick Wilmotte
- InBioS, Physiology and Bacterial Genetics, University of Liège, 4000, Liège, Belgium
| | - Denis Baurain
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000, Liège, Belgium
| | - Pierre Becker
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, 1050, Brussels, Belgium
| |
Collapse
|
22
|
Tamre E, Fournier GP. Inferred ancestry of scytonemin biosynthesis proteins in cyanobacteria indicates a response to Paleoproterozoic oxygenation. GEOBIOLOGY 2022; 20:764-775. [PMID: 35851984 PMCID: PMC9796282 DOI: 10.1111/gbi.12514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Protection from radiation damage is an important adaptation for phototrophic microbes. Living in surface, shallow water, and peritidal environments, cyanobacteria are especially exposed to long-wavelength ultraviolet (UVA) radiation. Several groups of cyanobacteria within these environments are protected from UVA damage by the production of the pigment scytonemin. Paleontological evidence of cyanobacteria in UVA-exposed environments from the Proterozoic, and possibly as early as the Archaean, suggests a long evolutionary history of radiation protection within this group. We show that phylogenetic analyses of enzymes in the scytonemin biosynthesis pathway support this hypothesis and reveal a deep history of vertical inheritance of this pathway within extant cyanobacterial diversity. Referencing this phylogeny to cyanobacterial molecular clocks suggests that scytonemin production likely appeared during the early Proterozoic, soon after the Great Oxygenation Event. This timing is consistent with an adaptive scenario for the evolution of scytonemin production, wherein the threat of UVA-generated reactive oxygen species becomes significantly greater once molecular oxygen is more pervasive across photosynthetic environments.
Collapse
Affiliation(s)
- Erik Tamre
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
23
|
Giordano M, Goodman CA, Huang F, Raven JA, Ruan Z. A mechanistic study of the influence of nitrogen and energy availability on the NH4+ sensitivity of nitrogen assimilation in Synechococcus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5596-5611. [PMID: 35595516 PMCID: PMC9467657 DOI: 10.1093/jxb/erac219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 05/23/2023]
Abstract
In most algae, NO3- assimilation is tightly controlled and is often inhibited by the presence of NH4+. In the marine, non-colonial, non-diazotrophic cyanobacterium Synechococcus UTEX 2380, NO3- assimilation is sensitive to NH4+ only when N does not limit growth. We sequenced the genome of Synechococcus UTEX 2380, studied the genetic organization of the nitrate assimilation related (NAR) genes, and investigated expression and kinetics of the main NAR enzymes, under N or light limitation. We found that Synechococcus UTEX 2380 is a β-cyanobacterium with a full complement of N uptake and assimilation genes and NAR regulatory elements. The nitrate reductase of our strain showed biphasic kinetics, previously observed only in freshwater or soil diazotrophic Synechococcus strains. Nitrite reductase and glutamine synthetase showed little response to our growth treatments, and their activity was usually much higher than that of nitrate reductase. NH4+ insensitivity of NAR genes may be associated with the stimulation of the binding of the regulator NtcA to NAR gene promoters by the high 2-oxoglutarate concentrations produced under N limitation. NH4+ sensitivity in energy-limited cells fits with the fact that, under these conditions, the use of NH4+ rather than NO3- decreases N-assimilation cost, whereas it would exacerbate N shortage under N limitation.
Collapse
Affiliation(s)
- Mario Giordano
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
- Institute of Microbiology ASCR, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science, Venezia, Italy
| | - Charles A Goodman
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
| | - Fengying Huang
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5 DA, UK
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
24
|
Lara YJ, McCann A, Malherbe C, François C, Demoulin CF, Sforna MC, Eppe G, De Pauw E, Wilmotte A, Jacques P, Javaux EJ. Characterization of the Halochromic Gloeocapsin Pigment, a Cyanobacterial Biosignature for Paleobiology and Astrobiology. ASTROBIOLOGY 2022; 22:735-754. [PMID: 35333546 DOI: 10.1089/ast.2021.0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV)-screening compounds represent a substantial asset for the survival of cyanobacteria in extreme environments exposed to high doses of UV radiations on modern and early Earth. Among these molecules, the halochromic pigment gloeocapsin remains poorly characterized and studied. In this study, we identified a gloeocapsin-producing cultivable cyanobacteria: the strain Phormidesmis nigrescens ULC007. We succeeded to extract, to partially purify, and to compare the dark blue pigment from both the ULC007 culture and an environmental Gloeocapsa alpina dominated sample. FT-IR and Raman spectra of G. alpina and P. nigrescens ULC007 pigment extracts strongly suggested a common backbone structure. The high-pressure liquid chromatography-UV-MS/MS analysis of the ULC007 pigment extract allowed to narrow down the molecular formula of gloeocapsin to potentially five candidates within three classes of halochromic molecules: anthraquinone derivatives, coumarin derivatives, and flavonoids. With the discovery of gloeocapsin in P. nigrescens, the production of this pigment is now established for three lineages of cyanobacteria (including G. alpina, P. nigrescens, and Solentia paulocellulare) that belong to three distinct orders (Chroococcales, Pleurocapsales, Synechoccocales), inhabiting very diverse environments. This suggests that gloeocapsin production was a trait of their common ancestor or was acquired by lateral gene transfer. This work represents an important step toward the elucidation of the structure of this enigmatic pigment and its biosynthesis, and it potentially provides a new biosignature for ancient cyanobacteria. It also gives a glimpse on the evolution of UV protection strategies, which are relevant for early phototrophic life on Earth and possibly beyond.
Collapse
Affiliation(s)
- Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Andréa McCann
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Cédric Malherbe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Gauthier Eppe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-CIP, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Philippe Jacques
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro UMRt 1158, University of Liège, Gembloux, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| |
Collapse
|
25
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Differentiation of Bacillus cereus and Bacillus thuringiensis Using Genome-Guided MALDI-TOF MS Based on Variations in Ribosomal Proteins. Microorganisms 2022; 10:microorganisms10050918. [PMID: 35630362 PMCID: PMC9146703 DOI: 10.3390/microorganisms10050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Bacillus cereus and B. thuringiensis are closely related species that are relevant to foodborne diseases and biopesticides, respectively. Unambiguous differentiation of these two species is crucial for bacterial taxonomy. As genome analysis offers an objective but time-consuming classification of B. cereus and B. thuringiensis, in the present study, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to accelerate this process. By combining in silico genome analysis and MALDI-TOF MS measurements, four species-specific peaks of B. cereus and B. thuringiensis were screened and identified. The species-specific peaks of B. cereus were m/z 3211, 6427, 9188, and 9214, and the species-specific peaks of B. thuringiensis were m/z 3218, 6441, 9160, and 9229. All the above peaks represent ribosomal proteins, which are conserved and consistent with the phylogenetic relationship between B. cereus and B. thuringiensis. The specificity of the peaks was robustly verified using common foodborne pathogens. Thus, we concluded that genome-guided MALDI-TOF MS allows high-throughput differentiation of B. cereus and B. thuringiensis and provides a framework for differentiating other closely related species.
Collapse
|
27
|
Azuma T, Pánek T, Tice AK, Kayama M, Kobayashi M, Miyashita H, Suzaki T, Yabuki A, Brown MW, Kamikawa R. An enigmatic stramenopile sheds light on early evolution in Ochrophyta plastid organellogenesis. Mol Biol Evol 2022; 39:6555011. [PMID: 35348760 PMCID: PMC9004409 DOI: 10.1093/molbev/msac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.
Collapse
Affiliation(s)
- Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Japan
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, Japan
| |
Collapse
|
28
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
29
|
ORPER: A Workflow for Constrained SSU rRNA Phylogenies. Genes (Basel) 2021; 12:genes12111741. [PMID: 34828348 PMCID: PMC8623055 DOI: 10.3390/genes12111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
The continuous increase in sequenced genomes in public repositories makes the choice of interesting bacterial strains for future sequencing projects ever more complicated, as it is difficult to estimate the redundancy between these strains and the already available genomes. Therefore, we developed the Nextflow workflow “ORPER”, for “ORganism PlacER”, containerized in Singularity, which allows the determination the phylogenetic position of a collection of organisms in the genomic landscape. ORPER constrains the phylogenetic placement of SSU (16S) rRNA sequences in a multilocus reference tree based on ribosomal protein genes extracted from public genomes. We demonstrate the utility of ORPER on the Cyanobacteria phylum, by placing 152 strains of the BCCM/ULC collection.
Collapse
|
30
|
Sandmann G. Diversity and origin of carotenoid biosynthesis: its history of coevolution towards plant photosynthesis. THE NEW PHYTOLOGIST 2021; 232:479-493. [PMID: 34324713 DOI: 10.1111/nph.17655] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The development of photosynthesis was a highlight in the progression of bacteria. In addition to the photosystems with their structural proteins, the photosynthesis apparatus consists of different cofactors including essential carotenoids. Thus, the evolution of the carotenoid pathways in relation to the functionality of the resulting structures in photosynthesis is the focus of this review. Analysis of carotenoid pathway genes indicates early evolutionary roots in prokaryotes. The pathway complexity leading to a multitude of structures is a result of gene acquisition, including their functional modifications, emergence of novel genes and gene exchange between species. Along with the progression of photosynthesis, carotenoid pathways coevolved with photosynthesis according to their advancing functionality. Cyanobacteria, with their oxygenic photosynthesis, became a landmark for evolutionary events including carotenogenesis. Concurrent with endosymbiosis, the cyanobacterial carotenoid pathways were inherited into algal plastids. In the lineage leading to Chlorophyta and plants, carotenoids evolved to their prominent role in protection and regulation of light energy input as constituents of a highly efficient light-harvesting complex.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Institute of Molecular Biosciences, Goethe-University Frankfurt/M, Max von Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
31
|
Fournier GP, Moore KR, Rangel LT, Payette JG, Momper L, Bosak T. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc Biol Sci 2021; 288:20210675. [PMID: 34583585 PMCID: PMC8479356 DOI: 10.1098/rspb.2021.0675] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
The record of the coevolution of oxygenic phototrophs and the environment is preserved in three forms: genomes of modern organisms, diverse geochemical signals of surface oxidation and diagnostic Proterozoic microfossils. When calibrated by fossils, genomic data form the basis of molecular clock analyses. However, different interpretations of the geochemical record, fossil calibrations and evolutionary models produce a wide range of age estimates that are often conflicting. Here, we show that multiple interpretations of the cyanobacterial fossil record are consistent with an Archean origin of crown-group Cyanobacteria. We further show that incorporating relative dating information from horizontal gene transfers greatly improves the precision of these age estimates, by both providing a novel empirical criterion for selecting evolutionary models, and increasing the stringency of sampling of posterior age estimates. Independent of any geochemical evidence or hypotheses, these results support oxygenic photosynthesis evolving at least several hundred million years before the Great Oxygenation Event (GOE), a rapid diversification of major cyanobacterial lineages around the time of the GOE, and a post-Cryogenian origin of extant marine picocyanobacterial diversity.
Collapse
Affiliation(s)
- G. P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K. R. Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Planetary Science Section, NASA Jet Propulsion Laboratory, Pasadena, CA, USA
| | - L. T. Rangel
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J. G. Payette
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L. Momper
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Exponent, Inc., Pasadena, CA, USA
| | - T. Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
32
|
Richardson KH, Wright JJ, Šimėnas M, Thiemann J, Esteves AM, McGuire G, Myers WK, Morton JJL, Hippler M, Nowaczyk MM, Hanke GT, Roessler MM. Functional basis of electron transport within photosynthetic complex I. Nat Commun 2021; 12:5387. [PMID: 34508071 PMCID: PMC8433477 DOI: 10.1038/s41467-021-25527-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Photosynthesis and respiration rely upon a proton gradient to produce ATP. In photosynthesis, the Respiratory Complex I homologue, Photosynthetic Complex I (PS-CI) is proposed to couple ferredoxin oxidation and plastoquinone reduction to proton pumping across thylakoid membranes. However, little is known about the PS-CI molecular mechanism and attempts to understand its function have previously been frustrated by its large size and high lability. Here, we overcome these challenges by pushing the limits in sample size and spectroscopic sensitivity, to determine arguably the most important property of any electron transport enzyme - the reduction potentials of its cofactors, in this case the iron-sulphur clusters of PS-CI (N0, N1 and N2), and unambiguously assign them to the structure using double electron-electron resonance. We have thus determined the bioenergetics of the electron transfer relay and provide insight into the mechanism of PS-CI, laying the foundations for understanding of how this important bioenergetic complex functions.
Collapse
Affiliation(s)
- Katherine H. Richardson
- grid.4868.20000 0001 2171 1133School of Biological and Chemical Sciences, Queen Mary University of London, London, UK ,grid.7445.20000 0001 2113 8111Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - John J. Wright
- grid.4868.20000 0001 2171 1133School of Biological and Chemical Sciences, Queen Mary University of London, London, UK ,grid.14105.310000000122478951Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, UK
| | - Mantas Šimėnas
- grid.83440.3b0000000121901201London Centre for Nanotechnology, University College London, London, UK
| | - Jacqueline Thiemann
- grid.5570.70000 0004 0490 981XPlant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Ana M. Esteves
- grid.4868.20000 0001 2171 1133School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Gemma McGuire
- grid.4868.20000 0001 2171 1133School of Biological and Chemical Sciences, Queen Mary University of London, London, UK ,grid.7445.20000 0001 2113 8111Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - William K. Myers
- grid.4991.50000 0004 1936 8948Inorganic Chemistry, University of Oxford, Oxford, UK
| | - John J. L. Morton
- grid.83440.3b0000000121901201London Centre for Nanotechnology, University College London, London, UK ,grid.83440.3b0000000121901201Department of Electronic & Electrical Engineering, UCL, London, UK
| | - Michael Hippler
- grid.5949.10000 0001 2172 9288Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany ,grid.261356.50000 0001 1302 4472Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Marc M. Nowaczyk
- grid.5570.70000 0004 0490 981XPlant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Guy T. Hanke
- grid.4868.20000 0001 2171 1133School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Maxie M. Roessler
- grid.7445.20000 0001 2113 8111Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| |
Collapse
|
33
|
Moore KR, Gong J, Pajusalu M, Skoog EJ, Xu M, Feliz Soto T, Sojo V, Matreux T, Baldes MJ, Braun D, Williford K, Bosak T. A new model for silicification of cyanobacteria in Proterozoic tidal flats. GEOBIOLOGY 2021; 19:438-449. [PMID: 33979014 DOI: 10.1111/gbi.12447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Microbial fossils preserved by early diagenetic chert provide a window into the Proterozoic biosphere, but seawater chemistry, microbial processes, and the interactions between microbes and the environment that contributed to this preservation are not well constrained. Here, we use fossilization experiments to explore the processes that preserve marine cyanobacterial biofilms by the precipitation of amorphous silica in a seawater medium that is analogous to Proterozoic seawater. These experiments demonstrate that the exceptional silicification of benthic marine cyanobacteria analogous to the oldest diagnostic cyanobacterial fossils requires interactions among extracellular polymeric substances (EPS), photosynthetically induced pH changes, magnesium cations (Mg2+ ), and >70 ppm silica.
Collapse
Affiliation(s)
- Kelsey R Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jian Gong
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mihkel Pajusalu
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tartu Observatory, University of Tartu, Tõravere, Estonia
| | - Emilie J Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan Xu
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Victor Sojo
- American Museum of Natural History, New York, NY, USA
- Department of Physics, Ludwig Maximilian University, München, Germany
| | - Thomas Matreux
- Department of Physics, Ludwig Maximilian University, München, Germany
| | - Matthew J Baldes
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dieter Braun
- Department of Physics, Ludwig Maximilian University, München, Germany
| | - Kenneth Williford
- Jet Propulsion Laboratory, California Institute ofTechnology, Pasadena, CA, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Abstract
The origin of plastids (chloroplasts) by endosymbiosis stands as one of the most important events in the history of eukaryotic life. The genetic, biochemical, and cell biological integration of a cyanobacterial endosymbiont into a heterotrophic host eukaryote approximately a billion years ago paved the way for the evolution of diverse algal groups in a wide range of aquatic and, eventually, terrestrial environments. Plastids have on multiple occasions also moved horizontally from eukaryote to eukaryote by secondary and tertiary endosymbiotic events. The overall picture of extant photosynthetic diversity can best be described as “patchy”: Plastid-bearing lineages are spread far and wide across the eukaryotic tree of life, nested within heterotrophic groups. The algae do not constitute a monophyletic entity, and understanding how, and how often, plastids have moved from branch to branch on the eukaryotic tree remains one of the most fundamental unsolved problems in the field of cell evolution. In this review, we provide an overview of recent advances in our understanding of the origin and spread of plastids from the perspective of comparative genomics. Recent years have seen significant improvements in genomic sampling from photosynthetic and nonphotosynthetic lineages, both of which have added important pieces to the puzzle of plastid evolution. Comparative genomics has also allowed us to better understand how endosymbionts become organelles.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
35
|
Kleiner FH, Vesteg M, Steiner JM. An ancient glaucophyte c6-like cytochrome related to higher plant cytochrome c6A is imported into muroplasts. J Cell Sci 2021; 134:261815. [DOI: 10.1242/jcs.255901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Cytochrome c6 is a redox carrier in the thylakoid lumen of cyanobacteria and some eukaryotic algae. Although the isofunctional plastocyanin is present in land plants and the green alga Chlamydomonas reinhardtii, these organisms also possess a cytochrome c6-like protein designated as cytochrome c6A. Two other cytochrome c6-like groups, c6B and c6C, have been identified in cyanobacteria. In this study, we have identified a novel c6-like cytochrome called PetJ2, which is encoded in the nuclear genome of Cyanophora paradoxa, a member of the glaucophytes – the basal branch of the Archaeplastida. We propose that glaucophyte PetJ2 protein is related to cyanobacterial c6B and c6C cytochromes, and that cryptic green algal and land plant cytochromes c6A evolved from an ancestral archaeplastidial PetJ2 protein. In vitro import experiments with isolated muroplasts revealed that PetJ2 is imported into plastids. Although it harbors a twin-arginine motif in its thylakoid-targeting peptide, which is generally indicative of thylakoid import via the Tat import pathway, our import experiments with isolated muroplasts and the heterologous pea thylakoid import system revealed that PetJ2 uses the Sec pathway instead of the Tat import pathway.
Collapse
Affiliation(s)
- Friedrich Hans Kleiner
- Institute of Biology – Plant Physiology, Martin Luther University Halle-Wittenberg, Halle/Saale 06099, Germany
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Jürgen Michael Steiner
- Institute of Biology – Plant Physiology, Martin Luther University Halle-Wittenberg, Halle/Saale 06099, Germany
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| |
Collapse
|
36
|
Ulrich NJ, Uchida H, Kanesaki Y, Hirose E, Murakami A, Miller SR. Reacquisition of light-harvesting genes in a marine cyanobacterium confers a broader solar niche. Curr Biol 2021; 31:1539-1546.e4. [PMID: 33571437 DOI: 10.1016/j.cub.2021.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
The evolution of phenotypic plasticity, i.e., the environmental induction of alternative phenotypes by the same genotype, can be an important mechanism of biological diversification.1,2 For example, an evolved increase in plasticity may promote ecological niche expansion as well as the innovation of novel traits;3 however, both the role of phenotypic plasticity in adaptive evolution and its underlying mechanisms are still poorly understood.4,5 Here, we report that the Chlorophyll d-producing marine cyanobacterium Acaryochloris marina strain MBIC11017 has evolved greater photosynthetic plasticity by reacquiring light-harvesting genes via horizontal gene transfer. The genes, which had been lost by the A. marina ancestor, are involved in the production and degradation of the light-harvesting phycobiliprotein phycocyanin. A. marina MBIC11017 exhibits a high degree of wavelength-dependence in phycocyanin production, and this ability enables it to grow with yellow and green light wavelengths that are inaccessible to other A. marina. Consequently, this strain has a broader solar niche than its close relatives. We discuss the role of horizontal gene transfer for regaining a lost phenotype in light of Dollo's Law6 that the loss of a complex trait is irreversible.
Collapse
Affiliation(s)
- Nikea J Ulrich
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Hiroko Uchida
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Euichi Hirose
- Department of Chemistry, Biology & Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
37
|
Hernandez AM, Ryan JF. Six-state Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses. Syst Biol 2021; 70:1200-1212. [PMID: 33837789 PMCID: PMC8513762 DOI: 10.1093/sysbio/syab027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023] Open
Abstract
Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification. Our results have important implications for the more than 90 published papers that have incorporated six-state recoding, many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.]
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| |
Collapse
|
38
|
Gözen I, Dommersnes P. Biological lipid nanotubes and their potential role in evolution. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2020; 229:2843-2862. [PMID: 33224439 PMCID: PMC7666715 DOI: 10.1140/epjst/e2020-000130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The membrane of cells and organelles are highly deformable fluid interfaces, and can take on a multitude of shapes. One distinctive and particularly interesting property of biological membranes is their ability to from long and uniform nanotubes. These nanoconduits are surprisingly omnipresent in all domains of life, from archaea, bacteria, to plants and mammals. Some of these tubes have been known for a century, while others were only recently discovered. Their designations are different in different branches of biology, e.g. they are called stromule in plants and tunneling nanotubes in mammals. The mechanical transformation of flat membranes to tubes involves typically a combination of membrane anchoring and external forces, leading to a pulling action that results in very rapid membrane nanotube formation - micrometer long tubes can form in a matter of seconds. Their radius is set by a mechanical balance of tension and bending forces. There also exists a large class of membrane nanotubes that form due to curvature inducing molecules. It seems plausible that nanotube formation and functionality in plants and animals may have been inherited from their bacterial ancestors during endosymbiotic evolution. Here we attempt to connect observations of nanotubes in different branches of biology, and outline their similarities and differences with the aim of providing a perspective on their joint functions and evolutionary origin.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318 Norway
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0315 Norway
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 412 96 Sweden
| | - Paul Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Hoegskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
39
|
Sheridan KJ, Duncan EJ, Eaton-Rye JJ, Summerfield TC. The diversity and distribution of D1 proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2020; 145:111-128. [PMID: 32556852 DOI: 10.1007/s11120-020-00762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The psbA gene family in cyanobacteria encodes different forms of the D1 protein that is part of the Photosystem II reaction centre. We have identified a phylogenetically distinct D1 group that is intermediate between previously identified G3-D1 and G4-D1 proteins (Cardona et al. Mol Biol Evol 32:1310-1328, 2015). This new group contained two subgroups: D1INT, which was frequently in the genomes of heterocystous cyanobacteria and D1FR that was part of the far-red light photoacclimation gene cluster of cyanobacteria. In addition, we have identified subgroups within G3, the micro-aerobically expressed D1 protein. There are amino acid changes associated with each of the subgroups that might affect the function of Photosystem II. We show a phylogenetically broad range of cyanobacteria have these D1 types, as well as the genes encoding the G2 protein and chlorophyll f synthase. We suggest identification of additional D1 isoforms and the presence of multiple D1 isoforms in phylogenetically diverse cyanobacteria supports the role of these proteins in conferring a selective advantage under specific conditions.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth J Duncan
- Department of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
40
|
Blue-/Green-Light-Responsive Cyanobacteriochromes Are Cell Shade Sensors in Red-Light Replete Niches. iScience 2020; 23:100936. [PMID: 32146329 PMCID: PMC7063230 DOI: 10.1016/j.isci.2020.100936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 11/23/2022] Open
Abstract
Cyanobacteriochrome (CBCRs) photoreceptors show various photochemical properties, but their ecophysiological functions remain elusive. Here, we report that the blue/green CBCRs SesA/B/C can serve as physiological sensors of cell density. Because cyanobacterial cells show lower transmittance of blue light than green light, higher cell density gives more green-light-enriched irradiance to cells. The cell-density-dependent suppression of cell aggregation under blue-/green-mixed light and white light conditions support this idea. Such a sensing mechanism may provide information about the cell position in cyanobacterial mats in hot springs, the natural habitat of Thermosynechococcus. This cell-position-dependent SesA/B/C-mediated regulation of cellular sessility (aggregation) might be ecophysiologically essential for the reorganization and growth of phototrophic mats. We also report that the green-light-induced dispersion of cell aggregates requires red-light-driven photosynthesis. Blue/green CBCRs might work as shade detectors in a different niche than red/far-red phytochromes, which may be why CBCRs have evolved in cyanobacteria. Blue- and green-light-sensing cyanobacteriochromes can be sensors of cell density They may provide information about the cell position in microbial mats Green-light-induced dispersion of aggregates needs red-light-driven photosynthesis Cyanobacteriochromes might work in a different niche than red/far-red phytochromes
Collapse
|
41
|
Liu Y, Cui M, Zhang J, Gao B. Impacts of antibiotic contaminants on Microcystis aeruginosa during potassium permanganate treatment. HARMFUL ALGAE 2020; 92:101741. [PMID: 32113608 DOI: 10.1016/j.hal.2020.101741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Application of KMnO4 for preventing the formation of cyanobacterial bloom at early growth stage has not been reported. Antibiotics generate hormesis effects in cyanobacteria at currently reported concentrations, which may negatively affect the control of cyanobacterial bloom. This study assessed the treatment performance of KMnO4 in Microcystis aeruginosa with and without the existence of the antibiotic mixture composed of four simultaneously detected antibiotics in aquatic environments (sulfamethoxazole, ciprofloxacin, amoxicillin and tetracycline). KMnO4 downregulated two chlorophyll a synthetases (chlG and chlM), 14 photosynthesis-related proteins and two microcystin synthetases (mcyB and mcyD) in M. aeruginosa, and reduced chlorophyll a content, photosynthetic activity and microcystin concentration in a dose-dependent manner. Inhibition of photosynthesis and biosynthesis resulted in extended lag phase and decreased growth rate in KMnO4-treated Microcystis aeruginosa. In contrast, mixed antibiotics upregulated 6 oxidation-reduction proteins, a cell division regulatory protein (MAE_37210), 14 photosynthesis-related proteins, 14 biosynthesis-related proteins (including microcystin synthetases mcyA and mcyB) and a microcystin transport protein (mcyH), which consequently reduced oxidative stress, shortened lag phase as well as significantly stimulated (p < 0.05) cyanobacterial growth, photosynthetic activity, microcystin synthesis and microcystin release in KMnO4-treated M. aeruginosa. An optimal dose of 3 mg L-1 was suggested for KMnO4 treatment. Mixed antibiotics should be controlled below a no-impact threshold of 20 ng L-1 (5 ng L-1 for each antibiotic) for eliminating their adverse effects during KMnO4 treatment of cyanobacteria in antibiotics polluted environments.
Collapse
Affiliation(s)
- Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Mengwen Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|