1
|
Benton LD, Lopez-Galvez N, Herman C, Caporaso JG, Cope EK, Rosales C, Gameros M, Lothrop N, Martínez FD, Wright AL, Carr TF, Beamer PI. Environmental and structural factors associated with bacterial diversity in household dust across the Arizona-Sonora border. Sci Rep 2024; 14:12803. [PMID: 38834753 PMCID: PMC11150412 DOI: 10.1038/s41598-024-63356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs. 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, housing structure, and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs. 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from Mexican homes was enriched with Alishewanella, Paracoccus, Rheinheimera genera and Intrasporangiaceae family. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
Affiliation(s)
- Lauren D Benton
- Department of Pediatrics, Steele Children's Research Center, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
| | - Nicolas Lopez-Galvez
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
- San Diego State University Research Foundation, San Diego State University, 5250 Campanile Dr, San Diego, CA, 92182, USA
| | - Chloe Herman
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily K Cope
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Cecilia Rosales
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Mercedes Gameros
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Nathan Lothrop
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Anne L Wright
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Paloma I Beamer
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| |
Collapse
|
2
|
Paciência I, Sharma N, Hugg TT, Rantala AK, Heibati B, Al-Delaimy WK, Jaakkola MS, Jaakkola JJ. The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:66001. [PMID: 38935403 PMCID: PMC11218706 DOI: 10.1289/ehp13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in land use and climate change have been reported to reduce biodiversity of both the environment and human microbiota. These reductions in biodiversity may lead to inadequate and unbalanced stimulation of immunoregulatory circuits and, ultimately, to clinical diseases, such as asthma and allergies. OBJECTIVE We summarized available empirical evidence on the role of inner (gut, skin, and airways) and outer (air, soil, natural waters, plants, and animals) layers of biodiversity in the development of asthma, wheezing, and allergic sensitization. METHODS We conducted a systematic search in SciVerse Scopus, PubMed MEDLINE, and Web of Science up to 5 March 2024 to identify relevant human studies assessing the relationships between inner and outer layers of biodiversity and the risk of asthma, wheezing, or allergic sensitization. The protocol was registered in PROSPERO (CRD42022381725). RESULTS A total of 2,419 studies were screened and, after exclusions and a full-text review of 447 studies, 82 studies were included in the comprehensive, final review. Twenty-nine studies reported a protective effect of outer layer biodiversity in the development of asthma, wheezing, or allergic sensitization. There were also 16 studies suggesting an effect of outer layer biodiversity on increasing asthma, wheezing, or allergic sensitization. However, there was no clear evidence on the role of inner layer biodiversity in the development of asthma, wheezing, and allergic sensitization (13 studies reported a protective effect and 15 reported evidence of an increased risk). CONCLUSIONS Based on the reviewed literature, a future systematic review could focus more specifically on outer layer biodiversity and asthma. It is unlikely that association with inner layer biodiversity would have enough evidence for systematic review. Based on this comprehensive review, there is a need for population-based longitudinal studies to identify critical periods of exposure in the life course into adulthood and to better understand mechanisms linking environmental exposures and changes in microbiome composition, diversity, and/or function to development of asthma and allergic sensitization. https://doi.org/10.1289/EHP13948.
Collapse
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Needhi Sharma
- University of California, San Diego, San Diego, California, USA
| | - Timo T. Hugg
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K. Rantala
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Behzad Heibati
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Maritta S. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
3
|
Mat-Hussin NH, Siew SW, Maghpor MN, Gan HM, Ahmad HF. Method for detection of pathogenic bacteria from indoor air microbiome samples using high-throughput amplicon sequencing. MethodsX 2024; 12:102636. [PMID: 38439930 PMCID: PMC10909749 DOI: 10.1016/j.mex.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
The exposure of the air microbiome in indoor air posed a detrimental health effect to the building occupants compared to the outdoor air. Indoor air in hospitals has been identified as a reservoir for various pathogenic microbes. The conventional culture-dependent method has been widely used to access the microbial community in the air. However, it has limited capability in enumerating the complex air microbiome communities, as some of the air microbiomes are uncultivable, slow-growers, and require specific media for cultivation. Here, we utilized a culture-independent method via amplicon sequencing to target the V3 region of 16S rRNA from the pool of total genomic DNA extracted from the dust samples taken from hospital interiors. This method will help occupational health practitioners, researchers, and health authorities to efficiently and comprehensively monitor the presence of harmful air microbiome thus take appropriate action in controlling and minimizing the health risks to the hospital occupants. Key features;•Culture-independent methods offer fast, comprehensive, and unbias profiles of pathogenic and non-pathogenic bacteria from the air microbiomes.•Unlike the culture-dependent method, amplicon sequencing allows bacteria identification to the lowest taxonomy levels.
Collapse
Affiliation(s)
- Nor Husna Mat-Hussin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Shing Wei Siew
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Mohd Norhafsam Maghpor
- Laboratory Division, Consultation and Research Department, National Institute of Occupational Safety and Health (NIOSH), Seksyen 15, Bandar Baru Bangi, Selangor 43650, Malaysia
| | - Han Ming Gan
- Patriot Biotech Sdn. Bhd., Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
- Group of Environment, Microbiology and Bioprocessing (GERMS), Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
| |
Collapse
|
4
|
Agarwal R, Sehgal IS, Muthu V, Denning DW, Chakrabarti A, Soundappan K, Garg M, Rudramurthy SM, Dhooria S, Armstrong-James D, Asano K, Gangneux JP, Chotirmall SH, Salzer HJF, Chalmers JD, Godet C, Joest M, Page I, Nair P, Arjun P, Dhar R, Jat KR, Joe G, Krishnaswamy UM, Mathew JL, Maturu VN, Mohan A, Nath A, Patel D, Savio J, Saxena P, Soman R, Thangakunam B, Baxter CG, Bongomin F, Calhoun WJ, Cornely OA, Douglass JA, Kosmidis C, Meis JF, Moss R, Pasqualotto AC, Seidel D, Sprute R, Prasad KT, Aggarwal AN. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing, classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J 2024; 63:2400061. [PMID: 38423624 PMCID: PMC10991853 DOI: 10.1183/13993003.00061-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The International Society for Human and Animal Mycology (ISHAM) working group proposed recommendations for managing allergic bronchopulmonary aspergillosis (ABPA) a decade ago. There is a need to update these recommendations due to advances in diagnostics and therapeutics. METHODS An international expert group was convened to develop guidelines for managing ABPA (caused by Aspergillus spp.) and allergic bronchopulmonary mycosis (ABPM; caused by fungi other than Aspergillus spp.) in adults and children using a modified Delphi method (two online rounds and one in-person meeting). We defined consensus as ≥70% agreement or disagreement. The terms "recommend" and "suggest" are used when the consensus was ≥70% and <70%, respectively. RESULTS We recommend screening for A. fumigatus sensitisation using fungus-specific IgE in all newly diagnosed asthmatic adults at tertiary care but only difficult-to-treat asthmatic children. We recommend diagnosing ABPA in those with predisposing conditions or compatible clinico-radiological presentation, with a mandatory demonstration of fungal sensitisation and serum total IgE ≥500 IU·mL-1 and two of the following: fungal-specific IgG, peripheral blood eosinophilia or suggestive imaging. ABPM is considered in those with an ABPA-like presentation but normal A. fumigatus-IgE. Additionally, diagnosing ABPM requires repeated growth of the causative fungus from sputum. We do not routinely recommend treating asymptomatic ABPA patients. We recommend oral prednisolone or itraconazole monotherapy for treating acute ABPA (newly diagnosed or exacerbation), with prednisolone and itraconazole combination only for treating recurrent ABPA exacerbations. We have devised an objective multidimensional criterion to assess treatment response. CONCLUSION We have framed consensus guidelines for diagnosing, classifying and treating ABPA/M for patient care and research.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Kathirvel Soundappan
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Darius Armstrong-James
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jean-Pierre Gangneux
- Université Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- CHU Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, Rennes, France
- National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Rennes, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU) and Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital and Medical Faculty, Johannes Kepler University, Linz, Austria
| | | | - Cendrine Godet
- Université Paris Sorbonne, AP-HP, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares Paris, Paris, France
| | | | - Iain Page
- NHS Lothian, Regional Infectious Diseases Unit, Western General Hospital, Edinburgh, UK
| | - Parameswaran Nair
- McMaster University, McGill University, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - P Arjun
- KIMS Hospital, Trivandrum, India
| | - Raja Dhar
- Department of Pulmonology, CK Birla Hospitals, Kolkata, India
| | - Kana Ram Jat
- Division of Pediatric Pulmonology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Joseph L Mathew
- Pediatric Pulmonology Division, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, India
| | - Jayanthi Savio
- Department of Microbiology, St John's Medical College and Hospital, Bengaluru, India
| | - Puneet Saxena
- Pulmonary and Critical Care Medicine, Army Hospital (R&R), New Delhi, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | | - Caroline G Baxter
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Jo A Douglass
- University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Chris Kosmidis
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Center of Expertise in Mycology Radboudumc/CWZ Nijmegen, Nijmegen, The Netherlands
| | - Richard Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alessandro C Pasqualotto
- Molecular Biology Laboratory, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- Department of Internal Medicine, University Hospital, Cologne, Germany
| | - Rosanne Sprute
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|
6
|
Onwusereaka CO, Jalaludin J, Oluchi SE, Poh Choo VC. New generation sequencing: molecular approaches for the detection and monitoring of bioaerosols in an indoor environment: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0004. [PMID: 38214730 DOI: 10.1515/reveh-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The exposure of occupants to indoor air pollutants has increased in recent decades. The aim of this review is to discuss an overview of new approaches that are used to study fungal aerosols. Thus, this motivation was to compensate the gaps caused by the use of only traditional approaches in the study of fungal exposure. CONTENT The search involved various databases such as; Science Direct, PubMed, SAGE, Springer Link, EBCOHOST, MEDLINE, CINAHL, Cochrane library, Web of Science and Wiley Online Library. It was limited to full text research articles that reported the use of non-viable method in assessing bioaerosol, written in English Language, full text publications and published from year 2015-2022. SUMMARY AND OUTLOOK A total of 15 articles met the inclusion criteria and was included in this review. The use of next-generation sequencing, which is more commonly referred to as high-throughput sequencing (HTS) or molecular methods in microbial studies is based on the detection of genetic material of organisms present in a given sample. Applying these methods to different environments permitted the identification of the microorganisms present, and a better comprehension of the environmental impacts and ecological roles of microbial communities. Based on the reviewed articles, there is evidence that dust samples harbour a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples using 18S metagenomics approach.
Collapse
Affiliation(s)
- Cynthia Oluchi Onwusereaka
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Sampson Emilia Oluchi
- Department of Community Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | | |
Collapse
|
7
|
Ignatyeva O, Tolyneva D, Kovalyov A, Matkava L, Terekhov M, Kashtanova D, Zagainova A, Ivanov M, Yudin V, Makarov V, Keskinov A, Kraevoy S, Yudin S. Christensenella minuta, a new candidate next-generation probiotic: current evidence and future trajectories. Front Microbiol 2024; 14:1241259. [PMID: 38274765 PMCID: PMC10808311 DOI: 10.3389/fmicb.2023.1241259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background As the field of probiotic research continues to expand, new beneficial strains are being discovered. The Christensenellaceae family and its newly described member, Christensenella minuta, have been shown to offer great health benefits. We aimed to extensively review the existing literature on these microorganisms to highlight the advantages of their use as probiotics and address some of the most challenging aspects of their commercial production and potential solutions. Methods We applied a simple search algorithm using the key words "Christensenellaceae" and "Christensenella minuta" to find all articles reporting the biotherapeutic effects of these microorganisms. Only articles reporting evidence-based results were reviewed. Results The review showed that Christensenella minuta has demonstrated numerous beneficial properties and a wider range of uses than previously thought. Moreover, it has been shown to be oxygen-tolerant, which is an immense advantage in the manufacturing and production of Christensenella minuta-based biotherapeutics. The results suggest that Christensenellaceae and Christensenella munita specifically can play a crucial role in maintaining a healthy gut microbiome. Furthermore, Christensenellaceae have been associated with weight management. Preliminary studies suggest that this probiotic strain could have a positive impact on metabolic disorders like diabetes and obesity, as well as inflammatory bowel disease. Conclusion Christensenellaceae and Christensenella munita specifically offer immense health benefits and could be used in the management and therapy of a wide range of health conditions. In addition to the impressive biotherapeutic effect, Christensenella munita is oxygen-tolerant, which facilitates commercial production and storage.
Collapse
Affiliation(s)
- Olga Ignatyeva
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Biomedical Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lehtimäki J, Gupta S, Hjelmsø M, Shah S, Thorsen J, Rasmussen MA, Soverini M, Li X, Russel J, Trivedi U, Brix S, Bønnelykke K, Chawes BL, Bisgaard H, Sørensen SJ, Stokholm J. Fungi and bacteria in the beds of rural and urban infants correlate with later risk of atopic diseases. Clin Exp Allergy 2023; 53:1268-1278. [PMID: 37849355 DOI: 10.1111/cea.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Rural children have a lower risk of asthma and atopic diseases than urban children. However, whether indoor microbiota in non-farming rural homes provides protection is unclear. METHODS Here, we examine if microbes in the beds of rural and urban infants are associated with later development of atopic diseases. We studied fungi and bacteria in the beds of 6-month-old infants (n = 514) in association with the risk of asthma, allergic rhinitis, eczema and aeroallergen sensitization at 6 years of age in the prospective COPSAC2010 cohort. RESULTS Both fungal and bacterial diversity were lower in the beds of children, who later developed allergic rhinitis (-0.22 [-0.43,-0.01], padj = .04 and -.24 [-0.42,-0.05], padj = .01 respectively) and lower bacterial richness was discovered in beds of children later developing asthma (-41.34 [-76.95,-5.73], padj = .02) or allergic rhinitis (-45.65 [-81.19,-10.10], padj = .01). Interestingly, higher fungal diversity and richness were discovered in the beds of children developing eczema (0.23 [0.02,0.43], padj = .03 and 29.21 [1.59,56.83], padj = .04 respectively). We defined a limited set of fungal and bacterial genera that predicted rural/urban environment. Some rural-associated bacterial genera such as Romboutsia and Bacillus and fungal genera Spegazzinia and Physcia were also associated with reduced risk of diseases, including eczema. These fungal and bacterial fingerprints predicting the living environment were associated with asthma and allergic rhinitis, but not eczema, with rural compositions being protective. The bed dust bacteria mediated 27% of the protective association of a rural living environment for allergic rhinitis (p = .04). CONCLUSIONS Bed dust microbes can be differentially associated with airway- and skin-related diseases. The differing bed dust microbiota between rural and urban infants may influence their later risk of asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Jenni Lehtimäki
- Finnish Environment Institute, Helsinki, Finland
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Shashank Gupta
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Mathis Hjelmsø
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Shiraz Shah
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Matteo Soverini
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Xuanji Li
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
9
|
Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023; 11:1285393. [PMID: 38074709 PMCID: PMC10701447 DOI: 10.3389/fpubh.2023.1285393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
The quality of the indoor environment significantly impacts human health and productivity, especially given the amount of time individuals spend indoors globally. While chemical pollutants have been a focus of indoor air quality research, microbial contaminants also have a significant bearing on indoor air quality. This review provides a comprehensive overview of microbial contamination in built environments, covering sources, sampling strategies, and analysis methods. Microbial contamination has various origins, including human occupants, pets, and the outdoor environment. Sampling strategies for indoor microbial contamination include air, surface, and dust sampling, and various analysis methods are used to assess microbial diversity and complexity in indoor environments. The review also discusses the health risks associated with microbial contaminants, including bacteria, fungi, and viruses, and their products in indoor air, highlighting the need for evidence-based studies that can relate to specific health conditions. The importance of indoor air quality is emphasized from the perspective of the COVID-19 pandemic. A section of the review highlights the knowledge gap related to microbiological burden in indoor environments in developing countries, using India as a representative example. Finally, potential mitigation strategies to improve microbiological indoor air quality are briefly reviewed.
Collapse
Affiliation(s)
- Hitikk Chawla
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Purnima Anand
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeru Bhagat
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Shivani G. Varmani
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruchi Gulati Marwah
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Benton L, Lopez-Galvez N, Herman C, Caporaso G, Cope E, Rosales C, Gameros M, Lothrop N, Martínez F, Wright A, Carr T, Beamer P. Environmental and Structural Factors Associated with Bacterial Diversity in Household Dust Across the Arizona-Sonora Border. RESEARCH SQUARE 2023:rs.3.rs-3325336. [PMID: 37841844 PMCID: PMC10571632 DOI: 10.21203/rs.3.rs-3325336/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, and housing structure and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from US homes was enriched with Geodermatophilus, whereas dust from Mexican homes was enriched with Alishewanella and Chryseomicrobium. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
|
11
|
Wang Y, Zhou J, Ye J, Sun Z, He Y, Zhao Y, Ren S, Zhang G, Liu M, Zheng P, Wang G, Yang J. Multi-omics reveal microbial determinants impacting the treatment outcome of antidepressants in major depressive disorder. MICROBIOME 2023; 11:195. [PMID: 37641148 PMCID: PMC10464022 DOI: 10.1186/s40168-023-01635-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND There is a growing body of evidence suggesting that disturbance of the gut-brain axis may be one of the potential causes of major depressive disorder (MDD). However, the effects of antidepressants on the gut microbiota, and the role of gut microbiota in influencing antidepressant efficacy are still not fully understood. RESULTS To address this knowledge gap, a multi-omics study was undertaken involving 110 MDD patients treated with escitalopram (ESC) for a period of 12 weeks. This study was conducted within a cohort and compared to a reference group of 166 healthy individuals. It was found that ESC ameliorated abnormal blood metabolism by upregulating MDD-depleted amino acids and downregulating MDD-enriched fatty acids. On the other hand, the use of ESC showed a relatively weak inhibitory effect on the gut microbiota, leading to a reduction in microbial richness and functions. Machine learning-based multi-omics integrative analysis revealed that gut microbiota contributed to the changes in plasma metabolites and was associated with several amino acids such as tryptophan and its gut microbiota-derived metabolite, indole-3-propionic acid (I3PA). Notably, a significant correlation was observed between the baseline microbial richness and clinical remission at week 12. Compared to non-remitters, individuals who achieved remission had a higher baseline microbial richness, a lower dysbiosis score, and a more complex and well-organized community structure and bacterial networks within their microbiota. These findings indicate a more resilient microbiota community in remitters. Furthermore, we also demonstrated that it was not the composition of the gut microbiota itself, but rather the presence of sporulation genes at baseline that could predict the likelihood of clinical remission following ESC treatment. The predictive model based on these genes revealed an area under the curve (AUC) performance metric of 0.71. CONCLUSION This study provides valuable insights into the role of the gut microbiota in the mechanism of ESC treatment efficacy for patients with MDD. The findings represent a significant advancement in understanding the intricate relationship among antidepressants, gut microbiota, and the blood metabolome. Additionally, this study offers a microbiota-centered perspective that can potentially improve antidepressant efficacy in clinical practice. By shedding light on the interplay between these factors, this research contributes to our broader understanding of the complex mechanisms underlying the treatment of MDD and opens new avenues for optimizing therapeutic approaches. Video Abstract.
Collapse
Affiliation(s)
- Yaping Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Junbin Ye
- Beijing WeGenome Paradigm Co., Ltd, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yingxin Zhao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Siyu Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Hickman B, Kirjavainen PV, Täubel M, de Vos WM, Salonen A, Korpela K. Determinants of bacterial and fungal microbiota in Finnish home dust: Impact of environmental biodiversity, pets, and occupants. Front Microbiol 2022; 13:1011521. [PMID: 36419417 PMCID: PMC9676251 DOI: 10.3389/fmicb.2022.1011521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2023] Open
Abstract
The indoors is where many humans spend most of their time, and are strongly exposed to indoor microbiota, which may have multifaceted effects on health. Therefore, a comprehensive understanding of the determinants of indoor microbiota is necessary. We collected dust samples from 295 homes of families with young children in the Helsinki region of Finland and analyzed the bacterial and fungal composition based on the 16S rRNA and ITS DNA sequences. Microbial profiles were combined with extensive survey data on family structure, daily life, and physical characteristics of the home, as well as additional external environmental information, such as land use, and vegetational biodiversity near the home. Using permutational multivariate analysis of variance we explained 18% of the variation of the relative abundance between samples within bacterial composition, and 17% of the fungal composition with the explanatory variables. The fungal community was dominated by the phyla Basidiomycota, and Ascomycota; the bacterial phyla Proteobacteria, Firmicutes, Cyanobacteria, and Actinobacteria were dominant. The presence of dogs, multiple children, and firewood were significantly associated with both the fungal and bacterial composition. Additionally, fungal communities were associated with land use, biodiversity in the area, and the type of building, while bacterial communities were associated with the human inhabitants and cleaning practices. A distinction emerged between members of Ascomycota and Basidiomycota, Ascomycota being more abundant in homes with greater surrounding natural environment, and potential contact with the environment. The results suggest that the fungal composition is strongly dependent on the transport of outdoor environmental fungi into homes, while bacteria are largely derived from the inhabitants.
Collapse
Affiliation(s)
- Brandon Hickman
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirkka V. Kirjavainen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martin Täubel
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Tamsi NSF, Latif MT, Othman M, Abu Bakar FD, Yusof HM, Noraini NMR, Zahaba M, Sahani M. Antibiotic resistance of airborne bacterial populations in a hospital environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:629. [PMID: 35918614 DOI: 10.1007/s10661-022-10291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacteria in a hospital environment potentially cause hospital-acquired infections (HAIs), particularly in immunocompromised individuals. Treatments of HAIs with antibiotics, however, are ineffective due to the emergence of antibiotic-resistant bacteria (ARB). This study aims to identify airborne bacteria in a tertiary hospital in Malaysia and screen for their resistance to commonly used broad-spectrum antibiotics. Airborne bacteria were sampled using active sampling at the respiratory ward (RW), physician clinic (PC) and emergency department (ED). Physical parameters of the areas were recorded, following the Industry Code of Practice on Indoor Air Quality 2010 (ICOP IAQ 2010). Bacterial identification was based on morphological and biochemical tests. Antibiotic resistance screening was carried out using the Kirby-Bauer disk diffusion method. Results showed that the highest bacterial population was found in the highest density occupancy area, PC (1024 ± 54 CFU/m3), and exceeded the acceptable limit. Micrococcus spp., Staphylococcus aureus, α- and β-Streptococcus spp., Bacillus spp. and Clostridium spp. colonies were identified at the sampling locations. The antibiotic resistance screening showed a vast percentage of resistance amongst the bacterial colonies, with resistance to ampicillin observed as the highest percentage (Micrococcus spp.: 95.2%, S. aureus: 100%, Streptococcus spp.: 75%, Bacillus spp.: 100% and Clostridium spp.: 100%). This study provides awareness to healthcare practitioners and the public on the status of the emergence of ARB in a hospital environment. Early detection of bacterial populations and good management of hospital environments are important prevention measures for HAI.
Collapse
Affiliation(s)
- Nur Sarah Fatihah Tamsi
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Murnira Othman
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Hanizah Mohd Yusof
- Department of Community Health, University Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Cheras, Malaysia
| | - Nor Mohd Razif Noraini
- National Institute of Occupational Safety and Health, NIOSH, Lot 1, Jalan 15/1, Seksyen 15, 43650, Bandar Baru Bangi, Selangor, Malaysia
| | - Maryam Zahaba
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Mazrura Sahani
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Air Sampling for Fungus around Hospitalized Patients with Coronavirus Disease 2019. J Fungi (Basel) 2022; 8:jof8070692. [PMID: 35887448 PMCID: PMC9321969 DOI: 10.3390/jof8070692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
The risk of developing coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) depends on factors related to the host, virus, and treatment. However, many hospitals have modified their existing rooms and adjusted airflow to protect healthcare workers from aerosolization, which may increase the risk of Aspergillus exposure. This study aimed to quantitatively investigate airborne fungal levels in negative and slightly negative pressure rooms for COVID-19 patients. The air in neutral pressure rooms in ordinary wards and a liver intensive care unit with high-efficiency particulate air filter was also assessed for comparison. We found the highest airborne fungal burden in recently renovated slightly negative air pressure rooms, and a higher airborne fungal concentration in both areas used to treat COVID-19 patients. The result provided evidence of the potential environmental risk of CAPA by quantitative microbiologic air sampling, which was scarcely addressed in the literature. Enhancing environmental infection control measures to minimize exposure to fungal spores should be considered. However, the clinical implications of a periodic basis to determine indoor airborne fungal levels and further air sterilization in these areas remain to be defined.
Collapse
|
15
|
Hagiuda R, Oda H, Kawakami Y, Hirose D. Species Diversity based on Revised Systematics of Xerophilic Aspergillus section Restricti Isolated from Storage Rooms and Houses in Japan. Biocontrol Sci 2022; 27:65-80. [PMID: 35753795 DOI: 10.4265/bio.27.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Eighty-seven strains of Aspergillus section Restricti were isolated from five storage rooms (50 strains) and 21 houses (37 strains) between 2014 and 2020. Eleven species were identified based on their morphological characteristics and molecular phylogeny using the rRNA internal transcribed spacer (ITS) region, calmodulin (CaM), β-tubulin (benA), and RNA polymerase II second largest subunit (RPB2) sequences. A. penicillioides, which was known to cause the deterioration of cultural assets, was isolated at high frequency (73%) from the surfaces of 11 cultural assets in the storage rooms; A. clavatophorus and A. magnivesiculatus, which are closely related to A. penicillioides, were also isolated frequently (45 and 64%, respectively). Five species [A. clavatophorus (42.8%), A. penicillioides (42.8%), A. magnivesiculatus (14.3%), A. reticulatus (28.6%), and A. vitricola (28.6%)] were isolated from dust on the carpets in seven houses. Five species [A. clavatophorus (33.3%), A. penicillioides (55.5%), A. magnivesiculatus (44.4%), A. restrictus (44.4%), and A. gracilis (11.1%)] were isolated from dust on the bedding in nine houses. Using the taxonomic system described by Sklenář et al. (2017), five species (A. clavatophorus, A. magnivesiculatus, A. hordei, A. reticulatus, and A. glabripes) previously identified as A. penicillioides were confirmed as new to Japan.
Collapse
Affiliation(s)
| | | | - Yuji Kawakami
- Department of Environmental Science and Education, Tokyo Kasei University
| | | |
Collapse
|
16
|
Han Y, Zhang X, Liu P, Xu S, Chen D, Liu JN, Xie W. Microplastics exposure causes oxidative stress and microbiota dysbiosis in planarian Dugesia japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28973-28983. [PMID: 34994935 DOI: 10.1007/s11356-022-18547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/03/2022] [Indexed: 05/10/2023]
Abstract
Planarians are widely used as water quality indicator species to provide early warning of harmful pollution in aquatic ecosystems. However, the impact of microplastics on freshwater planarians remains poorly investigated. Here we simulated waterborne microplastic exposure in the natural environments to examine the effect on the antioxidant defense system and microbiota in Dugesia japonica. The results showed that exposure to microplastics significantly changed the levels of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione S-transferase, indicating that microplastic exposure induces oxidative stress in planarians. High-throughput 16S rRNA gene sequencing results revealed that exposure to microplastics altered the diversity, abundance, and composition of planarian microbiota community. At phylum level, the relative abundance of the dominant phyla Proteobacteria and Bacteroidetes changed significantly after microplastic exposure. At genus level, the abundance of dominant genera also changed significantly, including Curvibacter and unclassified Chitinophagales. Predictive functional analysis showed that the microbiota of microplastic-exposed planarians exhibited an enrichment in genes related to fatty acid metabolism. Overall, these results showed that microplastics can cause oxidative stress and microbiota dysbiosis in planarians, indicating that planarians can serve as an indicator species for microplastic pollution in freshwater systems.
Collapse
Affiliation(s)
- Yapeng Han
- College of Life Sciences, Longdong University, Qingyang745000, Gansu, China.
- Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong Area, Qingyang 745000, Gansu, China.
| | - Xiaoxia Zhang
- Central Blood Station of Qingyang, Qingyang 745000, Gansu, China
| | - Pengfei Liu
- College of Life Sciences, Longdong University, Qingyang745000, Gansu, China
- Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong Area, Qingyang 745000, Gansu, China
| | - Shujuan Xu
- College of Life Sciences, Longdong University, Qingyang745000, Gansu, China
- Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong Area, Qingyang 745000, Gansu, China
| | - Delai Chen
- College of Life Sciences, Longdong University, Qingyang745000, Gansu, China
- Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong Area, Qingyang 745000, Gansu, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Wenguang Xie
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| |
Collapse
|
17
|
Cox J, Stone T, Ryan P, Burkle J, Jandarov R, Mendell MJ, Niemeier-Walsh C, Reponen T. Residential bacteria and fungi identified by high-throughput sequencing and childhood respiratory health. ENVIRONMENTAL RESEARCH 2022; 204:112377. [PMID: 34800538 DOI: 10.1016/j.envres.2021.112377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to examine and compare environmental microbiota from dust and children's respiratory health outcomes at ages seven and twelve. At age seven, in-home visits were conducted for children enrolled in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Floor dust was collected and analyzed for bacterial (16 S rRNA gene) and fungal (internal transcribed spacer region) microbiota. Respiratory outcomes, including physician-diagnosed asthma, wheeze, rhinitis, and aeroallergen sensitivity were assessed by physical examination and caregiver-report at ages seven and twelve. The associations between dust microbiota and respiratory outcomes were evaluated using Permanova, DESeq, and weighted quantile sum (WQS) regression models. Four types of WQS regression models were run to identify mixtures of fungi or bacteria that were associated with the absence or presence of health outcomes. For alpha or beta diversity of fungi and bacteria, no significant associations were found with respiratory health outcomes. DESeq identified specific bacterial and fungal indicator taxa that were higher or lower with the presence of different health outcomes. Most individual indicator fungal species were lower with asthma and wheeze and higher with aeroallergen positivity and rhinitis, whereas bacterial data was less consistent. WQS regression models demonstrated that a combination of species might influence health outcomes. Several heavily weighted species had a strong influence on the models, and therefore, created a microbial community that was associated with the absence or presence of asthma, wheeze, rhinitis, and aeroallergen+. Weights for specific species within WQS regression models supported indicator taxa findings. Health outcomes might be more influenced by the composition of a complex mixture of bacterial and fungal species in the indoor environment than by the absence or presence of individual species. This study demonstrates that WQS is a useful tool in evaluating mixtures in relation to potential health effects.
Collapse
Affiliation(s)
- Jennie Cox
- Department of Environment and Public Health Sciences, University of Cincinnati, PO Box 670056, Cincinnati, OH, USA.
| | - Timothy Stone
- Department of Environment and Public Health Sciences, University of Cincinnati, PO Box 670056, Cincinnati, OH, USA
| | - Patrick Ryan
- Department of Environment and Public Health Sciences, University of Cincinnati, PO Box 670056, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeff Burkle
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Roman Jandarov
- Department of Environment and Public Health Sciences, University of Cincinnati, PO Box 670056, Cincinnati, OH, USA
| | | | - Christine Niemeier-Walsh
- Department of Environment and Public Health Sciences, University of Cincinnati, PO Box 670056, Cincinnati, OH, USA
| | - Tiina Reponen
- Department of Environment and Public Health Sciences, University of Cincinnati, PO Box 670056, Cincinnati, OH, USA
| |
Collapse
|
18
|
Wu Z, Lyu H, Ma X, Ren G, Song J, Jing X, Liu Y. Comparative effects of environmental factors on bacterial communities in two types of indoor dust: Potential risks to university students. ENVIRONMENTAL RESEARCH 2022; 203:111869. [PMID: 34411549 DOI: 10.1016/j.envres.2021.111869] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
University students are constantly exposed to potential bacterial pathogens and environmental pollutants in indoor environment because they spend most of their time indoors. University dormitory and printing shop are two typical indoor environments frequented by university students. However, little is known about the characteristics of bacterial community as well as the effect of indoor environmental factors on them. 16S rRNA gene sequencing was used to reveal the bacterial community in indoor dust, electronic devices were recorded during dust sampling, and polybrominated diphenyl ethers (PBDEs) were detected by gas chromatography mass spectrometry (GC-MS). Proteobacteria, Actinobacteria and Firmicutes were leading phyla, and Acinetobacter, Paracoccus and Kocuria were dominating genera. The predominant genera showed Acinetobacter > Paracoccus > unidentified Corynebacteriaceae in indoor dusts from university dormitories, whereas Paracoccus > unidentified Cyanobacteria > Acinetobacter in printing shops. The occurrence of Acinetobacter, Kocuria, Corynebacterium, Pseudomonas, and Bacillus suggested the health risks of potential pathogenic bacteria to university students. Significant differences of microbial composition and diversity were proved between university dormitories and printing shops. Chemoheterotrophy and aerobic chemoheterotrophy were dominant bacterial functions, and the seven primary bacterial functions displayed university dormitory > printing shop. BDE 138 and BDE 66 were main environmental parameters affecting the indoor dust bacterial community in university dormitory, while printer and BDE 47 played dominating role in shaping microorganism in printing shop. The complex biotic (potential bacterial pathogens) and abiotic factors (electronic equipment and chemical pollutants) in indoor dusts may pose potential health risks to university students.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Honghong Lyu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaohua Jing
- School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, 455002, China
| | - Yuanyuan Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Indoor Air Quality in Healthcare and Care Facilities: Chemical Pollutants and Microbiological Contaminants. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The indoor air quality of healthcare and care facilities is poorly studied. The aim of this study was to qualitatively and quantitatively describe the chemical pollution and the microbiological contaminations of the indoor environment of these facilities. Methods: A wide range of chemical compounds (39 volatile and 13 semi-volatile organic compounds, carbon dioxide, fine particulate matter) and microorganisms (fungi and bacteria) were studied. Sampling campaigns were conducted in two French cities in summer 2018 and winter 2019 in six private healthcare facilities (general practitioner’s offices, dental offices, pharmacies) and four care facilities (nursing homes). Results: The highest median concentrations of chemical compounds (μg/m3) were measured for alcohols (ethanol: 378.9 and isopropanol: 23.6), ketones (acetone: 18.8), aldehydes (formaldehyde: 11.4 and acetaldehyde: 6.5) and terpenes (limonene: 4.3). The median concentration of PM2.5 was 9.0 µg/m3. The main bacteria of these indoor environments were Staphylococcus, Micrococcus and Bacillus genera, with median bacterial concentrations in the indoor air of 14 cfu/m3. The two major fungal genera were Cladosporium and Penicillium, with median fungal concentrations of 7 cfu/m3. Conclusions: Indoor air in healthcare and care facilities contains a complex mixture of many pollutants found in higher concentrations compared to the indoor air in French hospitals in a previous study.
Collapse
|
20
|
Andersen B, Frisvad JC, Dunn RR, Thrane U. A Pilot Study on Baseline Fungi and Moisture Indicator Fungi in Danish Homes. J Fungi (Basel) 2021; 7:jof7020071. [PMID: 33498446 PMCID: PMC7909426 DOI: 10.3390/jof7020071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
In many complaint cases regarding bad indoor environments, there is no evidence of visible fungal growth. To determine if the problems are fungi-related, dust sampling is the method of choice among building surveyors. However, there is a need to differentiate between species belonging to a normal, dry indoor environment and species belonging to a damp building envelope. The purposes of this pilot study were to examine which fungal species are present in problem-free Danish homes and to evaluate different detection and identification methods. Analyses showed that the fungal diversity outside was different from the diversity inside and that the composition of fungal species growing indoors was different compared to those found as spores, both indoors and outdoors. Common for most homes were Pseudopithomyceschartarum, Cladosporiumallicinum and Alternaria sect. Infectoriae together with Botrytis spp., Penicilliumdigitatum and Pen. glabrum. The results show that ITS sequencing of dust samples is adequate if supported by thorough building inspections and that food products play as large a role in the composition of the baseline spora as the outdoor air and surrounding vegetation. This pilot study provides a list of baseline fungal species found in Danish homes with a good indoor environment.
Collapse
Affiliation(s)
- Birgitte Andersen
- Division of Energy Efficiency, Indoor Climate and Sustainability of Buildings, Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen SV, Denmark
- Correspondence: ; Tel.: +45-9940-2312
| | - Jens C. Frisvad
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark;
| | - Robert R. Dunn
- Department of Applied Ecology, Campus Box 7617, NC State University Campus, Raleigh, NC 27695-7617, USA;
| | - Ulf Thrane
- Wood and Biomaterials, Building and Construction, Danish Technological Institute, Gregersensvej 1, DK-2630 Taastrup, Denmark;
| |
Collapse
|