1
|
Freire-Zapata V, Holland-Moritz H, Cronin DR, Aroney S, Smith DA, Wilson RM, Ernakovich JG, Woodcroft BJ, Bagby SC, Rich VI, Sullivan MB, Stegen JC, Tfaily MM. Microbiome-metabolite linkages drive greenhouse gas dynamics over a permafrost thaw gradient. Nat Microbiol 2024; 9:2892-2908. [PMID: 39354152 PMCID: PMC11522005 DOI: 10.1038/s41564-024-01800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/30/2024] [Indexed: 10/03/2024]
Abstract
Interactions between microbiomes and metabolites play crucial roles in the environment, yet how these interactions drive greenhouse gas emissions during ecosystem changes remains unclear. Here we analysed microbial and metabolite composition across a permafrost thaw gradient in Stordalen Mire, Sweden, using paired genome-resolved metagenomics and high-resolution Fourier transform ion cyclotron resonance mass spectrometry guided by principles from community assembly theory to test whether microorganisms and metabolites show concordant responses to changing drivers. Our analysis revealed divergence between the inferred microbial versus metabolite assembly processes, suggesting distinct responses to the same selective pressures. This contradicts common assumptions in trait-based microbial models and highlights the limitations of measuring microbial community-level data alone. Furthermore, feature-scale analysis revealed connections between microbial taxa, metabolites and observed CO2 and CH4 porewater variations. Our study showcases insights gained by using feature-level data and microorganism-metabolite interactions to better understand metabolic processes that drive greenhouse gas emissions during ecosystem changes.
Collapse
Affiliation(s)
| | - Hannah Holland-Moritz
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Center for Soil Biogeochemistry and Microbial Ecology, University of New Hampshire, Durham, NH, USA
| | - Dylan R Cronin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Sam Aroney
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Derek A Smith
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel M Wilson
- Department of Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Jessica G Ernakovich
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Sarah C Bagby
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - James C Stegen
- Terrestrial and Aquatic Integration Team, Pacific Northwest National Laboratory, Richland, WA, USA
- School of the Environment, Washington State University, Pullman, WA, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Sun CL, Pratama AA, Gazitúa MC, Cronin D, McGivern BB, Wainaina JM, Vik DR, Zayed AA, Bolduc B, Wrighton KC, Rich VI, Sullivan MB. Virus ecology and 7-year temporal dynamics across a permafrost thaw gradient. Environ Microbiol 2024; 26:e16665. [PMID: 39101434 DOI: 10.1111/1462-2920.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 08/06/2024]
Abstract
Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth-related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hosts in silico and found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses of Candidatus Methanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon-degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long-term observations enhance our understanding of soil viruses in the context of climate-relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.
Collapse
Affiliation(s)
- Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | | | - Dylan Cronin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Bridget B McGivern
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Dean R Vik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
| | - Kelly C Wrighton
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
- National Science Foundation EMERGE Biology Integration Institute, The Ohio State University, Columbus, USA
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Ding Y, Geng Y, Zhou W, Li D. Habitat-specific environmental factors regulate the spatial variability of biological soil crust microbial communities on the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165937. [PMID: 37532035 DOI: 10.1016/j.scitotenv.2023.165937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Biological soil crusts (BSCs) are an important biological component of the soil surface, covering approximately 12 % of the Earth's land surface. Although BSCs are closely related to habitats, the microbial diversity and spatial variability of BSCs in different ecosystems are still unclear, especially on the Qinghai-Tibet Plateau (QTP), where climate is changeable and habitats are complex. Here, we investigated the diversity, assembly processes, spatial distribution pattern and driving factors of prokaryotic and eukaryotic microbial communities in BSCs in four habitats on the QTP. It was found that habitat-specific environmental factors regulated the composition, diversity and spatial variability of BSC microbial communities. Soil organic carbon and soil water content were the most important factors (R2 = 0.9024, P = 0.001; R2 = 0.8004, P = 0.001) affecting the spatial differences in prokaryotes and eukaryotes, respectively. Under the specific climate of the QTP, the spatial pattern of microbial communities in BSCs was controlled by precipitation rather than temperature. In addition, ecological processes further explained the effects of habitat specificity, and environmental filtering explained microbial community differences better than dispersal limitation. The results of the neutral community model and the normalized stochastic ratio index revealed that the assembly of prokaryotic communities was determined by deterministic processes at the regional scale, and at the local scale, the assembly process was mainly determined by habitat type, while the assembly of eukaryotic communities was determined by stochastic processes at both the regional and local scales. This study provided a scientific reference for the prediction of BSC distribution and resource conservation under future climate change scenarios.
Collapse
Affiliation(s)
- Yuang Ding
- School of Ecology and Environment, Tibet University, Lhasa 850001, PR China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuchen Geng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weicheng Zhou
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
4
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
5
|
Distinct Growth Responses of Tundra Soil Bacteria to Short-Term and Long-Term Warming. Appl Environ Microbiol 2023; 89:e0154322. [PMID: 36847530 PMCID: PMC10056963 DOI: 10.1128/aem.01543-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Increases in Arctic temperatures have thawed permafrost and accelerated tundra soil microbial activity, releasing greenhouse gases that amplify climate warming. Warming over time has also accelerated shrub encroachment in the tundra, altering plant input abundance and quality, and causing further changes to soil microbial processes. To better understand the effects of increased temperature and the accumulated effects of climate change on soil bacterial activity, we quantified the growth responses of individual bacterial taxa to short-term warming (3 months) and long-term warming (29 years) in moist acidic tussock tundra. Intact soil was assayed in the field for 30 days using 18O-labeled water, from which taxon-specific rates of 18O incorporation into DNA were estimated as a proxy for growth. Experimental treatments warmed the soil by approximately 1.5°C. Short-term warming increased average relative growth rates across the assemblage by 36%, and this increase was attributable to emergent growing taxa not detected in other treatments that doubled the diversity of growing bacteria. However, long-term warming increased average relative growth rates by 151%, and this was largely attributable to taxa that co-occurred in the ambient temperature controls. There was also coherence in relative growth rates within broad taxonomic levels with orders tending to have similar growth rates in all treatments. Growth responses tended to be neutral in short-term warming and positive in long-term warming for most taxa and phylogenetic groups co-occurring across treatments regardless of phylogeny. Taken together, growing bacteria responded distinctly to short-term and long-term warming, and taxa growing in each treatment exhibited deep phylogenetic organization. IMPORTANCE Soil carbon stocks in the tundra and underlying permafrost have become increasingly vulnerable to microbial decomposition due to climate change. The microbial responses to Arctic warming must be understood in order to predict the effects of future microbial activity on carbon balance in a warming Arctic. In response to our warming treatments, tundra soil bacteria grew faster, consistent with increased rates of decomposition and carbon flux to the atmosphere. Our findings suggest that bacterial growth rates may continue to increase in the coming decades as faster growth is driven by the accumulated effects of long-term warming. Observed phylogenetic organization of bacterial growth rates may also permit taxonomy-based predictions of bacterial responses to climate change and inclusion into ecosystem models.
Collapse
|
6
|
Guo W, Zhang J, Li MH, Qi L. Soil fungal community characteristics vary with bamboo varieties and soil compartments. Front Microbiol 2023; 14:1120679. [PMID: 36814565 PMCID: PMC9939831 DOI: 10.3389/fmicb.2023.1120679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Soil fungi play an important role in nutrient cycling, mycorrhizal symbiosis, antagonism against pathogens, and organic matter decomposition. However, our knowledge about the community characteristics of soil fungi in relation to bamboo varieties is still limited. Here, we compared the fungal communities in different soil compartments (rhizosphere vs. bulk soil) of moso bamboo (Phyllostachys edulis) and its four varieties using ITS high-throughput sequencing technology. The fungal α diversity (Shannon index) in bulk soil was significantly higher than that in rhizosphere soil, but it was not affected by bamboo variety or interactions between the soil compartment and bamboo variety. Soil compartment and bamboo variety together explained 31.74% of the variation in fungal community diversity. Soil compartment and bamboo variety were the key factors affecting the relative abundance of the major fungal taxa at the phylum and genus levels. Soil compartment mainly affected the relative abundance of the dominant fungal phylum, while bamboo variety primarily influenced the dominant fungal genus. Network analysis showed that the fungal network in rhizosphere soil was more complex, stable, and connected than that in bulk soil. A FUNGuild database analysis indicated that both soil compartment and bamboo variety affect fungal functions. Our findings provide new insights into the roles of both soil compartments and plant species (including variety) in shaping soil fungal communities.
Collapse
Affiliation(s)
- Wen Guo
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China,Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jian Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland,Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China,School of Life Science, Hebei University, Baoding, China,*Correspondence: Mai-He Li,
| | - Lianghua Qi
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China,Sanya Research Base, International Centre for Bamboo and Rattan, Sanya, China,Lianghua Qi,
| |
Collapse
|
7
|
McLaughlin MS, Yurgel SN, Abbasi PA, Prithiviraj B, Ali S. Impacts of abiotic factors on the fungal communities of 'Honeycrisp' apples in Canada. Microb Biotechnol 2023. [PMID: 36648235 PMCID: PMC10364315 DOI: 10.1111/1751-7915.14207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
The maintenance of the beneficial plant microbiome to control plant pathogens is an emerging concept of disease management, and necessitates a clear understanding of these microbial communities and the environmental factors that affect their diversity and compositional structure. As such, studies investigating the microbiome of economically significant cultivars within each growing region are necessary to develop adequate disease management strategies. Here, we assessed the relative impacts of growing season, management strategy, and geographical location on the fungal microbiome of 'Honeycrisp' apples from seven different orchard locations in the Atlantic Maritime Ecozone for two consecutive growing years. Though apple fruit tissue was dominated by relatively few fungal genera, significant changes in their fungal communities were observed as a result of environmental factors, including shifts in genera with plant-associated lifestyles (symbionts and pathogens), such as Aureobasidium, Alternaria, Penicillium, Diplodia, and Mycosphaerella. Variation in fungal composition between different tissues of fruit was also observed. We demonstrate that growing season is the most significant factor affecting fungal community structure and diversity of apple fruit, suggesting that future microbiome studies should take place for multiple growing seasons to better represent the host-microbiome of perennial crops under different environmental conditions.
Collapse
Affiliation(s)
- Michael S McLaughlin
- Agriculture & Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada.,Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Svetlana N Yurgel
- Grain Legume Genetics and Physiology Research Unit, USDA, ARS, Prosser, Washington, USA
| | - Pervaiz A Abbasi
- Agriculture & Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Shawkat Ali
- Agriculture & Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| |
Collapse
|
8
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
9
|
Wilson RM, Hough MA, Verbeke BA, Hodgkins SB, Chanton JP, Saleska SD, Rich VI, Tfaily MM. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152757. [PMID: 35031367 DOI: 10.1016/j.scitotenv.2021.152757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.
Collapse
Affiliation(s)
- Rachel M Wilson
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA.
| | - Moira A Hough
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| | - Brittany A Verbeke
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Suzanne B Hodgkins
- The Ohio State University, Department of Microbiology, Columbus, OH 43210, USA
| | - Jeff P Chanton
- Florida State University, Earth Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Scott D Saleska
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| | - Virginia I Rich
- The Ohio State University, Department of Microbiology, Columbus, OH 43210, USA
| | - Malak M Tfaily
- University of Arizona, Department of Environmental Science, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Scheel M, Zervas A, Jacobsen CS, Christensen TR. Microbial Community Changes in 26,500-Year-Old Thawing Permafrost. Front Microbiol 2022; 13:787146. [PMID: 35401488 PMCID: PMC8988141 DOI: 10.3389/fmicb.2022.787146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Northern permafrost soils store more than half of the global soil carbon. Frozen for at least two consecutive years, but often for millennia, permafrost temperatures have increased drastically in the last decades. The resulting thermal erosion leads not only to gradual thaw, resulting in an increase of seasonally thawing soil thickness, but also to abrupt thaw events, such as sudden collapses of the soil surface. These could affect 20% of the permafrost zone and half of its organic carbon, increasing accessibility for deeper rooting vegetation and microbial decomposition into greenhouse gases. Knowledge gaps include the impact of permafrost thaw on the soil microfauna as well as key taxa to change the microbial mineralization of ancient permafrost carbon stocks during erosion. Here, we present the first sequencing study of an abrupt permafrost erosion microbiome in Northeast Greenland, where a thermal erosion gully collapsed in the summer of 2018, leading to the thawing of 26,500-year-old permafrost material. We investigated which soil parameters (pH, soil carbon content, age and moisture, organic and mineral horizons, and permafrost layers) most significantly drove changes of taxonomic diversity and the abundance of soil microorganisms in two consecutive years of intense erosion. Sequencing of the prokaryotic 16S rRNA and fungal ITS2 gene regions at finely scaled depth increments revealed decreasing alpha diversity with depth, soil age, and pH. The most significant drivers of variation were found in the soil age, horizons, and permafrost layer for prokaryotic and fungal beta diversity. Permafrost was mainly dominated by Proteobacteria and Firmicutes, with Polaromonas identified as the most abundant taxon. Thawed permafrost samples indicated increased abundance of several copiotrophic phyla, such as Bacteroidia, suggesting alterations of carbon utilization pathways within eroding permafrost.
Collapse
Affiliation(s)
- Maria Scheel
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | - Torben R. Christensen
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Oulanka Research Station, Oulu University, Oulu, Finland
| |
Collapse
|
11
|
Hough M, McCabe S, Vining SR, Pickering Pedersen E, Wilson RM, Lawrence R, Chang K, Bohrer G, Riley WJ, Crill PM, Varner RK, Blazewicz SJ, Dorrepaal E, Tfaily MM, Saleska SR, Rich VI. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. GLOBAL CHANGE BIOLOGY 2022; 28:950-968. [PMID: 34727401 PMCID: PMC9298822 DOI: 10.1111/gcb.15970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2 ) and methane (CH4 ). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2 , and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4 fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.
Collapse
Affiliation(s)
- Moira Hough
- Ecology & Evolutionary Biology DepartmentUniversity of ArizonaTucsonArizonaUSA
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Samantha McCabe
- Environmental Sciences Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - S. Rose Vining
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Emily Pickering Pedersen
- Department of BiologyTerrestrial EcologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Rachel M. Wilson
- Florida State UniversityEarth Ocean and Atmospheric SciencesTallahasseeFloridaUSA
| | - Ryan Lawrence
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireDurhamNew HampshireUSA
| | - Kuang‐Yu Chang
- Lawrence Berkeley LaboratoryClimate and Ecosystem Sciences DivisionBerkeleyCaliforniaUSA
| | - Gil Bohrer
- Civil Environmental and Geodetic EngineeringThe Ohio State UniversityColumbusOhioUSA
| | | | - William J. Riley
- Lawrence Berkeley LaboratoryClimate and Ecosystem Sciences DivisionBerkeleyCaliforniaUSA
| | - Patrick M. Crill
- Department of Geological Sciences and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Ruth K. Varner
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireDurhamNew HampshireUSA
| | | | - Ellen Dorrepaal
- Climate Impacts Research Centre—Department of Ecology and Environmental SciencesUmeå UniversityAbiskoSweden
| | - Malak M. Tfaily
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Scott R. Saleska
- Ecology & Evolutionary Biology DepartmentUniversity of ArizonaTucsonArizonaUSA
| | - Virginia I. Rich
- Department of Environmental ScienceUniversity of ArizonaTucsonArizonaUSA
- Microbiology DepartmentThe Ohio State UniversityColumbusOhioUSA
- Center of Microbiome ScienceThe Ohio State UniversityColumbusOhioUSA
- The Byrd Polar and Climate Research CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
12
|
Lamit LJ, Romanowicz KJ, Potvin LR, Lennon JT, Tringe SG, Chimner RA, Kolka RK, Kane ES, Lilleskov EA. Peatland microbial community responses to plant functional group and drought are depth-dependent. Mol Ecol 2021; 30:5119-5136. [PMID: 34402116 DOI: 10.1111/mec.16125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Peatlands store one-third of Earth's soil carbon, the stability of which is uncertain due to climate change-driven shifts in hydrology and vegetation, and consequent impacts on microbial communities that mediate decomposition. Peatland carbon cycling varies over steep physicochemical gradients characterizing vertical peat profiles. However, it is unclear how drought-mediated changes in plant functional groups (PFGs) and water table (WT) levels affect microbial communities at different depths. We combined a multiyear mesocosm experiment with community sequencing across a 70-cm depth gradient, to test the hypotheses that vascular PFGs (Ericaceae vs. sedges) and WT (high vs. low) structure peatland microbial communities in depth-dependent ways. Several key results emerged. (i) Both fungal and prokaryote (bacteria and archaea) community structure shifted with WT and PFG manipulation, but fungi were much more sensitive to PFG whereas prokaryotes were much more sensitive to WT. (ii) PFG effects were largely driven by Ericaceae, although sedge effects were evident in specific cases (e.g., methanotrophs). (iii) Treatment effects varied with depth: the influence of PFG was strongest in shallow peat (0-10, 10-20 cm), whereas WT effects were strongest at the surface and middle depths (0-10, 30-40 cm), and all treatment effects waned in the deepest peat (60-70 cm). Our results underline the depth-dependent and taxon-specific ways that plant communities and hydrologic variability shape peatland microbial communities, pointing to the importance of understanding how these factors integrate across soil profiles when examining peatland responses to climate change.
Collapse
Affiliation(s)
- Louis J Lamit
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Karl J Romanowicz
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Lynette R Potvin
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rodney A Chimner
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Randall K Kolka
- USDA Forest Service Northern Research Station, Grand Rapids, Minnesota, USA
| | - Evan S Kane
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA.,USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| | - Erik A Lilleskov
- USDA Forest Service Northern Research Station, Houghton, Michigan, USA
| |
Collapse
|
13
|
Glick BR, Gamalero E. Recent Developments in the Study of Plant Microbiomes. Microorganisms 2021; 9:microorganisms9071533. [PMID: 34361969 PMCID: PMC8306116 DOI: 10.3390/microorganisms9071533] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions.
Collapse
Affiliation(s)
- Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel, 11, 15121 Alessandria, Italy
- Correspondence:
| |
Collapse
|