1
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
2
|
Law K, Garcia ERM, Hastad C, Murray D, Urriola PE, Gomez A. Interactions between maternal parity and feed additives drive the composition of pig gut microbiomes in the post-weaning period. J Anim Sci Biotechnol 2024; 15:33. [PMID: 38431668 PMCID: PMC10909285 DOI: 10.1186/s40104-024-00993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/07/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Nursery pigs undergo stressors in the post-weaning period that result in production and welfare challenges. These challenges disproportionately impact the offspring of primiparous sows compared to those of multiparous counterparts. Little is known regarding potential interactions between parity and feed additives in the post-weaning period and their effects on nursery pig microbiomes. Therefore, the objective of this study was to investigate the effects of maternal parity on sow and offspring microbiomes and the influence of sow parity on pig fecal microbiome and performance in response to a prebiotic post-weaning. At weaning, piglets were allotted into three treatment groups: a standard nursery diet including pharmacological doses of Zn and Cu (Con), a group fed a commercial prebiotic only (Preb) based on an Aspergillus oryzae fermentation extract, and a group fed the same prebiotic plus Zn and Cu (Preb + ZnCu). RESULTS Although there were no differences in vaginal microbiome composition between primiparous and multiparous sows, fecal microbiome composition was different (R2 = 0.02, P = 0.03). The fecal microbiomes of primiparous offspring displayed significantly higher bacterial diversity compared to multiparous offspring at d 0 and d 21 postweaning (P < 0.01), with differences in community composition observed at d 21 (R2 = 0.03, P = 0.04). When analyzing the effects of maternal parity within each treatment, only the Preb diet triggered significant microbiome distinctions between primiparous and multiparous offspring (d 21: R2 = 0.13, P = 0.01; d 42: R2 = 0.19, P = 0.001). Compositional differences in pig fecal microbiomes between treatments were observed only at d 21 (R2 = 0.12, P = 0.001). Pigs in the Con group gained significantly more weight throughout the nursery period when compared to those in the Preb + ZnCu group. CONCLUSIONS Nursery pig gut microbiome composition was influenced by supplementation with an Aspergillus oryzae fermentation extract, with varying effects on performance when combined with pharmacological levels of Zn and Cu or for offspring of different maternal parity groups. These results indicate that the development of nursery pig gut microbiomes is shaped by maternal parity and potential interactions with the effects of dietary feed additives.
Collapse
Affiliation(s)
- Kayla Law
- Department of Animal Science, University of Minnesota, 1364 Eckles Avenue, Saint Paul, MN, 55108, USA
| | | | - Chad Hastad
- New Fashion Pork, 164 Industrial Parkway, Jackson, MN, 56143, USA
| | - Deborah Murray
- New Fashion Pork, 164 Industrial Parkway, Jackson, MN, 56143, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, 1364 Eckles Avenue, Saint Paul, MN, 55108, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, 1364 Eckles Avenue, Saint Paul, MN, 55108, USA.
| |
Collapse
|
3
|
Galiotto Miranda PA, Remus A, Dalto DB, Hilgemberg R, Beber Jasluk G, Rosário Silva BC, Lehnen CR. A Systematic Review and Meta-Analysis of the Effects of Various Sources and Amounts of Copper on Nursery Piglets. Vet Sci 2024; 11:68. [PMID: 38393086 PMCID: PMC10892854 DOI: 10.3390/vetsci11020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
This study evaluated the impact of different dietary levels and sources of copper on the growth performance of nursery piglets through a combination of systematic review and meta-analysis. The database for this study was created using articles selected from major electronic databases. Data analysis involved forest plots and analysis of variance using mixed-effects models. The database included 63 articles published between 1990 and 2021, comprising 21,113 piglets in 946 treatments. Positive effects of supranutritional levels of copper from both inorganic and organic sources on the growth performance of nursery piglets were detected using Forest plots and analysis of variance (p < 0.001). Using mixed models, it was observed that piglet performance is influenced by body weight (p < 0.001), age (p < 0.001), and copper intake (p < 0.001). Both organic and inorganic sources of copper at supranutritional levels (>81 mg Cu/kg of diet) improved the performance of nursery piglets, but levels higher than 201 mg Cu/kg of diet did not further improve growth performance compared to 80-200 mg Cu/kg of diet. The feed conversion was worse in piglets fed with inorganic Cu sources (p < 0.001). In conclusion, dietary Cu supplementation influenced the weight gain and feed conversion rate in weaned piglets, particularly during the first few weeks post-weaning. Levels of 81 and 200 mg Cu/kg improved growth performance, but no further benefits were obtained for higher levels.
Collapse
Affiliation(s)
- Pedro Augusto Galiotto Miranda
- Department of Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030900, PR, Brazil; (P.A.G.M.); (R.H.); (G.B.J.)
| | - Aline Remus
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (A.R.); (D.B.D.)
| | - Danyel Bueno Dalto
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; (A.R.); (D.B.D.)
| | - Rafaela Hilgemberg
- Department of Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030900, PR, Brazil; (P.A.G.M.); (R.H.); (G.B.J.)
| | - Guilherme Beber Jasluk
- Department of Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030900, PR, Brazil; (P.A.G.M.); (R.H.); (G.B.J.)
| | | | - Cheila Roberta Lehnen
- Department of Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030900, PR, Brazil; (P.A.G.M.); (R.H.); (G.B.J.)
| |
Collapse
|
4
|
Sarode GV, Mazi TA, Neier K, Shibata NM, Jospin G, Harder NH, Caceres A, Heffern MC, Sharma AK, More SK, Dave M, Schroeder SM, Wang L, LaSalle JM, Lutsenko S, Medici V. The role of intestine in metabolic dysregulation in murine Wilson disease. Hepatol Commun 2023; 7:e0247. [PMID: 37695076 PMCID: PMC10497250 DOI: 10.1097/hc9.0000000000000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, but little is known about other tissue involvement regarding metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B affects metabolic dysregulation in WD. We tested this hypothesis by evaluating the gut microbiota and lipidome in 2 mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in the intestine. METHODS Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice (Atp7bΔIEC) were generated and characterized using targeted lipidome analysis following a high-fat diet challenge. RESULTS Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated triglyceride and diglyceride, phospholipid, and sphingolipid metabolism in WD models. However, Atp7bΔIEC mice did not show gut microbiome differences compared to wild type. When challenged with a high-fat diet, Atp7bΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. CONCLUSIONS Gut microbiome and lipidome underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge but not the microbiome profile, at least at early stages. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence the phenotype and the lipidome profile.
Collapse
Affiliation(s)
- Gaurav V. Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Tagreed A. Mazi
- Department of Community Health Sciences - Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kari Neier
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Genome Center, MIND Institute, Davis, California, USA
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | | | - Nathaniel H.O. Harder
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Amanda Caceres
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Marie C. Heffern
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Ashok K. Sharma
- Department of Gastroenterology, Inflammatory Bowel & Immunology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Shyam K. More
- Cedars Sinai Medical Center, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maneesh Dave
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Shannon M. Schroeder
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Li Wang
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Genome Center, MIND Institute, Davis, California, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| |
Collapse
|
5
|
Wen Y, Yang L, Wang Z, Liu X, Gao M, Zhang Y, Wang J, He P. Blocked conversion of Lactobacillus johnsonii derived acetate to butyrate mediates copper-induced epithelial barrier damage in a pig model. MICROBIOME 2023; 11:218. [PMID: 37777765 PMCID: PMC10542248 DOI: 10.1186/s40168-023-01655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND High-copper diets have been widely used to promote growth performance of pigs, but excess copper supplementation can also produce negative effects on ecosystem stability and organism health. High-copper supplementation can damage the intestinal barrier and disturb the gut microbiome community. However, the specific relationship between high-copper-induced intestinal damage and gut microbiota or its metabolites is unclear. OBJECTIVE Using fecal microbiota transplantation and metagenomic sequencing, responses of colonic microbiota to a high-copper diet was profiled. In addition, via comparison of specific bacteria and its metabolites rescue, we investigated a network of bacteria-metabolite interactions involving conversion of specific metabolites as a key mechanism linked to copper-induced damage of the colon. RESULTS High copper induced colonic damage, Lactobacillus extinction, and reduction of SCFA (acetate and butyrate) concentrations in pigs. LefSe analysis and q-PCR results confirmed the extinction of L. johnsonii. In addition, transplanting copper-rich fecal microbiota to ABX mice reproduced the gut characteristics of the pig donors. Then, L. johnsonii rescue could restore decreased SCFAs (mainly acetate and butyrate) and colonic barrier damage including thinner mucus layer, reduced colon length, and tight junction protein dysfunction. Given that acetate and butyrate concentrations exhibited a positive correlation with L. johnsonii abundance, we investigated how L. johnsonii exerted its effects by supplementing acetate and butyrate. L. johnsonii and butyrate administration but not acetate could correct the damaged colonic barrier. Acetate administration had no effects on butyrate concentration, indicating blocked conversion from acetate to butyrate. Furthermore, L. johnsonii rescue enriched a series of genera with butyrate-producing ability, mainly Lachnospiraceae NK4A136 group. CONCLUSIONS For the first time, we reveal the microbiota-mediated mechanism of high-copper-induced colonic damage in piglets. A high-copper diet can induce extinction of L. johnsonii which leads to colonic barrier damage and loss of SCFA production. Re-establishment of L. johnsonii normalizes the SCFA-producing pathway and restores colonic barrier function. Mechanistically, Lachnospiraceae NK4A136 group mediated conversion of acetate produced by L. johnsonii to butyrate is indispensable in the protection of colonic barrier function. Collectively, these findings provide a feasible mitigation strategy for gut damage caused by high-copper diets. Video Abstract.
Collapse
Affiliation(s)
- Yang Wen
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Luqing Yang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Meng Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
6
|
Duarte ME, Garavito-Duarte Y, Kim SW. Impacts of F18 +Escherichia coli on Intestinal Health of Nursery Pigs and Dietary Interventions. Animals (Basel) 2023; 13:2791. [PMID: 37685055 PMCID: PMC10487041 DOI: 10.3390/ani13172791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (M.E.D.); (Y.G.-D.)
| |
Collapse
|
7
|
Du Y, Tu Y, Zhou Z, Hong R, Yan J, Zhang GW. Effects of organic and inorganic copper on cecal microbiota and short-chain fatty acids in growing rabbits. Front Vet Sci 2023; 10:1179374. [PMID: 37275607 PMCID: PMC10235478 DOI: 10.3389/fvets.2023.1179374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Copper (Cu) is an essential trace element for the growth of rabbits. This study aimed to investigate the effects of different Cu sources on intestinal microorganisms and short-chain fatty acids (SCFAs) in growing rabbits. Methods The experimental animals were randomly divided into four experimental groups, each group comprised eight replicates, with six rabbits (half male and half female) per replicate. And they were fed diets was composed by mixing the basal diet with 20 mg/kg Cu from one of the two inorganic Cu (cupric sulfate and dicopper chloride trihydroxide) or two organic Cu (cupric citrate and copper glycinate). Cecal contents of four rabbits were collected from four experimental groups for 16S rDNA gene amplification sequencing and gas chromatography analysis. Results Our results indicate that the organic Cu groups were less variable than the inorganic Cu groups. Compared with the inorganic Cu groups, the CuCit group had a significantly higher relative abundance of Rikenella Tissierella, Lachnospiraceae_NK3A20_group, Enterococcus, and Paeniclostridium, while the relative abundance of Novosphingobium and Ruminococcus were significantly lower (p < 0.05). The SCFAs level decreased in the organic Cu groups than in the inorganic Cu groups. Among the SCFAs, the butyric acid level significantly decreased in the CuCit group than in the CuSO4 and CuCl2 groups. The relative abundance of Rikenella and Turicibacter genera was significantly negatively correlated with the butyric acid level in the CuCit group compared with both inorganic Cu groups. These results revealed that the organic Cu (CuCit) group had an increased abundance of Rikenella, Enterococcus, Lachnospiraceae_NK3A20_group, and Turicibacter genera in the rabbit cecum. Discussion In summary, this study found that organic Cu and inorganic Cu sources had different effects on cecal microbiota composition and SCFAs in rabbits. The CuCit group had the unique higher relative abundance of genera Rikenella and Lachnospiraceae_NK3A20_group, which might be beneficial to the lower incidence of diarrhea in rabbits.
Collapse
Affiliation(s)
- Yanan Du
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Tu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Rui Hong
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiayou Yan
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Rager SL, Zeng MY. The Gut-Liver Axis in Pediatric Liver Health and Disease. Microorganisms 2023; 11:597. [PMID: 36985171 PMCID: PMC10051507 DOI: 10.3390/microorganisms11030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
There has been growing interest in the complex host-microbe interactions within the human gut and the role these interactions play in systemic health and disease. As an essential metabolic organ, the liver is intimately coupled to the intestinal microbial environment via the portal venous system. Our understanding of the gut-liver axis comes almost exclusively from studies of adults; the gut-liver axis in children, who have unique physiology and differing gut microbial communities, remains poorly understood. Here, we provide a comprehensive overview of common pediatric hepatobiliary conditions and recent studies exploring the contributions of the gut microbiota to these conditions or changes of the gut microbiota due to these conditions. We examine the current literature regarding the microbial alterations that take place in biliary atresia, pediatric non-alcoholic fatty liver disease, Wilson's disease, cystic fibrosis, inflammatory bowel disease, and viral hepatitis. Finally, we propose potential therapeutic approaches involving modulation of the gut microbiota and the gut-liver axis to mitigate the progression of pediatric liver disease.
Collapse
Affiliation(s)
- Stephanie L. Rager
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Melody Y. Zeng
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
9
|
Brinck JE, Lassen SB, Forouzandeh A, Pan T, Wang YZ, Monteiro A, Blavi L, Solà-Oriol D, Stein HH, Su JQ, Brandt KK. Impacts of dietary copper on the swine gut microbiome and antibiotic resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159609. [PMID: 36273560 DOI: 10.1016/j.scitotenv.2022.159609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Restrictions on antibiotic growth promoters have prompted livestock producers to use alternative growth promoters, and dietary copper (Cu) supplementation is currently being widely used in pig production. However, elevated doses of dietary Cu constitute a risk for co-selection of antibiotic resistance and the risk may depend on the type of Cu-based feed additives being used. We here report the first controlled experiment investigating the impact of two contrasting Cu-based feed additives on the overall swine gut microbiome and antibiotic resistome. DNA was extracted from fecal samples (n = 96) collected at four time points during 116 days from 120 pigs allotted to three dietary treatments: control, divalent copper sulfate (CuSO4; 250 μg Cu g-1 feed), and monovalent copper oxide (Cu2O; 250 μg Cu g-1 feed). Bacterial community composition, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) were assessed, and bioavailable Cu ([Cu]bio) was determined using whole-cell bacterial bioreporters. Cu supplementation to feed increased total Cu concentrations ([Cu]total) and [Cu]bio in feces 8-10 fold and at least 670-1000 fold, respectively, but with no significant differences between the two Cu sources. The swine gut microbiome harbored highly abundant and diverse ARGs and MGEs irrespective of the treatments throughout the experiment. Microbiomes differed significantly between pig growth stages and tended to converge over time, but only minor changes in the bacterial community composition and resistome could be linked to Cu supplementation. A significant correlation between bacterial community composition (i.e., bacterial taxa present) and ARG prevalence patterns were observed by Procrustes analysis. Overall, results of the experiment did not provide evidence for Cu-induced co-selection of ARGs or MGEs even at a Cu concentration level exceeding the maximal permitted level for pig diets in the EU (25 to 150 μg Cu g-1 feed depending on pig age).
Collapse
Affiliation(s)
- Julius Emil Brinck
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Asal Forouzandeh
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ting Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan-Zi Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | - Laia Blavi
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China.
| |
Collapse
|
10
|
Lei H, Du Q, Lu N, Jiang X, Li M, Xia D, Long K. Comparison of the Microbiome-Metabolome Response to Copper Sulfate and Copper Glycinate in Growing Pigs. Animals (Basel) 2023; 13:ani13030345. [PMID: 36766234 PMCID: PMC9913561 DOI: 10.3390/ani13030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
This study aims to compare the fecal microbiome-metabolome response to copper sulfate (CuSO4) and copper glycinate (Cu-Gly) in pigs. Twelve Meishan gilts were allocated into the CuSO4 group and the Cu-Gly group (fed on a basal diet supplemented with 60 mg/kg copper from CuSO4 or Cu-Gly) paired in litter and body weight. After a two-week feeding trial, the Cu-Gly group had a higher copper digestibility, blood hemoglobin, and platelet volume and higher levels of plasma iron and insulin-like growth factor-1 than the CuSO4 group. The Cu-Gly treatment increased the abundance of the Lachnospiraceae family and the genera Lachnospiraceae XPB1014, Corprococcus_3, Anaerorhabdus_furcosa_group, Lachnospiraceae_FCS020_group, and Lachnospiraceae_NK4B4_group and decreased the abundance of the Synergistetes phylum and Peptostreptococcaceae family compared to the CuSO4 treatment. Moreover, the Cu-Gly group had a lower concentration of 20-Oxo-leukotriene E4 and higher concentrations of butyric acid, pentanoic acid, isopentanoic acid, coumarin, and Nb-p-Coumaroyl-tryptamine than the CuSO4 group. The abundance of Synergistetes was positively correlated with the fecal copper content and negatively correlated with the fecal butyric acid content. The abundance of the Lachnospiraceae_XPB1014_group genus was positively correlated with the plasma iron level and fecal contents of coumarin and butyric acid. In conclusion, Cu-Gly and CuSO4 could differentially affect fecal microbiota and metabolites, which partially contributes to the intestinal health of pigs in different manners.
Collapse
Affiliation(s)
- Hulong Lei
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Qian Du
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Naisheng Lu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xueyuan Jiang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Xia
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: (D.X.); (K.L.)
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (D.X.); (K.L.)
| |
Collapse
|
11
|
Sarode GV, Mazi TA, Neier K, Shibata NM, Jospin G, Harder NHO, Heffern MC, Sharma AK, More SK, Dave M, Schroeder SM, Wang L, LaSalle JM, Lutsenko S, Medici V. The role of intestine in metabolic dysregulation in murine Wilson disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524009. [PMID: 36711483 PMCID: PMC9882126 DOI: 10.1101/2023.01.13.524009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background and aims Major clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, and little is known about other tissues involvement in metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B could contribute to metabolic dysregulation in WD. We tested this hypothesis by evaluating gut microbiota and lipidome in two mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in intestine. Methods Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice ( Atp7b ΔIEC ) was generated using B6.Cg-Tg(Vil1-cre)997Gum/J mice and Atp7b Lox/Lox mice, and characterized using targeted lipidome analysis following a high-fat diet challenge. Results Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated tri- and diglyceride, phospholipid, and sphingolipid metabolism in WD models. When challenged with a high-fat diet, Atp7b ΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. Conclusion Coordinated changes of gut microbiome and lipidome analyses underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence phenotypic presentations.
Collapse
|
12
|
Zhang L, Yang Z, Yang M, Yang F, Wang G, Liu D, Li X, Yang L, Wang Z. Copper-induced oxidative stress, transcriptome changes, intestinal microbiota, and histopathology of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114136. [PMID: 36242823 DOI: 10.1016/j.ecoenv.2022.114136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is a common contaminant in aquatic environments, which could cause physiological dysfunction in aquatic organisms. However, few studies have comprehensively examined the impact of copper toxicity in freshwater fish over the past decade. In this research, the oxidative stress, liver transcriptome, intestinal microbiota, and histopathology of common carp (C. carpio) in response to Cu exposure were studied, by exposing juvenile carp to 0.2 mg/ml Cu2+ for 30 days. The results revealed that Cu2+ could induce significant changes in malondialdehyde (MDA) content and antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)) activity. The changes in antioxidant enzyme activities indicate that Cu can induce oxidative stress by generating reactive oxygen species (ROS) content. RNA-seq analysis of the liver identified 1069 differentially expressed genes (DEGs) after treatment with 2.0 mg/L Cu2+. Among the DEGs, 490 genes were upregulated and 579 genes were downregulated. GO functional enrichment analysis revealed that Cu could affect the fatty acid biosynthetic process, carnitine biosynthetic process, and activity of carboxylic acid transmembrane transporter. Meanwhile, the most significantly enriched KEGG pathway also included the lipid metabolism pathway. In addition, Cu2+ exposure increased bacterial richness and changed bacterial composition. At the phylum level, we found that the ratio of Bacteroidetes to Firmicutes was increased in the treatment carps, which can regulate intestinal epithelium function and reduce inflammation and immune responses. At the genus level, the abundances of 11 genera were significantly altered after exposure to Cu2+. The altered composition of the microbial community caused by Cu exposure may play a useful role in compensation of the intestinal lesions by Cu exposure. Furthermore, we found that Cu2+ exposure could cause histological alterations such as structural damage to the liver and intestines. The results of this research contribute to a better understanding of mechanisms related to Cu toxicity in fish.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China.
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dandan Liu
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
13
|
Forouzandeh A, Blavi L, Pérez JF, D’Angelo M, González-Solé F, Monteiro A, Stein HH, Solà-Oriol D. How copper can impact pig growth: comparing the effect of copper sulfate and monovalent copper oxide on oxidative status, inflammation, gene abundance, and microbial modulation as potential mechanisms of action. J Anim Sci 2022; 100:skac224. [PMID: 35723874 PMCID: PMC9486896 DOI: 10.1093/jas/skac224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
The beneficial effect of elevated concentrations of copper (Cu) on growth performance of pigs has been already demonstrated; however, their mechanism of action is not fully discovered. The objective of the present experiment was to investigate the effects of including Cu from copper sulfate (CuSO4) or monovalent copper oxide (Cu2O) in the diet of growing pigs on oxidative stress, inflammation, gene abundance, and microbial modulation. We used 120 pigs with initial body weight (BW) of 11.5 ± 0.98 kg in 2 blocks of 60 pigs, 3 dietary treatments, 5 pigs per pen, and 4 replicate pens per treatment within each block for a total of 8 pens per treatment. Dietary treatments included the negative control (NC) diet containing 20 mg Cu/kg and 2 diets in which 250 mg Cu/kg from CuSO4 or Cu2O was added to the NC. On day 28, serum samples were collected from one pig per pen and this pig was then euthanized to obtain liver samples for the analysis of oxidative stress markers (Cu/Zn superoxide dismutase, glutathione peroxidase, and malondialdehyde, MDA). Serum samples were analyzed for cytokines. Jejunum tissue and colon content were collected and used for transcriptomic analyses and microbial characterization, respectively. Results indicated that there were greater (P < 0.05) MDA levels in the liver of pigs fed the diet with 250 mg/kg CuSO4 than in pigs fed the other diets. The serum concentration of tumor necrosis factor-alpha was greater (P < 0.05) in pigs fed diets containing CuSO4 compared with pigs fed the NC diet or the diet with 250 mg Cu/kg from Cu2O. Pigs fed diets containing CuSO4 or Cu2O had a greater (P < 0.05) abundance of genes related to the intestinal barrier function and nutrient transport, but a lower (P < 0.05) abundance of pro-inflammatory genes compared with pigs fed the NC diet. Supplementing diets with CuSO4 or Cu2O also increased (P < 0.05) the abundance of Lachnospiraceae and Peptostreptococcaceae families and reduced (P < 0.05) the abundance of the Rikenellaceae family, Campylobacter, and Streptococcus genera in the colon of pigs. In conclusion, adding 250 mg/kg of Cu from CuSO4 or Cu2O regulates genes abundance in charge of the immune system and growth, and promotes changes in the intestinal microbiota; however, Cu2O induces less systemic oxidation and inflammation compared with CuSO4.
Collapse
Affiliation(s)
- Asal Forouzandeh
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Blavi
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose Francisco Pérez
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Matilde D’Angelo
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francesc González-Solé
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
Apiwatsiri P, Pupa P, Sirichokchatchawan W, Sawaswong V, Nimsamer P, Payungporn S, Hampson DJ, Prapasarakul N. Metagenomic analysis of the gut microbiota in piglets either challenged or not with enterotoxigenic Escherichia coli reveals beneficial effects of probiotics on microbiome composition, resistome, digestive function and oxidative stress responses. PLoS One 2022; 17:e0269959. [PMID: 35749527 PMCID: PMC9231746 DOI: 10.1371/journal.pone.0269959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/01/2022] [Indexed: 01/12/2023] Open
Abstract
This study used metagenomic analysis to investigate the gut microbiota and resistome in piglets that were or were not challenged with enterotoxigenic Escherichia coli (ETEC) and had or had not received dietary supplementation with microencapsulated probiotics. The 72 piglets belonged to six groups that were either non-ETEC challenged (groups 1–3) or ETEC challenged (receiving 5ml of 109 CFU/ml pathogenic ETEC strain L3.2 one week following weaning at three weeks of age: groups 4–6). On five occasions at 2, 5, 8, 11, and 14 days of piglet age, groups 2 and 5 were supplemented with 109 CFU/ml of multi-strain probiotics (Lactiplantibacillus plantarum strains 22F and 25F, and Pediococcus acidilactici 72N) while group 4 received 109 CFU/ml of P. acidilactici 72N. Group 3 received 300mg/kg chlortetracycline in the weaner diet to mimic commercial conditions. Rectal faecal samples were obtained for metagenomic and resistome analysis at 2 days of age, and at 12 hours and 14 days after the timing of post-weaning challenge with ETEC. The piglets were all euthanized at 42 days of age. The piglets in groups 2 and 5 were enriched with several desirable microbial families, including Lactobacillaceae, Lachnospiraceae and Ruminococcaceae, while piglets in group 3 had increases in members of the Bacteroidaceae family and exhibited an increase in tetW and tetQ genes. Group 5 had less copper and multi-biocide resistance. Mobile genetic elements IncQ1 and IncX4 were the most prevalent replicons in antibiotic-fed piglets. Only groups 6 and 3 had the integrase gene (intl) class 2 and 3 detected, respectively. The insertion sequence (IS) 1380 was prevalent in group 3. IS3 and IS30, which are connected to dietary intake, were overrepresented in group 5. Furthermore, only group 5 showed genes associated with detoxification, with enrichment of genes associated with oxidative stress, glucose metabolism, and amino acid metabolism compared to the other groups. Overall, metagenomic analysis showed that employing a multi-strain probiotic could transform the gut microbiota, reduce the resistome, and boost genes associated with food metabolism.
Collapse
Affiliation(s)
- Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
15
|
Egorov I, Egorova T, Yildirim E, Kalitkina K, Ilina L, Frolov V. Effect of chitosan complexes on the bacterial community of cecum and productivity of broiler chickens. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224803007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The search and development of natural biological additives that have a comprehensive effect as immunostimulants and improve digestion in poultry is relevant. This study was carried out at the Selection and Genetics Center “Zagorskoe EPH”. The control and experimental groups were formed of the 1-day-old Ross-308 cross broilers (35 heads in each). Six groups were formed. The broilers of the group No.1 (control) received basic feed (BF) with the addition of feed antibiotic Maxus. The group No.2 (control) received BF without feed antibiotic. The broilers of the group No.3 (experimental) received BF and the KH-1 chitosan complex. The group No.4 (experimental) received BF and the KHM chitosan complex with the addition of copper nanoparticles. The group No.5 (experimental) received BF and drinking preparation based on the KH-Aqua chitosan complex. The group No.6 (experimental) received BF and drinking preparation based on the KH-Aqua chitosan complex enriched with copper nanoparticles. The bacterial community of the gut cecum was analyzed using the molecular genetics method of next-generation sequencing (NGS). The addition of chitosan complexes (both supplemented with copper nanoparticles and in the drinking form) made it possible to obtain high livability of broilers with increased live body weight and decreased feed consumption per 1 kg of live body weight gain. The live body weight of 35-day-old broilers in the experimental groups was 2.96-5.70% higher than that of the control with a 5.86-8.23% decrease in feed consumption per 1 kg of live body weight gain. The results of NGS showed that the effect of chitosan complexes on the regulation of the composition of the microbiome of broilers’ cecum was predominantly positive. There was an up to 4.4-fold increase in the content of representatives of the normoflora, bacteria of the family Lactobacillaceae. The number of bacteria of genus Helicobacter, among which pathogens are often found, in the experimental groups was 2.6-33.3 times lower than in the group received antibiotics. So, the chitosan complexes were proved to be valuable supplements for poultry.
Collapse
|
16
|
Kim M, Cho JH, Seong PN, Jung H, Jeong JY, Kim S, Kim H, Kim ES, Keum GB, Guevarra RB, Kim HB. Fecal microbiome shifts by different forms of copper supplementations in growing pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1386-1396. [PMID: 34957452 PMCID: PMC8672264 DOI: 10.5187/jast.2021.e118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Copper is an essential mineral for pigs, thus it is used as a feed additive in
the forms of copper sulfate. Therefore, this study aimed at characterizing the
fecal microbiota shifts in pigs as fed by different forms of copper
supplementation. 40 growing pigs aged 73 ± 1 days with an average weight
of 30.22 ± 1.92kg were randomly divided into 5 groups. The control group
(CON) fed with basal diet, while treatment groups were fed a basal diet
supplemented with 100 ppm/kg of copper sulfate (CuSO4), Cu-glycine
complex (CuGly), Cu-amino acid complex (CuAA), and
Cu-hydroxy(4methylthio)butanoate chelate complex (CuHMB) for 28 days of trial,
respectively. The data presented the comparison between inorganic and organic
copper supplementation through gut microbiota in growing pigs. Alpha and Beta
diversity anaylsis resulted in copper supplementation did shifted gut microbioal
community structure. At the phylum level, Firmicutes and Bacteroidetes were the
most abundant phyla at all times regardless of treatment. At the genus level,
the relative abundances of Prevotella,
Lactobacillus, Megasphaera, and SMB53 of
the CuGly and CuHMB groups were significantly higher than those of copper
sulfate and basal diet groups. Overall, this study may provide the potential
role of organic copper replacing inorganic copper, resulting in increased
beneficial bacteria in the pig gut.
Collapse
Affiliation(s)
- Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Pil-Nam Seong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jin Young Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Hyeri Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Robin B Guevarra
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
17
|
Sun S, Wu X, Huang Y, Jiang Q, Zhu S, Sun S. Visual detection of Cu2+ in high-copper feed based on a fluorescent derivative of rhodamine B. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Chance JA, DeRouchey JM, Amachawadi RG, Ishengoma V, Nagaraja TG, Goodband RD, Woodworth JC, Tokach MD, Calderón HI, Kang Q, Loughmiller JA, Hotze B, Gebhardt JT. Live yeast and yeast extracts with and without pharmacological levels of zinc on nursery pig growth performance and antimicrobial susceptibilities of fecal Escherichia coli. J Anim Sci 2021; 99:6424407. [PMID: 34752618 DOI: 10.1093/jas/skab330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 11/12/2022] Open
Abstract
A total of 360 weanling barrows (Line 200 ×400, DNA, Columbus NE; initially 5.6 ± 0.03 kg) were used in a 42-d study to evaluate yeast-based pre- and probiotics (Phileo by Lesaffre, Milwaukee, WI) in diets with or without pharmacological levels of Zn on growth performance and antimicrobial resistance (AMR) patterns of fecal Escherichia coli. Pens were assigned to 1 of 4 dietary treatments with 5 pigs per pen and 18 pens per treatment. Dietary treatments were arranged in a 2 × 2 factorial with main effects of yeast-based pre- and probiotics (none vs. 0.10% ActiSaf Sc 47 HR+, 0.05% SafMannan, and 0.05% NucleoSaf from d 0 to 7, then concentrations were lowered by 50% from d 7 to 21) and pharmacological levels of Zn (110 vs. 3,000 mg/kg from d 0 to 7, and 2,000 mg/kg from d 7 to 21 with added Zn provided by ZnO). All pigs were fed a common diet from d 21 to 42 post-weaning. There were no yeast ×Zn interactions or effects from yeast additives observed on any response criteria. From d 0 to 21, and 0 to 42, pigs fed pharmacological levels of Zn had increased (P < 0.001) ADG and ADFI. Fecal samples were collected on d 4, 21, and 42 from the same three pigs per pen for fecal dry matter (DM) and AMR patterns of E. coli. On d 4, pigs fed pharmacological levels of Zn had greater fecal DM (P = 0.043); however, no differences were observed on d 21 or 42. E. coli was isolated from fecal samples and the microbroth dilution method was used to determine the minimal inhibitory concentrations (MIC) of E. coli isolates to 14 different antimicrobials. Isolates were categorized as either susceptible, intermediate, or resistant based on Clinical and Laboratory Standards Institute (CLSI) guidelines. The addition of pharmacological levels of Zn had a tendency (P = 0.051) to increase the MIC values of ciprofloxacin; however, these MIC values were still well under the CLSI classified resistant breakpoint for Ciprofloxacin. There was no evidence for differences (P > 0.10) for yeast additives or Zn for AMR of fecal E. coli isolates to any of the remaining antibiotics. In conclusion, pharmacological levels of Zn improved ADG, ADFI, and all isolates were classified as susceptible to ciprofloxacin although the MIC of fecal E. coli tended to be increased. Thus, the short-term use of pharmacological levels of Zn did not increase antimicrobial resistance. There was no response observed from live yeast and yeast extracts for any of the growth, fecal DM, or AMR of fecal E. coli criteria.
Collapse
Affiliation(s)
- Jenna A Chance
- Department of Animal Sciences and Industry, Kanas State University, Manhattan KS 66506-0201 USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kanas State University, Manhattan KS 66506-0201 USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan KS, 66506-0201 USA
| | - Victor Ishengoma
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan KS, 66506-0201 USA
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kanas State University, Manhattan KS, 66506-0201 USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, Kanas State University, Manhattan KS 66506-0201 USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kanas State University, Manhattan KS 66506-0201 USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, Kanas State University, Manhattan KS 66506-0201 USA
| | - Hilda I Calderón
- Department of Statistics, College of Arts and Sciences, Kansas State University, Kanas State University, Manhattan KS, 66506-0201 USA
| | - Qing Kang
- Department of Statistics, College of Arts and Sciences, Kansas State University, Kanas State University, Manhattan KS, 66506-0201 USA
| | | | - Brian Hotze
- Phileo by Lesaffre, Milwaukee WI, 53214-1552 USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kanas State University, Manhattan KS, 66506-0201 USA
| |
Collapse
|
19
|
Liao J, Li Q, Lei C, Yu W, Deng J, Guo J, Han Q, Hu L, Li Y, Pan J, Zhang H, Chang YF, Tang Z. Toxic effects of copper on the jejunum and colon of pigs: mechanisms related to gut barrier dysfunction and inflammation influenced by the gut microbiota. Food Funct 2021; 12:9642-9657. [PMID: 34664585 DOI: 10.1039/d1fo01286j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper (Cu) is an essential trace mineral, but its excessive intake can lead to potentially toxic effects on host physiology. The mammalian intestine harbors various microorganisms that are associated with intestinal barrier function and inflammation. In this study, the influences of Cu on barrier function, microbiota, and its metabolites were examined in the jejunum and colon of pigs. Here, we identified that the physical and chemical barrier functions were impaired both in the jejunum and colon, as evidenced by the decreased expression of tight junction proteins (ZO-1, Occludin, Claudin-1, and JAM-1) and mucous secretion-related genes, positive rate of Muc2, and secretion of SIgA and SIgG. Additionally, inflammatory cytokines were overexpressed in the jejunum and colon. Furthermore, Cu might increase the abundances of Mycoplasma, Actinobacillus and unidentified_Enterobacteriaceae in the jejunum, which significantly affected pentose and glucoronate interconversions, histidine metabolism, folate biosynthesis, porphyrin metabolism, and purine metabolism. Meanwhile, the abundances of Lactobacillus and Methanobrevibacter were remarkably decreased and Streptococcus, unidentified_Enterobacteriaceae, and unidentified_Muribaculaceae were significantly increased in the colon, with an evident impact on glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings revealed that excess Cu had significant effects on the microbiota and metabolites in the jejunum and colon, which were involved in intestinal barrier dysfunction and inflammation.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jichang Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Science, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| |
Collapse
|
20
|
Chitosan-chelated zinc modulates ileal microbiota, ileal microbial metabolites, and intestinal function in weaned piglets challenged with Escherichia coli K88. Appl Microbiol Biotechnol 2021; 105:7529-7544. [PMID: 34491402 DOI: 10.1007/s00253-021-11496-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023]
Abstract
This study was to investigate the effects of chitosan-chelated zinc on ileal microbiota, inflammatory response, and barrier function in weaned piglets challenged with Escherichia coli K88. Piglets of the chitosan-chelated zinc treatment (Cs-Zn; 100 mg zinc + 766 mg chitosan/kg basal diet, from chitosan-chelated zinc) and the chitosan treatment (CS, 766 mg chitosan/kg basal diet) had significantly increased ileal villus height and the ratio of villi height to crypt depth. CS-Zn group piglets had a higher abundance of Lactobacillus in the ileal digesta, while the abundance of Streptococcus, Escherichia shigella, Actinobacillus, and Clostridium sensu stricto 6 was significantly decreased. The concentrations of propionate, butyrate, and lactate in the CS-Zn group piglets were significantly increased, while the pH value was significantly decreased. Furthermore, the concentrations of IL-1β, TNF-α, MPO, and INF-γ in the ileal mucosa of the CS-Zn and the H-ZnO group (pharmacological dose of 1600 mg Zn/kg basal diet, from ZnO) were significantly lower than those of the control group fed with basal diet, and the mRNA expression of TLR4, MyD88, and NF-κB of the CS-Zn group was also reduced. In addition, the mRNA expression of IGF-1 was increased, the protein expression of occludin and claudin-1 was enhanced, while the mRNA expression of caspase 3 and caspase 8 was decreased in the CS-Zn group. These results suggest CS-Zn treatment could help modulate the composition of ileal microbiota, attenuate inflammatory response, and maintain the intestinal function in weaned piglets challenged with Escherichia coli K88. KEY POINTS: • Chitosan-chelated zinc significantly modulated ileal microbiota. • Chitosan-chelated zinc can improve ileal health. • The ileal microbiota plays an important role in host health.
Collapse
|
21
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
22
|
Analysis of 56,348 Genomes Identifies the Relationship between Antibiotic and Metal Resistance and the Spread of Multidrug-Resistant Non-Typhoidal Salmonella. Microorganisms 2021; 9:microorganisms9071468. [PMID: 34361911 PMCID: PMC8306355 DOI: 10.3390/microorganisms9071468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/14/2023] Open
Abstract
Salmonella enterica is common foodborne pathogen that generates both enteric and systemic infections in hosts. Antibiotic resistance is common is certain serovars of the pathogen and of great concern to public health. Recent reports have documented the co-occurrence of metal resistance with antibiotic resistance in one serovar of S. enterica. Therefore, we sought to identify possible co-occurrence in a large genomic dataset. Genome assemblies of 56,348 strains of S. enterica comprising 20 major serovars were downloaded from NCBI. The downloaded assemblies were quality controlled and in silico serotyped to ensure consistency and avoid improper annotation from public databases. Metal and antibiotic resistance genes were identified in the genomes as well as plasmid replicons. Co-occurrent genes were identified by constructing a co-occurrence matrix and grouping said matrix using k-means clustering. Three groups of co-occurrent genes were identified using k-means clustering. Group 1 was comprised of the pco and sil operons that confer resistance to copper and silver, respectively. Group 1 was distributed across four serovars. Group 2 contained the majority of the genes and little to no co-occurrence was observed. Metal and antibiotic co-occurrence was identified in group 3 that contained genes conferring resistance to: arsenic, mercury, beta-lactams, sulfonamides, and tetracyclines. Group 3 genes were also associated with an IncQ1 class plasmid replicon. Metal and antibiotic co-occurrence from group 3 genes is mostly isolated to one clade of S. enterica I 4,[5],12:i:-.
Collapse
|
23
|
Vannakovida C, Lampang KN, Chuammitri P, Punyapornwithaya V, Kreausukon K, Mektrirat R. Comparative occurrence and antibiogram of extended-spectrum β-lactamase-producing Escherichia coli among post-weaned calves and lactating cows from smallholder dairy farms in a parallel animal husbandry area. Vet World 2021; 14:1311-1318. [PMID: 34220136 PMCID: PMC8243667 DOI: 10.14202/vetworld.2021.1311-1318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Inappropriate overuse of antimicrobials might be associated with the spreading of antimicrobial-resistant bacteria in animal-based food products. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli have been recognized as an emerging global problem in a One Health approach. This study aimed to assess the occurrence and antimicrobial-susceptible profiles of ESBL-producing E. coli among post-weaned calves and lactating cows in a parallel animal husbandry area. Materials and Methods: Seventy-two pool fecal samples were collected from 36 smallholder dairy farms registered in Ban Hong Dairy Cooperatives, Lamphun Province, Thailand. Pre-enriched fecal samples were cultured in MacConkey agar supplemented with cefotaxime. The potential E. coli isolates were identified by not only biochemical tests but also polymerase chain reaction assay of the 16S rRNA gene. ESBL production was confirmed by the combination disk test. Antimicrobial susceptibility testing was performed by the Kirby–Bauer disk diffusion method. Results: The occurrence of ESBL-producing E. coli at the farm level was 80.56%. The different phenotypic antibiogram of ESBL-producing E. coli was observed among post-weaned calf and lactating cow specimens. The most frequent resistance patterns of ESBL-producing isolates from both groups were amoxicillin-ceftiofur-cephalexin-cephalothin-cloxacillin-streptomycin-oxytetracycline-sulfamethoxazole/trimethoprim. For the median zone diameter, enrofloxacin-resistant isolates with narrow zone diameter values from lactating cow specimens were particularly more than post-weaned calf specimens (p<0.05). Conclusion: These findings revealed the dynamic changes in ESBL-producing E. coli from calves and lactating cows in Lamphun Province, posing the inevitability to prevent bacterial transmission and optimize antimicrobial therapy in dairy farming.
Collapse
Affiliation(s)
- Chya Vannakovida
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kannika Na Lampang
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Khwanchai Kreausukon
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Raktham Mektrirat
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.,Epidemiology Research Group of Infectious Disease, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals (Basel) 2021; 11:ani11051276. [PMID: 33946674 PMCID: PMC8145729 DOI: 10.3390/ani11051276] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Pigs and poultry, similar to humans, need regular consumption of zinc, copper, and manganese for normal functioning. To ensure adequate dietary intake, and prevent deficiency, their diets are supplemented with sufficient, often excessive, levels of these minerals or even at higher levels, which have been associated with improvements in their health and/or growth. However, if provided in excess, mineral quantities beyond those required are simply excreted from the animal, which is associated with negative consequences for the environment and even the development of antimicrobial resistance. Therefore, it is of great interest to better understand the dynamics of zinc, copper, and manganese in the intestine of pigs and poultry following consumption of supplemented diets, and how the requirements and benefits related to these minerals can be optimized and negative impacts minimized. The intestine of pigs and poultry contains vast numbers of microorganisms, notably bacteria, that continually interact with, and influence, their host. This review explores the influence of zinc, copper, and manganese on these interactions and how novel forms of these minerals have the potential to maximize their delivery and benefits, while limiting any negative consequences. Abstract Zinc, copper, and manganese are prominent essential trace (or micro) minerals, being required in small, but adequate, amounts by pigs and poultry for normal biological functioning. Feed is a source of trace minerals for pigs and poultry but variable bioavailability in typical feed ingredients means that supplementation with low-cost oxides and sulphates has become common practice. Such trace mineral supplementation often provides significant ‘safety margins’, while copper and zinc have been supplemented at supra-nutritional (or pharmacological) levels to improve health and/or growth performance. Regulatory mechanisms ensure that much of this oversupply is excreted by the host into the environment, which can be toxic to plants and microorganisms or promote antimicrobial resistance in microbes, and thus supplying trace minerals more precisely to pigs and poultry is necessary. The gastrointestinal tract is thus central to the maintenance of trace mineral homeostasis and the provision of supra-nutritional or pharmacological levels is associated with modification of the gut environment, such as the microbiome. This review, therefore, considers recent advances in understanding the influence of zinc, copper, and manganese on the gastrointestinal environment of pigs and poultry, including more novel, alternative sources seeking to maintain supra-nutritional benefits with minimal environmental impact.
Collapse
|
25
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
26
|
Wang J, Li C, Yin Y, Zhang S, Li X, Sun Q, Wan D. Effects of Zinc Oxide/Zeolite on Intestinal Morphology, Intestinal Microflora, and Diarrhea Rates in Weaned Piglets. Biol Trace Elem Res 2021; 199:1405-1413. [PMID: 32607765 DOI: 10.1007/s12011-020-02262-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
This experiment was conducted to investigate the effects of zinc oxide/zeolite on growth performance, serum biochemistry, intestinal morphology, and microflora of weaned piglets. Two hundred and fifty-six weaned piglets (Duroc × Landrace × Large) at 21 days of age were randomly assigned to 2 groups with 8 replicates and 16 piglets in each pen. The diets of high dose of zinc oxide group (HD-ZnO) supplemented with 1500 mg/kg zinc as zinc oxide, but the diet of experimental group supplemented with 500 mg/kg zinc as zinc oxide that supported on zeolite (SR-ZnO). The experiment was conducted for 2 weeks after weanling. The results showed replacement of high-dosed zinc oxide by SR-ZnO had no significant effects on growth performance and intestinal morphology. However, the dietary supplementation of SR-ZnO reduced the diarrhea rate (P < 0.05), increased the activity of serum alkaline phosphatase (ALP) (P < 0.01), and tended to reduce zinc release in stomach (P = 0.06) and increase serum total protein (TP) (P = 0.07). Although there were no significant effects in ileal microflora on α diversity, the abundance of Campylobacters was found significantly decreased (P < 0.05), whereas the abundance of Clostridium was increased (P < 0.05) after lower-dosed SR-ZnO replacement. It is revealed that replacement of HD-ZnO (1500 mg/kg) by SR-ZnO (500 mg/kg) in creep feed could improve the zinc bioavailability, regulate the intestinal flora, and alleviate the postweaning diarrhea in weaned piglets. Accordingly, the application of SR-ZnO would reduce the zinc in feed and therefore benefits for the ecological environment.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Chenyang Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Yulong Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 6500323, China
| | - Shuo Zhang
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 6500323, China
| | - Xiaozhen Li
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 6500323, China
| | - Qingping Sun
- Yangzhou Zhongwei Bio-Tech Co. Ltd., Yangzhou, 225000, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 6500323, China.
- Yangzhou Zhongwei Bio-Tech Co. Ltd., Yangzhou, 225000, China.
| |
Collapse
|
27
|
Leyva-Diaz AA, Hernandez-Patlan D, Solis-Cruz B, Adhikari B, Kwon YM, Latorre JD, Hernandez-Velasco X, Fuente-Martinez B, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of curcumin and copper acetate against Salmonella Typhimurium infection, intestinal permeability, and cecal microbiota composition in broiler chickens. J Anim Sci Biotechnol 2021; 12:23. [PMID: 33541441 PMCID: PMC7863265 DOI: 10.1186/s40104-021-00545-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. RESULTS The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. CONCLUSIONS CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.
Collapse
Affiliation(s)
- Anaisa A. Leyva-Diaz
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bishnu Adhikari
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Young Min Kwon
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Juan D. Latorre
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Benjamin Fuente-Martinez
- Centro de Ensenanza, Investigacion y Extension en Produccion Avicola, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico, Mexico
| | - Billy M. Hargis
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| |
Collapse
|
28
|
Zhang Y, Dong Z, Yang H, Liang X, Zhang S, Li X, Wan D, Yin Y. Effects of dose and duration of dietary copper administration on hepatic lipid peroxidation and ultrastructure alteration in piglets' model. J Trace Elem Med Biol 2020; 61:126561. [PMID: 32480055 DOI: 10.1016/j.jtemb.2020.126561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Copper is an essential microelement for animals and has been used at pharmacological doses in weaned piglets to improve growth performance. However, it also induces systemic oxidative stress after short-term feeding. The aim of this study was to investigate the effects of dose and duration of dietary copper on lipid peroxidation and oxidative stress status in model of weaned piglets. METHODS A total of 48 crossbred piglets (weaned at 21d, weight ∼8.2 kg) were randomly assigned into 4 groups of 12 in each. The control group and 3 treatment groups fed with basal diet supplemented with 20, 100 and 200 mg/kg copper as copper sulfate for 3 and 6 weeks, respectively. RESULTS Dietary copper supplementation significantly affected the activities of ALP, LDH, LIPC and the levels of Ca and TG in serum as well as the copper and zinc deposition in liver. Increased MDA concentrations, and decreased GPX, CP and CAT concentrations in serum were found in 0, 100 and 200 mg Cu/kg diet groups at 3 weeks post weaning. Hepatic lipid peroxidation was also induced in these groups indicated from hepatic SOD1, GPX1, CAT, CP, MT1A and MT2A transcriptional levels. Those adverse symptoms were alleviative at 6 weeks post weaning. The hepatic Cu and Zn concentrations, serum MDA concentrations, and serum CAT and GPX activities were significantly correlated with Actinobacillus, Lactobacillus, Sarcina, Helicobacter, Campylobacterales, which could affect the intestinal health further. CONCLUSION These results indicated that copper deficiency or over supplementation would affect the systemic lipid peroxidation. These adverse changes were not observed when the dietary copper concentration at 20 mg Cu/kg diet. The results suggested the appropriate dietary copper concentration is around 20 mg Cu/kg diet, and its range might be much stricter than we thought.
Collapse
Affiliation(s)
- Yiming Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China
| | - Zhenglin Dong
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoxiao Liang
- Henan Guang'an Biology Technology Co. Ltd., Zhengzhou 450001, China
| | - Shuo Zhang
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Huabandry Technology Co., Ltd., Shalang Town, Wuhua District, Kunming 6500323, Yunnan Province, China
| | - Xiaozhen Li
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Huabandry Technology Co., Ltd., Shalang Town, Wuhua District, Kunming 6500323, Yunnan Province, China
| | - Dan Wan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China.
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China; Henan Guang'an Biology Technology Co. Ltd., Zhengzhou 450001, China; Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Huabandry Technology Co., Ltd., Shalang Town, Wuhua District, Kunming 6500323, Yunnan Province, China.
| |
Collapse
|