1
|
Koncz M, Stirling T, Hadj Mehdi H, Méhi O, Eszenyi B, Asbóth A, Apjok G, Tóth Á, Orosz L, Vásárhelyi BM, Ari E, Daruka L, Polgár TF, Schneider G, Zalokh SA, Számel M, Fekete G, Bohár B, Nagy Varga K, Visnyovszki Á, Székely E, Licker MS, Izmendi O, Costache C, Gajic I, Lukovic B, Molnár S, Szőcs-Gazdi UO, Bozai C, Indreas M, Kristóf K, Van der Henst C, Breine A, Pál C, Papp B, Kintses B. Genomic surveillance as a scalable framework for precision phage therapy against antibiotic-resistant pathogens. Cell 2024; 187:5901-5918.e28. [PMID: 39332413 DOI: 10.1016/j.cell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.
Collapse
Affiliation(s)
- Mihály Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Hiba Hadj Mehdi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Bálint Eszenyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - András Asbóth
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary
| | - Gábor Apjok
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ákos Tóth
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - László Orosz
- Department of Medical Microbiology, University of Szeged, Szent-Györgyi Albert Medical School, Dom tér 10, 6720 Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Tamás Ferenc Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Theoretical Medicine Doctoral School, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Sif Aldin Zalokh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Bohár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor Commonwealth Building Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Karolina Nagy Varga
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ádám Visnyovszki
- South-Pest Central Hospital National Institute of Hematology and Infectious Diseases, Nagyvárad tér 1, 1097 Budapest, Hungary; Doctoral School of Interdisciplinary Medical Sciences, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Edit Székely
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Str. Gheorghe Marinescu 38, 540142 Targu Mures, Romania; County Emergency Clinical Hospital of Targu Mures, Str. Dr. Gh. Marinescu 50, 540136 Targu Mures, Romania
| | - Monica-Sorina Licker
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Oana Izmendi
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania; Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania
| | - Carmen Costache
- Department of Microbiology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, Bulevar Zorana Djindjica 152a, Belgrade, Serbia
| | - Szabolcs Molnár
- Emergency County Hospital Miercurea-Ciuc, Str. Doctor Dénes László 2, 530173 Miercurea Ciuc, Romania
| | | | - Csilla Bozai
- County Emergency Hospital Satu Mare, Str. Ravensburg 1-3, 440192 Satu Mare, Romania
| | - Marina Indreas
- Bacau County Emergency Hospital, Str. Haret Spiru 2-4, 600114 Bacau, Romania
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Üllői út 78/b, 1083 Budapest, Hungary
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary; National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary.
| |
Collapse
|
2
|
Anastassopoulou C, Ferous S, Petsimeri A, Gioula G, Tsakris A. Phage-Based Therapy in Combination with Antibiotics: A Promising Alternative against Multidrug-Resistant Gram-Negative Pathogens. Pathogens 2024; 13:896. [PMID: 39452768 PMCID: PMC11510143 DOI: 10.3390/pathogens13100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The continued rise in antimicrobial resistance poses a serious threat to public health worldwide. The use of phages that can have bactericidal activity without disrupting the normal flora represents a promising alternative treatment method. This practice has been successfully applied for decades, mainly in Eastern Europe, and has recently been used as an emergency therapy for compassionate care in the United States. Here, we provide a comprehensive review of the pre-clinical and clinical applications of phage therapy concerning three major Gram-negative pathogens: Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The advantages and the challenges of expanding the usage of phages as an alternative or adjunctive treatment for antimicrobial-resistant bacterial infections are discussed. We emphasize the virologic complexities of using the highly adaptable phage populations as molecular tools, along with antibiotic chemical compounds, to effectively combat rapidly coevolving pathogenic bacteria in the host microenvironment. Pre-clinical studies, isolated clinical reports and a few randomized clinical trials have shown that bacteriophages can be effective in treating multidrug-resistant bacterial infections. The ability of some phages to revert the resistance against antibiotics, and possibly also against the human complement and other phages, appears to be a great advantage of phage therapy despite the inevitable emergence of phage-resistant strains. Bacteriophages (or specific phage-derived products) can enhance antimicrobial efficacy by reducing bacterial virulence via the alteration of basic bacterial structures, primarily of the cellular wall and membrane. Although several issues remain open regarding their effective clinical application, it appears that phage-based therapeutics in combination with antibiotics can provide an effective solution to the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (S.F.); (A.P.)
| | - Stefanos Ferous
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (S.F.); (A.P.)
| | - Aikaterini Petsimeri
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (S.F.); (A.P.)
| | - Georgia Gioula
- Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (S.F.); (A.P.)
| |
Collapse
|
3
|
Lapras B, Marchand C, Merienne C, Medina M, Kolenda C, Laurent F, Pirot F. Rationalisation of the purification process for a phage active pharmaceutical ingredient. Eur J Pharm Biopharm 2024; 203:114438. [PMID: 39111580 DOI: 10.1016/j.ejpb.2024.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
The resurgence of phage therapy, once abandoned in the early 20th century in part due to issues related to the purification process and stability, is spurred by the global threat of antibiotic resistance. Engineering advances have enabled more precise separation unit operations, improving overall purification efficiency. The present review discusses the physicochemical properties of impurities commonly found in a phage lysate, e.g., contaminants, phage-related impurities, and propagation-related impurities. Differences in phages and bacterial impurities properties are leveraged to elaborate a four-step phage purification process: clarification, capture and concentration, subsequent purification and polishing. Ultimately, a framework for rationalising the development of a purification process is proposed, considering three operational characteristics, i.e., scalability, transferability to various phages and duration. This guide facilitates the preselection of a sequence of unit operations, which can then be confronted with the expected impurities to validate the theoretical capacity of the process to purify the phage lysate.
Collapse
Affiliation(s)
- B Lapras
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France.
| | - C Marchand
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - C Merienne
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - M Medina
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - C Kolenda
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Laurent
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Pirot
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France
| |
Collapse
|
4
|
Xiang Y, Bao X, Sun T. Evaluation of bacteriophages for the alleviation of potential bacterial contamination risks in developmental engineering. Biotechnol Bioeng 2024; 121:3211-3223. [PMID: 39382053 DOI: 10.1002/bit.28778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 10/10/2024]
Abstract
This research aimed to address the potential bacterial contamination risks in developmental engineering (DE) using bacteriophages. To compare and contrast the exemplar Escherichia coli T4 and M13 bacteriophages, human dermal fibroblasts cultivated on culture plates, natural cellulosic scaffolds, and poly(methyl methacrylate) (PMMA) particles were utilized as two-dimensional (2D) cell, three-dimensional (3D) tissue, and modular tissue culture models, respectively. When directly introduced into these distinct culture systems, both phages survived, exhibited no significant effects on the cultured cells or tissues, yet displayed their potentials to alleviate the infections caused by corresponding bacterial host cells. Apart from direct addition into the culture medium, both phages were also coated on PMMA, polystyrene, poly(lactic acid) particles with different diameters (5, 10, 30, and 100 µm) and cellulosic scaffolds. The coated phages endured the coating processes and demonstrated their viabilities in plaque assays. Further testing indicated that the phages coated on the PMMA particles tolerated multiple deliberate rinses and centrifugations, but not thermal treatment at 60-80°C. In summary, T4 and M13 bacteriophages not only manifested their antibacterial functions in diverse 2D cell, 3D tissue, and modular tissue culture systems, but also demonstrated their potentials of coating modular scaffolds to alleviate the bacterial contamination risks in DE.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Materials, Loughborough University, Loughborough, UK
| | - Xujin Bao
- Department of Materials, Loughborough University, Loughborough, UK
| | - Tao Sun
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
6
|
Otava UE, Tervo L, Havela R, Vuotari L, Ylänne M, Asplund A, Patpatia S, Kiljunen S. Phage-Antibiotic Combination Therapy against Recurrent Pseudomonas Septicaemia in a Patient with an Arterial Stent. Antibiotics (Basel) 2024; 13:916. [PMID: 39452183 PMCID: PMC11504013 DOI: 10.3390/antibiotics13100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Intravascular stent infections are often associated with high risks of morbidity and mortality. We report here a case of a patient with an arterial stent and recurrent Pseudomonas septicaemias successfully treated with phage-meropenem combination therapy. Methods: A 75-year-old female with arteriosclerosis and comorbidities went through a femoropopliteal bypass with prosthesis in the right inguinal area. After the bypass, she developed a recurring Pseudomonas aeruginosa infection and also neutropenia during different antibiotics. A rapidly growing pseudoaneurysm in the right inguinal area led to an emergency intra-arterial stent placement during blood stream infection, later suspected to host a P. aeruginosa biofilm. Removing the stent was deemed precarious, and phage therapy was considered as a compassionate treatment option. A three-phage cocktail infecting the P. aeruginosa strain was prepared and administered intravenously together with meropenem for two weeks, after which, a ten-month follow-up was carried out. Results: No adverse reactions occurred during the phage therapy treatment, while infection markers were normalized. In addition, recovery was seen in a PET-CT scan. During the 10-month follow-up, no further P. aeruginosa septicaemias occurred. Conclusions: Phage-meropenem combination therapy was thus found safe and effective in the treatment of recurrent Pseudomonas septicaemia in a patient with an arterial stent.
Collapse
Affiliation(s)
- Ulla Elina Otava
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland (L.T.); (R.H.)
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Laura Tervo
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland (L.T.); (R.H.)
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Riikka Havela
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland (L.T.); (R.H.)
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Liisa Vuotari
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Matti Ylänne
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
| | - Annette Asplund
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
| | - Sheetal Patpatia
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Programs Unit and Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland (S.P.)
- PrecisionPhage Ltd., 40500 Jyväskylä, Finland
| |
Collapse
|
7
|
Hellwig P, Dittrich A, Heyer R, Reichl U, Benndorf D. Detection, isolation and characterization of phage-host complexes using BONCAT and click chemistry. Front Microbiol 2024; 15:1434301. [PMID: 39296306 PMCID: PMC11409252 DOI: 10.3389/fmicb.2024.1434301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Phages are viruses that infect prokaryotes and can shape microbial communities by lysis, thus offering applications in various fields. However, challenges exist in sampling, isolation and accurate prediction of the host specificity of phages as well as in the identification of newly replicated virions in response to environmental challenges. Methods A new workflow using biorthogonal non-canonical amino acid tagging (BONCAT) and click chemistry (CC) allowed the combined analysis of phages and their hosts, the identification of newly replicated virions, and the specific tagging of phages with biotin for affinity chromatography. Results Replication of phage λ in Escherichia coli was selected as a model for workflow development. Specific labeling of phage λ proteins with the non-canonical amino acid 4-azido-L-homoalanine (AHA) during phage development in E. coli was confirmed by LC-MS/MS. Subsequent tagging of AHA with fluorescent dyes via CC allowed the visualization of phages adsorbed to the cell surface by fluorescence microscopy. Flow cytometry enabled the automated detection of these fluorescent phage-host complexes. Alternatively, AHA-labeled phages were tagged with biotin for purification by affinity chromatography. Despite biotinylation the tagged phages could be purified and were infectious after purification. Discussion Applying this approach to environmental samples would enable host screening without cultivation. A flexible and powerful workflow for the detection and enrichment of phages and their hosts in pure cultures has been established. The developed method lays the groundwork for future workflows that could enable the isolation of phage-host complexes from diverse complex microbial communities using fluorescence-activated cell sorting or biotin purification. The ability to expand and customize the workflow through the growing range of compounds for CC offers the potential to develop a versatile toolbox in phage research. This work provides a starting point for these further studies by providing a comprehensive standard operating procedure.
Collapse
Affiliation(s)
- Patrick Hellwig
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Heyer
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße, Bielefeld, Germany
| | - Udo Reichl
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| | - Dirk Benndorf
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
- Department of Microbiology, Anhalt University of Applied Sciences, Köthen, Germany
| |
Collapse
|
8
|
Li S, Wei B, Xu L, Cong C, Murtaza B, Wang L, Li X, Li J, Xu M, Yin J, Xu Y. In vivo efficacy of phage cocktails against carbapenem resistance Acinetobacter baumannii in the rat pneumonia model. J Virol 2024; 98:e0046724. [PMID: 38864621 PMCID: PMC11265278 DOI: 10.1128/jvi.00467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Shibin Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingdong Wei
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Le Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Jibin Li
- R&D Centre, Liaoning Innovation Center for Phage Application Professional Technology, Dalian, China
| | - Mu Xu
- R&D Department, Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, China
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- R&D Department, Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, China
| |
Collapse
|
9
|
Kelly L, Jameson E. Bacteriophage cocktail shows no toxicity and improves the survival of Galleria mellonella infected with Klebsiella spp. J Virol 2024; 98:e0027224. [PMID: 38771043 PMCID: PMC11237459 DOI: 10.1128/jvi.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Klebsiella spp. are causative agents of healthcare-associated infections in patients who are immunocompromised and use medical devices. The antibiotic resistance crisis has led to an increase in infections caused by these bacteria, which can develop into potentially life-threatening illnesses if not treated swiftly and effectively. Thus, new treatment options for Klebsiella are urgently required. Phage therapy can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria infections. The aim of the present study was to produce a safe and effective phage cocktail treatment against Klebsiella pneumoniae and Klebsiella oxytoca, both in liquid in vitro culture and an in vivo Galleria mellonella infection model. The phage cocktail was significantly more effective at killing K. pneumoniae and K. oxytoca strains compared with monophage treatments. Preliminary phage cocktail safety was demonstrated through application in the in vivo G. mellonella model: where the phage cocktail induced no toxic side effects in G. mellonella. In addition, the phage cocktail significantly improved the survival of G. mellonella when administered as a prophylactic treatment, compared with controls. In conclusion, our phage cocktail was demonstrated to be safe and effective against Klebsiella spp. in the G. mellonella infection model. This provides a strong case for future treatment for Klebsiella infections, either as an alternative or adjunct to antibiotics.IMPORTANCEKlebsiella infections are a concern in individuals who are immunocompromised and are becoming increasingly difficult to treat with antibiotics due to their drug-resistant properties. Bacteriophage is one potential alternative therapy that could be used to tackle these infections. The present study describes the design of a non-toxic phage cocktail that improved the survival of Galleria mellonella infected with Klebsiella. This phage cocktail demonstrates potential for the safe and effective treatment of Klebsiella infections, as an adjunct or alternative to antibiotics.
Collapse
Affiliation(s)
- Lucy Kelly
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Environmental and Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
10
|
Jhandai P, Mittal D, Gupta R, Kumar M, Khurana R. Therapeutics and prophylactic efficacy of novel lytic Escherichia phage vB_EcoS_PJ16 against multidrug-resistant avian pathogenic E. coli using in vivo study. Int Microbiol 2024; 27:673-687. [PMID: 37632591 DOI: 10.1007/s10123-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.
Collapse
Affiliation(s)
- Punit Jhandai
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Rajesh Khurana
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| |
Collapse
|
11
|
Dominic C, Pye HV, Mishra EK, Adriaenssens EM. Bacteriophages for bronchiectasis: treatment of the future? Curr Opin Pulm Med 2024; 30:235-242. [PMID: 38345396 DOI: 10.1097/mcp.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW Bronchiectasis is a chronic respiratory disease characterized by dilated airways, persistent sputum production and recurrent infective exacerbations. The microbiology of bronchiectasis includes various potentially pathogenic microorganisms including Pseudomonas aeruginosa which is commonly cultured from patients' sputum. P. aeruginosa is difficult to eradicate and frequently exhibits antimicrobial resistance. Bacteriophage therapy offers a novel and alternative method to treating bronchiectasis and can be used in conjunction with antibiotics to improve patient outcome. RECENT FINDINGS Thirteen case reports/series to date have successfully used phages to treat infections in bronchiectasis patients, however these studies were constrained to few patients ( n = 32) and utilized personalized phage preparations and adjunct antibiotics. In these studies, phage therapy was delivered by inhalation, intravenously or orally and was well tolerated in most patients without any unfavourable effects. Favourable clinical or microbiological outcomes were seen following phage therapy in many patients. Longitudinal patient follow-up reported regrowth of bacteria and phage neutralization in some studies. There are five randomized clinical controlled trials ongoing aiming to use phage therapy to treat P. aeruginosa associated respiratory conditions, with limited results available to date. SUMMARY More research, particularly robust clinical trials, into how phages can clear respiratory infections, interact with resident microbiota, and how bacteria might develop resistance will be important to establish to ensure the success of this promising therapeutic alternative.
Collapse
Affiliation(s)
- Catherine Dominic
- Department of Respiratory Medicine, Norfolk and Norwich University Hospitals Foundation Trust
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park
| | - Eleanor K Mishra
- Department of Respiratory Medicine, Norfolk and Norwich University Hospitals Foundation Trust
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
12
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
13
|
Fletcher J, Manley R, Fitch C, Bugert C, Moore K, Farbos A, Michelsen M, Alathari S, Senior N, Mills A, Whitehead N, Soothill J, Michell S, Temperton B. The Citizen Phage Library: Rapid Isolation of Phages for the Treatment of Antibiotic Resistant Infections in the UK. Microorganisms 2024; 12:253. [PMID: 38399657 PMCID: PMC10893117 DOI: 10.3390/microorganisms12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial resistance poses one of the greatest threats to global health and there is an urgent need for new therapeutic options. Phages are viruses that infect and kill bacteria and phage therapy could provide a valuable tool for the treatment of multidrug-resistant infections. In this study, water samples collected by citizen scientists as part of the Citizen Phage Library (CPL) project, and wastewater samples from the Environment Agency yielded phages with activity against clinical strains Klebsiella pneumoniae BPRG1484 and Enterobacter cloacae BPRG1482. A total of 169 and 163 phages were found for K. pneumoniae and E. cloacae, respectively, within four days of receiving the strains. A third strain (Escherichia coli BPRG1486) demonstrated cross-reactivity with 42 E. coli phages already held in the CPL collection. Seed lots were prepared for four K. pneumoniae phages and a cocktail combining these phages was found to reduce melanisation in a Galleria mellonella infection model. The resources and protocols utilised by the Citizen Phage Library enabled the rapid isolation and characterisation of phages targeted against multiple strains. In the future, within a clearly defined regulatory framework, phage therapy could be made available on a named-patient basis within the UK.
Collapse
Affiliation(s)
- Julie Fletcher
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Robyn Manley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christian Fitch
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christina Bugert
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Karen Moore
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Audrey Farbos
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Michelle Michelsen
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Shayma Alathari
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Nicola Senior
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Alice Mills
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - Natalie Whitehead
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - James Soothill
- Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Stephen Michell
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Ben Temperton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| |
Collapse
|
14
|
Luong T, Sue AD, Roach DR. Rapid Bench to Bedside Therapeutic Bacteriophage Production. Methods Mol Biol 2024; 2734:67-88. [PMID: 38066363 DOI: 10.1007/978-1-0716-3523-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
It has been over 100 years since bacteriophages (phages) were used as a human therapeutic. Since then, phage production has dramatically evolved. Current phage preparations have fewer adverse effects due to their low bacterial toxin content. As a result, therapeutic phages have become a predominant class of new antimicrobials and are being widely used for compassionate treatment of multidrug-resistant (MDR) infections. We describe herein a protocol for the production and ultrapurification of phages. By this technique, it is possible for a lab experienced with the process to produce >109 plaque-forming units (PFU) per mL of Gram-negative phages that meet FDA endotoxins limits for intravenous infusions in as little as 48 hours. We provide illustrations of the process and tips on how to safely remove bacterial toxins from phage lysates. Although dependent on the phage strain, the approach described can rapidly generate and purify phages for a variety of applications.
Collapse
Affiliation(s)
- Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Andrew D Sue
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
15
|
Zalewska-Piątek B. Phage Therapy-Challenges, Opportunities and Future Prospects. Pharmaceuticals (Basel) 2023; 16:1638. [PMID: 38139765 PMCID: PMC10747886 DOI: 10.3390/ph16121638] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing drug resistance of bacteria to commonly used antibiotics creates the need to search for and develop alternative forms of treatment. Phage therapy fits this trend perfectly. Phages that selectively infect and kill bacteria are often the only life-saving therapeutic option. Full legalization of this treatment method could help solve the problem of multidrug-resistant infectious diseases on a global scale. The aim of this review is to present the prospects for the development of phage therapy, the ethical and legal aspects of this form of treatment given the current situation of such therapy, and the benefits of using phage products in persons for whom available therapeutic options have been exhausted or do not exist at all. In addition, the challenges faced by this form of therapy in the fight against bacterial infections are also described. More clinical studies are needed to expand knowledge about phages, their dosage, and a standardized delivery system. These activities are necessary to ensure that phage-based therapy does not take the form of an experiment but is a standard medical treatment. Bacterial viruses will probably not become a miracle cure-a panacea for infections-but they have a chance to find an important place in medicine.
Collapse
Affiliation(s)
- Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
16
|
Islam MS, Fan J, Pan F. The power of phages: revolutionizing cancer treatment. Front Oncol 2023; 13:1290296. [PMID: 38033486 PMCID: PMC10684691 DOI: 10.3389/fonc.2023.1290296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer is a devastating disease with a high global mortality rate and is projected to increase further in the coming years. Current treatment options, such as chemotherapy and radiation therapy, have limitations including side effects, variable effectiveness, high costs, and limited availability. There is a growing need for alternative treatments that can target cancer cells specifically with fewer side effects. Phages, that infect bacteria but not eukaryotic cells, have emerged as promising cancer therapeutics due to their unique properties, including specificity and ease of genetic modification. Engineered phages can transform cancer treatment by targeting cancer cells while sparing healthy ones. Phages exhibit versatility as nanocarriers, capable of delivering therapeutic agents like gene therapy, immunotherapy, and vaccines. Phages are extensively used in vaccine development, with filamentous, tailed, and icosahedral phages explored for different antigen expression possibilities. Engineered filamentous phages bring benefits such as built in adjuvant properties, cost-effectiveness, versatility in multivalent formulations, feasibility of oral administration, and stability. Phage-based vaccines stimulate the innate immune system by engaging pattern recognition receptors on antigen-presenting cells, enhancing phage peptide antigen presentation to B-cells and T-cells. This review presents recent phage therapy advances and challenges in cancer therapy, exploring its versatile tools and vaccine potential.
Collapse
Affiliation(s)
- Md. Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Fan
- Department of Cardiology, Handan Central Hospital, Handan, Hebei, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
17
|
Pennetzdorfer N, Popescu MC, Haddock NL, Dupuy F, Kaber G, Hargil A, Johansson PK, Enejder A, Bollyky PL. Bacterial outer membrane vesicles bound to bacteriophages modulate neutrophil responses to bacterial infection. Front Cell Infect Microbiol 2023; 13:1250339. [PMID: 37965262 PMCID: PMC10641230 DOI: 10.3389/fcimb.2023.1250339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Pseudomonas aeruginosa is a major human pathogen, particularly effective at colonizing the airways of patients with cystic fibrosis. Bacteriophages are highly abundant at infection sites, but their impact on mammalian immunity remains unclear. We previously showed that Pf4, a temperate filamentous bacteriophage produced by P. aeruginosa, modifies the innate immune response to P. aeruginosa infections via TLR3 signaling, but the underlying mechanisms remained unclear. Notably, Pf4 is a single-stranded DNA and lysogenic phage, and its production does not typically result in lysis of its bacterial host. We identified previously that internalization of Pf4 by human or murine immune cells triggers maladaptive viral pattern recognition receptors and resulted in bacterial persistence based on the presence of phage RNA. We report now that Pf4 phage dampens inflammatory responses to bacterial endotoxin and that this is mediated in part via bacterial vesicles attached to phage particles. Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and play a key role in host pathogen interaction. Recently, evidence has emerged that OMVs differentially package small RNAs. In this study, we show that Pf4 are decorated with OMVs that remain affixed to Pf4 despite of purification steps. These phages are endocytosed by human cells and delivered to endosomal vesicles. We demonstrate that short RNAs within the OMVs form hairpin structures that trigger TLR3-dependent type I interferon production and antagonize production of antibacterial cytokines and chemokines. In particular, Pf4 phages inhibit CXCL5, preventing efficient neutrophil chemotaxis in response to endotoxin. Moreover, blocking IFNAR or TLR3 signaling abrogates the effect of Pf4 bound to OMVs on macrophage activation. In a murine acute pneumonia model, mice treated with Pf4 associated with OMVs show significantly less neutrophil infiltration in BAL fluid than mice treated with purified Pf4. These changes in macrophage phenotype are functionally relevant: conditioned media from cells exposed to Pf4 decorated with OMVs are significantly less effective at inducing neutrophil migration in vitro and in vivo. These results suggest that Pf4 phages alter innate immunity to bacterial endotoxin and OMVs, potentially dampening inflammation at sites of bacterial colonization or infection.
Collapse
Affiliation(s)
- Nina Pennetzdorfer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Medeea C. Popescu
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| | - Naomi L. Haddock
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| | - Fannie Dupuy
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Ecole Normale Supérieure, Paris Sciences et Lettres (PSL) University, Paris, France
| | - Gernot Kaber
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Aviv Hargil
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Patrik K. Johansson
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States
- Department of Material Science and Engineering, Stanford University, Stanford, CA, United States
| | - Annika Enejder
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States
- Department of Material Science and Engineering, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
Chung KM, Nang SC, Tang SS. The Safety of Bacteriophages in Treatment of Diseases Caused by Multidrug-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1347. [PMID: 37895818 PMCID: PMC10610463 DOI: 10.3390/ph16101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/29/2023] Open
Abstract
Given the urgency due to the rapid emergence of multidrug-resistant (MDR) bacteria, bacteriophages (phages), which are viruses that specifically target and kill bacteria, are rising as a potential alternative to antibiotics. In recent years, researchers have begun to elucidate the safety aspects of phage therapy with the aim of ensuring safe and effective clinical applications. While phage therapy has generally been demonstrated to be safe and tolerable among animals and humans, the current research on phage safety monitoring lacks sufficient and consistent data. This emphasizes the critical need for a standardized phage safety assessment to ensure a more reliable evaluation of its safety profile. Therefore, this review aims to bridge the knowledge gap concerning phage safety for treating MDR bacterial infections by covering various aspects involving phage applications, including phage preparation, administration, and the implications for human health and the environment.
Collapse
Affiliation(s)
- Ka Mun Chung
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sue C Nang
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Swee Seong Tang
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
19
|
Abuwatfa WH, AlSawaftah N, Darwish N, Pitt WG, Husseini GA. A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs). MEMBRANES 2023; 13:685. [PMID: 37505052 PMCID: PMC10383311 DOI: 10.3390/membranes13070685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction.
Collapse
Affiliation(s)
- Waad H Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Nour AlSawaftah
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Naif Darwish
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - William G Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA
| | - Ghaleb A Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
20
|
Opperman CJ, Wojno J, Goosen W, Warren R. Phages for the treatment of Mycobacterium species. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:41-92. [PMID: 37770176 DOI: 10.1016/bs.pmbts.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Highly drug-resistant strains are not uncommon among the Mycobacterium genus, with patients requiring lengthy antibiotic treatment regimens with multiple drugs and harmful side effects. This alarming increase in antibiotic resistance globally has renewed the interest in mycobacteriophage therapy for both Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria. With the increasing number of genetically well-characterized mycobacteriophages and robust engineering tools to convert temperate phages to obligate lytic phages, the phage cache against extensive drug-resistant mycobacteria is constantly expanding. Synergistic effects between phages and TB drugs are also a promising avenue to research, with mycobacteriophages having several additional advantages compared to traditional antibiotics due to their different modes of action. These advantages include less side effects, a narrow host spectrum, biofilm penetration, self-replication at the site of infection and the potential to be manufactured on a large scale. In addition, mycobacteriophage enzymes, not yet in clinical use, warrant further studies with their additional benefits for rupturing host bacteria thereby limiting resistance development as well as showing promise in vitro to act synergistically with TB drugs. Before mycobacteriophage therapy can be envisioned as part of routine care, several obstacles must be overcome to translate in vitro work into clinical practice. Strategies to target intracellular bacteria and selecting phage cocktails to limit cross-resistance remain important avenues to explore. However, insight into pathophysiological host-phage interactions on a molecular level and innovative solutions to transcend mycobacteriophage therapy impediments, offer sufficient encouragement to explore phage therapy. Recently, the first successful clinical studies were performed using a mycobacteriophage-constructed cocktail to treat non-tuberculosis mycobacteria, providing substantial insight into lessons learned and potential pitfalls to avoid in order to ensure favorable outcomes. However, due to mycobacterium strain variation, mycobacteriophage therapy remains personalized, only being utilized in compassionate care cases until there is further regulatory approval. Therefore, identifying the determinants that influence clinical outcomes that can expand the repertoire of mycobacteriophages for therapeutic benefit, remains key for their future application.
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB-Laboratory, Cape Town, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa; Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
| | - Justyna Wojno
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa; Lancet Laboratories, Cape Town, South Africa
| | - Wynand Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Rob Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
21
|
Youssef O, Agún S, Fernández L, Khalil SA, Rodríguez A, García P. Impact of the calcium concentration on the efficacy of phage phiIPLA-RODI, LysRODIΔAmi and nisin for the elimination of Staphylococcus aureus during lab-scale cheese production. Int J Food Microbiol 2023; 399:110227. [PMID: 37148666 DOI: 10.1016/j.ijfoodmicro.2023.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Staphylococcus aureus is a Gram-positive human opportunistic pathogen that may also cause food poisoning because of the ability of some strains to produce heat stable enterotoxins that can persist in food even after the pathogen is successfully eliminated. In this context, biopreservation may be a forward-looking strategy to help eliminate staphylococcal contamination in dairy products by using natural compounds. However, these antimicrobials exhibit individual limitations that may be overcome by combining them. This work investigates the combination of a virulent bacteriophage, phiIPLA-RODI, a phage-derived engineered lytic protein, LysRODIΔAmi, and the bacteriocin nisin for the elimination of S. aureus during lab-scale cheese production at two CaCl2 concentrations (0.2 % and 0.02 %), and subsequent storage at two different temperatures (4 °C and 12 °C). In most of the assayed conditions, our results demonstrate that the combined action of the antimicrobials led to a greater reduction of the pathogen population than the compounds individually, albeit this effect was additive and not synergistic. However, our results did show synergy between the three antimicrobials for reducing the bacterial load after 14 days of storage at 12 °C, temperature at which there is growth of the S. aureus population. Additionally, we tested the impact of the calcium concentration on the activity of the combination treatment and observed that higher CaCl2 levels led to a notable increase in endolysin activity that allowed the utilization of approximately 10-times less protein to attain the same efficacy. Overall, our data show that the combination of LysRODIΔAmi with nisin and/or phage phiIPLA-RODI, and an increase in the calcium concentration are successful strategies to decrease the amount of protein required for the control of S. aureus contamination in the dairy sector with a low potential for resistance selection, thereby reducing costs.
Collapse
Affiliation(s)
- Olivia Youssef
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt; Animal Health Research Institute, Agricultural Research Center (ARC), Egypt
| | - Seila Agún
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Samy A Khalil
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
22
|
Zaki BM, Mohamed AA, Dawoud A, Essam K, Hammouda ZK, Abdelsattar AS, El-Shibiny A. Isolation, screening and characterization of phage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:13-60. [PMID: 37739553 DOI: 10.1016/bs.pmbts.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Bacterial resistance threatens public health due to a lack of novel antibacterial classes since the 21st century. Bacteriophages, the most ubiquitous microorganism on Earth and natural predators of bacteria, have the potential to save the world from the post-antibiotic era. Therefore, phage isolation and characterization are in high demand to find suitable phages for therapeutic and bacterial control applications. The chapter presents brief guidance supported by recommendations on the isolation of phages, and initial screening of phage antimicrobial efficacy, in addition to, conducting comprehensive characterization addressing morphological, biological, genomic, and taxonomic features.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira A Mohamed
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Kareem Essam
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Zainab K Hammouda
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
23
|
Jones JD, Stacey HJ, Brailey A, Suleman M, Langley RJ. Managing Patient and Clinician Expectations of Phage Therapy in the United Kingdom. Antibiotics (Basel) 2023; 12:502. [PMID: 36978369 PMCID: PMC10044641 DOI: 10.3390/antibiotics12030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Bacteriophage (phage) therapy is a promising alternative antimicrobial approach which has the potential to transform the way we treat bacterial infections. Phage therapy is currently being used on a compassionate basis in multiple countries. Therefore, if a patient has an antibiotic refractory infection, they may expect their clinician to consider and access phage therapy with the hope of improvement. The expectations of clinicians may be similar and may also include expectations around data collection. However, there are multiple biological and practical barriers to fulfilling patient and clinician expectations. While it is possible to access phage therapy, the path to acquisition is not straightforward and expectations therefore need to be managed appropriately to avoid raising false hope and undermining confidence in phage therapy. Phage scientists have an important contribution to make in educating clinicians and the broader public about phage therapy. However, it is clinicians that are responsible for managing the expectations of their patients and this relies on clear communication about the barriers and limitations.
Collapse
Affiliation(s)
- Joshua D. Jones
- Clinical Microbiology, Ninewells Hospital, NHS Tayside, Dundee DD2 1SG, UK
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Helen J. Stacey
- Public Health, Kings Cross Hospital, Clepington Road, Dundee DD3 8EA, UK
| | - Arlene Brailey
- Antibiotic Research UK, Genesis 5, York Science Park, Church Lane, Heslington, York YO10 5DQ, UK
| | - Mehrunisha Suleman
- The Ethox Centre, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, UK
| | - Ross J. Langley
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
24
|
Williams J, Severin J, Temperton B, Mitchelmore PJ. Phage Therapy Administration Route, Regimen, and Need for Supplementary Antibiotics in Patients with Chronic Suppurative Lung Disease. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:4-10. [PMID: 37214654 PMCID: PMC10196080 DOI: 10.1089/phage.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance is leading to increased mortality, posing risk to those with chronic suppurative lung disease (CSLD). One therapeutic option may be to target treatment-resistant bacteria using viruses (bacteriophages [phages]). Currently, patients receiving phage therapy on compassionate grounds may not be receiving optimal treatment as there is no defined approach for phage use. This review aims to explore administration route, regimen, and need for supplementary antibiotics in phage therapy to treat bacterial infection in CSLD. Twelve articles totaling 18 participants included details of numerous phage administration routes with varying regimens. All articles reported an initial reduction of bacterial load or an improvement in patient symptoms, highlighting the potential of phage therapy in CSLD. Fifteen out of 18 used supplementary antibiotics. Standardized protocols informed by high-quality research are necessary to ensure safe and effective phage therapy. In the interim, systematic recording of information within case reports may be useful.
Collapse
Affiliation(s)
- Jessica Williams
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - James Severin
- Torbay and South Devon NHS Foundation Trust, Torquay, United Kingdom
| | - Ben Temperton
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Philip J. Mitchelmore
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
- Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
25
|
Tzani-Tzanopoulou P, Rozumbetov R, Taka S, Doudoulakakis A, Lebessi E, Chanishvili N, Kakabadze E, Bakuradze N, Grdzelishvili N, Goderdzishvili M, Legaki E, Andreakos E, Papadaki M, Megremis S, Xepapadaki P, Kaltsas G, Akdis CA, Papadopoulos NG. Development of an in vitro homeostasis model between airway epithelial cells, bacteria and bacteriophages: a time-lapsed observation of cell viability and inflammatory response. J Gen Virol 2022; 103. [PMID: 36748697 DOI: 10.1099/jgv.0.001819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteriophages represent the most extensive group of viruses within the human virome and have a significant impact on general health and well-being by regulating bacterial population dynamics. Staphylococcus aureus, found in the anterior nostrils, throat and skin, is an opportunistic pathobiont that can cause a wide range of diseases, from chronic inflammation to severe and acute infections. In this study, we developed a human cell-based homeostasis model between a clinically isolated strain of S. aureus 141 and active phages for this strain (PYOSa141) isolated from the commercial Pyophage cocktail (PYO). The cocktail is produced by Eliava BioPreparations Ltd. (Tbilisi, Georgia) and is used as an add-on therapy for bacterial infections, mainly in Georgia. The triptych interaction model was evaluated by time-dependent analysis of cell death and inflammatory response of the nasal and bronchial epithelial cells. Inflammatory mediators (IL-8, CCL5/RANTES, IL-6 and IL-1β) in the culture supernatants were measured by enzyme-linked immunosorbent assay and cell viability was determined by crystal violet staining. By measuring trans-epithelial electrical resistance, we assessed the epithelial integrity of nasal cells that had differentiated under air-liquid interface conditions. PYOSa141 was found to have a prophylactic effect on airway epithelial cells exposed to S. aureus 141 by effectively down-regulating bacterial-induced inflammation, cell death and epithelial barrier disruption in a time-dependent manner. Overall, the proposed model represents an advance in the way multi-component biological systems can be simulated in vitro.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Ramazan Rozumbetov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelia Lebessi
- Department of Microbiology, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Elene Kakabadze
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Nata Bakuradze
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia
| | - Nino Grdzelishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophages, Microbiology & Virology, Tbilisi, Georgia.,Ilia State University, Tbilisi, Georgia
| | | | - Evangelia Legaki
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Papadaki
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Abbas RZ, Alsayeqh AF, Aqib AI. Role of Bacteriophages for Optimized Health and Production of Poultry. Animals (Basel) 2022; 12:ani12233378. [PMID: 36496899 PMCID: PMC9736383 DOI: 10.3390/ani12233378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The poultry sector is facing infections from Salmonella, Campylobacter, Listeria and Staphylococcus spp., and Escherichia coli, that have developed multidrug resistance aptitude. Antibiotics cause disturbances in the balance of normal microbiota leading to dysbiosis, immunosuppression, and the development of secondary infections. Bacteriophages have been reported to lower the colonization of Salmonella and Campylobacter in poultry. The specificity of bacteriophages is greater than that of antibiotics and can be used as a cocktail for enhanced antibacterial activity. Specie-specific phages have been prepared, e.g., Staphylophage (used against Staphylococcus bacteria) that specifically eliminate bacterial pathogens. Bacteriophage products, e.g., BacWashTM and Ecolicide PX have been developed as antiseptics and disinfectants for effective biosecurity and biosafety measures. The success of phage therapy is influenced by time to use, the amount used, the delivery mechanism, and combination therapy with other therapeutics. It is a need of time to build a comprehensive understanding of the use of bacteriophages in poultry production. The current review thus focuses on mechanisms of bacteriophages against poultry pathogens, their applications in various therapeutics, impacts on the economy, and current challenges.
Collapse
Affiliation(s)
- Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence:
| | - Abdullah F Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| |
Collapse
|
27
|
Ling H, Lou X, Luo Q, He Z, Sun M, Sun J. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharm Sin B 2022; 12:4348-4364. [PMID: 36561998 PMCID: PMC9764073 DOI: 10.1016/j.apsb.2022.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is one of the biggest threats to global health, as it can make the treatment of bacterial infections in humans difficult owing to their high incidence rate, mortality, and treatment costs. Bacteriophage, which constitutes a type of virus that can kill bacteria, is a promising alternative strategy against antibiotic-resistant bacterial infections. Although bacteriophage therapy was first used nearly a century ago, its development came to a standstill after introducing the antibiotics. Nowadays, with the rise in antibiotic resistance, bacteriophage therapy is in the spotlight again. As bacteriophage therapy is safe and has significant anti-bacterial activity, some specific types of bacteriophages (such as bacteriophage phiX174 and Pyo bacteriophage complex liquid) entered into phase III clinical trials. Herein, we review the key points of the antibiotic resistance crisis and illustrate the factors that support the renewal of bacteriophage applications. By summarizing recent state-of-the-art studies and clinical data on bacteriophage treatment, we introduced (i) the pharmacological mechanisms and advantages of antibacterial bacteriophages, (ii) bacteriophage preparations with clinical potential and bacteriophage-derived anti-bacterial treatment strategies, and (iii) bacteriophage therapeutics aimed at multiple infection types and infection-induced cancer treatments. Finally, we highlighted the challenges and critical perspectives of bacteriophage therapy for future clinical development.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Lou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China,Corresponding authors.
| |
Collapse
|
28
|
Liyanagedera SBW, Williams J, Wheatley JP, Biketova AY, Hasan M, Sagona AP, Purdy KJ, Puxty RJ, Feher T, Kulkarni V. SpyPhage: A Cell-Free TXTL Platform for Rapid Engineering of Targeted Phage Therapies. ACS Synth Biol 2022; 11:3330-3342. [PMID: 36194543 DOI: 10.1021/acssynbio.2c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The past decade has seen the emergence of multidrug resistant pathogens as a leading cause of death worldwide, reigniting interest in the field of phage therapy. Modern advances in the genetic engineering of bacteriophages have enabled several useful results including host range alterations, constitutive lytic growth, and control over phage replication. However, the slow licensing process of genetically modified organisms clearly inhibits the rapid therapeutic application of novel engineered variants necessary to fight mutant pathogens that emerge throughout the course of a pandemic. As a solution to this problem, we propose the SpyPhage system where a "scaffold" bacteriophage is engineered to incorporate a SpyTag moiety on its capsid head to enable rapid postsynthetic modification of their surfaces with SpyCatcher-fused therapeutic proteins. As a proof of concept, through CRISPR/Cas-facilitated phage engineering and whole genome assembly, we targeted a SpyTag capsid fusion to K1F, a phage targeting the pathogenic strain Escherichia coli K1. We demonstrate for the first time the cell-free assembly and decoration of the phage surface with two alternative fusion proteins, SpyCatcher-mCherry-EGF and SpyCatcher-mCherry-Rck, both of which facilitate the endocytotic uptake of the phages by a urinary bladder epithelial cell line. Overall, our work presents a cell-free phage production pipeline for the generation of multiple phenotypically distinct phages with a single underlying "scaffold" genotype. These phages could become the basis of next-generation phage therapies where the knowledge-based engineering of numerous phage variants would be quickly achievable without the use of live bacteria or the need to repeatedly license novel genetic alterations.
Collapse
Affiliation(s)
| | - Joshua Williams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Joseph P Wheatley
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alona Yu Biketova
- Institute of Biochemistry, Eötvös Lóránd Research Network, Szeged Biological Research Centre, Szeged 6726, Hungary.,Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3AE, United Kingdom
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kevin J Purdy
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tamas Feher
- Institute of Biochemistry, Eötvös Lóránd Research Network, Szeged Biological Research Centre, Szeged 6726, Hungary
| | | |
Collapse
|
29
|
Chaudhary N, Singh D, Maurya RK, Mohan B, Mavuduru RS, Taneja N. Whole genome sequencing and in vitro activity data of Escherichia phage NTEC3 against multidrug-resistant Uropathogenic and extensively drug-resistant Uropathogenic E. coli isolates. Data Brief 2022; 43:108479. [PMID: 35924093 PMCID: PMC9340528 DOI: 10.1016/j.dib.2022.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
This data article describes the whole-genome sequencing and in vitro activity data of Escherichia phage NTEC3 isolated from a community sewage sample in Chandigarh, India. The phage NTEC3 was active against multi-drug-resistant (MDR) and extensively drug-resistant (XDR) biofilm-forming Uropathogenic Escherichia coli (UPEC) strains. The genome of this phage was linear, double-stranded, and 44.2 kb long in size. A total of 72 ORFs (open reading frames) were predicted and 30 ORFs were encoded for functional proteins. The phage belonged to the Kagunavirus genus of the Siphoviridae family. Phylogenetic analysis using DNA polymerase was performed to understand the phage evolutionary relationships. Genes encoding for lysogeny, virulence, toxins, antibiotic resistance, and the CRISPR/CRISPR-like system were not found during screening. The annotated genome was deposited in Genbank under the accession number OK539620.
Collapse
|
30
|
Skurnik M. Can Bacteriophages Replace Antibiotics? Antibiotics (Basel) 2022; 11:575. [PMID: 35625219 PMCID: PMC9137811 DOI: 10.3390/antibiotics11050575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing antibiotic resistance numbers force both scientists and politicians to tackle the problem, and preferably without any delay. The application of bacteriophages as precision therapy to treat bacterial infections, phage therapy, has received increasing attention during the last two decades. While it looks like phage therapy is here to stay, there is still a lot to do. Medicine regulatory authorities are working to deliver clear instructions to carry out phage therapy. Physicians need to get more practical experience on treatments with phages. In this opinion article I try to place phage therapy in the context of the health care system and state that the use phages for precision treatments will require a seamless chain of events from the patient to the phage therapy laboratory to allow for the immediate application of phages therapeutically. It is not likely that phages will replace antibiotics, however, they will be valuable in the treatment of infections caused by multidrug resistant bacteria. Antibiotics will nevertheless remain the main treatment for a majority of infections.
Collapse
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; ; Tel.: +358-50-3360981
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
31
|
Opperman CJ, Wojno JM, Brink AJ. Treating bacterial infections with bacteriophages in the 21st century. S Afr J Infect Dis 2022; 37:346. [PMID: 35399556 PMCID: PMC8991297 DOI: 10.4102/sajid.v37i1.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/24/2022] [Indexed: 11/01/2022] Open
Abstract
Bacteriophages (phages) were discovered in the early part of the 20th century, and their ability to eliminate bacterial infections as bacterial viruses gathered interest almost immediately. Bacteriophage therapy was halted in the Western world due to inconclusive results in early experiments and the concurrent discovery of antibiotics. The spread of antibiotic-resistant bacteria has elicited renewed interest in bacteriophages as a natural alternative to conventional antibiotic therapy. Interest in the application of bacteriophages has also expanded to include the environment, such as wastewater treatment, agriculture and aquaculture. Although the complete phage is important in bacteriophage therapy, the focus is shifting to purified phage enzymes. These enzymes are an attractive option for pharmaceutical companies with their patent potential. They can be bio-engineered for enhanced adjuvant properties, such as a broadened spectrum of activity or binding capability. Enzymes also eliminate the concern that the prophage might integrate resistance genes into the bacterial genome. From a clinical perspective, the first randomised clinical controlled phage therapy trial was conducted with more pioneering phase I/II clinical studies on the horizon. In this opinion paper, the authors outline bacteriophages as naturally occurring bactericidal entities, their therapeutic potential against antibiotic-resistant bacteria and compare them to antibiotics. Their potential multipurpose application in the medical field is also addressed, including the use of bacteriophages for vaccination, and utilisation of the antimicrobial enzymes that they produce.
Collapse
Affiliation(s)
- Christoffel J Opperman
- National Health Laboratory Service, Green Point Laboratory, Cape Town, South Africa
- Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | | | - Adrian J Brink
- Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Microbiology Laboratory, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
32
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
33
|
Pires DP, Meneses L, Brandão AC, Azeredo J. An overview of the current state of phage therapy for the treatment of biofilm-related infections. Curr Opin Virol 2022; 53:101209. [PMID: 35240424 DOI: 10.1016/j.coviro.2022.101209] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/22/2022] [Indexed: 12/19/2022]
Abstract
Bacterial biofilms are involved in many chronic and difficult-to-treat infections. Phage therapy against infectious biofilms is becoming a promising strategy, as suggested by the increasing number of publications demonstrating the efficacy of phages against in vitro formed biofilms. However, the translation between in vitro results to in vivo phage therapy outcome is not straightforward due to the complexity of phage-biofilm interactions in clinical contexts. Here, we provide a critical overview of the in vitro studies of phages for biofilm control of clinical pathogens, followed by the major outcomes and lessons learned from the recently reported case studies (between 2018 and 2021) of phage therapy against biofilm-related infections.
Collapse
Affiliation(s)
- Diana P Pires
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Luciana Meneses
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Ana C Brandão
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, 4800-122 Guimarães, Portugal.
| |
Collapse
|
34
|
Modification of a Tumor-Targeting Bacteriophage for Potential Diagnostic Applications. Molecules 2021; 26:molecules26216564. [PMID: 34770973 PMCID: PMC8588016 DOI: 10.3390/molecules26216564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tumor-targeting bacteriophages can be used as a versatile new platform for the delivery of diagnostic imaging agents and therapeutic cargo. This became possible due to the development of viral capsid modification method. Earlier in our laboratory and using phage display technology, phages to malignant breast cancer cells MDA-MB 231 were obtained. The goal of this study was the optimization of phage modification and the assessment of the effect of the latter on the efficiency of phage particle penetration into MDA-MB 231 cells. METHODS In this work, we used several methods, such as chemical phage modification using FAM-NHS ester, spectrophotometry, phage amplification, sequencing, phage titration, flow cytometry, and confocal microscopy. RESULTS We performed chemical phage modification using different concentrations of FAM-NHS dye (0.5 mM, 1 mM, 2 mM, 4 mM, 8 mM). It was shown that with an increase of the modification degree, the phage titer decreases. The maximum modification coefficient of the phage envelope with the FAM-NHS dye was observed with 4 mM modifying agent and had approximately 804,2 FAM molecules per phage. Through the immunofluorescence staining and flow cytometry methods, it was shown that the modified bacteriophage retains the ability to internalize into MDA-MB-231 cells. The estimation of the number of phages that could have penetrated into one tumor cell was conducted. CONCLUSIONS Optimizing the conditions for phage modification can be an effective strategy for producing tumor-targeting diagnostic and therapeutic agents, i.e., theranostic drugs.
Collapse
|
35
|
Gelman D, Yerushalmy O, Alkalay-Oren S, Rakov C, Ben-Porat S, Khalifa L, Adler K, Abdalrhman M, Coppenhagen-Glazer S, Aslam S, Schooley RT, Nir-Paz R, Hazan R. Clinical Phage Microbiology: a suggested framework and recommendations for the in-vitro matching steps of phage therapy. THE LANCET MICROBE 2021; 2:e555-e563. [DOI: 10.1016/s2666-5247(21)00127-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
|
36
|
Manufacturing Bacteriophages (Part 1 of 2): Cell Line Development, Upstream, and Downstream Considerations. Pharmaceuticals (Basel) 2021; 14:ph14090934. [PMID: 34577634 PMCID: PMC8471501 DOI: 10.3390/ph14090934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023] Open
Abstract
Within this first part of the two-part series on phage manufacturing, we will give an overview of the process leading to bacteriophages as a drug substance, before covering the formulation into a drug product in the second part. The principal goal is to provide the reader with a comprehensive framework of the challenges and opportunities that present themselves when developing manufacturing processes for bacteriophage-based products. We will examine cell line development for manufacture, upstream and downstream processes, while also covering the additional opportunities that engineered bacteriophages present.
Collapse
|
37
|
Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections. Viruses 2021; 13:v13091809. [PMID: 34578390 PMCID: PMC8472870 DOI: 10.3390/v13091809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) bacteria is recognised today as one of the greatest challenges to public health. As traditional antimicrobials are becoming ineffective and research into new antibiotics is diminishing, a number of alternative treatments for MDR bacteria have been receiving greater attention. Bacteriophage therapies are being revisited and present a promising opportunity to reduce the burden of bacterial infection in this post-antibiotic era. This review focuses on the current evidence supporting bacteriophage therapy against prevalent or emerging multi-drug resistant bacterial pathogens in respiratory medicine and the challenges ahead in preclinical data generation. Starting with efforts to improve delivery of bacteriophages to the lung surface, the current developments in animal models for relevant efficacy data on respiratory infections are discussed before finishing with a summary of findings from the select human trials performed to date.
Collapse
Affiliation(s)
- Joshua J. Iszatt
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Alexander N. Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, University of Sydney, Camperdown 2006, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
38
|
Michalik-Provasek J, Parker H, Lessor L, Gill JJ. Solvent Extraction of Klebsiella pneumoniae Bacteriophage Lysates with 1-Dodecanol Results in Endotoxin Reduction with Low Risk of Solvent Contamination. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:112-119. [PMID: 34778795 PMCID: PMC8574134 DOI: 10.1089/phage.2021.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance in pathogenic bacteria is increasing worldwide. One solution to this crisis is bacteriophage therapy, a treatment that harnesses naturally occurring bacterial viruses to invade and lyse antimicrobial resistant bacterial hosts. In Gram-negative hosts, a by-product of bacteriophage production is bacterial endotoxin, which can cause serious immune reactions in vivo. Purification methods using organic solvent extraction can remove endotoxin in bacteriophage lysates. In this study, we investigate a method for removal of endotoxin from 16 high-titer Klebsiella pneumoniae lysates by extraction with 1-dodecanol, 1-octanol, dodecane, or decane. In these experiments, treatment with either 1-dodecanol or 1-octanol resulted in removal of 104-105 endotoxin units/mL. Recovery of bacteriophage in lysates treated with dodecanol without dialysis was >90%, and residual dodecanol was low (10-1500 ppm). Overall these results suggest that organic solvent extraction using 1-dodecanol is effective at removing bacterial endotoxin, maintaining bacteriophage titer, and reducing solvent contamination in 16 K. pneumoniae bacteriophage lysates.
Collapse
Affiliation(s)
- Jordyn Michalik-Provasek
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, Texas, USA
| | - Harley Parker
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren Lessor
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, Texas, USA
| | - Jason J. Gill
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
39
|
Shi Y, Peng Y, Zhang Y, Chen Y, Zhang C, Luo X, Chen Y, Yuan Z, Chen J, Gong Y. Safety and Efficacy of a Phage, kpssk3, in an in vivo Model of Carbapenem-Resistant Hypermucoviscous Klebsiella pneumoniae Bacteremia. Front Microbiol 2021; 12:613356. [PMID: 34093455 PMCID: PMC8175031 DOI: 10.3389/fmicb.2021.613356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most significant threats to global public health. As antibiotic failure is increasing, phages are gradually becoming important agents in the post-antibiotic era. In this study, the therapeutic effects and safety of kpssk3, a previously isolated phage infecting carbapenem-resistant hypermucoviscous Klebsiella pneumoniae (CR-HMKP), were evaluated in a mouse model of systemic CR-HMKP infection. The therapeutic efficacy experiment showed that intraperitoneal injection with a single dose of phage kpssk3 (1 × 107 PFU/mouse) 3 h post infection protected 100% of BALB/c mice against bacteremia induced by intraperitoneal challenge with a 2 × LD100 dose of NY03, a CR-HMKP clinical isolate. In addition, mice were treated with antibiotics from three classes (polymyxin B, tigecycline, and ceftazidime/avibactam plus aztreonam), and the 7 days survival rates of the treated mice were 20, 20, and 90%, respectively. The safety test consisted of 2 parts: determining the cytotoxicity of kpssk3 and evaluating the short- and long-term impacts of phage therapy on the mouse gut microbiota. Phage kpssk3 was shown to not be cytotoxic to mammalian cells in vitro or in vivo. Fecal samples were collected from the phage-treated mice at 3 time points before (0 day) and after (3 and 10 days) phage therapy to study the change in the gut microbiome via high-throughput 16S rDNA sequence analysis, which revealed no notable alterations in the gut microbiota except for decreases in the Chao1 and ACE indexes.
Collapse
Affiliation(s)
- Yunlong Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqiang Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yajie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiqiang Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
40
|
Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol 2021; 23:337-360. [PMID: 33902418 DOI: 10.2174/1389201022666210426092002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, Cairo. Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| |
Collapse
|
41
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
42
|
Nale JY, Clokie MR. Preclinical data and safety assessment of phage therapy in humans. Curr Opin Biotechnol 2021; 68:310-317. [PMID: 33862490 PMCID: PMC8150739 DOI: 10.1016/j.copbio.2021.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages) are natural biological entities that kill bacteria with species specific precision, rendering them attractive for therapeutic purposes. Phages were discovered over a century ago, but, after antibiotic discovery, their use as antimicrobials dwindled. Interest in phage therapy has, however, been rekindled by increasing multi-drug resistance to routine and frontline antibiotics and by the slowing of antibiotic innovations. To build on fundamental phage research studies and compassionate usage, information on safety and efficacy of phages is needed to motivate clinical trials and are necessary for phage therapy to become mainstream. In this review, we discussed essential phage characterisation parameters alongside the merits and limitations of state-of-the-art models to gather preclinical data on the safety and efficacy of phage therapeutics.
Collapse
Affiliation(s)
- Janet Y Nale
- Department of Genetics and Genome Biology, University of Leicester, University Road, LE1 7RH, UK
| | - Martha Rj Clokie
- Department of Genetics and Genome Biology, University of Leicester, University Road, LE1 7RH, UK.
| |
Collapse
|
43
|
Malik DJ. Approaches for manufacture, formulation, targeted delivery and controlled release of phage-based therapeutics. Curr Opin Biotechnol 2021; 68:262-271. [PMID: 33744823 DOI: 10.1016/j.copbio.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022]
Abstract
A future successful bacteriophage industry requires development of robust scalable manufacturing platforms for upstream production of high phage titres and their downstream purification and concentration whilst achieving processing yields en route. Development of a broadly applicable process flow sheet employing well-characterised unit operations with knowledge of their critical process parameters is beginning to emerge. A quality-by-design approach is advocated for the development of cost-effective phage production platforms. The use of on-line and at-line process analytical tools for process monitoring, control and quality assurance are discussed. Phage biophysical characterisation tools allowing rational development of liquid formulations and dry powder forms are presented. Recent innovations in phage encapsulation methods highlight the potential innovation opportunities in this research space that could have significant impact on the future prospects of this industry.
Collapse
Affiliation(s)
- Danish J Malik
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
44
|
Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev 2021; 44:684-700. [PMID: 32472938 DOI: 10.1093/femsre/fuaa017] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance is a major public health challenge worldwide, whose implications for global health might be devastating if novel antibacterial strategies are not quickly developed. As natural predators of bacteria, (bacterio)phages may play an essential role in escaping such a dreadful future. The rising problem of antibiotic resistance has revived the interest in phage therapy and important developments have been achieved over the last years. But where do we stand today and what can we expect from phage therapy in the future? This is the question we set to answer in this review. Here, we scour the outcomes of human phage therapy clinical trials and case reports, and address the major barriers that stand in the way of using phages in clinical settings. We particularly address the potential of phage resistance to hinder phage therapy and discuss future avenues to explore the full capacity of phage therapy.
Collapse
Affiliation(s)
- Diana P Pires
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Rita Costa
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luciana Meneses
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
45
|
Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and Delivery of Therapeutic Phages. Appl Environ Microbiol 2021; 87:AEM.01979-20. [PMID: 33310718 PMCID: PMC8090888 DOI: 10.1128/aem.01979-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Delivery of therapeutic compounds to the site of action is crucial. While many chemical substances such as beta-lactam antibiotics can reach therapeutic levels in most parts throughout the human body after administration, substances of higher molecular weight such as therapeutic proteins may not be able to reach the site of action (e.g. an infection), and are therefore ineffective. In the case of therapeutic phages, i.e. viruses that infect microbes that can be used to treat bacterial infections, this problem is exacerbated; not only are phages unable to penetrate tissues, but phage particles can be cleared by the immune system and phage proteins are rapidly degraded by enzymes or inactivated by the low pH in the stomach. Yet, the use of therapeutic phages is a highly promising strategy, in particular for infections caused by bacteria that exhibit multi-drug resistance. Clinicians increasingly encounter situations where no treatment options remain available for such infections, where antibiotic compounds are ineffective. While the number of drug-resistant pathogens continues to rise due to the overuse and misuse of antibiotics, no new compounds are becoming available as many pharmaceutical companies discontinue their search for chemical antimicrobials. In recent years, phage therapy has undergone massive innovation for the treatment of infections caused by pathogens resistant to conventional antibiotics. While most therapeutic applications of phages are well described in the literature, other aspects of phage therapy are less well documented. In this review, we focus on the issues that are critical for phage therapy to become a reliable standard therapy and describe methods for efficient and targeted delivery of phages, including their encapsulation.
Collapse
Affiliation(s)
- Belinda Loh
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang 314400, China and The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Vijay Singh Gondil
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, International Campus, Haining, Zhejiang 314400, China and The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fazal Mehmood Khan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Sebastian Leptihn
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China.
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom
| |
Collapse
|
46
|
Schmalstig AA, Freidy S, Hanafin PO, Braunstein M, Rao GG. Reapproaching Old Treatments: Considerations for PK/PD Studies on Phage Therapy for Bacterial Respiratory Infections. Clin Pharmacol Ther 2021; 109:1443-1456. [PMID: 33615463 DOI: 10.1002/cpt.2214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Antibiotic resistant bacterial respiratory infections are a significant global health burden, and new therapeutic strategies are needed to control the problem. For bacterial respiratory infections, this need is emphasized by the rise in antibiotic resistance and a lean drug development pipeline. Bacteriophage (phage) therapy is a promising alternative to antibiotics. Phage are viruses that infect and kill bacteria. Because phage and antibiotics differ in their bactericidal mechanisms, phage are a treatment option for antibiotic-resistant bacteria. Here, we review the history of phage therapy and highlight recent preclinical and clinical case reports of its use for treating antibiotic-resistant respiratory infections. The ability of phage to replicate while killing the bacteria is both a benefit for treatment and a challenge for pharmacokinetic (PK) and pharmacodynamic (PD) studies. In this review, we will discuss how the phage lifecycle and associated bidirectional interactions between phage and bacteria can impact treatment. We will also highlight PK/PD considerations for designing studies of phage therapy to optimize the efficacy and feasibility of the approach.
Collapse
Affiliation(s)
- Alan A Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Soha Freidy
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Patrick O Hanafin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Bacteriophage-Delivering Hydrogels: Current Progress in Combating Antibiotic Resistant Bacterial Infection. Antibiotics (Basel) 2021; 10:antibiotics10020130. [PMID: 33572929 PMCID: PMC7911734 DOI: 10.3390/antibiotics10020130] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance remains as an unresolved global challenge in the health care system, posing serious threats to global health. As an alternative to antibiotics, bacteriophage (phage) therapy is rising as a key to combating antibiotic-resistant bacterial infections. In order to deliver a phage to the site of infection, hydrogels have been formulated to incorporate phages, owing to its favorable characteristics in delivering biological molecules. This paper reviews the formulation of phage-delivering hydrogels for orthopedic implant-associated bone infection, catheter-associated urinary tract infection and trauma-associated wound infection, with a focus on the preparation methods, stability, efficacy and safety of hydrogels as phage carriers.
Collapse
|
48
|
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms 2021; 9:206. [PMID: 33498243 PMCID: PMC7909267 DOI: 10.3390/microorganisms9020206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| |
Collapse
|
49
|
|
50
|
Azeredo J, Pirnay JP, Pires DP, Kutateladze M, Dabrowska K, Lavigne R, Blasdel B. Phage Therapy. WIKIJOURNAL OF MEDICINE 2021. [DOI: 10.15347/wjm/2021.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage therapy refers to the use of bacteriophages (phages - bacterial viruses) as therapeutic agents against infectious bacterial diseases. This therapeutic approach emerged in the beginning of the 20th century but was progressively replaced by the use of antibiotics in most parts of the world after the second world war. More recently however, the alarming rise of multidrug-resistant bacteria and the consequent need for antibiotic alternatives has renewed interest in phages as antimicrobial agents. Several scientific, technological and regulatory advances have supported the credibility of a second revolution in phage therapy. Nevertheless, phage therapy still faces many challenges that include: i) the need to increase phage collections from reference phage banks; ii) the development of efficient phage screening methods for the fast identification of the therapeutic phage(s); iii) the establishment of efficient phage therapy strategies to tackle infectious biofilms; iv) the validation of feasible phage production protocols that assure quality and safety of phage preparations; and (v) the guarantee of stability of phage preparations during manufacturing, storage and transport. Moreover, current maladapted regulatory structures represent a significant hurdle for potential commercialization of phage therapeutics. This article describes the past and current status of phage therapy and presents the most recent advances in this domain.
Collapse
|