1
|
Turab A, Sun X, Ma Y, Elahi A, Li P, Majeed Y, Sun Y. Transcriptomics and metabonomics reveal molecular mechanisms promoting lipid production in Haematococcus pluvialis co-mutated by atmospheric and room temperature plasma with ethanol. BIORESOURCE TECHNOLOGY 2025; 418:131958. [PMID: 39647716 DOI: 10.1016/j.biortech.2024.131958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Atmospheric and room temperature plasma mutation and co-mutation with ethanol were employed to generate Haematococcus pluvialis mutants AV3 and AV8. These mutants were screened using multiple indices of chlorophyll fluorescence, quantum yield, lethality, growth rate, dry cell weight, and lipid content. Compared to the wild strain, the mutants demonstrated genetic stability (*p > 0.05) over three cultivation periods, with biomass, lipid content, and growth rate increasing by over 16 %, 55 %, and 45 %, respectively. Lipid accumulation was correlated with higher activities of key lipid biosynthesis enzymes, acetyl-CoA carboxylase, and diacylglycerol acyltransferases. Transcriptomic and metabolomic analyses revealed differentially expressed genes and differential metabolites, with significant changes in glutathione, arginine and Pyruvate metabolism pathways. This study provides new insights into the molecular mechanisms behind enhanced lipid synthesis and highlights the potential of plasma mutation for improving lipid production in microalgae, offering a promising avenue for biofuel production.
Collapse
Affiliation(s)
- Ali Turab
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yihua Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ahsan Elahi
- School of Chemical Engineering, Zhengzhou University, ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Pengfei Li
- Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yasir Majeed
- Yasir Majeed- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Youreng Sun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
2
|
Borkowska-Sztachańska M, Thoene M, Socha K, Juśkiewicz J, Majewski MS. Decreased vascular contraction and changes in oxidative state in middle-aged Wistar rats after exposure to increased levels of dietary zinc. Toxicol Appl Pharmacol 2024; 491:117049. [PMID: 39098745 DOI: 10.1016/j.taap.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Both copper and zinc are known to be important for maintaining health, but most research has focused on deficiencies of these elements. Recent studies have shown that high levels of Cu can be toxic, especially to the cardiovascular (CV) system. However, little research has been done on the effects of higher levels of Zn on the CV system. In this study, male Wistar rats aged 12 months were given a diet with twice the recommended daily allowance of zinc (31.8 mg/kg of diet) and compared to a control group (15.9 mg/kg of diet) after 8 weeks. Blood plasma and internal organs of both groups were examined for levels of copper, zinc, selenium and iron, as well as several key enzymes. Aortic rings from both groups were also examined to determine vascular functioning. There were very few changes in the vascular system functioning after chronic exposure to zinc, and only one enzyme, heme oxygenase-1 (HO-1) was elevated, whereas vascular contraction to noradrenaline decreased with no changes in vasodilation to acetylcholine. Of the micronutrients, zinc and selenium were elevated in the blood plasma, while copper decreased. Meanwhile, the total antioxidant status increased. These were not observed in the liver. Therefore, it is proposed that there is a mechanism in place within the vascular system to protect against the overproduction of heme, caused by chronic zinc exposure.
Collapse
Affiliation(s)
- Małgorzata Borkowska-Sztachańska
- Department of Mental and Psychosomatic Diseases, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland.
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland.
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - Michał S Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
3
|
Kushwah AS, Dixit H, Upadhyay V, Verma SK, Prasad R. The study of iron- and copper-binding proteome of Fusarium oxysporum and its effector candidates. Proteins 2024; 92:1097-1112. [PMID: 38666709 DOI: 10.1002/prot.26696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 08/07/2024]
Abstract
Fusarium oxysporum f.sp. lycopersici is a phytopathogen which causes vascular wilt disease in tomato plants. The survival tactics of both pathogens and hosts depend on intricate interactions between host plants and pathogenic microbes. Iron-binding proteins (IBPs) and copper-binding proteins (CBPs) play a crucial role in these interactions by participating in enzyme reactions, virulence, metabolism, and transport processes. We employed high-throughput computational tools at the sequence and structural levels to investigate the IBPs and CBPs of F. oxysporum. A total of 124 IBPs and 37 CBPs were identified in the proteome of Fusarium. The ranking of amino acids based on their affinity for binding with iron is Glu > His> Asp > Asn > Cys, and for copper is His > Asp > Cys respectively. The functional annotation, determination of subcellular localization, and Gene Ontology analysis of these putative IBPs and CBPs have unveiled their potential involvement in a diverse array of cellular and biological processes. Three iron-binding glycosyl hydrolase family proteins, along with four CBPs with carbohydrate-binding domains, have been identified as potential effector candidates. These proteins are distinct from the host Solanum lycopersicum proteome. Moreover, they are known to be located extracellularly and function as enzymes that degrade the host cell wall during pathogen-host interactions. The insights gained from this report on the role of metal ions in plant-pathogen interactions can help develop a better understanding of their fundamental biology and control vascular wilt disease in tomato plants.
Collapse
Affiliation(s)
- Ankita Singh Kushwah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, North Campus, Delhi, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
4
|
Rashid MHU, Yi EKJ, Amin NDM, Ismail MN. An Empirical Analysis of Sacha Inchi (Plantae: Plukenetia volubilis L.) Seed Proteins and Their Applications in the Food and Biopharmaceutical Industries. Appl Biochem Biotechnol 2024; 196:4823-4836. [PMID: 37979081 DOI: 10.1007/s12010-023-04783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Sacha Inchi (Plukenetia volubilis L.) is a plant native in the Amazon rainforest in South America known for its edible seeds, which are rich in lipids, proteins, vitamin E, polyphenols, minerals, and amino acids. Rural communities in developing nations have been using this plant for its health benefits, including as a topical cream for rejuvenating and revitalising skin and as a treatment for muscle pain and rheumatism. Although Sacha Inchi oil has been applied topically to soften skin, treat skin diseases, and heal wounds, its protein-rich seeds have not yet received proper attention for extensive investigation. Proteins in Sacha Inchi seeds are generally known to have antioxidant and antifungal activities and are extensively used nowadays in making protein-rich food alternatives worldwide. Notably, large-scale use of seed proteins has begun in nanoparticle and biofusion technologies related to the human health-benefitting sector. To extract and identify their proteins, the current study examined Sacha Inchi seeds collected from the Malaysian state of Kedah. Our analysis revealed a protein concentration of 73.8 ± 0.002 mg/g of freeze-dried seed flour. Employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PEAKS studio analysis, we identified 217 proteins in the seed extract, including 152 with known proteins and 65 unknown proteins. This study marks a significant step towards comprehensively investigating the protein composition of Sacha Inchi seeds and elucidating their potential applications in the food and biopharmaceutical sectors. Our discoveries not only enhance our knowledge of Sacha Inchi's nutritional characteristics but also pave the way for prospective research and innovative advancements in the realms of functional food and health-related domains.
Collapse
Affiliation(s)
- Mohammad Harun Ur Rashid
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
| | - Erica Kok Jia Yi
- International Medical University Malaysia, Kuala Lumpur, Malaysia
| | - Nor Datiakma Mat Amin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
- Natural Products Division, Forest Research Institute of Malaysia (FRIM), 52109, Kepong, Selangor, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia.
| |
Collapse
|
5
|
Kudo K, Greer YE, Yoshida T, Harrington BS, Korrapati S, Shibuya Y, Henegar L, Kopp JB, Fujii T, Lipkowitz S, Annunziata CM. Dual-inhibition of NAMPT and PAK4 induces anti-tumor effects in 3D-spheroids model of platinum-resistant ovarian cancer. Cancer Gene Ther 2024; 31:721-735. [PMID: 38424218 PMCID: PMC11101335 DOI: 10.1038/s41417-024-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Ovarian cancer follows a characteristic progression pattern, forming multiple tumor masses enriched with cancer stem cells (CSCs) within the abdomen. Most patients develop resistance to standard platinum-based drugs, necessitating better treatment approaches. Targeting CSCs by inhibiting NAD+ synthesis has been previously explored. Nicotinamide phosphoribosyltransferase (NAMPT), which is the rate limiting enzyme in the salvage pathway for NAD+ synthesis is an attractive drug target in this pathway. KPT-9274 is an innovative drug targeting both NAMPT and p21 activated kinase 4 (PAK4). However, its effectiveness against ovarian cancer has not been validated. Here, we show the efficacy and mechanisms of KPT-9274 in treating 3D-cultured spheroids that are resistant to platinum-based drugs. In these spheroids, KPT-9274 not only inhibited NAD+ production in NAMPT-dependent cell lines, but also suppressed NADPH and ATP production, indicating reduced mitochondrial function. It also downregulated of inflammation and DNA repair-related genes. Moreover, the compound reduced PAK4 activity by altering its mostly cytoplasmic localization, leading to NAD+-dependent decreases in phosphorylation of S6 Ribosomal protein, AKT, and β-Catenin in the cytoplasm. These findings suggest that KPT-9274 could be a promising treatment for ovarian cancer patients who are resistant to platinum drugs, emphasizing the need for precision medicine to identify the specific NAD+ producing pathway that a tumor relies upon before treatment.
Collapse
Affiliation(s)
- Kei Kudo
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Division of Gynecology Oncology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brittney S Harrington
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Soumya Korrapati
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yusuke Shibuya
- Department of Obstetrics and Gynecology, Division of Gynecology Oncology, Tohoku University School of Medicine, Miyagi, Japan
| | | | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Takeo Fujii
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Shin SE, Koh HG, Park K, Park SH, Chang YK, Kang NK. Increasing lipid production in Chlamydomonas reinhardtii through genetic introduction for the overexpression of glyceraldehyde-3-phosphate dehydrogenase. Front Bioeng Biotechnol 2024; 12:1396127. [PMID: 38707501 PMCID: PMC11066295 DOI: 10.3389/fbioe.2024.1396127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Microalgae, valued for their sustainability and CO2 fixation capabilities, are emerging as promising sources of biofuels and high-value compounds. This study aimed to boost lipid production in C. reinhardtii by overexpressing chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in the Calvin cycle and glycolysis, under the control of a nitrogen-inducible NIT1 promoter, to positively impact overall carbon metabolism. The standout transformant, PNG#7, exhibited significantly increased lipid production under nitrogen starvation, with biomass rising by 44% and 76% on days 4 and 16, respectively. Fatty acid methyl ester (FAME) content in PNG#7 surged by 2.4-fold and 2.1-fold, notably surpassing the wild type (WT) in lipid productivity by 3.4 and 3.7 times on days 4 and 16, respectively. Transcriptome analysis revealed a tenfold increase in transgenic GAPDH expression and significant upregulation of genes involved in fatty acid and triacylglycerol synthesis, especially the gene encoding acyl-carrier protein gene (ACP, Cre13. g577100. t1.2). In contrast, genes related to cellulose synthesis were downregulated. Single Nucleotide Polymorphism (SNP)/Indel analysis indicated substantial DNA modifications, which likely contributed to the observed extensive transcriptomic and phenotypic changes. These findings suggest that overexpressing chloroplast GAPDH, coupled with genetic modifications, effectively enhances lipid synthesis in C. reinhardtii. This study not only underscores the potential of chloroplast GAPDH overexpression in microalgal lipid synthesis but also highlights the expansive potential of metabolic engineering in microalgae for biofuel production.
Collapse
Affiliation(s)
- Sung-Eun Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
7
|
Mai NTP, Nguyen LTT, Tran SG, To HTM. Genome-wide association study reveals useful QTL and genes controlling the fatty acid composition in rice bran oil using Vietnamese rice landraces. Funct Integr Genomics 2023; 23:150. [PMID: 37156920 DOI: 10.1007/s10142-023-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
In rice (Oryza sativa L.), rice bran contains valuable nutritional constituents, such as high unsaturated fat content, tocotrienols, inositol, γ-oryzanol, and phytosterols, all of which are of nutritional and pharmaceuticals interest. There is now a rising market demand for rice bran oil, which makes research into their content and fatty acid profile an area of interest. As it is evident that lipid content has a substantial impact on the eating, cooking, and storage quality of rice, an understanding of the genetic mechanisms that determine oil content in rice is of great importance, equal to that of rice quality. Therefore, in this study, we performed a genome-wide association study on the composition and oil concentration of 161 Vietnamese rice varieties. Five categories of fatty acids in rice bran were discovered and the bran oil concentration profile in different rice accessions was identified. We also identified 229 important markers related to the fatty acid composition of bran oil, distributed mainly on chromosomes 1 and 7. Seven quantitative trait loci and five potential genes related to unsaturated fatty acid content were detected, including OsKASI, OsFAD, OsARF, OsGAPDH, and OsMADS29. These results provide insights into the genetic basis of rice bran oil composition, which is pivotal to the metabolic engineering of rice plants with desirable bran oil content through candidate genes selection.
Collapse
Affiliation(s)
- Nga T P Mai
- University of Sciences and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, 10000, Ha Noi City, Vietnam
| | - Linh Thi Thuy Nguyen
- University of Sciences and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, 10000, Ha Noi City, Vietnam
| | - Son Giang Tran
- University of Sciences and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, 10000, Ha Noi City, Vietnam
| | - Huong Thi Mai To
- University of Sciences and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, 10000, Ha Noi City, Vietnam.
| |
Collapse
|
8
|
Kaewsatuan P, Poompramun C, Kubota S, Yongsawatdigul J, Molee W, Uimari P, Molee A. Thigh muscle metabolic response is linked to feed efficiency and meat characteristics in slow-growing chicken. Poult Sci 2023; 102:102741. [PMID: 37186966 DOI: 10.1016/j.psj.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The Korat chicken (KR) is a slow-growing Thai chicken breed with relatively poor feed efficiency (FE) but very tasty meat with high protein and low fat contents, and a unique texture. To enhance the competitiveness of KR, its FE should be improved. However, selecting for FE has an unknown effect on meat characteristics. Thus, understanding the genetic basis underlying FE traits and meat characteristics is needed. In this study, 75 male KR birds were raised up to 10 wk of age. For each bird, the feed conversion ratio (FCR), residual feed intake (RFI), and physicochemical properties, flavor precursors, and biological compounds in the thigh meat were evaluated. At 10 wk of age, thigh muscle samples from 6 birds (3 with high FCR and 3 with low FCR values) were selected, and their proteomes were investigated using a label-free proteomic method. Weighted gene coexpression network analysis (WGCNA) was used to screen the key protein modules and pathways. The WGCNA results revealed that FE and meat characteristics significantly correlated with the same protein module. However, the correlation was unfavorable; improving FE may result in a decrease in meat quality through the alteration in biological processes including glycolysis/gluconeogenesis, metabolic pathway, carbon metabolism, biosynthesis of amino acids, pyruvate metabolism, and protein processing in the endoplasmic reticulum. The hub proteins of the significant module (TNNT1, TNNT3, TNNI2, TNNC2, MYLPF, MYH10, GADPH, PGK1, LDHA, and GPI) were also identified to be associated with energy metabolism, and muscle growth and development. Given that the same proteins and pathways are present in FE and meat characteristics but in opposite directions, selection practices for KR should simultaneously consider both trait groups to maintain the high meat quality of KR while improving FE.
Collapse
Affiliation(s)
- Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chotima Poompramun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
9
|
Ahmad I, Singh R, Pal S, Prajapati S, Sachan N, Laiq Y, Husain H. Exploring the Role of Glycolytic Enzymes PFKFB3 and GAPDH in the Modulation of Aβ and Neurodegeneration and Their Potential of Therapeutic Targets in Alzheimer's Disease. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04340-0. [PMID: 36692648 DOI: 10.1007/s12010-023-04340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is presently the 6th major cause of mortality across the globe. However, it is expected to rise rapidly, following cancer and heart disease, as a leading cause of death among the elderly peoples. AD is largely characterized by metabolic changes linked to glucose metabolism and age-induced mitochondrial failure. Recent research suggests that the glycolytic pathway is required for a range of neuronal functions in the brain including synaptic transmission, energy production, and redox balance; however, alteration in glycolytic pathways may play a significant role in the development of AD. Moreover, it is hypothesized that targeting the key enzymes involved in glucose metabolism may help to prevent or reduce the risk of neurodegenerative disorders. One of the major pro-glycolytic enzyme is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3); it is normally absent in neurons but abundant in astrocytes. Similarly, another key of glycolysis is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which catalyzes the conversion of aldolase and glyceraldehyde 3 phosphates to 1,3 bisphosphoglycerate. GAPDH has been reported to interact with various neurodegenerative disease-associated proteins, including the amyloid-β protein precursor (AβPP). These findings indicate PFKFB3 and GAPDH as a promising therapeutic target to AD. Current review highlight the contributions of PFKFB3 and GAPDH in the modulation of Aβand AD pathogenesis and further explore the potential of PFKFB3 and GAPDH as therapeutic targets in AD.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Ranjana Singh
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Saurabh Pal
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Soni Prajapati
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Nidhi Sachan
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Yusra Laiq
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Hadiya Husain
- Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| |
Collapse
|
10
|
Kieliszek M, Waśko A, Michalak K, Kot AM, Piwowarek K, Winiarczyk S. Effect of selenium and methods of protein extraction on the proteomic profile of Saccharomyces yeast. Open Life Sci 2022; 17:1117-1128. [PMID: 36133425 PMCID: PMC9462545 DOI: 10.1515/biol-2022-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Selenium may influence the biosynthesis of individual proteins in the yeast cell cytosol. In this study, we used two-dimensional (2D) electrophoresis to identify proteins that are differentially expressed by the enrichment of selenium in Saccharomyces cerevisiae yeast cells. We chose eight protein fractions for further proteomic analysis. A detailed analysis was performed using the Ultraflextreme matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometer, which enables fast and accurate measurement of the molecular weight of the analysed proteins. This study, for the first time, provides evidence that selenium-enriched yeast contains higher levels of mitochondria malate dehydrogenase, adenosine-5'-triphosphate (ATP)-dependent RNA helicase dbp3, and tryptophan dimethylallyltransferase, and alanyl-tRNA editing protein AlaX than yeast without the addition of selenium. It should be emphasised that the proteomic variability obtained reflects the high biological and complexity of yeast metabolism under control and selenium-enriched conditions and can be properly used in the future as a model for further research aimed at determining the expression of appropriate metabolic genes.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology, and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
11
|
Poorinmohammad N, Fu J, Wabeke B, Kerkhoven EJ. Validated Growth Rate-Dependent Regulation of Lipid Metabolism in Yarrowia lipolytica. Int J Mol Sci 2022; 23:ijms23158517. [PMID: 35955650 PMCID: PMC9369070 DOI: 10.3390/ijms23158517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Given the strong potential of Yarrowia lipolytica to produce lipids for use as renewable fuels and oleochemicals, it is important to gain in-depth understanding of the molecular mechanism underlying its lipid accumulation. As cellular growth rate affects biomass lipid content, we performed a comparative proteomic analysis of Y. lipolytica grown in nitrogen-limited chemostat cultures at different dilution rates. After confirming the correlation between growth rate and lipid accumulation, we were able to identify various cellular functions and biological mechanisms involved in oleaginousness. Inspection of significantly up- and downregulated proteins revealed nonintuitive processes associated with lipid accumulation in this yeast. This included proteins related to endoplasmic reticulum (ER) stress, ER–plasma membrane tether proteins, and arginase. Genetic engineering of selected targets validated that some genes indeed affected lipid accumulation. They were able to increase lipid content and were complementary to other genetic engineering strategies to optimize lipid yield.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jing Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Bob Wabeke
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
| | - Eduard J. Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
12
|
Garg SS, Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol Res 2022; 182:106326. [PMID: 35752357 DOI: 10.1016/j.phrs.2022.106326] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Diabetes is a major public health disease that is globally approaching epidemic proportions. One of the major causes of type 2 diabetes is either a defect in insulin secretion or insulin action which is usually caused by a combination of genetic and environmental factors. Not only these factors but others such as deregulation of various pathways, and oxidative stress are also known to trigger the redox imbalance in diabetics. Increasing evidences suggest that there are tight interactions between the development of diabetes and redox imbalance. An alternate pathway of glucose metabolism, the polyol pathway, becomes active in patients with diabetes that disturbs the balance between NADH and NAD+ . The occurrence of such redox imbalance supports other pathways that lead to oxidative damage to DNA, lipids, and proteins and consequently to oxidative stress which further ascend diabetes and its complications. However, the precise mechanism through which oxidative stress regulates diabetes progression remains to be elucidated. The understanding of how antioxidants and oxidants are controlled and impact the generation of oxidative stress and progression of diabetes is essential. The main focus of this review is to provide an overview of redox imbalance caused by oxidative stress through the polyol pathway. Understanding the pathological role of oxidative stress in diabetes will help to design potential therapeutic strategies against diabetes.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
13
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Autophagy Improves ARA-Rich TAG Accumulation in Mortierella alpina by Regulating Resource Allocation. Microbiol Spectr 2022; 10:e0130021. [PMID: 35138146 PMCID: PMC8881083 DOI: 10.1128/spectrum.01300-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The present study was designed to explore the possibility of improving lipid production in oleaginous filamentous fungus Mortierella alpina based on an autophagy regulation strategy. According to multiomics information, vacuolate-centered macroautophagy was identified as the main type of autophagy in M. alpina under nitrogen-limited conditions. Mutation of autophagy-related gene MAatg8 led to impaired fatty acid synthesis, while overexpression of both MAatg8 and phosphatidylserine decarboxylases (MApsd2) showed promoting effects on fatty acid synthesis. MAatg8 overexpression strain with external supply of ethanolamine significantly increased arachidonic acid (ARA)-rich triacylglycerol (TAG) and biomass synthesis in M. alpina, and the final fatty acid content increased by approximately 110% compared with that in the wild-type strain. Metabolomics and lipidomics analyses revealed that cell autophagy enhanced the recycling of preformed carbon, nitrogen, and lipid in mycelium, and the released carbon skeleton and energy were contributed to the accumulation of TAG in M. alpina. This study suggests that regulation of autophagy-related MAatg8-phosphatidylethanolamine (MAatg8-PE) conjugation system could be a promising strategy for attaining higher lipid production and biomass growth. The mechanism of autophagy in regulating nitrogen limitation-induced lipid accumulation elucidated in this study provides a reference for development of autophagy-based strategies for improving nutrient use efficiency and high value-added lipid production by oleaginous microorganism. IMPORTANCE Studies have indicated that functional oil accumulation occurs in oleaginous microorganisms under nitrogen limitation. However, until now, large-scale application of nitrogen-deficiency strategies was limited by low biomass. Therefore, the identification of the critical nodes of nitrogen deficiency-induced lipid accumulation is urgently needed to further guide functional oil production. The significance of our research is in uncovering the function of cell autophagy in the ARA-rich TAG accumulation of oleaginous fungus M. alpina and demonstrating the feasibility of improving lipid production based on an autophagy regulation strategy at the molecular and omics levels. Our study proves that regulation of cell autophagy through the MAatg8-PE conjugation system-related gene overexpression or exogenous supply of ethanolamine would be an efficient strategy to increase and maintain biomass productivity when high TAG content is obtained under nitrogen deficiency, which could be useful for the development of new strategies that will achieve more biomass and maximal lipid productivity.
Collapse
|
15
|
Chang L, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Advances in improving the biotechnological application of oleaginous fungus Mortierella alpina. Appl Microbiol Biotechnol 2021; 105:6275-6289. [PMID: 34424385 DOI: 10.1007/s00253-021-11480-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
Mortierella alpina is an oleaginous filamentous fungus with considerable lipid productivity, and it has been widely used for industrial production of arachidonic acid. The fermentation process of M. alpina is complicated and can be affected by various factors; therefore, a comprehensive knowledge of its metabolic characteristics and key factors governing lipid biosynthesis is required to further improve its industrial performance. In this review, we discuss the metabolic features and extracellular factors that affect lipid biosynthesis in M. alpina. The current progress in fermentation optimisation and metabolic engineering to improve lipid yield are also summarised. Moreover, we review the applications of M. alpina in the food industry and propose fermentation strategies for better utilisation of this genus in the future. In our opinion, the economic performance of M. alpina should be enhanced from multiple levels, including strains with ideal traits, efficient fermentation strategies, controllable fermentation costs, and competitive products of both high value and productivity. By reviewing the peculiarities of M. alpina and current progress to improve its suitability for biotechnological production, we wish to provide more efficient strategies for future development of M. alpina as a high-value lipid cell factory. KEY POINTS: • Understanding M. alpina metabolism is helpful for rational design of its fermentation processes. • Nitrogen source is a key point that affects PUFA's component and fermentation cost in M. alpina. • Dynamic fermentation strategy combined with breeding is needed to increase lipid yield in M. alpina.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|