1
|
Senthakumaran T, Tannæs TM, Moen AEF, Brackmann SA, Jahanlu D, Rounge TB, Bemanian V, Tunsjø HS. Detection of colorectal-cancer-associated bacterial taxa in fecal samples using next-generation sequencing and 19 newly established qPCR assays. Mol Oncol 2025; 19:412-429. [PMID: 38970464 PMCID: PMC11793011 DOI: 10.1002/1878-0261.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
We have previously identified increased levels of distinct bacterial taxa within mucosal biopsies from colorectal cancer (CRC) patients. Following prior research, the aim of this study was to investigate the detection of the same CRC-associated bacteria in fecal samples and to evaluate the suitability of fecal samples as a non-invasive material for the detection of CRC-associated bacteria. Next-generation sequencing (NGS) of the 16S ribosomal RNA (rRNA) V4 region was performed to evaluate the detection of the CRC-associated bacteria in the fecal microbiota of cancer patients, patients with adenomatous polyp and healthy controls. Furthermore, 19 novel species-specific quantitative PCR (qPCR) assays were established to detect the CRC-associated bacteria. Approximately, 75% of the bacterial taxa identified in biopsies were reflected in fecal samples. NGS failed to detect low-abundance CRC-associated taxa in fecal samples, whereas qPCR exhibited high sensitivity and specificity in identifying all targeted taxa. Comparison of fecal microbial composition between the different patient groups showed enrichment of Fusobacterium nucleatum, Parvimonas micra, and Gemella morbillorum in cancer patients. Our findings suggest that low-abundance mucosa-associated bacteria can be detected in fecal samples using sensitive qPCR assays.
Collapse
Affiliation(s)
| | - Tone M. Tannæs
- Section for Clinical Molecular Biology (EpiGen)Akershus University HospitalLørenskogNorway
- Department of Clinical Molecular Biology, Institute of Clinical MedicineUniversity of OsloNorway
| | - Aina E. F. Moen
- Section for Clinical Molecular Biology (EpiGen)Akershus University HospitalLørenskogNorway
- Department of Clinical Molecular Biology, Institute of Clinical MedicineUniversity of OsloNorway
- Department of Methods Development and AnalyticsNorwegian Institute of Public HealthOsloNorway
| | - Stephan A. Brackmann
- Department of Gastroenterology, Division of MedicineAkershus University HospitalLørenskogNorway
- Institute for Clinical MedicineUniversity of OsloNorway
| | - David Jahanlu
- Department of Life Sciences and HealthOslo Metropolitan UniversityNorway
| | - Trine B. Rounge
- Department of Pharmacy, Centre for BioinformaticsUniversity of OsloNorway
- Department of ResearchCancer Registry of NorwayOsloNorway
| | - Vahid Bemanian
- Department of PathologyAkershus University HospitalLørenskogNorway
| | - Hege S. Tunsjø
- Department of Life Sciences and HealthOslo Metropolitan UniversityNorway
| |
Collapse
|
2
|
Taylor KD, Wood AC, Rotter JI, Guo X, Herrington DM, Johnson WC, Post WS, Tracy RP, Rich SS, Malik S. Metagenomic Study of the MESA: Detection of Gemella Morbillorum and Association With Coronary Heart Disease. J Am Heart Assoc 2024; 13:e035693. [PMID: 39344648 PMCID: PMC11681464 DOI: 10.1161/jaha.124.035693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Inflammation is a feature of coronary heart disease (CHD), but the role of proinflammatory microbial infection in CHD remains understudied. METHODS AND RESULTS CHD was defined in the MESA (Multi-Ethnic Study of Atherosclerosis) as myocardial infarction (251 participants), resuscitated arrest (2 participants), and CHD death (80 participants). We analyzed sequencing reads from 4421 MESA participants in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program using the PathSeq workflow of the Genome Analysis Tool Kit and a 65-gigabase microbial reference. Paired reads aligning to 840 microbes were detected in >1% of participants. The association of the presence of microbe reads with incident CHD (follow-up, ~18 years) was examined. First, important variables were ascertained using a single regularized Cox proportional hazard model, examining change of risk as a function of presence of microbe with age, sex, education level, Life's Simple 7, and inflammation. For variables of importance, the hazard ratio (HR) was estimated in separate (unregularized) Cox proportional hazard models including the same covariates (significance threshold Bonferroni corrected P<6×10-5, 0.05/840). Reads from 2 microbes were significantly associated with CHD: Gemella morbillorum (HR, 3.14 [95% CI, 1.92-5.12]; P=4.86×10-6) and Pseudomonas species NFACC19-2 (HR, 3.22 [95% CI, 2.03-5.41]; P=1.58×10-6). CONCLUSIONS Metagenomics of whole-genome sequence reads opens a possible frontier for detection of pathogens for chronic diseases. The association of G morbillorum and Pseudomonas species reads with CHD raises the possibilities that microbes may drive atherosclerotic inflammation and that treatments for specific pathogens may provide clinical utility for CHD reduction.
Collapse
Affiliation(s)
- Kent D. Taylor
- Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical InnovationTorranceCA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCA
| | - Alexis C. Wood
- United States Department of Agriculture/Agricultural Research Service (USDA/ARS) Children’s Nutrition Research CenterBaylor College of MedicineHoustonTX
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical InnovationTorranceCA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical InnovationTorranceCA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCA
| | | | - W. Craig Johnson
- Department of Biostatistics, School of Public HealthUniversity of WashingtonSeattleWA
| | - Wendy S. Post
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMD
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine and BiochemistryLarner College of Medicine at the University of VermontColchesterVT
| | - Stephen S. Rich
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVA
| | - Shaista Malik
- Division of Cardiology, Department of MedicineUniversity of California IrvineIrvineCA
- Susan Samueli Integrative Health InstituteIrvineCA
| |
Collapse
|
3
|
Mussabay K, Kozhakhmetov S, Dusmagambetov M, Mynzhanova A, Nurgaziyev M, Jarmukhanov Z, Vinogradova E, Dusmagambetova A, Daulbaeva A, Chulenbayeva L, Tauekelova A, Bekbossynova M, Kushugulova A. Gut Microbiome and Cytokine Profiles in Post-COVID Syndrome. Viruses 2024; 16:722. [PMID: 38793604 PMCID: PMC11126011 DOI: 10.3390/v16050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies highlight the crucial role of the gut microbiome in post-infectious complications, especially in patients recovering from severe COVID-19. Our research aimed to explore the connection between gut microbiome changes and the cytokine profile of patients with post-COVID syndrome. Using 16S rRNA amplicon sequencing, we analyzed the composition of the gut microbiome in 60 COVID-19 patients over the course of one year. We also measured the levels of serum cytokines and chemokines using the Milliplex system. Our results showed that severe SARS-CoV-2 infection cases, especially those complicated by pneumonia, induce a pro-inflammatory microbial milieu with heightened presence of Bacteroides, Faecalibacterium, and Prevotella_9. Furthermore, we found that post-COVID syndrome is characterized by a cross-correlation of various cytokines and chemokines MDC, IL-1b, Fractalkine, TNFa, FGF-2, EGF, IL-1RA, IFN-a2, IL-10, sCD40L, IL-8, Eotaxin, IL-12p40, and MIP-1b as well as a shift in the gut microbiome towards a pro-inflammatory profile. At the functional level, our analysis revealed associations with post-COVID-19 in homolactic fermentation, pentose phosphate, NAD salvage, and flavin biosynthesis. These findings highlight the intricate interplay between the gut microbiota, their metabolites, and systemic cytokines in shaping post-COVID symptoms. Unraveling the gut microbiome's role in post-infectious complications opens avenues for new treatments for those patients with prolonged symptoms.
Collapse
Affiliation(s)
- Karakoz Mussabay
- Department of Microbiology and Virology Named after Sh.I.Sarbasova, Astana Medical University, Astana 010000, Kazakhstan; (M.D.); (A.D.)
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (M.N.); (Z.J.); (E.V.); (L.C.)
| | - Marat Dusmagambetov
- Department of Microbiology and Virology Named after Sh.I.Sarbasova, Astana Medical University, Astana 010000, Kazakhstan; (M.D.); (A.D.)
| | - Aitolkyn Mynzhanova
- Department of Pediatric Infectious Diseases, Astana Medical University, Astana 010000, Kazakhstan; (A.M.); (A.D.)
| | - Madiyar Nurgaziyev
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (M.N.); (Z.J.); (E.V.); (L.C.)
| | - Zharkyn Jarmukhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (M.N.); (Z.J.); (E.V.); (L.C.)
| | - Elizaveta Vinogradova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (M.N.); (Z.J.); (E.V.); (L.C.)
| | - Aigul Dusmagambetova
- Department of Microbiology and Virology Named after Sh.I.Sarbasova, Astana Medical University, Astana 010000, Kazakhstan; (M.D.); (A.D.)
| | - Aiganym Daulbaeva
- Department of Pediatric Infectious Diseases, Astana Medical University, Astana 010000, Kazakhstan; (A.M.); (A.D.)
| | - Laura Chulenbayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (M.N.); (Z.J.); (E.V.); (L.C.)
| | - Ainur Tauekelova
- National Research Cardiac Surgery Center, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| | | | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (M.N.); (Z.J.); (E.V.); (L.C.)
| |
Collapse
|
4
|
Furugaito M, Arai Y, Uzawa Y, Kamisako T, Ogura K, Okamoto S, Kikuchi K. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics (Basel) 2023; 12:1538. [PMID: 37887239 PMCID: PMC10604004 DOI: 10.3390/antibiotics12101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Gemella is a catalase-negative, facultative anaerobic, Gram-positive coccus that is commensal in humans but can become opportunistic and cause severe infectious diseases, such as infective endocarditis. Few studies have tested the antimicrobial susceptibility of Gemella. We tested its antimicrobial susceptibility to 27 drugs and defined the resistant genes using PCR in 58 Gemella strains, including 52 clinical isolates and six type strains. The type strains and clinical isolates included 22 G. morbillorum, 18 G. haemolysans (GH) group (genetically indistinguishable from G. haemolysans and G. parahaemolysans), 13 G. taiwanensis, three G. sanguinis, and two G. bergeri. No strain was resistant to beta-lactams and vancomycin. In total, 6/22 (27.3%) G. morbillorum strains were erythromycin- and clindamycin-resistant ermB-positive, whereas 5/18 (27.8%) in the GH group, 6/13 (46.2%) G. taiwanensis, and 1/3 (33.3%) of the G. sanguinis strains were erythromycin-non-susceptible mefE- or mefA-positive and clindamycin-susceptible. The MIC90 of minocycline and the ratios of tetM-positive strains varied across the different species-G. morbillorum: 2 µg/mL and 27.3% (6/22); GH group: 8 µg/mL and 22.2% (4/18); G. taiwanensis: 8 µg/mL and 53.8% (7/13), respectively. Levofloxacin resistance was significantly higher in G. taiwanensis (8/13 61.5%) than in G. morbillorum (2/22 9.1%). Levofloxacin resistance was associated with a substitution at serine 83 for leucine, phenylalanine, or tyrosine in GyrA. The mechanisms of resistance to erythromycin and clindamycin differed across Gemella species. In addition, the rate of susceptibility to levofloxacin differed across Gemella sp., and the quinolone resistance mechanism was caused by mutations in GyrA alone.
Collapse
Affiliation(s)
- Michiko Furugaito
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (M.F.); (S.O.)
- Department of Clinical Laboratory, Kindai University Hospital, Osakasayama, Osaka 589-8511, Japan
| | - Yuko Arai
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| | - Yutaka Uzawa
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| | - Toshinori Kamisako
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Kindai University, Osakasayama, Osaka 589-8511, Japan;
| | - Kohei Ogura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan;
| | - Shigefumi Okamoto
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (M.F.); (S.O.)
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| |
Collapse
|
5
|
Bello S, Mudassir SH, Rudra B, Gupta RS. Phylogenomic and molecular markers based studies on Staphylococcaceae and Gemella species. Proposals for an emended family Staphylococcaceae and three new families (Abyssicoccaceae fam. nov., Salinicoccaceae fam. nov. and Gemellaceae fam. nov.) harboring four new genera, Lacicoccus gen. nov., Macrococcoides gen. nov., Gemelliphila gen. nov., and Phocicoccus gen. nov. Antonie Van Leeuwenhoek 2023; 116:937-973. [PMID: 37523090 DOI: 10.1007/s10482-023-01857-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
The family Staphylococcacae and genus Gemella contain several organisms of clinical or biotechnological importance. We report here comprehensive phylogenomic and comparative analyses on 112 available genomes from species in these taxa to clarify their evolutionary relationships and classification. In a phylogenomic tree based on 678 core proteins, Gemella species were separated from Staphylococcacae by a long branch indicating that they constitute a distinct family (Gemellaceae fam. nov.). In this tree, Staphylococcacae species formed two main clades, one encompassing the genera Aliicoccus, Jeotgalicoccus, Nosocomiicoccus and Salinicoccus (Family "Salinicoccaceae"), while the other clade consisted of the genera Macrococcus, Mammaliicoccus and Staphylococcus (Family Staphylococcaceae emend.). In this tree, species from the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus each formed two distinct clades. Two species clades for these genera are also observed in 16S rRNA gene trees and supported by average amino acid identity analysis. We also report here detailed analyses on protein sequences from Staphylococcaceae and Gemella genomes to identify conserved signature indels (CSIs) which are specific for different genus and family-level clades. These analyses have identified 120 novel CSIs robustly demarcating different proposed families and genera. The identified CSIs provide independent evidence that the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus consist of two distinct clades, which can be reliably distinguished based on multiple exclusively shared CSIs. We are proposing transfers of the species from the novel clades of the above four genera into the genera Gemelliphila gen. nov., Phocicoccus gen. nov., Macrococcoides gen. nov. and Lacicoccus gen. nov., respectively. The identified CSIs also provide strong evidence for division of Staphylococcaceae into an emended family Staphylococcaceae and two new families, Abyssicoccaceae fam. nov. and Salinicoccaceae fam. nov. All of these families can be reliably demarcated based on several exclusively shared CSIs.
Collapse
Affiliation(s)
- Sarah Bello
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Syed Huzaifa Mudassir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
6
|
Zhang Y, Jen FEC, Edwards JL, Jennings MP. Analysis of Bacterial Phosphorylcholine-Related Genes Reveals an Association between Type-Specific Biosynthesis Pathways and Biomolecules Targeted for Phosphorylcholine Modification. Microbiol Spectr 2023; 11:e0158323. [PMID: 37436144 PMCID: PMC10434233 DOI: 10.1128/spectrum.01583-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Many bacterial surface proteins and carbohydrates are modified with phosphorylcholine (ChoP), which contributes to host mimicry and can also promote colonization and survival in the host. However, the ChoP biosynthetic pathways that are used in bacterial species that express ChoP have not been systematically studied. For example, the well-studied Lic-1 pathway is absent in some ChoP-expressing bacteria, such as Neisseria meningitidis and Neisseria gonorrhoeae. This raises a question as to the origin of the ChoP used for macromolecule biosynthesis in these species. In the current study, we used in silico analyses to identify the potential pathways involved in ChoP biosynthesis in genomes of the 26 bacterial species reported to express a ChoP-modified biomolecule. We used the four known ChoP biosynthetic pathways and a ChoP transferase as search terms to probe for their presence in these genomes. We found that the Lic-1 pathway is primarily associated with organisms producing ChoP-modified carbohydrates, such as lipooligosaccharide. Pilin phosphorylcholine transferase A (PptA) homologs were detected in all bacteria that express ChoP-modified proteins. Additionally, ChoP biosynthesis pathways, such as phospholipid N-methyltransferase (PmtA), phosphatidylcholine synthase (Pcs), or the acylation-dependent phosphatidylcholine biosynthesis pathway, which generate phosphatidylcholine, were also identified in species that produce ChoP-modified proteins. Thus, a major finding of this study is the association of a particular ChoP biosynthetic pathway with a cognate, target ChoP-modified surface factor; i.e., protein versus carbohydrate. This survey failed to identify a known biosynthetic pathway for some species that express ChoP, indicating that a novel ChoP biosynthetic pathway(s) may remain to be identified. IMPORTANCE The modification of bacterial surface virulence factors with phosphorylcholine (ChoP) plays an important role in bacterial virulence and pathogenesis. However, the ChoP biosynthetic pathways in bacteria have not been fully understood. In this study, we used in silico analysis to identify potential ChoP biosynthetic pathways in bacteria that express ChoP-modified biomolecules and found the association between a specific ChoP biosynthesis pathway and the cognate target ChoP-modified surface factor.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Jennifer L. Edwards
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
7
|
Robinson AV, Allen-Vercoe E. Strain specificity in fusobacterial co-aggregation with colorectal cancer-relevant species. Anaerobe 2023; 82:102758. [PMID: 37423597 DOI: 10.1016/j.anaerobe.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES The purpose of the present study was to characterize co-aggregation interactions between isolates of Fusobacterium nucleatum subsp. animalis and other colorectal cancer (CRC)-relevant species. METHODS Co-aggregation interactions were assessed by comparing optical density values following 2-h stationary strain co-incubations to strain optical density values when incubated alone. Co-aggregation was characterized between strains from a previously isolated, CRC biopsy-derived community and F. nucleatum subsp. animalis, a species linked to CRC and known to be highly aggregative. Interactions were also investigated between the fusobacterial isolates and strains sourced from alternate human gastrointestinal samples whose closest species match aligned with species in the CRC biopsy-derived community. RESULTS Co-aggregation interactions were observed to be strain-specific, varying between both F. nucleatum subsp. animalis strains and different strains of the same co-aggregation partner species. F. nucleatum subsp. animalis strains were observed to co-aggregate strongly with several taxa linked to CRC: Campylobacter concisus, Gemella spp., Hungatella hathewayi, and Parvimonas micra. CONCLUSIONS Co-aggregation interactions suggest the ability to encourage the formation of biofilms, and colonic biofilms, in turn, have been linked to promotion and/or progression of CRC. Co-aggregation between F. nucleatum subsp. animalis and CRC-linked species such as C. concisus, Gemella spp., H. hathewayi, and P. micra may contribute to both biofilm formation along CRC lesions and to disease progression.
Collapse
Affiliation(s)
- Avery V Robinson
- University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | | |
Collapse
|
8
|
Luna N, Muñoz M, Castillo-Castañeda A, Hernandez C, Urbano P, Shaban M, Paniz-Mondolfi A, Ramírez JD. Characterizing the blood microbiota of omnivorous and frugivorous bats (Chiroptera: Phyllostomidae) in Casanare, eastern Colombia. PeerJ 2023; 11:e15169. [PMID: 37431467 PMCID: PMC10329821 DOI: 10.7717/peerj.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 07/12/2023] Open
Abstract
Bats are known reservoirs of seemingly-innocuous pathogenic microorganisms (including viruses, bacteria, fungi, and protozoa), which are associated with triggering disease in other zoonotic groups. The taxonomic diversity of the bats' microbiome is likely associated with species-specific phenotypic, metabolic, and immunogenic capacities. To date, few studies have described the diversity of bat blood microbial communities. Then, this study used amplicon-based next generation sequencing of the V4 hypervariable region of the 16S-rRNA gene in blood samples from omnivorous (n = 16) and frugivorous (n = 9) bats from the department of Casanare in eastern Colombia. We found the blood microbiota in bats to be composed of, among others, Bartonella and Mycoplasma bacterial genera which are associated with various disease phenotypes in other mammals. Furthermore, our results suggest that the bats' dietary habits might determine the composition and the persistence of some pathogens over others in their bloodstream. This study is among the first to describe the blood microbiota in bats, to reflect on co-infection rates of multiple pathogens in the same individual, and to consider the influence of diet as a factor affecting the animal's endogenous microbial community.
Collapse
Affiliation(s)
- Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernandez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Plutarco Urbano
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Universidad Internacional del Tropico Americano (Unitropico), Yopal, Colombia
| | - Maryia Shaban
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Incubadora Venezolana de la Ciencia, Caracas, Venezuela
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Incubadora Venezolana de la Ciencia, Caracas, Venezuela
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
9
|
Zhang Y, Jen FEC, Fox KL, Edwards JL, Jennings MP. The biosynthesis and role of phosphorylcholine in pathogenic and nonpathogenic bacteria. Trends Microbiol 2023; 31:692-706. [PMID: 36863982 PMCID: PMC10272106 DOI: 10.1016/j.tim.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
Phosphorylcholine (ChoP) can be found in all life forms. Although this molecule was first thought to be uncommon in bacteria, it is now appreciated that many bacteria express ChoP on their surface. ChoP is usually attached to a glycan structure, but in some cases, it is added as a post-translational modification to proteins. Recent findings have demonstrated the role of ChoP modification and phase variation (ON/OFF switching) in bacterial pathogenesis. However, the mechanisms of ChoP synthesis are still unclear in some bacteria. Here, we review the literature and examine the recent developments in ChoP-modified proteins and glycolipids and of ChoP biosynthetic pathways. We discuss how the well-studied Lic1 pathway exclusively mediates ChoP attachment to glycans but not to proteins. Finally, we provide a review of the role of ChoP in bacterial pathobiology and the role of ChoP in modulating the immune response.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Kate L Fox
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jennifer L Edwards
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia.
| |
Collapse
|
10
|
Torres-Morales J, Mark Welch JL, Dewhirst FE, Borisy GG. Site-specialization of human oral Gemella species. J Oral Microbiol 2023; 15:2225261. [PMID: 37361319 PMCID: PMC10288933 DOI: 10.1080/20002297.2023.2225261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Gemella species are core members of the human oral microbiome in healthy subjects and are regarded as commensals, although they can cause opportunistic infections. Our objective was to evaluate the site-specialization of Gemella species among various habitats within the mouth by combining pangenomics and metagenomics. With pangenomics, we identified genome relationships and categorized genes as core and accessory to each species. With metagenomics, we identified the primary oral habitat of individual genomes. Our results establish that the genomes of three species, G. haemolysans, G. sanguinis and G. morbillorum, are abundant and prevalent in human mouths at different oral sites: G. haemolysans on buccal mucosa and keratinized gingiva; G. sanguinis on tongue dorsum, throat, and tonsils; and G. morbillorum in dental plaque. The gene-level basis of site-specificity was investigated by identifying genes that were core to Gemella genomes at a specific oral site but absent from other Gemella genomes. The riboflavin biosynthesis pathway was present in G. haemolysans genomes associated with buccal mucosa but absent from the rest of the genomes. Overall, metapangenomics show that Gemella species have clear ecological preferences in the oral cavity of healthy humans and provides an approach to identifying gene-level drivers of site specificity.
Collapse
Affiliation(s)
| | - Jessica L. Mark Welch
- The Forsyth Institute, Cambridge, MA, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | |
Collapse
|
11
|
Lu H, Yuan J, Wu Z, Wang L, Wu S, Chen Q, Zhang Z, Chen Z, Zou X, Hu Q, Feng T, Lu J, Ji L, Qiu S, Xu S, Jiang M, Li Y, Peng B, Bai Q, Cai R, Geng Y, Shi X. Distribution of drug-resistant genes in alveolar lavage fluid from patients with psittacosis and traceability analysis of causative organisms. Front Microbiol 2023; 14:1182604. [PMID: 37425996 PMCID: PMC10327639 DOI: 10.3389/fmicb.2023.1182604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Background Chlamydia psittaci is a small bacterium often found in birds, including poultry, and domesticated mammals, which causes psittacosis (or parrot fever) in humans. Different strains of C. psittaci respond variably to antibiotics, suggesting a possible risk of antibiotic resistance. In general, different genotypes of C. psittaci have relatively stable hosts and different pathogenicity. Methods Macrogenomic sequencing was performed using nucleic acids extracted from psittacosis patients' alveolar lavage fluid samples and analyzed for genetic variability and antibiotic resistance genes. Nucleic acid amplification sequences specific to the core coding region of the C. psittaci ompA gene were used, and a phylogenetic tree was constructed with C. psittaci genotypic sequences from other sources, including Chinese published sources. The C. psittaci found in each patient were genotyped by comparing ompA gene sequences. In addition, to better illustrate the relationship between genotype and host of C. psittaci, 60 bird fecal samples were collected from bird-selling stores for screening and C. psittaci typing. Results Macrogenomic sequence alignment revealed the presence of resistance genes in varying abundance in samples from all three patients, including C. psittaci resistance gene sequences from two patients that matched those previously published on NCBI. Based on ompA genotyping, two patients were infected with C. psittaci genotype A and one patient was infected with genotype B. All five C. psittaci-positive samples obtained from bird-selling stores were genotype A. Both genotypes are reported to be infectious to humans. The host origin of the samples and the previously reported main sources of each genotype suggested that all but one of the C. psittaci genotype A in this study were derived from parrots, while genotype B was probably derived from chickens. Conclusion The presence of bacterial resistance genes in psittacosis patients may affect the efficacy of clinical antibiotic therapy. Focusing on the developmental progression of bacterial resistance genes and differences in the therapeutic efficacy may facilitate effective treatment of clinical bacterial infections. Pathogenicity genotypes (e.g., genotype A and genotype B) are not limited to one animal host, suggesting that monitoring the development and changes of C. psittaci may help prevent transmission to humans.
Collapse
Affiliation(s)
- Huiqun Lu
- Department of Public Health Laboratory Sciences, School of Public Health, University of South China, Hengyang, China
| | - Jing Yuan
- Shenzhen Third People’s Hospital, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zeming Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | | | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhigao Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Tiejian Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianhua Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liyin Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuxiang Qiu
- Department of Public Health Laboratory Sciences, School of Public Health, University of South China, Hengyang, China
| | - Shiqin Xu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bo Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, University of South China, Hengyang, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yijie Geng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Department of Public Health Laboratory Sciences, School of Public Health, University of South China, Hengyang, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
12
|
Cao X, Yuan L. Gemella morbillorum infective endocarditis: A case report and literature review. Open Life Sci 2023; 18:20220599. [PMID: 37215499 PMCID: PMC10199321 DOI: 10.1515/biol-2022-0599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023] Open
Abstract
Infective endocarditis (IE) caused by Gemella morbillorum is rare. Consequently, little is known about the natural course of endocarditis caused by this pathogen. This report describes the case of a 37-year-old male patient with G. morbillorum endocarditis. The patient was hospitalized for a fever of unknown origin. He complained of intermittent fever of unknown origin for 2 months. He had also undergone root canal therapy for pulpitis a month ago. After admission, the infectious pathogen G. morbillorum was identified using metagenomic next-generation sequence technology. The anaerobic blood culture bottle showed only Gram-positive cocci. Transthoracic echocardiography showed 10 mm vegetation on the aorta, which met the IE diagnostic Duke's criteria, and the patient was diagnosed with G. morbillorum IE. Because no bacterial colonies were formed on the culture, the drug sensitivity test could not be conducted. Ceftriaxone anti-infective drugs are based on careful consideration of the literature and patient. Six days after antibiotic treatment in our department, the patient was discharged from the hospital in stable condition and had no adverse reactions at 1 week of follow-up. To help clinicians better understand the disease of G. morbillorum IE, we also reviewed and discussed the relevant cases published after 2010 when presenting the report.
Collapse
Affiliation(s)
- Xuejie Cao
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Lichao Yuan
- Department of Infectious Disease, China-Japan Friendship Hospital, No. 2, Yinghuayuan East Street, Chaoyang, Beijing 100010, China
| |
Collapse
|
13
|
Kazarina A, Kuzmicka J, Bortkevica S, Zayakin P, Kimsis J, Igumnova V, Sadovska D, Freimane L, Kivrane A, Namina A, Capligina V, Poksane A, Ranka R. Oral microbiome variations related to ageing: possible implications beyond oral health. Arch Microbiol 2023; 205:116. [PMID: 36920536 PMCID: PMC10016173 DOI: 10.1007/s00203-023-03464-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
The global population is getting older due to a combination of longer life expectancy and declining birth rates. Growing evidence suggests that the oral microbiota composition and distribution may have a profound effect on how well we age. The purpose of this study was to investigate age-related oral microbiome variations of supragingival plaque and buccal mucosa samples in the general population in Latvia. Our results indicated significant difference between supragingival plaque bacterial profiles of three age groups (20-40; 40-60; 60 + years). Within supragingival plaque samples, age group 20-40 showed the highest bacterial diversity with a decline during the 40-60 age period and uprise again after the age of 60. Among other differences, the important oral commensal Neisseria had declined after the age of 40. Additionally, prevalence of two well-documented opportunistic pathogens Streptococcus anginosus and Gemella sanguinis gradually rose with age within our samples. Furthermore, supragingival plaque and buccal mucosa samples significantly differed in overall bacterial composition.
Collapse
Affiliation(s)
- Alisa Kazarina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia.
| | | | - Santa Bortkevica
- Riga Stradins University, 16 Dzirciema Str., Riga, LV-1007, Latvia
| | - Pawel Zayakin
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Janis Kimsis
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Viktorija Igumnova
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Darja Sadovska
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Lauma Freimane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agnija Kivrane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agne Namina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Valentina Capligina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Alise Poksane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Renate Ranka
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| |
Collapse
|
14
|
Microbiota Phenotype Promotes Anastomotic Leakage in a Model of Rats with Ischemic Colon Resection. Microorganisms 2023; 11:microorganisms11030680. [PMID: 36985253 PMCID: PMC10054737 DOI: 10.3390/microorganisms11030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Anastomotic leakage (AL) is a major cause of morbidity and mortality after colorectal surgery, but the mechanism behind this complication is still not fully understood. Despite the advances in surgical techniques and perioperative care, the complication rates have remained steady. Recently, it has been suggested that colon microbiota may be involved in the development of complications after colorectal surgery. The aim of this study was to evaluate the association of gut microbiota in the development of colorectal AL and their possible virulence strategies to better understand the phenomenon. Using 16S rRNA sequencing of samples collected on the day of surgery and the sixth day following surgery, we analyzed the changes in tissue-associated microbiota at anastomotic sites created in a model of rats with ischemic colon resection. We discovered a trend for lower microbial diversity in the AL group compared to non-leak anastomosis (NLA). There were no differences in relative abundance in the different types of microbial respiration between these groups and the high abundance of the facultative anaerobic Gemella palaticanis is a marker species that stands out as a distinctive feature.
Collapse
|
15
|
Mastroianni A, Greco S, Vangeli V, Mauro MV, Greco F, Urso F, Manfredi R. <i>Gemella hemolysans</i> endocarditis and septicemia: case report and literature review. MICROBIOLOGIA MEDICA 2022. [DOI: 10.4081/mm.2022.10983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A suggestive report of Gemella hemolysans endocarditis and sepsis is described and commented on the ground of an updated literature review.
Collapse
|
16
|
Bankvall M, Carda-Diéguez M, Mira A, Karlsson A, Hasséus B, Karlsson R, Robledo-Sierra J. Metataxonomic and metaproteomic profiling of the oral microbiome in oral lichen planus - a pilot study. J Oral Microbiol 2022; 15:2161726. [PMID: 36605405 PMCID: PMC9809343 DOI: 10.1080/20002297.2022.2161726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background A growing body of evidence demonstrates a different bacterial composition in the oral cavity of patients with oral lichen planus (OLP). Patients and methods Buccal swab samples were collected from affected and non-affected sites of six patients with reticular OLP and the healthy oral mucosa of six control subjects. 16S rRNA gene MiSeq sequencing and mass spectrometry-based proteomics were utilised to identify the metataxonomic and metaproteomic profiles of the oral microbiome in both groups. Results From the metataxonomic analysis, the most abundant species in the three subgroups were Streptococcus oralis and Pseudomonas aeruginosa, accounting for up to 70% of the total population. Principal Coordinates Analysis showed differential clustering of samples from the healthy and OLP groups. ANCOM-BC compositional analysis revealed multiple species (including P. aeruginosa and several species of Veillonella, Prevotella, Streptococcus and Neisseria) significantly over-represented in the control group and several (including Granulicatella elegans, Gemella haemolysans and G. parahaemolysans) in patients with OLP. The metaproteomic data were generally congruent and revealed that several Gemella haemolysans-belonging peptidases and other proteins with inflammatory and virulence potential were present in OLP lesions. Conclusion Our data suggest that several bacterial species are associated with OLP. Future studies with larger cohorts should be conducted to determine their role in the aetiology of OLP and evaluate their potential as disease biomarkers.
Collapse
Affiliation(s)
- Maria Bankvall
- Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Miguel Carda-Diéguez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain,School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | | | - Bengt Hasséus
- Department of Oral Medicine and Pathology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Clinical microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jairo Robledo-Sierra
- Nanoxis Consulting AB, Gothenburg, Sweden,Faculty of Dentistry, CES University, Medellin, Colombia,CONTACT Jairo Robledo-Sierra Faculty of Dentistry, CES University, Medellin, Colombia
| |
Collapse
|
17
|
Redzic JS, Rahkola J, Tran N, Holyoak T, Lee E, Martín-Galiano AJ, Meyer N, Zheng H, Eisenmesser E. A substrate-induced gating mechanism is conserved among Gram-positive IgA1 metalloproteases. Commun Biol 2022; 5:1190. [PMID: 36336763 PMCID: PMC9637739 DOI: 10.1038/s42003-022-04173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The mucosal adaptive immune response is dependent on the production of IgA antibodies and particularly IgA1, yet opportunistic bacteria have evolved mechanisms to specifically block this response by producing IgA1 proteases (IgA1Ps). Our lab was the first to describe the structures of a metal-dependent IgA1P (metallo-IgA1P) produced from Gram-positive Streptococcus pneumoniae both in the absence and presence of its IgA1 substrate through cryo-EM single particle reconstructions. This prior study revealed an active-site gating mechanism reliant on substrate-induced conformational changes to the enzyme that begged the question of whether such a mechanism is conserved among the wider Gram-positive metallo-IgA1P subfamily of virulence factors. Here, we used cryo-EM to characterize the metallo-IgA1P of a more distantly related family member from Gemella haemolysans, an emerging opportunistic pathogen implicated in meningitis, endocarditis, and more recently bacteremia in the elderly. While the substrate-free structures of these two metallo-IgA1Ps exhibit differences in the relative starting positions of the domain responsible for gating substrate, the enzymes have similar domain orientations when bound to IgA1. Together with biochemical studies that indicate these metallo-IgA1Ps have similar binding affinities and activities, these data indicate that metallo-IgA1P binding requires the specific IgA1 substrate to open the enzymes for access to their active site and thus, largely conform to an "induced fit" model.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Jeremy Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Disease, University of Colorado Denver School of Medicine and Denver Veterans Affairs Medical Center, Aurora, CO, 80045, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | | | - Nancy Meyer
- Pacific Northwest Cryo-EM Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Haidău C, Năstase-Bucur R, Bulzu P, Levei E, Cadar O, Mirea IC, Faur L, Fruth V, Atkinson I, Constantin S, Moldovan OT. A 16S rRNA Gene-Based Metabarcoding of Phosphate-Rich Deposits in Muierilor Cave, South-Western Carpathians. Front Microbiol 2022; 13:877481. [PMID: 35663904 PMCID: PMC9161362 DOI: 10.3389/fmicb.2022.877481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Muierilor Cave is one of Romania's most important show caves, with paleontological and archeological deposits. Recently, a new chamber was discovered in the cave, with unique yellow calcite crystals, fine-grained crusts, and black sediments. The deposits in this chamber were related to a leaking process from the upper level that contains fossil bones and a large pile of guano. Samples were taken from the new chamber and another passage to investigate the relationship between the substrate and microbial community. Chemical, mineralogical, and whole community 16S rRNA gene-based metabarcoding analyses were undertaken, and the base of the guano deposit was radiocarbon dated. Our study indicated bacteria linked to the presence of high phosphate concentration, most likely due to the nature of the substrate (hydroxyapatite). Bacteria involved in Fe, Mn, or N cycles were also found, as these elements are commonly identified in high concentrations in guano. Since no bat colonies or fossil bones were present in the new chamber, a high concentration of these elements could be sourced by organic deposits inside the cave (guano and fossil bones) even after hundreds of years of their deposition and in areas far from both deposits. Metabarcoding of the analyzed samples found that ∼0.7% of the identified bacteria are unknown to science, and ∼47% were not previously reported in caves or guano. Moreover, most of the identified human-related bacteria were not reported in caves or guano before, and some are known for their pathogenic potential. Therefore, continuous monitoring of air and floor microbiology should be considered in show caves with organic deposits containing bacteria that can threaten human health. The high number of unidentified taxa in a small sector of Muierilor Cave indicates the limited knowledge of the bacterial diversity in caves that can have potential applications in human health and biotechnology.
Collapse
Affiliation(s)
- Catalina Haidău
- Department of Biospeleology and Karst Edaphobiology, Emil Racovita Institute of Speleology, Bucureşti, Romania
| | - Ruxandra Năstase-Bucur
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Paul Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Erika Levei
- Research Institute for Analytical Instrumentation Subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Cluj-Napoca, Romania
| | - Ionuţ Cornel Mirea
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
| | - Luchiana Faur
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
- Faculty of Geology and Geophysics, University of Bucharest, Bucureşti, Romania
| | - Victor Fruth
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Bucuresti, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Bucuresti, Romania
| | - Silviu Constantin
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
- Centro Nacional Sobre la Evolucion Humana, Burgos, Spain
| | - Oana Teodora Moldovan
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Centro Nacional Sobre la Evolucion Humana, Burgos, Spain
| |
Collapse
|
19
|
Rabah H, El Gharib K, Assaad M, Kassem A, Mobarakai N. Gemella endocarditis. IDCases 2022; 29:e01597. [PMID: 36032179 PMCID: PMC9399253 DOI: 10.1016/j.idcr.2022.e01597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/14/2022] Open
Abstract
We herein present the case presenting to our facility complaining of a fever of two months duration, who underwent dental procedure. Patient was diagnosed with infective endocarditis secondary to an uncommon bacteria: Gemella haemolysans. Patient was found to have concomitant severe mitral valve regurgitation. Our patient did not have any comorbidity or risk factor beside his dental procedure. Our patient received intravenous antibiotic therapy for six weeks and was scheduled for mitral valve replacement.
Collapse
|
20
|
Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotechnol 2021; 6:135-143. [PMID: 34151035 PMCID: PMC8200311 DOI: 10.1016/j.synbio.2021.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2, the causative agent for COVID-19, infect human mainly via respiratory tract, which is heavily inhabited by local microbiota. However, the interaction between SARS-CoV-2 and nasopharyngeal microbiota, and the association with metabolome has not been well characterized. Here, metabolomic analysis of blood, urine, and nasopharyngeal swabs from a group of COVID-19 and non-COVID-19 patients, and metagenomic analysis of pharyngeal samples were used to identify the key features of COVID-19. Results showed lactic acid, l-proline, and chlorogenic acid methyl ester (CME) were significantly reduced in the sera of COVID-19 patients compared with non-COVID-19 ones. Nasopharyngeal commensal bacteria including Gemella morbillorum, Gemella haemolysans and Leptotrichia hofstadii were notably depleted in the pharynges of COVID-19 patients, while Prevotella histicola, Streptococcus sanguinis, and Veillonella dispar were relatively increased. The abundance of G. haemolysans and L. hofstadii were significantly positively associated with serum CME, which might be an anti-SARS-CoV-2 bacterial metabolite. This study provides important information to explore the linkage between nasopharyngeal microbiota and disease susceptibility. The findings were based on a very limited number of patients enrolled in this study; a larger size of cohort will be appreciated for further investigation.
Collapse
|
21
|
Miyoshi T, Oge S, Nakata S, Ueno Y, Ukita H, Kousaka R, Miura Y, Yoshinari N, Yoshida A. Gemella haemolysans inhibits the growth of the periodontal pathogen Porphyromonas gingivalis. Sci Rep 2021; 11:11742. [PMID: 34083694 PMCID: PMC8175725 DOI: 10.1038/s41598-021-91267-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 02/04/2023] Open
Abstract
The oral microbiome plays an important role in the human microbial community and in maintaining the health of an individual. Imbalances in the oral microbiome may contribute to oral and systemic diseases. The progression of periodontal disease is closely related to the growth of bacteria, such as Porphyromonas gingivalis, in the oral cavity. However, the pathogen growth mechanism specific to periodontal disease remains unknown. This study aimed to identify bacteria associated with periodontal health by focusing on hemolytic bacteria. Unstimulated saliva samples were collected from ten periodontitis patients and five healthy subjects to detect and identify the presence of hemolytic bacteria. The saliva of healthy subjects contained a higher proportion of G. haemolysans than saliva samples from patients with periodontitis. Growth inhibition assays indicated that the protein components contained in the culture supernatant of G. haemolysans directly suppressed the growth of P. gingivalis. This study shows that the presence of G. haemolysans in saliva is associated with periodontal health and that it inhibits the growth of P. gingivalis in vitro.
Collapse
Affiliation(s)
- Tomohiro Miyoshi
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan.
| | - Shogo Oge
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Satoshi Nakata
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Yuji Ueno
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Hidehiko Ukita
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Reiko Kousaka
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Yuki Miura
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Nobuo Yoshinari
- Department of Periodontology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
22
|
Molecular Evidence of a Broad Range of Pathogenic Bacteria in Ctenocephalides spp.: Should We Re-Examine the Role of Fleas in the Transmission of Pathogens? Trop Med Infect Dis 2021; 6:tropicalmed6010037. [PMID: 33802921 PMCID: PMC8005979 DOI: 10.3390/tropicalmed6010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
The internal microbiome of common cat and dog fleas was studied for DNA evidence of pathogenic bacteria. Fleas were grouped in pools by parasitized animal. DNA was extracted and investigated with 16S metagenomics for medically relevant (MR) bacteria, based on the definitions of the International Statistical Classification of Diseases and Related Health Problems (WHO). The MR bacterial species totaled 40, were found in 60% of flea-pools (N = 100), and included Acinetobacterbaumannii, Bacteroidesfragilis, Clostridiumperfringens, Enterococcusfaecalis, E. mundtii, Fusobacteriumnucleatum, Haemophilusaegyptius, Kingellakingae, Klebsiellapneumoniae, Leptotrichiabuccalis, L. hofstadii, Moraxellalacunata, Pasteurellamultocida, Propionibacteriumacnes, P. propionicum, Proteusmirabilis, Pseudomonasaeruginosa, Rickettsiaaustralis, R. hoogstraalii, Salmonellaenterica, and various Bartonella, Staphylococcus, and Streptococcus species. B. henselae (p = 0.004) and B. clarridgeiae (p = 0.006) occurred more frequently in fleas from cats, whereas Rickettsiahoogstraalii (p = 0.031) and Propionibacteriumacnes (p = 0.029) had a preference in fleas from stray animals. Most of the discovered MR species can form biofilm, and human exposure may theoretically occur through the flea-host interface. The fitness of these pathogenic bacteria to cause infection and the potential role of fleas in the transmission of a broad range of diseases should be further investigated.
Collapse
|
23
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Tetracycline and multidrug resistance in the oral microbiota: differences between healthy subjects and patients with periodontitis in Spain. J Oral Microbiol 2020; 13:1847431. [PMID: 33391624 PMCID: PMC7717685 DOI: 10.1080/20002297.2020.1847431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Antibiotic resistance is widely found even among bacterial populations not having been exposed to selective pressure by antibiotics, such as tetracycline. In this study we analyzed the tetracycline-resistant subgingival microbiota of healthy subjects and of patients with periodontitis, comparing the prevalence of tet genes and their multidrug resistance profiles. Methods: Samples from 259 volunteers were analyzed, obtaining 813 tetracycline-resistant isolates. The prevalence of 12 antibiotic resistance genes was assessed, and multidrug profiles were built. Each isolate was identified by 16S rRNA sequencing. Differences in qualitative data and quantitative data were evaluated using the chi-square test and the Mann-Whitney-U test, respectively. Results: tet(M) was the most frequently detected tet gene (52.03%). We observed significant differences between the prevalence of tet(M), tet(W), tet(O), tet(32) and tet(L) in both populations studied. Multidrug resistance was largely observed, with resistance to kanamycin being the most detected (83.64%). There were significant differences between the populations in the prevalence of kanamycin, chloramphenicol, and cefotaxime resistance. Resistant isolates showed significantly different prevalence between the two studied groups. Conclusion: The high prevalence of multidrug resistance and tetracycline resistance genes found in the subgingival microbiota, highlights the importance of performing wider and more in-depth analysis of antibiotic resistance in the oral microbiota.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain.,Departament De Genètica I Microbiologia, Universitat Autònoma De Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| |
Collapse
|
24
|
Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, Mira A. Isolation and Characterization of Nitrate-Reducing Bacteria as Potential Probiotics for Oral and Systemic Health. Front Microbiol 2020; 11:555465. [PMID: 33042063 PMCID: PMC7522554 DOI: 10.3389/fmicb.2020.555465] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022] Open
Abstract
Recent evidence indicates that the reduction of salivary nitrate by oral bacteria can contribute to prevent oral diseases, as well as increase systemic nitric oxide levels that can improve conditions such as hypertension and diabetes. The objective of the current manuscript was to isolate nitrate-reducing bacteria from the oral cavity of healthy donors and test their in vitro probiotic potential to increase the nitrate-reduction capacity (NRC) of oral communities. Sixty-two isolates were obtained from five different donors of which 53 were confirmed to be nitrate-reducers. Ten isolates were selected based on high NRC as well as high growth rates and low acidogenicity, all being Rothia species. The genomes of these ten isolates confirmed the presence of nitrate- and nitrite reductase genes, as well as lactate utilization genes, and the absence of antimicrobial resistance, mobile genetic elements and virulence genes. The pH at which most nitrate was reduced differed between strains. However, acidic pH 6 always stimulated the reduction of nitrite compared to neutral pH 7 or slightly alkaline pH 7.5 (p < 0.01). We tested the effect of six out of 10 isolates on in vitro oral biofilm development in the presence or absence of 6.5 mM nitrate. The integration of the isolates into in vitro communities was confirmed by Illumina sequencing. The NRC of the bacterial communities increased when adding the isolates compared to controls without isolates (p < 0.05). When adding nitrate (prebiotic treatment) or isolates in combination with nitrate (symbiotic treatment), a smaller decrease in pH derived from sugar metabolism was observed (p < 0.05), which for some symbiotic combinations appeared to be due to lactate consumption. Interestingly, there was a strong correlation between the NRC of oral communities and ammonia production even in the absence of nitrate (R = 0.814, p < 0.01), which indicates that bacteria involved in these processes are related. As observed in our study, individuals differ in their NRC. Thus, some may have direct benefits from nitrate as a prebiotic as their microbiota naturally reduces significant amounts, while others may benefit more from a symbiotic combination (nitrate + nitrate-reducing probiotic). Future clinical studies should test the effects of these treatments on oral and systemic health.
Collapse
Affiliation(s)
| | | | | | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| |
Collapse
|
25
|
Farraj SA, El-Kafrawy SA, Kumosani TA, Yousef JM, Azhar EI. Evaluation of Extraction Methods for Clinical Metagenomic Assay. Microorganisms 2020; 8:microorganisms8081128. [PMID: 32727010 PMCID: PMC7465710 DOI: 10.3390/microorganisms8081128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 02/02/2023] Open
Abstract
(1) Background: Clinical metagenomics is a promising approach that helps to identify etiological agents in cases of unknown infections. For the efficient detection of an unknown pathogen, the extraction method must be carefully selected for the maximum recovery of nucleic acid from different microorganisms. The aim of this study was to evaluate different extraction methods that have the ability to isolate nucleic acids from different types of pathogens with good quality and quantity for efficient use in clinical metagenomic identification. (2) Methods: A mock sample spiked with five different pathogens was used for the comparative evaluation of different commercial extraction kits. Extracted samples were subjected to library preparation and run on MiSeq. The selected extraction method based on the outcome of the comparative evaluation was used subsequently for the nucleic acid isolation of all infectious agents in clinical respiratory samples with multiple infections. (3) Results: The protocol using the PowerViral® Environmental RNA-DNA Isolation Kit with a 5-min bead beating step achieved the best results with a low starting volume. The analysis of the tested clinical specimens showed the ability to successfully identify different types of pathogens. (4) Conclusions: The optimized extraction protocol in this study is recommended for clinical metagenomics application in specimens with multiple infections from different taxa.
Collapse
Affiliation(s)
- Suha A. Farraj
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (T.A.K.); (J.M.Y.)
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shreif A. El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Taha A. Kumosani
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (T.A.K.); (J.M.Y.)
- Central Laboratory for Food and Nutrition, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehad M. Yousef
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (T.A.K.); (J.M.Y.)
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|