1
|
Lueck MR, Moyer MM, Cheeke TE. Potential to take root in viticulture? An evaluation of mycorrhizal inoculants on the growth and nutrient uptake of young wine grapes planted in live field soil. J Appl Microbiol 2024; 135:lxae161. [PMID: 38936822 DOI: 10.1093/jambio/lxae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
AIMS Incorporating biofertilizers, such as arbuscular mycorrhizal fungal (AM) fungal inoculants, into vineyard management practices may enhance vine growth and reduce environmental impact. Here, we evaluate the effects of commercially available and local AM fungal inoculants on the growth, root colonization, and nutrient uptake of wine grapes (Vitis vinifera) when planted in a field soil substrate. METHODS AND RESULTS In a greenhouse experiment, young wine grapes were planted in a field soil substrate and inoculated with one of three commercially available mycorrhizal inoculant products, or one of two locally collected whole soil inoculants. After 4 months of growth, inoculated vines showed no differences in plant biomass, colonization of roots by AM fungi, or foliar macronutrient concentrations compared to uninoculated field soil substrate. However, vines grown with local inoculants had greater shoot biomass than vines grown with mycorrhizal inoculant products. CONCLUSIONS Although effects from inoculations with AM fungi varied by inoculant type and source, inoculations may not improve young vine performance in field soils with a resident microbial community.
Collapse
Affiliation(s)
- Madeline R Lueck
- School of Biological Sciences, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| | - Michelle M Moyer
- Department of Viticulture and Enology, Washington State University Irrigated Agriculture Research and Extension Center, Prosser, WA 99354, USA
| | - Tanya E Cheeke
- School of Biological Sciences, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| |
Collapse
|
2
|
Sun D, Rozmoš M, Kokkoris V, Kotianová M, Hršelová H, Bukovská P, Faghihinia M, Jansa J. Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes. MYCORRHIZA 2024; 34:303-316. [PMID: 38829432 PMCID: PMC11283409 DOI: 10.1007/s00572-024-01154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.
Collapse
Affiliation(s)
- Daquan Sun
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic.
| | - Martin Rozmoš
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Vasilis Kokkoris
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1108, Amsterdam, NL-1081HZ, The Netherlands
| | - Michala Kotianová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Hana Hršelová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Petra Bukovská
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| | - Maede Faghihinia
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, 2213 Pammel Dr, Ames, IA, 50011, US
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, 14220, Praha 4, 1083, Czech Republic
| |
Collapse
|
3
|
Rosas-Moreno J, Walker C, Duffy K, Krüger C, Krüger M, Robinson CH, Pittman JK. Isolation and identification of arbuscular mycorrhizal fungi from an abandoned uranium mine and their role in soil-to-plant transfer of radionuclides and metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162781. [PMID: 36906011 DOI: 10.1016/j.scitotenv.2023.162781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi were recovered from soil samples from the naturally radioactive soil at the long-abandoned South Terras uranium mine in Cornwall, UK. Species of Rhizophagus, Claroideoglomus, Paraglomus, Septoglomus, and Ambispora were recovered, and pot cultures from all except Ambispora were established. Cultures were identified to species level using morphological observation and rRNA gene sequencing combined with phylogenetic analysis. These cultures were used in pot experiments designed with a compartmentalised system to assess the contribution of fungal hyphae to the accumulation of essential elements, such as copper and zinc, and non-essential elements, such as lead, arsenic, thorium, and uranium into root and shoot tissues of Plantago lanceolata. The results indicated that none of the treatments had any positive or negative impact on shoot and root biomass. However, Rhizophagus irregularis treatments showed higher accumulation of copper and zinc in shoots, while R. irregularis and Septoglomus constrictum enhanced arsenic accumulation in roots. Moreover, R. irregularis increased uranium concentration in roots and shoots of the P. lanceolata plant. This study provides useful insight into fungal-plant interactions that determine metal and radionuclide transfer from soil into the biosphere at contaminated sites such as mine workings.
Collapse
Affiliation(s)
- Jeanette Rosas-Moreno
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Christopher Walker
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Royal Botanic Garden Edinburgh, 21A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Katie Duffy
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Claudia Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Clare H Robinson
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
4
|
Basiru S, Ait Si Mhand K, Hijri M. Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. MYCORRHIZA 2023; 33:119-137. [PMID: 36961605 DOI: 10.1007/s00572-023-01107-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/21/2023] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are essential components of the plant root mycobiome and are found in approximately 80% of land plants. As obligate plant symbionts, AMF harbor their own microbiota, both inside and outside the plant root system. AMF-associated bacteria (AAB) possess various functional traits, including nitrogen fixation, organic and inorganic phosphate mobilization, growth hormone production, biofilm production, enzymatic capabilities, and biocontrol against pathogen attacks, which not only contribute to the health of the arbuscular mycorrhizal symbiosis but also promote plant growth. Because of this, there is increasing interest in the diversity, functioning, and mechanisms that underlie the complex interactions between AMF, AAB, and plant hosts. This review critically examines AMF-associated bacteria, focusing on AAB diversity, the factors driving richness and community composition of these bacteria across various ecosystems, along with the physical, chemical, and biological connections that enable AMF to select and recruit beneficial bacterial symbionts on and within their structures and hyphospheres. Additionally, potential applications of these bacteria in agriculture are discussed, emphasizing the potential importance of AMF fungal highways in engineering plant rhizosphere and endophyte bacteria communities, and the importance of a functional core of AAB taxa as a promising tool to improve plant and soil productivity. Thus, AMF and their highly diverse bacterial taxa represent important tools that could be efficiently explored in sustainable agriculture, carbon sequestration, and reduction of greenhouse gas emissions related to nitrogen fertilizer applications. Nevertheless, future studies adopting integrated multidisciplinary approaches are crucial to better understand AAB functional diversity and the mechanisms that govern these tripartite relationships.
Collapse
Affiliation(s)
- Sulaimon Basiru
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| | - Khadija Ait Si Mhand
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
- Institut de recherche en biologie végétale (IRBV), Département de Sciences Biologiques, Université de Montréal, QC, Montréal, Canada.
| |
Collapse
|
5
|
The trade-in-trade: multifunctionalities, current market and challenges for arbuscular mycorrhizal fungal inoculants. Symbiosis 2023. [DOI: 10.1007/s13199-023-00905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
van Creij J, Auxier B, An J, Wijfjes RY, Bergin C, Rosling A, Bisseling T, Pan Z, Limpens E. Stochastic nuclear organization and host-dependent allele contribution in Rhizophagus irregularis. BMC Genomics 2023; 24:53. [PMID: 36709253 PMCID: PMC9883914 DOI: 10.1186/s12864-023-09126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.
Collapse
Affiliation(s)
- Jelle van Creij
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Ben Auxier
- grid.4818.50000 0001 0791 5666Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Jianyong An
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Raúl Y. Wijfjes
- grid.4818.50000 0001 0791 5666Laboratory of Bioinformatics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.5252.00000 0004 1936 973XCurrent affiliation: Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Claudia Bergin
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, and Microbial Single Cell Genomics Facility, Science for Life Laboratory, Uppsala, Sweden
| | - Anna Rosling
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Ton Bisseling
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Zhiyong Pan
- grid.35155.370000 0004 1790 4137Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Erik Limpens
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| |
Collapse
|
7
|
Sahraei SE, Sánchez-García M, Montoliu-Nerin M, Manyara D, Bergin C, Rosendahl S, Rosling A. Whole genome analyses based on single, field collected spores of the arbuscular mycorrhizal fungus Funneliformis geosporum. MYCORRHIZA 2022; 32:361-371. [PMID: 36161535 PMCID: PMC9560946 DOI: 10.1007/s00572-022-01091-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are ubiquitous mutualistic symbionts of most terrestrial plants and many complete their lifecycles underground. Whole genome analysis of AM fungi has long been restricted to species and strains that can be maintained under controlled conditions that facilitate collection of biological samples. There is some evidence suggesting that AM fungi can adapt to culture resulting in phenotypic and possibly also genotypic changes in the fungi. In this study, we used field isolated spores of AM fungi and identified them as Funneliformis geosporum based on morphology and phylogenetic analyses. We separately assembled the genomes of two representative spores using DNA sequences of 19 and 22 individually amplified nuclei. The genomes were compared with previously published data from other members of Glomeraceae including two strains of F. mosseae. No significant differences were observed among the species in terms of gene content, while the single nucleotide polymorphism density was higher in the strains of F. geosporum than in the strains of F. mosseae. In this study, we demonstrate that it is possible to sequence and assemble genomes from AM fungal spores sampled in the field, which opens up the possibility to include uncultured AM fungi in phylogenomic and comparative genomic analysis and to study genomic variation in natural populations of these important plant symbionts.
Collapse
Affiliation(s)
| | - Marisol Sánchez-García
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Merce Montoliu-Nerin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David Manyara
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Claudia Bergin
- Microbial Single Cell Genomics Facility, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Søren Rosendahl
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Sweeney CJ, Bottoms M, Ellis S, Ernst G, Kimmel S, Loutseti S, Schimera A, Carniel LSC, Sharples A, Staab F, Marx MT. Arbuscular Mycorrhizal Fungi and the Need for a Meaningful Regulatory Plant Protection Product Testing Strategy. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1808-1823. [PMID: 35678214 PMCID: PMC9543394 DOI: 10.1002/etc.5400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) perform key soil ecosystem services and, because of their symbiotic relationship with plant roots, may be exposed to the plant protection products (PPPs) applied to soils and crops. In 2017, the European Food Safety Authority (EFSA) released a scientific opinion addressing the state of the science on risk assessment of PPPs for in-soil organisms, recommending the inclusion of AMF ecotoxicological testing in the PPP regulatory process. However, it is not clear how this can be implemented in a tiered, robust, and ecologically relevant manner. Through a critical review of current literature, we examine the recommendations made within the EFSA report and the methodologies available to integrate AMF into the PPP risk assessment and provide perspective and commentary on their agronomic and ecological relevance. We conclude that considerable research questions remain to be addressed prior to the inclusion of AMF into the in-soil organism risk assessment, many of which stem from the unique challenges associated with including an obligate symbiont within the PPP risk assessment. Finally, we highlight critical knowledge gaps and the further research required to enable development of relevant, reliable, and robust scientific tests alongside pragmatic and scientifically sound guidance to ensure that any future risk-assessment paradigm is adequately protective of the ecosystem services it aims to preserve. Environ Toxicol Chem 2022;41:1808-1823. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Melanie Bottoms
- Syngenta, Jealott's Hill International Research Centre BracknellBracknellBerkshireUK
| | - Sian Ellis
- Corteva AgriscienceAbingdonOxfordshireUK
| | | | | | - Stefania Loutseti
- Syngenta, Jealott's Hill International Research Centre BracknellBracknellBerkshireUK
| | | | | | | | | | | |
Collapse
|
9
|
Goh D, Martin JGA, Banchini C, MacLean AM, Stefani F. RocTest: A standardized method to assess the performance of root organ cultures in the propagation of arbuscular mycorrhizal fungi. Front Microbiol 2022; 13:937912. [PMID: 35966663 PMCID: PMC9366734 DOI: 10.3389/fmicb.2022.937912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past three decades, root organ cultures (ROCs) have been the gold standard method for studying arbuscular mycorrhizal fungi (AMF) under in vitro conditions, and ROCs derived from various plant species have been used as hosts for AM monoxenic cultures. While there is compelling evidence that host identity can significantly modify AMF fitness, there is currently no standardized methodology to assess the performance of ROCs in the propagation of their fungal symbionts. We describe RocTest, a robust methodological approach that models the propagation of AMF in symbiosis with ROCs. The development of extraradical fungal structures and the pattern of sporulation are modeled using cumulative link mixed models and linear mixed models. We demonstrate functionality of RocTest by evaluating the performance of three species of ROCs (Daucus carota, Medicago truncatula, Nicotiana benthamiana) in the propagation of three species of AMF (Rhizophagus clarus, Rhizophagus irregularis, Glomus sp.). RocTest produces a simple graphical output to assess the performance of ROCs and shows that fungal propagation depends on the three-way interaction between ROC, AMF, and time. RocTest makes it possible to identify the best combination of host/AMF for fungal development and spore production, making it an important asset for germplasm collections and AMF research.
Collapse
Affiliation(s)
- Dane Goh
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Claudia Banchini
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | | | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| |
Collapse
|
10
|
Koziol L, Schultz PA, Parsons S, Bever JD. Native mycorrhizal fungi improve milkweed growth, latex, and establishment while some commercial fungi may inhibit them. Ecosphere 2022. [DOI: 10.1002/ecs2.4052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Liz Koziol
- Kansas Biological Survey Lawrence Kansas USA
| | | | | | - James D. Bever
- Kansas Biological Survey Lawrence Kansas USA
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
| |
Collapse
|
11
|
Campos-López A, Uribe-López JA, Cázares-Ordoñez V, Garibay-Orijel R, Valdez-Cruz NA, Trujillo-Roldán MA. Quercetin and 1-methyl-2-oxindole mimic root signaling that promotes spore germination and mycelial growth of Gigaspora margarita. MYCORRHIZA 2022; 32:177-191. [PMID: 35194685 DOI: 10.1007/s00572-022-01074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/10/2022] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, and the difficulty of growing them in asymbiotic or monoxenic (AMF + root) conditions limits research and their large-scale production as biofertilizer. We hypothesized that a combination of flavanols and strigolactones can mimic complex root signaling during the presymbiotic stages of AMF. We evaluated the germination, mycelial growth, branching, and auxiliary cell clusters formation by Gigaspora margarita during the presymbiotic stage in the presence (or absence) of transformed Cichorium intybus roots in basal culture medium enriched with glucose, a flavonol (quercetin or biochanin A) and a strigolactone analogue (1-Methyl-2-oxindole or indole propionic acid). With quercetin (5 µM), methyl oxindole (2.5 nM), and glucose (8.2 g/L) in the absence of roots, the presymbiotic mycelium of G. margarita grew without cytoplasmic retraction and produced auxiliary cells over 71 days similar to presymbiotic mycelium in the presence of roots but without glucose, strigolactones, and flavonols. Our results indicate that glucose and a specific combination of certain concentrations of a flavonol and a strigolactone might be used in asymbiotic or monoxenic liquid or semisolid cultures to stimulate AMF inoculant bioprocesses.
Collapse
Affiliation(s)
- Alberto Campos-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Jaime A Uribe-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. Km 14 Vía Mosquera - Bogotá, 250047, Bogotá, Colombia
| | - Verna Cázares-Ordoñez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México. Av. Universidad, 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México.
| |
Collapse
|
12
|
Does Commercial Inoculation Promote Arbuscular Mycorrhizal Fungi Invasion? Microorganisms 2022; 10:microorganisms10020404. [PMID: 35208858 PMCID: PMC8879836 DOI: 10.3390/microorganisms10020404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Interventions with commercial inoculants have the potential to reduce the environmental footprint of agriculture, but their indiscriminate deployment has raised questions on the unintended consequences of microbial invasion. In the absence of explicit empirical reports on arbuscular mycorrhizal fungi (AMF) invasion, we examine the present framework used to define AMF invasion and offer perspectives on the steps needed to avoid the negative impacts of AMF invasion. Although commercial AMF isolates are potential invaders, invasions do not always constitute negative impacts on native community diversity and functions. Instead, the fates of the invading and resident communities are determined by ecological processes such as selection, drift, dispersal, and speciation. Nevertheless, we recommend strategies that reduce overdependence on introduced inoculants, such as adoption management practices that promote the diversity and richness of indigenous AMF communities, and the development of native propagules as a supplement to commercial AMF in applicable areas. Policies and regulations that monitor inoculant value chains from production to application must be put in place to check inoculant quality and composition, as well as the transport of inoculants between geographically distant regions.
Collapse
|
13
|
Pandit A, Kochar M, Srivastava S, Johny L, Adholeya A. Diversity and Functionalities of Unknown Mycorrhizal Fungal Microbiota. Microbiol Res 2021; 256:126940. [PMID: 34923238 DOI: 10.1016/j.micres.2021.126940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023]
Abstract
Beneficial ecosystem services provided by arbuscular mycorrhizal fungi (AMF) are the outcome of their synergistic actions with diverse bacterial communities (AMF-associated bacteria; AAB) living in strict association with AMF hyphae and spores. Herein, bacterial diversity associated with 6 AMF species from 33 different co-cultures belonging to order Glomerales and Diversisporales were identified, using a combination of culture-dependent functional analyses and amplicon sequencing. Overall, 231 bacterial strains were isolated from the AMF spores and hyphae which covered 30 bacterial genera and 52 species. Hierarchical clustering based on plant growth promoting traits identified 9 clades comprising diverse bacterial genera with clades 7, 8 and 9 representing the most functionally rich AAB. High-throughput amplicon sequencing across a small subset of 8 AMF co-cultures spread across 3 AMF genera identified Operational Taxonomic Units belonging to 118 bacterial genera. The study revealed a greater diversity of AAB from spores of in vitro transformed AMF root co-cultures rather than in situ, pot AMF cultures. Functionally active, culturable AABs with multiple plant growth promoting traits such as phosphate solubilisation, nitrogen fixation, biofilm formation, enzyme and plant growth regulator production along with biocontrol activity were identified. These properties could be utilized individually and/or as consortia with AMF, as biological growth enhancers.
Collapse
Affiliation(s)
- Aditi Pandit
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Mandira Kochar
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India.
| | - Shivani Srivastava
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Leena Johny
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Alok Adholeya
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| |
Collapse
|
14
|
Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and Dikaryons of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Differ in Life History Strategy. FRONTIERS IN PLANT SCIENCE 2021; 12:715377. [PMID: 34421967 PMCID: PMC8374082 DOI: 10.3389/fpls.2021.715377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that have the potential to improve crop yield. These multinucleate organisms are either "homokaryotic" or "dikaryotic". In AMF dikaryons, thousands of nuclei originating from two parental strains coexist in the same cytoplasm. In other fungi, homokaryotic and dikaryotic strains show distinct life history traits (LHTs), such as variation in growth rates and fitness. However, how such traits compare between dikaryons and homokaryons of AMF is unknown. To address this, we measured 20 LHT of four dikaryons and five homokaryons of the model fungus Rhizophagus irregularis across root organ cultures of three host plants (carrot, chicory, and tobacco). Our analyses show that dikaryons have clearly distinct life history strategies (LHSs) compared to homokaryons. In particular, spores of homokaryons germinate faster and to a higher proportion than dikaryons, whereas dikaryons grow significantly faster and create a more complex hyphal network irrespective of host plant species. Our study links AMF nuclear status with key LHT with possible implications for mycorrhizal symbiotic functioning.
Collapse
Affiliation(s)
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jeremy Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Kokkoris V, Chagnon PL, Yildirir G, Clarke K, Goh D, MacLean AM, Dettman J, Stefani F, Corradi N. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr Biol 2021; 31:1531-1538.e6. [PMID: 33545043 DOI: 10.1016/j.cub.2021.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The arbuscular mycorrhizal fungi (AMF) are involved in one of the most ecologically important symbioses on the planet, occurring within the roots of most land plants.1 Knowledge of even basic elements of AM fungal biology is still poor, with the discovery that AMF may in fact have a sexual life cycle being only very recently reported.2-5 AMF produce asexual spores that contain up to several thousand individual haploid nuclei6 of either largely uniform genotypes (AMF homokaryons) or nuclei originating from two parental genotypes2-5 (AMF dikaryons or heterokaryons). In contrast to the sexual dikaryons in the phyla Ascomycota and Basidiomycota,7,8 in which pairs of nuclei coexist in single hyphal compartments, AMF dikaryons carry several thousand nuclei in a coenocytic mycelium. Here, we set out to better understand the dynamics of this unique multinucleate condition by combining molecular analyses with advanced microscopy and modeling. Herein, we report that select AMF dikaryotic strains carry the distinct nucleotypes in equal proportions to one another, whereas others show an unequal distribution of parental nucleotypes. In both cases, the relative proportions within a given strain are inherently stable. Simulation models suggest that AMF dikaryons may be maintained through nuclear cooperation dynamics. Remarkably, we report that these nuclear ratios shift dramatically in response to plant host identity, revealing a previously unknown layer of genetic complexity and dynamism within the intimate interactions that occur between the partners of a prominent terrestrial symbiosis.
Collapse
Affiliation(s)
- Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada.
| | - Pierre-Luc Chagnon
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montreal, QC H1X 2B2, Canada
| | - Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kelsey Clarke
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Dane Goh
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson M MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jeremy Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
16
|
Pozo MJ, Zabalgogeazcoa I, Vazquez de Aldana BR, Martinez-Medina A. Untapping the potential of plant mycobiomes for applications in agriculture. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102034. [PMID: 33827007 DOI: 10.1016/j.pbi.2021.102034] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 05/20/2023]
Abstract
Plant-fungal interactions are widespread in nature, and their multiple benefits for plant growth and health have been amply demonstrated. Endophytic and epiphytic fungi can significantly increase plant resilience, improving plant nutrition, stress tolerance and defence. Although some of these interactions have been known for decades, the relevance of the plant mycobiome within the plant microbiome has been largely underestimated. Our limited knowledge of fungal biology and their interactions with plants in the broader phytobiome context has hampered the development of optimal biotechnological applications in agrosystems and natural ecosystems. Exciting recent technical and knowledge advances in the context of molecular and systems biology open a plethora of opportunities for developing this field of research.
Collapse
Affiliation(s)
- Maria J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - Iñigo Zabalgogeazcoa
- Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| | - Beatriz R Vazquez de Aldana
- Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| | - Ainhoa Martinez-Medina
- Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
17
|
Analysis of Arbuscular Mycorrhizal Fungal Inoculant Benchmarks. Microorganisms 2020; 9:microorganisms9010081. [PMID: 33396244 PMCID: PMC7824734 DOI: 10.3390/microorganisms9010081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022] Open
Abstract
Growing evidence showed that efficient acquisition and use of nutrients by crops is controlled by root-associated microbiomes. Efficient management of this system is essential to improving crop yield, while reducing the environmental footprint of crop production. Both endophytic and rhizospheric microorganisms can directly promote crop growth, increasing crop yield per unit of soil nutrients. A variety of plant symbionts, most notably the arbuscular mycorrhizal fungi (AMF), nitrogen-fixing bacteria, and phosphate-potassium-solubilizing microorganisms entered the era of large-scale applications in agriculture, horticulture, and forestry. The purpose of this study is to compile data to give a complete and comprehensive assessment and an update of mycorrhizal-based inoculant uses in agriculture in the past, present, and future. Based on available data, 68 mycorrhizal products from 28 manufacturers across Europe, America, and Asia were examined on varying properties such as physical forms, arbuscular mycorrhizal fungal composition, number of active ingredients, claims of purpose served, mode of application, and recommendation. Results show that 90% of the products studied are in solid formula—powder (65%) and granular (25%), while only 10% occur in liquid formula. We found that 100% of the products are based on the Glomeraceae of which three species dominate among all the products in the order of Rhizophagus irregularis (39%), Funneliformis mosseae (21%), Claroideoglomus etunicatum (16%). Rhizophagus clarus is the least common among all the benchmark products. One third of the products is single species AMF and only 19% include other beneficial microbes. Of the sampled products, 44% contain AMF only while the rest are combined with varying active ingredients. Most of the products (84%) claimed to provide plant nutrient benefits. Soil application dominates agricultural practices of the products and represents 47%. A substantial amount of the inoculants were applied in cereal production. Recommended application doses varied extensively per plant, seed and hectare. AMF inoculant seed coating accounted for 26% of the products’ application and has great potential for increased inoculation efficiency over large-scale production due to minimum inoculum use. More applied research should also be conducted on the possible combination of AMF with other beneficial microbes.
Collapse
|
18
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|