1
|
Schulz F, Yan Y, Weiner AK, Ahsan R, Katz LA, Woyke T. Protists as mediators of complex microbial and viral associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630703. [PMID: 39803511 PMCID: PMC11722414 DOI: 10.1101/2024.12.29.630703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae , and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.
Collapse
Affiliation(s)
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K.M. Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Ragib Ahsan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
- University of California Merced, Life and Environmental Sciences, Merced, California, USA
| |
Collapse
|
2
|
Srinivas P, Peterson SB, Gallagher LA, Wang Y, Mougous JD. Beyond genomics in Patescibacteria: A trove of unexplored biology packed into ultrasmall bacteria. Proc Natl Acad Sci U S A 2024; 121:e2419369121. [PMID: 39665754 DOI: 10.1073/pnas.2419369121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Patescibacteria, also known as the Candidate Phyla Radiation, are a diverse clade of largely uncultivated, small bacteria that comprise a significant proportion of all bacterial diversity. The few members that have been cultivated exhibit a fascinating life cycle in which they grow as obligate epibionts on the surface of host bacteria. In this Perspective, we make the case that the study of these unique, divergent, and poorly characterized organisms represents an exciting frontier in microbiology. This burgeoning field has already achieved several critical breakthroughs, including metagenomic sequence-based reconstructions of the metabolic and biosynthetic capabilities of diverse Patescibacteria and the development of generalizable strategies for their cultivation and genetic manipulation. We argue these that advances, among others, should pave the way toward a molecular understanding of the complex interactions that undoubtedly underpin the relationship between Patescibacteria and their hosts.
Collapse
Affiliation(s)
- Pooja Srinivas
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109
- HHMI, University of Washington, Seattle, WA 98109
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98109
| |
Collapse
|
3
|
Cloarec LA, Bacchetta T, Bruto M, Leboulanger C, Grossi V, Brochier-Armanet C, Flandrois JP, Zurmely A, Bernard C, Troussellier M, Agogué H, Ader M, Oger-Desfeux C, Oger PM, Vigneron A, Hugoni M. Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem. MICROBIOME 2024; 12:249. [PMID: 39609882 PMCID: PMC11606122 DOI: 10.1186/s40168-024-01956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND DPANN archaea, including Woesearchaeota, encompass a large fraction of the archaeal diversity, yet their genomic diversity, lifestyle, and role in natural microbiomes remain elusive. With an archaeal assemblage naturally enriched in Woesearchaeota and steep vertical geochemical gradients, Lake Dziani Dzaha (Mayotte) provides an ideal model to decipher their in-situ activity and ecology. RESULTS Using genome-resolved metagenomics and phylogenomics, we identified highly diversified Woesearchaeota populations and defined novel halophilic clades. Depth distribution of these populations in the water column showed an unusual double peak of abundance, located at two distinct chemoclines that are hotspots of microbial diversity in the water column. Genome-centric metatranscriptomics confirmed this vertical distribution and revealed a fermentative activity, with acetate and lactate as end products, and active cell-to-cell processes, supporting strong interactions with other community members at chemoclines. Our results also revealed distinct Woesearchaeota ecotypes, with different transcriptional patterns, contrasted lifestyles, and ecological strategies, depending on environmental/host conditions. CONCLUSIONS This work provides novel insights into Woesearchaeota in situ activity and metabolism, revealing invariant, bimodal, and adaptative lifestyles among halophilic Woesearchaeota. This challenges our precepts of an invariable host-dependent metabolism for all the members of this taxa and revises our understanding of their contributions to ecosystem functioning and microbiome assemblage. Video Abstract.
Collapse
Affiliation(s)
- Lilian A Cloarec
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Thomas Bacchetta
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Maxime Bruto
- Université de Lyon, UMR Mycoplasmoses Animales, VetAgro Sup, AnsesMarcy L'Etoile, 69280, France
| | | | - Vincent Grossi
- UMR 5276, Laboratoire de Géologie de Lyon: Terre, Univ Lyon, UCBL, CNRS, Environnement (LGL-TPE), PlanètesVilleurbanne, 69622, France
- Present address: Mediterranean Institute of Oceanography (MIO), Aix Marseille Univ-CNRS, Marseille, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jean-Pierre Flandrois
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Adrian Zurmely
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication Et Adaptations Des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, Paris, F-75231, France
| | | | - Hélène Agogué
- UMR 7266, LIENSs, La Rochelle Université-CNRS, 2 Rue Olympe de Gouges, La Rochelle, 17000, France
| | - Magali Ader
- Institut de Physique du Globe de Paris, Université de Paris, Paris, France
| | | | - Philippe M Oger
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Adrien Vigneron
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Mylène Hugoni
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
4
|
Gutiérrez-Preciado A, Dede B, Baker BA, Eme L, Moreira D, López-García P. Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines. Nat Ecol Evol 2024; 8:1856-1869. [PMID: 39134651 DOI: 10.1038/s41559-024-02505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
Few described archaeal, and fewer bacterial, lineages thrive under salt-saturating conditions, such as solar saltern crystallizers (salinity above 30% w/v). They accumulate molar K+ cytoplasmic concentrations to maintain osmotic balance ('salt-in' strategy) and have proteins adaptively enriched in negatively charged acidic amino acids. Here we analysed metagenomes and metagenome-assembled genomes from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Danakil Depression. Normalized abundances of universal single-copy genes confirmed that haloarchaea and Nanohaloarchaeota encompass 99% of microbial communities in the near-life-limiting conditions of the Western-Canyon Lakes. Danakil metagenome- and metagenome-assembled-genome-inferred proteomes, compared with those of freshwater, seawater and solar saltern ponds up to saturation (6-14-32% salinity), showed that Western-Canyon Lake archaea encode the most acidic proteomes ever observed (median protein isoelectric points ≤4.4). We identified previously undescribed haloarchaeal families as well as an Aenigmatarchaeota family and a bacterial phylum independently adapted to extreme halophily. Despite phylum-level diversity decreasing with increasing salinity-chaotropicity, and unlike in solar salterns, adapted archaea exceedingly diversified in Danakil ecosystems, challenging the notion of decreasing diversity under extreme conditions. Metabolic flexibility to utilize multiple energy and carbon resources generated by local hydrothermalism along feast-and-famine strategies seemingly shapes microbial diversity in these ecosystems near life limits.
Collapse
Affiliation(s)
- Ana Gutiérrez-Preciado
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Bledina Dede
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Brittany A Baker
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Liu X, Guo W, Cheng X, Wei Z, Feng Q, Cheng S, Zhang Q, Luo J. Time-dependent interference of surfactants and CeO 2/Fe 2O 3 nanoparticles co-occurrence on the volatile fatty acids biosynthesis during semi-continuous sludge fermentation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134915. [PMID: 38878443 DOI: 10.1016/j.jhazmat.2024.134915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Various exogenous contaminants typically coexist in waste activated sludge (WAS), and the long-term impacts of these co-occurring contaminants on WAS anaerobic fermentation and associated mechanisms remain largely unknown. This study reveals that the co-occurrence of surfactants and nanoparticles (NPs, i.e., Fe2O3 and CeO2, frequently detected in sludge) exhibited time-dependent impacts on the volatile fatty acids (VFAs) biosynthesis. Surfactants triggered WAS decomposition and enhanced NPs dispersion, leading to increased exposure of functional anaerobes to NPs toxicity, negatively affecting them. Consequently, key fermentation processes, acidogenic bacterial abundance, and metabolic functions were inhibited in co-occurrence reactors compared to those containing only surfactants in the early stage (before 56 d). Surprisingly, the fermentation systems containing surfactants collapsed subsequently, with VFAs yield at 72 d decreasing by 48.59-71.27 % compared to 56 d. The keystone microbes (i.e., Acidobacteria (16 d) vs Patescibacteria (56 d)) were reshaped, and metabolic traits (i.e., proB involved in intracellular metabolism) were downregulated by 0.05-78.02 % due to reduced microbial adaptive capacity (i.e., quorum sensing (QS)). Partial least squares path modeling (PLS-PM) analysis suggests that the microbial community was the predominant factor influencing VFAs generation. This study provides new insights into the long-term effects of co-contaminants on the biological treatment of WAS.
Collapse
Affiliation(s)
- Xinyi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wen Guo
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210024, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Zhicheng Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|
6
|
Bosch J, Lebre PH, Marais E, Maggs‐Kölling G, Cowan DA. Kinetics and pathways of sub-lithic microbial community (hypolithon) development. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13290. [PMID: 38923208 PMCID: PMC11194044 DOI: 10.1111/1758-2229.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
- Institute of Microbiology of the Czech Academy of SciencesCzech Academy of SciencesPrahaCzech Republic
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | | | | | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
7
|
Hu H, Kristensen JM, Herbold CW, Pjevac P, Kitzinger K, Hausmann B, Dueholm MKD, Nielsen PH, Wagner M. Global abundance patterns, diversity, and ecology of Patescibacteria in wastewater treatment plants. MICROBIOME 2024; 12:55. [PMID: 38493180 PMCID: PMC10943839 DOI: 10.1186/s40168-024-01769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete. This is particularly relevant as Patescibacteria are considered to be associated with microbial host cells and can therefore influence the abundance and temporal variability of other microbial groups that are important for WWTP functioning. RESULTS Here, we evaluated the in silico coverage of widely used 16S rRNA gene-targeted primer pairs and redesigned a primer pair targeting the V4 region of bacterial and archaeal 16S rRNA genes to expand its coverage for Patescibacteria. We then experimentally evaluated and compared the performance of the original and modified V4-targeted primers on 565 WWTP samples from the MiDAS global sample collection. Using the modified primer pair, the percentage of ASVs classified as Patescibacteria increased from 5.9 to 23.8%, and the number of detected patescibacterial genera increased from 560 to 1576, while the detected diversity of the remaining microbial community remained similar. Due to this significantly improved coverage of Patescibacteria, we identified 23 core genera of Patescibacteria in WWTPs and described the global distribution pattern of these unusual microbes in these systems. Finally, correlation network analysis revealed potential host organisms that might be associated with Patescibacteria in WWTPs. Interestingly, strong indications were found for an association between Patescibacteria of the Saccharimonadia and globally abundant polyphosphate-accumulating organisms of the genus Ca. Phosphoribacter. CONCLUSIONS Our study (i) provides an improved 16S rRNA gene V4 region-targeted amplicon primer pair inclusive of Patescibacteria with little impact on the detection of other taxa, (ii) reveals the diversity and distribution patterns of Patescibacteria in WWTPs on a global scale, and (iii) provides new insights into the ecological role and potential hosts of Patescibacteria in WWTPs. Video Abstract.
Collapse
Affiliation(s)
- Huifeng Hu
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Universitätsring 1, 1010, Vienna, Austria
| | - Jannie Munk Kristensen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Craig William Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Te Kura Putaiao Koiora, School of Biological Sciences, Te Whare Wananga o Waitaha, University of Canterbury, Otautahi, Christchurch, Aotearoa, New Zealand
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna , University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna , University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
- Joint Microbiome Facility of the Medical University of Vienna , University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Zhang J, Liang Q, Mu D, Lian F, Gong Y, Ye M, Chen G, Ye Y, Du Z. Cultivating the uncultured: Harnessing the "sandwich agar plate" approach to isolate heme-dependent bacteria from marine sediment. MLIFE 2024; 3:143-155. [PMID: 38827516 PMCID: PMC11139205 DOI: 10.1002/mlf2.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 06/04/2024]
Abstract
In the classical microbial isolation technique, the isolation process inevitably destroys all microbial interactions and thus makes it difficult to culture the many microorganisms that rely on these interactions for survival. In this study, we designed a simple coculture technique named the "sandwich agar plate method," which maintains microbial interactions throughout the isolation and pure culture processes. The total yield of uncultured species in sandwich agar plates based on eight helper strains was almost 10-fold that of the control group. Many uncultured species displayed commensal lifestyles. Further study found that heme was the growth-promoting factor of some marine commensal bacteria. Subsequent genomic analysis revealed that heme auxotrophies were common in various biotopes and prevalent in many uncultured microbial taxa. Moreover, our study supported that the survival strategies of heme auxotrophy in different habitats varied considerably. These findings highlight that cocultivation based on the "sandwich agar plate method" could be developed and used to isolate more uncultured bacteria.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | | | - Da‐Shuai Mu
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
- Shandong University‐Weihai Research Institute of Industrial TechnologyWeihaiChina
| | | | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | - Mengqi Ye
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | - Guan‐Jun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
| | - Yuqi Ye
- Marine CollegeShandong UniversityWeihaiChina
| | - Zong‐Jun Du
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong UniversityQingdaoChina
- Marine CollegeShandong UniversityWeihaiChina
- Shandong University‐Weihai Research Institute of Industrial TechnologyWeihaiChina
| |
Collapse
|
9
|
Gaisin VA, van Wolferen M, Albers SV, Pilhofer M. Distinct life cycle stages of an ectosymbiotic DPANN archaeon. THE ISME JOURNAL 2024; 18:wrae076. [PMID: 38691426 PMCID: PMC11104419 DOI: 10.1093/ismejo/wrae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
DPANN archaea are a diverse group of microorganisms that are thought to rely on an ectosymbiotic lifestyle; however, the cell biology of these cell-cell interactions remains largely unknown. We applied live-cell imaging and cryo-electron tomography to the DPANN archaeon Nanobdella aerobiophila and its host, revealing two distinct life cycle stages. Free cells possess archaella and are motile. Ectobiotic cells are intimately linked with the host through an elaborate attachment organelle. Our data suggest that free cells may actively seek a new host, while the ectobiotic state is adapted to mediate intricate interaction with the host.
Collapse
Affiliation(s)
- Vasil A Gaisin
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Takamiya H, Kouduka M, Kato S, Suga H, Oura M, Yokoyama T, Suzuki M, Mori M, Kanai A, Suzuki Y. Genome-resolved metaproteogenomic and nanosolid characterization of an inactive vent chimney densely colonized by enigmatic DPANN archaea. THE ISME JOURNAL 2024; 18:wrae207. [PMID: 39499858 PMCID: PMC11537232 DOI: 10.1093/ismejo/wrae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Recent successes in the cultivation of DPANN archaea with their hosts have demonstrated an episymbiotic lifestyle, whereas the lifestyle of DPANN archaea in natural habitats is largely unknown. A free-living lifestyle is speculated in oxygen-deprived fluids circulated through rock media, where apparent hosts of DPANN archaea are lacking. Alternatively, DPANN archaea may be detached from their hosts and/or rock surfaces. To understand the ecology of rock-hosted DPANN archaea, rocks rather than fluids should be directly characterized. Here, we investigated a deep-sea hydrothermal vent chimney without fluid venting where our previous study revealed the high proportion of Pacearchaeota, one of the widespread and enigmatic lineages of DPANN archaea. Using spectroscopic methods with submicron soft X-ray and infrared beams, the microbial habitat was specified to be silica-filled pores in the inner chimney wall comprising chalcopyrite. Metagenomic analysis of the inner wall revealed the lack of biosynthetic genes for nucleotides, amino acids, cofactors, and lipids in the Pacearchaeota genomes. Genome-resolved metaproteomic analysis clarified the co-occurrence of a novel thermophilic lineage actively fixing carbon and nitrogen and thermophilic archaea in the inner chimney wall. We infer that the shift in metabolically active microbial populations from the thermophiles to the mesophilic DPANN archaea occurs after the termination of fluid venting. The infilling of mineral pores by hydrothermal silica deposition might be a preferred environmental factor for the colonization of free-living Pacearchaeota with ultrasmall cells depending on metabolites synthesized by the co-occurring thermophiles during fluid venting.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka-city, Kanagawa 237-0061, Japan
| | - Hiroki Suga
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaki Oura
- Soft X-ray Spectroscopy Instrumentation Team, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Tadashi Yokoyama
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Nipponkoku, Daihoji, Tsuruoka, Yamagata, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Man DKW, Hermans SM, Taubert M, Garcia SL, Hengoju S, Küsel K, Rosenbaum MA. Enrichment of different taxa of the enigmatic candidate phyla radiation bacteria using a novel picolitre droplet technique. ISME COMMUNICATIONS 2024; 4:ycae080. [PMID: 38946848 PMCID: PMC11214157 DOI: 10.1093/ismeco/ycae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The candidate phyla radiation (CPR) represents a distinct monophyletic clade and constitutes a major portion of the tree of life. Extensive efforts have focused on deciphering the functional diversity of its members, primarily using sequencing-based techniques. However, cultivation success remains scarce, presenting a significant challenge, particularly in CPR-dominated groundwater microbiomes characterized by low biomass. Here, we employ an advanced high-throughput droplet microfluidics technique to enrich CPR taxa from groundwater. Utilizing a low-volume filtration approach, we successfully harvested a microbiome resembling the original groundwater microbial community. We assessed CPR enrichment in droplet and aqueous bulk cultivation for 30 days using a novel CPR-specific primer to rapidly track the CPR fraction through the cultivation attempts. The combination of soil extract and microbial-derived necromass provided the most supportive conditions for CPR enrichment. Employing these supplemented conditions, droplet cultivation proved superior to bulk cultivation, resulting in up to a 13-fold CPR enrichment compared to a 1- to 2-fold increase in bulk cultivation. Amplicon sequencing revealed 10 significantly enriched CPR orders. The highest enrichment in CPRs was observed for some unknown members of the Parcubacteria order, Cand. Jorgensenbacteria, and unclassified UBA9983. Furthermore, we identified co-enriched putative host taxa, which may guide more targeted CPR isolation approaches in subsequent investigations.
Collapse
Affiliation(s)
- DeDe Kwun Wai Man
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
| | - Syrie M Hermans
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Food Science and Microbiology, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, 1142 Auckland, New Zealand
- Aquatic Geomicrobiology, Institute of Biodiversity, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Martin Taubert
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Aquatic Geomicrobiology, Institute of Biodiversity, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Sundar Hengoju
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Kirsten Küsel
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Aquatic Geomicrobiology, Institute of Biodiversity, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
- Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, 07743 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
12
|
Lai D, Hedlund BP, Mau RL, Jiao JY, Li J, Hayer M, Dijkstra P, Schwartz E, Li WJ, Dong H, Palmer M, Dodsworth JA, Zhou EM, Hungate BA. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring. THE ISME JOURNAL 2023; 17:2112-2122. [PMID: 37741957 PMCID: PMC10579274 DOI: 10.1038/s41396-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.
Collapse
Affiliation(s)
- Dengxun Lai
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China and Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - En-Min Zhou
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
13
|
D'Auria E, Cattaneo C, Panelli S, Pozzi C, Acunzo M, Papaleo S, Comandatore F, Mameli C, Bandi C, Zuccotti G, Pagliarini E. Alteration of taste perception, food neophobia and oral microbiota composition in children with food allergy. Sci Rep 2023; 13:7010. [PMID: 37117251 PMCID: PMC10147366 DOI: 10.1038/s41598-023-34113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Currently, the mechanisms underlying sensory perception and sensory performance in children with food allergies are far from being understood. As well, only recently, single research afforded the oral host-commensal milieu, addressing oral microbial communities in children with peanut allergies. To bridge the current gaps in knowledge both in the sensory and microbial fields, a psychophysiological case-control study was performed in allergic children (n = 29) and a healthy sex-age-matched control group (n = 30). Taste perception, food neophobia, and liking were compared in allergic and non-allergic children. The same subjects were characterized for their oral microbiota composition by addressing saliva to assess whether specific profiles were associated with the loss of oral tolerance in children with food allergies. Our study evidenced an impaired ability to correctly identify taste qualities in the allergic group compared to controls. These results were also consistent with anatomical data related to the fungiform papillae on the tongue, which are lower in number in the allergic group. Furthermore, distinct oral microbial profiles were associated with allergic disease, with significant down-representations of the phylum Firmicutes and of the genera Veillonella spp., Streptococcus spp., Prevotella spp., and Neisseria spp. For the first time, this study emphasizes the link between sensory perception and food allergy, which is a novel and whole-organism view of this pathology. Our data indicated that an impaired taste perception, as regards both functionality and physiologically, was associated with food allergy, which marginally influences the food neophobia attitude. It is also accompanied by compositional shifts in oral microbiota, which is, in turn, another actor of this complex interplay and is deeply interconnected with mucosal immunity. This multidisciplinary research will likely open exciting new approaches to therapeutic interventions.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, 20154, Milan, Italy
| | - Camilla Cattaneo
- Sensory & Consumer Science Lab (SCS_Lab), Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133, Milan, Italy.
| | - Simona Panelli
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - Carlotta Pozzi
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, 20154, Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, 20154, Milan, Italy
| | - Stella Papaleo
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - Francesco Comandatore
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, 20154, Milan, Italy
| | - Claudio Bandi
- Pediatric Clinical Research Center "Invernizzi", Department of Biosciences, University of Milan, 20157, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, 20154, Milan, Italy
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - Ella Pagliarini
- Sensory & Consumer Science Lab (SCS_Lab), Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133, Milan, Italy
| |
Collapse
|
14
|
Rao YZ, Li YX, Li ZW, Qu YN, Qi YL, Jiao JY, Shu WS, Hua ZS, Li WJ. Metagenomic Discovery of " Candidatus Parvarchaeales"-Related Lineages Sheds Light on Adaptation and Diversification from Neutral-Thermal to Acidic-Mesothermal Environments. mSystems 2023; 8:e0125222. [PMID: 36943058 PMCID: PMC10134863 DOI: 10.1128/msystems.01252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
"Candidatus Parvarchaeales" microbes, representing a DPANN archaeal group with limited metabolic potential and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28 Parvarchaeales-associated metagenome-assembled genomes (MAGs) representing two orders and five genera were recovered. Among them, we identified three new genera and proposed the names "Candidatus Jingweiarchaeum," "Candidatus Haiyanarchaeum," and "Candidatus Rehaiarchaeum," with the former two belonging to a new order, "Candidatus Jingweiarchaeales." Further analyses of the metabolic potentials revealed substantial niche differentiation between Jingweiarchaeales and Parvarchaeales. Jingweiarchaeales may rely on fermentation, salvage pathways, partial glycolysis, and the pentose phosphate pathway (PPP) for energy conservation reservation, while the metabolic potentials of Parvarchaeales might be more versatile. Comparative genomic analyses suggested that Jingweiarchaeales favor habitats with higher temperatures and that Parvarchaeales are better adapted to acidic environments. We further revealed that the thermal adaptation of these lineages, especially Haiyanarchaeum, might rely on genomic features such as the usage of specific amino acids, genome streamlining, and hyperthermophile featured genes such as rgy. Notably, the adaptation of Parvarchaeales to acidic environments was possibly driven by horizontal gene transfer (HGT). The reconstruction of ancestral states demonstrated that both may have originated from thermal and neutral environments and later spread to mesothermal and acidic environments. These evolutionary processes may also be accompanied by adaptation to oxygen-rich environments via HGT. IMPORTANCE "Candidatus Parvarchaeales" microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments. By the discovery of potential new order-level lineages, "Ca. Jingweiarchaeales," and in-depth comparative genomic analysis, we unveiled the functional differentiation of these lineages. Furthermore, we show that the adaptation of these lineages to high-temperature and acidic environments was driven by different strategies, with the former relying more on genomic characteristics such as genome streamlining and amino acid compositions and the latter relying more on the acquisition of genes associated with acid tolerance. Finally, by the reconstruction of the ancestral states of the optimal growth temperature (OGT) and isoelectric point (pI), we showed the potential evolutionary process of Parvarchaeales-related lineages with regard to the shift from the high-temperature environment of their common ancestors to low-temperature (potentially acidic) environments.
Collapse
Affiliation(s)
- Yang-Zhi Rao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ze-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China
| |
Collapse
|
15
|
Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota. Nat Microbiol 2023; 8:727-744. [PMID: 36928026 PMCID: PMC10066038 DOI: 10.1038/s41564-022-01319-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/30/2022] [Indexed: 03/18/2023]
Abstract
Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.
Collapse
|
16
|
Gios E, Mosley OE, Weaver L, Close M, Daughney C, Handley KM. Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles. ISME COMMUNICATIONS 2023; 3:13. [PMID: 36808147 PMCID: PMC9938205 DOI: 10.1038/s43705-023-00223-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/16/2023]
Abstract
Aquifers are populated by highly diverse microbial communities, including unusually small bacteria and archaea. The recently described Patescibacteria (or Candidate Phyla Radiation) and DPANN radiation are characterized by ultra-small cell and genomes sizes, resulting in limited metabolic capacities and probable dependency on other organisms to survive. We applied a multi-omics approach to characterize the ultra-small microbial communities over a wide range of aquifer groundwater chemistries. Results expand the known global range of these unusual organisms, demonstrate the wide geographical range of over 11,000 subsurface-adapted Patescibacteria, Dependentiae and DPANN archaea, and indicate that prokaryotes with ultra-small genomes and minimalistic metabolism are a characteristic feature of the terrestrial subsurface. Community composition and metabolic activities were largely shaped by water oxygen content, while highly site-specific relative abundance profiles were driven by a combination of groundwater physicochemistries (pH, nitrate-N, dissolved organic carbon). We provide insights into the activity of ultra-small prokaryotes with evidence that they are major contributors to groundwater community transcriptional activity. Ultra-small prokaryotes exhibited genetic flexibility with respect to groundwater oxygen content, and transcriptionally distinct responses, including proportionally greater transcription invested into amino acid and lipid metabolism and signal transduction in oxic groundwater, along with differences in taxa transcriptionally active. Those associated with sediments differed from planktonic counterparts in species composition and transcriptional activity, and exhibited metabolic adaptations reflecting a surface-associated lifestyle. Finally, results showed that groups of phylogenetically diverse ultra-small organisms co-occurred strongly across sites, indicating shared preferences for groundwater conditions.
Collapse
Affiliation(s)
- Emilie Gios
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- NINA, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Olivia E Mosley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- NatureMetrics Ltd, Surrey Research Park, Guildford, UK
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Murray Close
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Chris Daughney
- GNS Science, Lower Hutt, New Zealand
- NIWA, National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Vigneron A, Cruaud P, Guyoneaud R, Goñi-Urriza M. Into the darkness of the microbial dark matter in situ activities through expression profiles of Patescibacteria populations. Front Microbiol 2023; 13:1073483. [PMID: 36699594 PMCID: PMC9868632 DOI: 10.3389/fmicb.2022.1073483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Patescibacteria form a highly diverse and widespread superphylum of uncultured microorganisms representing a third of the global microbial diversity. Most of our knowledge on Patescibacteria putative physiology relies on metagenomic mining and metagenome-assembled genomes, but the in situ activities and the ecophysiology of these microorganisms have been rarely explored, leaving the role of Patescibacteria in ecosystems elusive. Using a genome-centric metatranscriptomic approach, we analyzed the diel and seasonal gene transcription profiles of 18 Patescibacteria populations in brackish microbial mats to test whether our understanding of Patescibacteria metabolism allows the extrapolation of their in situ activities. Although our results revealed a circadian cycle in Patescibacteria activities, a strong streamlined genetic expression characterized the Patescibacteria populations. This result has a major consequence for the extrapolation of their physiology and environmental function since most transcribed genes were uncharacterized, indicating that the ecophysiology of Patescibacteria cannot be yet reliably predicted from genomic data.
Collapse
Affiliation(s)
- Adrien Vigneron
- IBEAS, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Rémy Guyoneaud
- IBEAS, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Marisol Goñi-Urriza
- IBEAS, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
18
|
Zhou Z, St John E, Anantharaman K, Reysenbach AL. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. MICROBIOME 2022; 10:241. [PMID: 36572924 PMCID: PMC9793634 DOI: 10.1186/s40168-022-01424-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND When deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles. RESULTS Our dataset represents 3635 metagenome-assembled genomes encompassing 511 novel and recently identified genera from deep-sea hydrothermal settings. Some of the novel bacterial (107) and archaeal genera (30) that were recently reported from the deep-sea Brothers volcano were also detected at the deep-sea hydrothermal vent fields, while 99 bacterial and 54 archaeal genera were endemic to the deep-sea Brothers volcano deposits. We report some of the first examples of medium- (≥ 50% complete, ≤ 10% contaminated) to high-quality (> 90% complete, < 5% contaminated) MAGs from phyla and families never previously identified, or poorly sampled, from deep-sea hydrothermal environments. We greatly expand the novel diversity of Thermoproteia, Patescibacteria (Candidate Phyla Radiation, CPR), and Chloroflexota found at deep-sea hydrothermal vents and identify a small sampling of two potentially novel phyla, designated JALSQH01 and JALWCF01. Metabolic pathway analysis of metagenomes provides insights into the prevalent carbon, nitrogen, sulfur, and hydrogen metabolic processes across all sites and illustrates sulfur and nitrogen metabolic "handoffs" in community interactions. We confirm that Campylobacteria and Gammaproteobacteria occupy similar ecological guilds but their prevalence in a particular site is driven by shifts in the geochemical environment. CONCLUSION Our study of globally distributed hydrothermal vent deposits provides a significant expansion of microbial genomic diversity associated with hydrothermal vent deposits and highlights the metabolic adaptation of taxonomic guilds. Collectively, our results illustrate the importance of comparative biodiversity studies in establishing patterns of shared phylogenetic diversity and physiological ecology, while providing many targets for enrichment and cultivation of novel and endemic taxa. Video Abstract.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily St John
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
19
|
Zhao R, Farag IF, Jørgensen SL, Biddle JF. Occurrence, Diversity, and Genomes of " Candidatus Patescibacteria" along the Early Diagenesis of Marine Sediments. Appl Environ Microbiol 2022; 88:e0140922. [PMID: 36468881 PMCID: PMC9765117 DOI: 10.1128/aem.01409-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
The phylum "Candidatus Patescibacteria" (or Candidate Phyla Radiation [CPR]) accounts for roughly one-quarter of microbial diversity on Earth, but the presence and diversity of these bacteria in marine sediments have been rarely charted. Here, we investigate the abundance, diversity, and metabolic capacities of CPR bacteria in three sediment sites (Mohns Ridge, North Pond, and Costa Rica Margin) with samples covering a wide range of redox zones formed during the early diagenesis of organic matter. Through metagenome sequencing, we found that all investigated sediment horizons contain "Ca. Patescibacteria" (0.4 to 28% of the total communities), which are affiliated with the classes "Ca. Paceibacteria," "Ca. Gracilibacteria," "Ca. Microgenomatia," "Ca. Saccharimonadia," "Ca. ABY1," and "Ca. WWE3." However, only a subset of the diversity of marine sediment "Ca. Patescibacteria," especially the classes "Ca. Paceibacteria" and "Ca. Gracilibacteria," can be captured by 16S rRNA gene amplicon sequencing with commonly used universal primers. We recovered 11 metagenome-assembled genomes (MAGs) of CPR from these sediments, most of which are novel at the family or genus level in the "Ca. Paceibacteria" class and are missed by the amplicon sequencing. While individual MAGs are confined to specific anoxic niches, the lack of capacities to utilize the prevailing terminal electron acceptors indicates that they may not be directly selected by the local redox conditions. These CPR bacteria lack essential biosynthesis pathways and may use a truncated glycolysis pathway to conserve energy as fermentative organotrophs. Our findings suggest that marine sediments harbor some novel yet widespread CPR bacteria during the early diagenesis of organic matter, which needs to be considered in population dynamics assessments in this vast environment. IMPORTANCE Ultrasmall-celled "Ca. Patescibacteria" have been estimated to account for one-quarter of the total microbial diversity on Earth, the parasitic lifestyle of which may exert a profound control on the overall microbial population size of the local ecosystems. However, their diversity and metabolic functions in marine sediments, one of the largest yet understudied ecosystems on Earth, remain virtually uncharacterized. By applying cultivation-independent approaches to a range of sediment redox zones, we reveal that "Ca. Patescibacteria" members are rare but widespread regardless of the prevailing geochemical conditions. These bacteria are affiliated with novel branches of "Ca. Patescibacteria" and have been largely missed in marker gene-based surveys. They do not have respiration capacity but may conserve energy by fermenting organic compounds from their episymbiotic hosts. Our findings suggest that these novel "Ca. Patescibacteria" are among the previously overlooked microbes in diverse marine sediments.
Collapse
Affiliation(s)
- Rui Zhao
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ibrahim F. Farag
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Steffen L. Jørgensen
- Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Jennifer F. Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| |
Collapse
|
20
|
Ruiz‐González C, Rodríguez‐Pie L, Maister O, Rodellas V, Alorda‐Keinglass A, Diego‐Feliu M, Folch A, Garcia‐Orellana J, Gasol JM. High spatial heterogeneity and low connectivity of bacterial communities along a Mediterranean subterranean estuary. Mol Ecol 2022; 31:5745-5764. [PMID: 36112071 PMCID: PMC9827943 DOI: 10.1111/mec.16695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/13/2023]
Abstract
Subterranean estuaries are biogeochemically active coastal sites resulting from the underground mixing of fresh aquifer groundwater and seawater. In these systems, microbial activity can largely transform the chemical elements that may reach the sea through submarine groundwater discharge (SGD), but little is known about the microorganisms thriving in these land-sea transition zones. We present the first spatially-resolved characterization of the bacterial assemblages along a coastal aquifer in the NW Mediterranean, considering the entire subsurface salinity gradient. Combining bulk heterotrophic activity measurements, flow cytometry, microscopy and 16S rRNA gene sequencing we find large variations in prokaryotic abundances, cell size, activity and diversity at both the horizontal and vertical scales that reflect the pronounced physicochemical gradients. The parts of the transect most influenced by freshwater were characterized by smaller cells and lower prokaryotic abundances and heterotrophic production, but some activity hotspots were found at deep low-oxygen saline groundwater sites enriched in nitrite and ammonium. Diverse, heterogeneous and highly endemic communities dominated by Proteobacteria, Patescibacteria, Desulfobacterota and Bacteroidota were observed throughout the aquifer, pointing to clearly differentiated prokaryotic niches across these transition zones and little microbial connectivity between groundwater and Mediterranean seawater habitats. Finally, experimental manipulations unveiled large increases in community heterotrophic activity driven by fast growth of some rare and site-specific groundwater Proteobacteria. Our results indicate that prokaryotic communities within subterranean estuaries are highly heterogeneous in terms of biomass, activity and diversity, suggesting that their role in transforming nutrients will also vary spatially within these terrestrial-marine transition zones.
Collapse
Affiliation(s)
| | | | - Olena Maister
- Institut de Ciències del Mar (ICM‐CSIC)BarcelonaSpain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain
| | - Aaron Alorda‐Keinglass
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain
| | - Marc Diego‐Feliu
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain,Departament de FísicaUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Albert Folch
- Department of Civil and Environmental EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain,Associated Unit: Hydrogeology Group (UPC‐CSIC)BarcelonaSpain
| | - Jordi Garcia‐Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain,Departament de FísicaUniversitat Autònoma de BarcelonaBellaterraSpain
| | | |
Collapse
|
21
|
Xie YG, Luo ZH, Fang BZ, Jiao JY, Xie QJ, Cao XR, Qu YN, Qi YL, Rao YZ, Li YX, Liu YH, Li A, Seymour C, Palmer M, Hedlund BP, Li WJ, Hua ZS. Functional differentiation determines the molecular basis of the symbiotic lifestyle of Ca. Nanohaloarchaeota. MICROBIOME 2022; 10:172. [PMID: 36242054 PMCID: PMC9563170 DOI: 10.1186/s40168-022-01376-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/22/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Candidatus Nanohaloarchaeota, an archaeal phylum within the DPANN superphylum, is characterized by limited metabolic capabilities and limited phylogenetic diversity and until recently has been considered to exclusively inhabit hypersaline environments due to an obligate association with Halobacteria. Aside from hypersaline environments, Ca. Nanohaloarchaeota can also have been discovered from deep-subsurface marine sediments. RESULTS Three metagenome-assembled genomes (MAGs) representing a new order within the Ca. Nanohaloarchaeota were reconstructed from a stratified salt crust and proposed to represent a novel order, Nucleotidisoterales. Genomic features reveal them to be anaerobes capable of catabolizing nucleotides by coupling nucleotide salvage pathways with lower glycolysis to yield free energy. Comparative genomics demonstrated that these and other Ca. Nanohaloarchaeota inhabiting saline habitats use a "salt-in" strategy to maintain osmotic pressure based on the high proportion of acidic amino acids. In contrast, previously described Ca. Nanohaloarchaeota MAGs from geothermal environments were enriched with basic amino acids to counter heat stress. Evolutionary history reconstruction revealed that functional differentiation of energy conservation strategies drove diversification within Ca. Nanohaloarchaeota, further leading to shifts in the catabolic strategy from nucleotide degradation within deeper lineages to polysaccharide degradation within shallow lineages. CONCLUSIONS This study provides deeper insight into the ecological functions and evolution of the expanded phylum Ca. Nanohaloarchaeota and further advances our understanding on the functional and genetic associations between potential symbionts and hosts. Video Abstract.
Collapse
Affiliation(s)
- Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qi-Jun Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xing-Ru Cao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yan-Lin Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Andrew Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Cale Seymour
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
22
|
Sanseverino I, Gómez L, Navarro A, Cappelli F, Niegowska M, Lahm A, Barbiere M, Porcel-Rodríguez E, Valsecchi S, Pedraccini R, Crosta S, Lettieri T. Holistic approach to chemical and microbiological quality of aquatic ecosystems impacted by wastewater effluent discharges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155388. [PMID: 35489490 DOI: 10.1016/j.scitotenv.2022.155388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) collect wastewater from various sources and use different treatment processes to reduce the load of pollutants in the environment. Since the removal of many chemical pollutants and bacteria by WWTPs is incomplete, they constitute a potential source of contaminants. The continuous release of contaminants through WWTP effluents can compromise the health of the aquatic ecosystems, even if they occur at very low concentrations. The main objective of this work was to characterize, over a period of four months, the treatment steps starting from income to the effluent and 5 km downstream to the receiving river. In this context, the efficiency removal of chemical pollutants (e.g. hormones and pharmaceuticals, including antibiotics) and bacteria was assessed in a WWTP case study by using a holistic approach. It embraces different chemical and biological-based methods, such as pharmaceutical analysis by HPLC-MSMS, growth rate inhibition in algae, ligand binding estrogen receptor assay, microbial community study by 16S and shotgun sequencing along with relative quantification of resistance genes by quantitative polymerase chain reaction. Although both, chemical and biological-based methods showed a significant reduction of the pollutant burden in effluent and surface waters compared to the influent of the WWTP, no complete removal of pollutants, pathogens and antibiotic resistance genes was observed.
Collapse
Affiliation(s)
| | - Livia Gómez
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | - Francesca Cappelli
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy; University of Insubria, Department of Science and High Technology, Via Valleggio 11, 22100 Como, Italy
| | | | - Armin Lahm
- Bioinformatics Project Support, P.zza S.M. Liberatrice 18, 00153 Roma, Italy
| | - Maurizio Barbiere
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | | | - Sara Valsecchi
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy
| | | | | | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy.
| |
Collapse
|
23
|
Tang S, Qian J, Wang P, Lu B, He Y, Yi Z, Zhang Y. Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119471. [PMID: 35577260 DOI: 10.1016/j.envpol.2022.119471] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.
Collapse
Affiliation(s)
- Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Ziyang Yi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
24
|
Chiriac MC, Bulzu PA, Andrei AS, Okazaki Y, Nakano SI, Haber M, Kavagutti VS, Layoun P, Ghai R, Salcher MM. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. MICROBIOME 2022; 10:84. [PMID: 35659305 PMCID: PMC9166423 DOI: 10.1186/s40168-022-01274-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.
Collapse
Affiliation(s)
- Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Shin-ichi Nakano
- Center of Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga Japan
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
25
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Moody ERR, Mahendrarajah TA, Dombrowski N, Clark JW, Petitjean C, Offre P, Szöllősi GJ, Spang A, Williams TA. An estimate of the deepest branches of the tree of life from ancient vertically-evolving genes. eLife 2022; 11:66695. [PMID: 35190025 PMCID: PMC8890751 DOI: 10.7554/elife.66695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Core gene phylogenies provide a window into early evolution, but different gene sets and analytical methods have yielded substantially different views of the tree of life. Trees inferred from a small set of universal core genes have typically supported a long branch separating the archaeal and bacterial domains. By contrast, recent analyses of a broader set of non-ribosomal genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of inter-domain distance are inflated due to accelerated evolution of ribosomal proteins along the inter-domain branch. Resolving this debate is key to determining the diversity of the archaeal and bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We show that estimates of a reduced Archaea-Bacteria (AB) branch length result from inter-domain gene transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and Bacteria reveals that current methods likely underestimate the AB branch length due to substitutional saturation and poor model fit; that the best-performing phylogenetic markers tend to support longer inter-domain branch lengths; and that the AB branch lengths of ribosomal and non-ribosomal marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 highest-ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.
Collapse
Affiliation(s)
- Edmund R R Moody
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - James W Clark
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
D’Angelo T, Goordial J, Poulton NJ, Seyler L, Huber JA, Stepanauskas R, Orcutt BN. Oceanic Crustal Fluid Single Cell Genomics Complements Metagenomic and Metatranscriptomic Surveys With Orders of Magnitude Less Sample Volume. Front Microbiol 2022; 12:738231. [PMID: 35140689 PMCID: PMC8819061 DOI: 10.3389/fmicb.2021.738231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 103 cells ml-1) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to 'omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.
Collapse
Affiliation(s)
- Timothy D’Angelo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jacqueline Goordial
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Nicole J. Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Lauren Seyler
- School of Natural Science and Mathematics, Stockton University, Galloway, NJ, United States
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Julie A. Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
28
|
Kagemasa S, Kuroda K, Nakai R, Li YY, Kubota K. Diversity of <i>Candidatus</i> Patescibacteria in Activated Sludge Revealed by a Size-Fractionation Approach. Microbes Environ 2022; 37. [PMID: 35676047 PMCID: PMC9530733 DOI: 10.1264/jsme2.me22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncultivated members of Candidatus Patescibacteria are commonly found in activated sludge treating sewage and are widely distributed in wastewater treatment plants in different regions and countries. However, the phylogenetic diversity of Ca. Patescibacteria is difficult to examine because of their low relative abundance in the environment. Since Ca. Patescibacteria members have small cell sizes, we herein collected small microorganisms from activated sludge using a filtration-based size-fractionation approach (i.e., 0.45–0.22 μm and 0.22–0.1 μm fractions). Fractionated samples were characterized using 16S rRNA gene amplicon and shotgun metagenomic sequence analyses. The amplicon analysis revealed that the relative abundance of Ca. Patescibacteria increased to 73.5% and 52.5% in the 0.45–0.22 μm and 0.22–0.1 μm fraction samples, respectively, from 5.8% in the unfractionated sample. The members recovered from the two size-fractionated samples included Ca. Saccharimonadia, Ca. Gracilibacteria, Ca. Paceibacteria, Ca. Microgenomatia, class-level uncultured lineage ABY1, Ca. Berkelbacteria, WS6 (Ca. Dojkabacteria), and WWE3, with Ca. Saccharimonadia being predominant in both fraction samples. The number of operational taxonomic units belonging to Ca. Patescibacteria was approximately 6-fold higher in the size-fractionated samples than in the unfractionated sample. The shotgun metagenomic analysis of the 0.45–0.22 μm fractioned sample enabled the reconstruction of 24 high-quality patescibacterial bins. The bins obtained were classified into diverse clades at the family and genus levels, some of which were rarely detected in previous activated sludge studies. Collectively, the present results suggest that the overall diversity of Ca. Patescibacteria inhabiting activated sludge is higher than previously expected.
Collapse
Affiliation(s)
- Shuka Kagemasa
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Tohoku University
| |
Collapse
|
29
|
Chaudhari NM, Overholt WA, Figueroa-Gonzalez PA, Taubert M, Bornemann TLV, Probst AJ, Hölzer M, Marz M, Küsel K. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. ENVIRONMENTAL MICROBIOME 2021; 16:24. [PMID: 34906246 PMCID: PMC8672522 DOI: 10.1186/s40793-021-00395-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The highly diverse Cand. Patescibacteria are predicted to have minimal biosynthetic and metabolic pathways, which hinders understanding of how their populations differentiate in response to environmental drivers or host organisms. Their mechanisms employed to cope with oxidative stress are largely unknown. Here, we utilized genome-resolved metagenomics to investigate the adaptive genome repertoire of Patescibacteria in oxic and anoxic groundwaters, and to infer putative host ranges. RESULTS Within six groundwater wells, Cand. Patescibacteria was the most dominant (up to 79%) super-phylum across 32 metagenomes sequenced from DNA retained on 0.2 and 0.1 µm filters after sequential filtration. Of the reconstructed 1275 metagenome-assembled genomes (MAGs), 291 high-quality MAGs were classified as Cand. Patescibacteria. Cand. Paceibacteria and Cand. Microgenomates were enriched exclusively in the 0.1 µm fractions, whereas candidate division ABY1 and Cand. Gracilibacteria were enriched in the 0.2 µm fractions. On average, Patescibacteria enriched in the smaller 0.1 µm filter fractions had 22% smaller genomes, 13.4% lower replication measures, higher proportion of rod-shape determining proteins, and of genomic features suggesting type IV pili mediated cell-cell attachments. Near-surface wells harbored Patescibacteria with higher replication rates than anoxic downstream wells characterized by longer water residence time. Except prevalence of superoxide dismutase genes in Patescibacteria MAGs enriched in oxic groundwaters (83%), no major metabolic or phylogenetic differences were observed. The most abundant Patescibacteria MAG in oxic groundwater encoded a nitrate transporter, nitrite reductase, and F-type ATPase, suggesting an alternative energy conservation mechanism. Patescibacteria consistently co-occurred with one another or with members of phyla Nanoarchaeota, Bacteroidota, Nitrospirota, and Omnitrophota. Among the MAGs enriched in 0.2 µm fractions,, only 8% Patescibacteria showed highly significant one-to-one correlation, mostly with Omnitrophota. Motility and transport related genes in certain Patescibacteria were highly similar to genes from other phyla (Omnitrophota, Proteobacteria and Nanoarchaeota). CONCLUSION Other than genes to cope with oxidative stress, we found little genomic evidence for niche adaptation of Patescibacteria to oxic or anoxic groundwaters. Given that we could detect specific host preference only for a few MAGs, we speculate that the majority of Patescibacteria is able to attach multiple hosts just long enough to loot or exchange supplies.
Collapse
Affiliation(s)
- Narendrakumar M. Chaudhari
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Will A. Overholt
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Department for Chemistry, Environmental Microbiology and Biotechnology, Group for Aquatic Microbial Ecology (GAME), University Duisburg-Essen, Essen, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Till L. V. Bornemann
- Department for Chemistry, Environmental Microbiology and Biotechnology, Group for Aquatic Microbial Ecology (GAME), University Duisburg-Essen, Essen, Germany
| | - Alexander J. Probst
- Department for Chemistry, Environmental Microbiology and Biotechnology, Group for Aquatic Microbial Ecology (GAME), University Duisburg-Essen, Essen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University, Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
- Present Address: Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University, Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
- FLI Leibniz Institute for Age Research, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
30
|
Heme auxotrophy in abundant aquatic microbial lineages. Proc Natl Acad Sci U S A 2021; 118:2102750118. [PMID: 34785591 DOI: 10.1073/pnas.2102750118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
Heme, a porphyrin ring complexed with iron, is a metalloprosthetic group of numerous proteins involved in diverse metabolic and respiratory processes across all domains of life, and is thus considered essential for respiring organisms. Several microbial groups are known to lack the de novo heme biosynthetic pathway and therefore require exogenous heme from the environment. These heme auxotroph groups are largely limited to pathogens, symbionts, or microorganisms living in nutrient-replete conditions, whereas the complete absence of heme biosynthesis is extremely rare in free-living organisms. Here, we show that the acI lineage, a predominant and ubiquitous free-living bacterial group in freshwater habitats, is auxotrophic for heme, based on the experimental or genomic evidence. We found that two recently cultivated acI isolates require exogenous heme for their growth. One of the cultured acI isolates also exhibited auxotrophy for riboflavin. According to whole-genome analyses, all (n = 20) isolated acI strains lacked essential enzymes necessary for heme biosynthesis, indicating that heme auxotrophy is a conserved trait in this lineage. Analyses of >24,000 representative genomes for species clusters of the Genome Taxonomy Database revealed that heme auxotrophy is widespread across abundant but not-yet-cultivated microbial groups, including Patescibacteria, Marinisomatota (SAR406), Actinomarinales (OM1), and Marine groups IIb and III of Euryarchaeota Our findings indicate that heme auxotrophy is a more common phenomenon than previously thought, and may lead to use of heme as a growth factor to increase the cultured microbial diversity.
Collapse
|
31
|
Yakimov MM, Merkel AY, Gaisin VA, Pilhofer M, Messina E, Hallsworth JE, Klyukina AA, Tikhonova EN, Gorlenko VM. Cultivation of a vampire: 'Candidatus Absconditicoccus praedator'. Environ Microbiol 2021; 24:30-49. [PMID: 34750952 DOI: 10.1111/1462-2920.15823] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Halorhodospira halophila, one of the most-xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt-saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate-Phyla-Radiation bacterium, that we named 'Ca. Absconditicoccus praedator' M39-6, which predates H. halophila M39-5, an obligately photosynthetic, anaerobic purple-sulfur bacterium. We cultivated this association (isolated from the hypersaline alkaline Lake Hotontyn Nur, Mongolia) and characterized their biology. 'Ca. Absconditicoccus praedator' is the first stably cultivated species from the candidate class-level lineage Gracilibacteria (order-level lineage Absconditabacterales). Its closed-and-curated genome lacks genes for the glycolytic, pentose phosphate- and Entner-Doudoroff pathways which would generate energy/reducing equivalents and produce central carbon currencies. Therefore, 'Ca. Absconditicoccus praedator' is dependent on host-derived building blocks for nucleic acid-, protein-, and peptidoglycan synthesis. It shares traits with (the uncultured) 'Ca. Vampirococcus lugosii', which is also of the Gracilibacteria lineage. These are obligate parasitic lifestyle, feeding on photosynthetic anoxygenic Gammaproteobacteria, and absorption of host cytoplasm. Commonalities in their genomic composition and structure suggest that the entire Absconditabacterales lineage consists of predatory species which act to cull the populations of their respective host bacteria. Cultivation of vampire : host associations can shed light on unresolved aspects of their metabolism and ecosystem dynamics at life-limiting extremes.
Collapse
Affiliation(s)
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vasil A Gaisin
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Enzo Messina
- Institute for Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem MW, Bay SK, Islam ZF, Jordaan K, Vikram S, Chown SL, Hogg ID, Makhalanyane TP, Grinter R, Cowan DA, Greening C. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci U S A 2021; 118:e2025322118. [PMID: 34732568 PMCID: PMC8609440 DOI: 10.1073/pnas.2025322118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.
Collapse
Affiliation(s)
- Maximiliano Ortiz
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Pok Man Leung
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia;
| | - Guy Shelley
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Thanavit Jirapanjawat
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
| | - Philipp A Nauer
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Marc W Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sean K Bay
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Zahra F Islam
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Karen Jordaan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Ian D Hogg
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- School of Science, University of Waikato, Hamilton 3240, New Zealand
- Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay NU X0B 0C0, Canada
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia;
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
33
|
Evolutionary stasis of a deep subsurface microbial lineage. THE ISME JOURNAL 2021; 15:2830-2842. [PMID: 33824425 PMCID: PMC8443664 DOI: 10.1038/s41396-021-00965-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023]
Abstract
Sulfate-reducing bacteria Candidatus Desulforudis audaxviator (CDA) were originally discovered in deep fracture fluids accessed via South African gold mines and have since been found in geographically widespread deep subsurface locations. In order to constrain models for subsurface microbial evolution, we compared CDA genomes from Africa, North America and Eurasia using single cell genomics. Unexpectedly, 126 partial single amplified genomes from the three continents, a complete genome from of an isolate from Eurasia, and metagenome-assembled genomes from Africa and Eurasia shared >99.2% average nucleotide identity, low frequency of SNP's, and near-perfectly conserved prophages and CRISPRs. Our analyses reject sample cross-contamination, recent natural dispersal, and unusually strong purifying selection as likely explanations for these unexpected results. We therefore conclude that the analyzed CDA populations underwent only minimal evolution since their physical separation, potentially as far back as the breakup of Pangea between 165 and 55 Ma ago. High-fidelity DNA replication and repair mechanisms are the most plausible explanation for the highly conserved genome of CDA. CDA presents a stark contrast to the current model organisms in microbial evolutionary studies, which often develop adaptive traits over far shorter periods of time.
Collapse
|
34
|
Huang WC, Liu Y, Zhang X, Zhang CJ, Zou D, Zheng S, Xu W, Luo Z, Liu F, Li M. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota. Nat Commun 2021; 12:5281. [PMID: 34489402 PMCID: PMC8421398 DOI: 10.1038/s41467-021-25565-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The archaeal phylum Woesearchaeota, within the DPANN superphylum, includes phylogenetically diverse microorganisms that inhabit various environments. Their biology is poorly understood due to the lack of cultured isolates. Here, we analyze datasets of Woesearchaeota 16S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities. Phylogenomic analyses indicate that the phylum can be classified into ten subgroups, termed A-J. While a symbiotic lifestyle is predicted for most, some members of subgroup J might be host-independent. The genomes of several Woesearchaeota, including subgroup J, encode putative [FeFe] hydrogenases (known to be important for fermentation in other organisms), suggesting that these archaea might be anaerobic fermentative heterotrophs.
Collapse
Affiliation(s)
- Wen-Cong Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xinxu Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Dayu Zou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shiling Zheng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
35
|
Jaffe AL, Thomas AD, He C, Keren R, Valentin-Alvarado LE, Munk P, Bouma-Gregson K, Farag IF, Amano Y, Sachdeva R, West PT, Banfield JF. Patterns of Gene Content and Co-occurrence Constrain the Evolutionary Path toward Animal Association in Candidate Phyla Radiation Bacteria. mBio 2021; 12:e0052121. [PMID: 34253055 PMCID: PMC8406219 DOI: 10.1128/mbio.00521-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Candidate Phyla Radiation (CPR) bacteria are small, likely episymbiotic organisms found across Earth's ecosystems. Despite their prevalence, the distribution of CPR lineages across habitats and the genomic signatures of transitions among these habitats remain unclear. Here, we expand the genome inventory for Absconditabacteria (SR1), Gracilibacteria, and Saccharibacteria (TM7), CPR bacteria known to occur in both animal-associated and environmental microbiomes, and investigate variation in gene content with habitat of origin. By overlaying phylogeny with habitat information, we show that bacteria from these three lineages have undergone multiple transitions from environmental habitats into animal microbiomes. Based on co-occurrence analyses of hundreds of metagenomes, we extend the prior suggestion that certain Saccharibacteria have broad bacterial host ranges and constrain possible host relationships for Absconditabacteria and Gracilibacteria. Full-proteome analyses show that animal-associated Saccharibacteria have smaller gene repertoires than their environmental counterparts and are enriched in numerous protein families, including those likely functioning in amino acid metabolism, phage defense, and detoxification of peroxide. In contrast, some freshwater Saccharibacteria encode a putative rhodopsin. For protein families exhibiting the clearest patterns of differential habitat distribution, we compared protein and species phylogenies to estimate the incidence of lateral gene transfer and genomic loss occurring over the species tree. These analyses suggest that habitat transitions were likely not accompanied by large transfer or loss events but rather were associated with continuous proteome remodeling. Thus, we speculate that CPR habitat transitions were driven largely by availability of suitable host taxa and were reinforced by acquisition and loss of some capacities. IMPORTANCE Studying the genetic differences between related microorganisms from different environment types can indicate factors associated with their movement among habitats. This is particularly interesting for bacteria from the Candidate Phyla Radiation because their minimal metabolic capabilities require associations with microbial hosts. We found that shifts of Absconditabacteria, Gracilibacteria, and Saccharibacteria between environmental ecosystems and mammalian mouths/guts probably did not involve major episodes of gene gain and loss; rather, gradual genomic change likely followed habitat migration. The results inform our understanding of how little-known microorganisms establish in the human microbiota where they may ultimately impact health.
Collapse
Affiliation(s)
- Alexander L. Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Alex D. Thomas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Christine He
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Ray Keren
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Luis E. Valentin-Alvarado
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Keith Bouma-Gregson
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ibrahim F. Farag
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Ibaraki, Japan
- Horonobe Underground Research Center, Japan Atomic Energy Agency, Hokkaido, Japan
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Patrick T. West
- Department of Medicine (Hematology & Blood and Marrow Transplantation), Stanford University, Stanford, California, USA
| | - Jillian F. Banfield
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
36
|
Yadav A, Borrelli JC, Elshahed MS, Youssef NH. Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria) Expands the Metabolic Capacities of the Phylum and Highlights Adaptations to Terrestrial Habitats. Appl Environ Microbiol 2021; 87:e0094721. [PMID: 34160232 PMCID: PMC8357285 DOI: 10.1128/aem.00947-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Approaches for recovering and analyzing genomes belonging to novel, hitherto-unexplored bacterial lineages have provided invaluable insights into the metabolic capabilities and ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent and ecologically successful lineages on Earth, yet currently, multiple lineages within this phylum remain unexplored. Here, we utilize genomes recovered from Zodletone Spring, an anaerobic sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil and nonsoil habitats, to examine the metabolic capabilities and ecological role of members of family UBA6911 (group 18) Acidobacteria. The analyzed genomes clustered into five distinct genera, with genera Gp18_AA60 and QHZH01 recovered from soils, genus Ga0209509 from anaerobic digestors, and genera Ga0212092 and UBA6911 from freshwater habitats. All genomes analyzed suggested that members of Acidobacteria group 18 are metabolically versatile heterotrophs capable of utilizing a wide range of proteins, amino acids, and sugars as carbon sources, possess respiratory and fermentative capacities, and display few auxotrophies. Soil-dwelling genera were characterized by larger genome sizes, higher numbers of CRISPR loci, an expanded carbohydrate active enzyme (CAZyme) machinery enabling debranching of specific sugars from polymers, possession of a C1 (methanol and methylamine) degradation machinery, and a sole dependence on aerobic respiration. In contrast, nonsoil genomes encoded a more versatile respiratory capacity for oxygen, nitrite, sulfate, and trimethylamine N-oxide (TMAO) respiration, as well as the potential for utilizing the Wood-Ljungdahl (WL) pathway as an electron sink during heterotrophic growth. Our results not only expand our knowledge of the metabolism of a yet-uncultured bacterial lineage but also provide interesting clues on how terrestrialization and niche adaptation drive metabolic specialization within the Acidobacteria. IMPORTANCE Members of the Acidobacteria are important players in global biogeochemical cycles, especially in soils. A wide range of acidobacterial lineages remain currently unexplored. We present a detailed genomic characterization of genomes belonging to family UBA6911 (also known as group 18) within the phylum Acidobacteria. The genomes belong to different genera and were obtained from soil (genera Gp18_AA60 and QHZH01), freshwater habitats (genera Ga0212092 and UBA6911), and an anaerobic digestor (genus Ga0209509). While all members of the family shared common metabolic features, e.g., heterotrophic respiratory abilities, broad substrate utilization capacities, and few auxotrophies, distinct differences between soil and nonsoil genera were observed. Soil genera were characterized by expanded genomes, higher numbers of CRISPR loci, a larger carbohydrate active enzyme (CAZyme) repertoire enabling monomer extractions from polymer side chains, and methylotrophic (methanol and methylamine) degradation capacities. In contrast, nonsoil genera encoded more versatile respiratory capacities for utilizing nitrite, sulfate, TMAO, and the WL pathway, in addition to oxygen as electron acceptors. Our results not only broaden our understanding of the metabolic capacities within the Acidobacteria but also provide interesting clues on how terrestrialization shaped Acidobacteria evolution and niche adaptation.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jenna C. Borrelli
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
37
|
Patin NV, Dietrich ZA, Stancil A, Quinan M, Beckler JS, Hall ER, Culter J, Smith CG, Taillefert M, Stewart FJ. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. THE ISME JOURNAL 2021; 15:2206-2232. [PMID: 33612832 PMCID: PMC8319197 DOI: 10.1038/s41396-021-00917-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole's rim (32 m water depth), remained low but detectable in an intermediate hypoxic zone (40-75 m), and then increased to a secondary peak before falling below detection in the bottom layer (80-110 m), concomitant with increases in nutrients, dissolved iron, and a series of sequentially more reduced sulfur species. Microbial communities in the bottom layer contained heretofore undocumented levels of the recently discovered phylum Woesearchaeota (up to 58% of the community), along with lineages in the bacterial Candidate Phyla Radiation (CPR). Thirty-one high-quality metagenome-assembled genomes (MAGs) showed extensive biochemical capabilities for sulfur and nitrogen cycling, as well as for resisting and respiring arsenic. One uncharacterized gene associated with a CPR lineage differentiated hypoxic from anoxic zone communities. Overall, microbial communities and geochemical profiles were stable across two sampling dates in the spring and fall of 2019. The blue hole habitat is a natural marine laboratory that provides opportunities for sampling taxa with under-characterized but potentially important roles in redox-stratified microbial processes.
Collapse
Affiliation(s)
- N V Patin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
- Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA.
| | | | - A Stancil
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - M Quinan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - J S Beckler
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - E R Hall
- Mote Marine Laboratory, Sarasota, FL, USA
| | - J Culter
- Mote Marine Laboratory, Sarasota, FL, USA
| | - C G Smith
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - M Taillefert
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - F J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
38
|
Wiegand S, Dam HT, Riba J, Vollmers J, Kaster AK. Printing Microbial Dark Matter: Using Single Cell Dispensing and Genomics to Investigate the Patescibacteria/Candidate Phyla Radiation. Front Microbiol 2021; 12:635506. [PMID: 34220732 PMCID: PMC8241940 DOI: 10.3389/fmicb.2021.635506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
As of today, the majority of environmental microorganisms remain uncultured. They are therefore referred to as "microbial dark matter." In the recent past, cultivation-independent methods like single-cell genomics (SCG) enabled the discovery of many previously unknown microorganisms, among them the Patescibacteria/Candidate Phyla Radiation (CPR). This approach was shown to be complementary to metagenomics, however, the development of additional and refined sorting techniques beyond the most commonly used fluorescence-activated cell sorting (FACS) is still desirable to enable additional downstream applications. Adding image information on the number and morphology of sorted cells would be beneficial, as would be minimizing cell stress caused by sorting conditions such as staining or pressure. Recently, a novel cell sorting technique has been developed, a microfluidic single-cell dispenser, which assesses the number and morphology of the cell in each droplet by automated light microscopic processing. Here, we report for the first time the successful application of the newly developed single-cell dispensing system for label-free isolation of individual bacteria from a complex sample retrieved from a wastewater treatment plant, demonstrating the potential of this technique for single cell genomics and other alternative downstream applications. Genome recovery success rated above 80% with this technique-out of 880 sorted cells 717 were successfully amplified. For 50.1% of these, analysis of the 16S rRNA gene was feasible and led to the sequencing of 50 sorted cells identified as Patescibacteria/CPR members. Subsequentially, 27 single amplified genomes (SAGs) of 15 novel and distinct Patescibacteria/CPR members, representing yet unseen species, genera and families could be captured and reconstructed. This phylogenetic distinctness of the recovered SAGs from available metagenome-assembled genomes (MAGs) is accompanied by the finding that these lineages-in whole or in part-have not been accessed by genome-resolved metagenomics of the same sample, thereby emphasizing the importance and opportunities of SCGs.
Collapse
Affiliation(s)
- Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hang T. Dam
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julian Riba
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
39
|
Toth CRA, Luo F, Bawa N, Webb J, Guo S, Dworatzek S, Edwards EA. Anaerobic Benzene Biodegradation Linked to the Growth of Highly Specific Bacterial Clades. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7970-7980. [PMID: 34041904 DOI: 10.1021/acs.est.1c00508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliance on bioremediation to remove benzene from anoxic environments has proven risky for decades but for unknown reasons. Research has revealed a strong link between anaerobic benzene biodegradation and the enrichment of highly specific microbes, including Thermincola in the family Peptococcaceae and the deltaproteobacterial Candidate Sva0485 clade. Using aquifer materials from Canadian Forces Base Borden, we compared five bioremediation approaches in batch microcosms. Under conditions simulating natural attenuation or sulfate biostimulation, benzene was not degraded after 1-2 years of incubation and no enrichment of known benzene-degrading microbes occurred. In contrast, nitrate-amended microcosms reported benzene biodegradation coincident with significant growth of Thermincola spp., along with a functional gene presumed to catalyze anaerobic benzene carboxylation (abcA). Inoculation with 2.5% of a methanogenic benzene-degrading consortium containing Sva0485 (Deltaproteobacteria ORM2) resulted in benzene biodegradation in the presence of sulfate or under methanogenic conditions. The presence of other hydrocarbon co-contaminants decreased the rates of benzene degradation by a factor of 2 to 4. Tracking the abundance of the abcA gene and 16S rRNA genes specific for benzene-degrading Thermincola and Sva0485 is recommended to monitor benzene bioremediation in anoxic groundwater systems to further uncover growth-rate-limiting conditions for these two intriguing phylotypes.
Collapse
Affiliation(s)
- Courtney R A Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Nancy Bawa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jennifer Webb
- SiREM, 130 Stone Road West, Guelph, Ontario N1G 3Z2, Canada
| | - Shen Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | | | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
40
|
Murphy CL, Sheremet A, Dunfield PF, Spear JR, Stepanauskas R, Woyke T, Elshahed MS, Youssef NH. Genomic Analysis of the Yet-Uncultured Binatota Reveals Broad Methylotrophic, Alkane-Degradation, and Pigment Production Capacities. mBio 2021; 12:e00985-21. [PMID: 34006650 PMCID: PMC8262859 DOI: 10.1128/mbio.00985-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023] Open
Abstract
The recent leveraging of genome-resolved metagenomics has generated an enormous number of genomes from novel uncultured microbial lineages yet left many clades undescribed. Here, we present a global analysis of genomes belonging to Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. All orders in Binatota encoded the capacity for aerobic methylotrophy using methanol, methylamine, sulfomethanes, and chloromethanes as the substrates. Methylotrophy in Binatota was characterized by order-specific substrate degradation preferences, as well as extensive metabolic versatility, i.e., the utilization of diverse sets of genes, pathways, and combinations to achieve a specific metabolic goal. The genomes also encoded multiple alkane hydroxylases and monooxygenases, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids (lycopene, β- and γ-carotenes, xanthins, chlorobactenes, and spheroidenes) production. Further, the majority of genes involved in bacteriochlorophyll a, c, and d biosynthesis were identified, although absence of key genes and failure to identify a photosynthetic reaction center preclude proposing phototrophic capacities. Analysis of 16S rRNA databases showed the preferences of Binatota to terrestrial and freshwater ecosystems, hydrocarbon-rich habitats, and sponges, supporting their potential role in mitigating methanol and methane emissions, breakdown of alkanes, and their association with sponges. Our results expand the lists of methylotrophic, aerobic alkane-degrading, and pigment-producing lineages. We also highlight the consistent encountering of incomplete biosynthetic pathways in microbial genomes, a phenomenon necessitating careful assessment when assigning putative functions based on a set-threshold of pathway completion.IMPORTANCE A wide range of microbial lineages remain uncultured, yet little is known regarding their metabolic capacities, physiological preferences, and ecological roles in various ecosystems. We conducted a thorough comparative genomic analysis of 108 genomes belonging to the Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. We present evidence that members of the order Binatota specialize in methylotrophy and identify an extensive repertoire of genes and pathways mediating the oxidation of multiple one-carbon (C1) compounds in Binatota genomes. The occurrence of multiple alkane hydroxylases and monooxygenases in these genomes was also identified, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids production. We also report on the presence of incomplete chlorophyll biosynthetic pathways in all genomes and propose several evolutionary-grounded scenarios that could explain such a pattern. Assessment of the ecological distribution patterns of the Binatota indicates preference of its members to terrestrial and freshwater ecosystems characterized by high methane and methanol emissions, as well as multiple hydrocarbon-rich habitats and marine sponges.
Collapse
Affiliation(s)
- Chelsea L Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Andriy Sheremet
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkley, California, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
41
|
Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, Szöllősi GJ, Williams TA. A rooted phylogeny resolves early bacterial evolution. Science 2021; 372:372/6542/eabe0511. [PMID: 33958449 DOI: 10.1126/science.abe0511] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
A rooted bacterial tree is necessary to understand early evolution, but the position of the root is contested. Here, we model the evolution of 11,272 gene families to identify the root, extent of horizontal gene transfer (HGT), and the nature of the last bacterial common ancestor (LBCA). Our analyses root the tree between the major clades Terrabacteria and Gracilicutes and suggest that LBCA was a free-living flagellated, rod-shaped double-membraned organism. Contrary to recent proposals, our analyses reject a basal placement of the Candidate Phyla Radiation, which instead branches sister to Chloroflexota within Terrabacteria. While most gene families (92%) have evidence of HGT, overall, two-thirds of gene transmissions have been vertical, suggesting that a rooted tree provides a meaningful frame of reference for interpreting bacterial evolution.
Collapse
Affiliation(s)
- Gareth A Coleman
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Adrián A Davín
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Netherlands
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary.,MTA-ELTE "Lendület" Evolutionary Genomics Research Group, 1117 Budapest, Hungary
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Netherlands.,Department of Cell- and Molecular Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary. .,MTA-ELTE "Lendület" Evolutionary Genomics Research Group, 1117 Budapest, Hungary.,Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
42
|
Wengert PC, Wong NH, Barton HA, Gan HM, Hudson AO, Savka MA. Genomic characterization of bacteria from the ultra-oligotrophic Madison aquifer: insight into the archetypical LuxI/LuxR and identification of novel LuxR solos. BMC Res Notes 2021; 14:175. [PMID: 33964980 PMCID: PMC8105983 DOI: 10.1186/s13104-021-05589-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To characterize the bacterial community of Wind Cave's Madison aquifer through whole-genome sequencing, and to better understand the bacterial ecology by identifying genes involved in acyl-homoserine lactone (AHL) based quorum-sensing (QS) systems. RESULTS Genome-based taxonomic classification revealed the microbial richness present in the pristine Madison aquifer. The strains were found to span eleven genera and fourteen species, of which eight had uncertain taxonomic classifications. The genomes of strains SD129 and SD340 were found to contain the archetypical AHL QS system composed of two genes, luxI and luxR. Surprisingly, the genomes of strains SD115, SD129, SD274 and SD316 were found to contain one to three luxR orphans (solos). Strain SD129, besides possessing an archetypical AHL QS luxI-luxR pair, also contained two luxR solos, while strain SD316 contained three LuxR solos and no luxI-luxR pairs. The ligand-binding domain of two LuxR solos, one each from strains SD129 and SD316, were found to contain novel substitutions not previously reported, thus may represent two LuxR orphans that detection and response to unknown self-produced signal(s), or to signal(s) produced by other organisms.
Collapse
Affiliation(s)
- Peter C Wengert
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Narayan H Wong
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Hazel A Barton
- Department of Biology, University of Akron, Akron, OH, USA
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic, 3220, Australia.,GeneSEQ Sdn Bhd, Bandar Bukit Beruntung, 48300, Rawang, Selangor, Malaysia
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, 14623, USA.
| |
Collapse
|
43
|
Bruno A, Sandionigi A, Magnani D, Bernasconi M, Pannuzzo B, Consolandi C, Camboni T, Labra M, Casiraghi M. Different Effects of Mineral Versus Vegetal Granular Activated Carbon Filters on the Microbial Community Composition of a Drinking Water Treatment Plant. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.615513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Drinking water quality and safety is strictly regulated and constantly monitored, but little is known about the microorganisms inhabiting drinking water treatment plants (DWTPs). This lack of knowledge prevents optimization of designs and operational controls. Here we investigated the drinking water microbial community harbored by a groundwater-derived DWTP, involving mineral and vegetal granular activated carbon filters (GACs). We used 16S rRNA gene sequencing to analyze water microbiome variations through the potabilization process, considering (i) different GAC materials and (ii) time from GAC regeneration. Our results revealed the predominance of Cand. Patescibacteria, uncultivable bacteria with limited metabolic capacities and small genomes, from source to downstream water. Microbial communities clustered per sampling date, with the noteworthy exception of groundwater samples. If the groundwater microbiome showed no significant variations over time, the community structure of water downstream GACs (both mineral and vegetal) seemed to be affected by time from GAC regeneration. Looking at a finer scale, different GAC material affected microbiome assembly over time with significant variation in the relative abundances of specific taxa. The significance of our research is in identifying the environmental microorganisms intrinsic of deep groundwater and the community shift after the perturbations induced by potabilization processes. Which microorganisms colonize different GACs and become abundant after GACs regeneration and over time is a first step toward advanced control of microbial communities, improving drinking water safety and management of operational costs.
Collapse
|
44
|
Ruiz-González C, Rodellas V, Garcia-Orellana J. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol Rev 2021; 45:6128669. [PMID: 33538813 PMCID: PMC8498565 DOI: 10.1093/femsre/fuab010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the relevance of submarine groundwater discharge (SGD) for ocean biogeochemistry, the microbial dimension of SGD remains poorly understood. SGD can influence marine microbial communities through supplying chemical compounds and microorganisms, and in turn, microbes at the land–ocean transition zone determine the chemistry of the groundwater reaching the ocean. However, compared with inland groundwater, little is known about microbial communities in coastal aquifers. Here, we review the state of the art of the microbial dimension of SGD, with emphasis on prokaryotes, and identify current challenges and future directions. Main challenges include improving the diversity description of groundwater microbiota, characterized by ultrasmall, inactive and novel taxa, and by high ratios of sediment-attached versus free-living cells. Studies should explore microbial dynamics and their role in chemical cycles in coastal aquifers, the bidirectional dispersal of groundwater and seawater microorganisms, and marine bacterioplankton responses to SGD. This will require not only combining sequencing methods, visualization and linking taxonomy to activity but also considering the entire groundwater–marine continuum. Interactions between traditionally independent disciplines (e.g. hydrogeology, microbial ecology) are needed to frame the study of terrestrial and aquatic microorganisms beyond the limits of their presumed habitats, and to foster our understanding of SGD processes and their influence in coastal biogeochemical cycles.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC). Passeig Marítim de la Barceloneta 37-49, E08003 Barcelona, Spain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| | - Jordi Garcia-Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain.,Departament de Física, Universitat Autònoma de Barcelona, E08193 Bellaterra, Spain
| |
Collapse
|
45
|
Koonin EV, Makarova KS, Wolf YI. Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century. Trends Microbiol 2021; 29:582-592. [PMID: 33541841 DOI: 10.1016/j.tim.2021.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Prokaryote genomics started in earnest in 1995, with the complete sequences of two small bacterial genomes, those of Haemophilus influenzae and Mycoplasma genitalium. During the next quarter century, the prokaryote genome database has been growing exponentially, with no saturation in sight. For most of these 25 years, genome sequencing remained limited to cultivable microbes. Together with next-generation sequencing methods, advances in metagenomics and single-cell genomics have lifted this limitation, providing for an increasingly unbiased characterization of the global prokaryote diversity. Advances in computational genomics followed the progress of genome sequencing, even if occasionally lagging behind. Several major new branches of bacteria and archaea were discovered, including Asgard archaea, the apparent closest relatives of eukaryotes and expansive groups of bacteria and archaea with small genomes thought to be symbionts of other prokaryotes. Comparative analysis of numerous prokaryote genomes spanning a wide range of evolutionary distances changed the conceptual foundations of microbiology, supplanting the notion of species genomes with fixed gene sets with that of dynamic pangenomes and the notion of a single Tree of Life (ToL) with a statistical tree-like trend among individual gene trees. Strides were also made towards a theory and quantitative laws of prokaryote genome evolution.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
46
|
Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat Microbiol 2021; 6:354-365. [PMID: 33495623 PMCID: PMC7906910 DOI: 10.1038/s41564-020-00840-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproducibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health. Metagenomics and electron microscopy are combined to analyse the diversity of episymbiotic CPR bacteria and DPANN archaea in eight groundwater communities.
Collapse
|
47
|
Cometabolism of the Superphylum Patescibacteria with Anammox Bacteria in a Long-Term Freshwater Anammox Column Reactor. WATER 2021. [DOI: 10.3390/w13020208] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the anaerobic ammonium oxidation (anammox) process has attracted attention regarding its application in ammonia wastewater treatment based on its efficiency, the physiological characteristics of anammox bacteria remain unclear because of the lack of pure-culture representatives. The coexistence of heterotrophic bacteria has often been observed in anammox reactors, even in those fed with synthetic inorganic nutrient medium. In this study, we recovered 37 draft genome bins from a long-term-operated anammox column reactor and predicted the metabolic pathway of coexisting bacteria, especially Patescibacteria (also known as Candidate phyla radiation). Genes related to the nitrogen cycle were not detected in Patescibacterial bins, whereas nitrite, nitrate, and nitrous oxide-related genes were identified in most of the other bacteria. The pathway predicted for Patescibacteria suggests the lack of nitrogen marker genes and its ability to utilize poly-N-acetylglucosamine produced by dominant anammox bacteria. Coexisting Patescibacteria may play an ecological role in providing lactate and formate to other coexisting bacteria, supporting growth in the anammox reactor. Patescibacteria-centric coexisting bacteria, which produce anammox substrates and scavenge organic compounds produced within the anammox reactor, might be essential for the anammox ecosystem.
Collapse
|
48
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
49
|
Metabolic Diversity and Evolutionary History of the Archaeal Phylum " Candidatus Micrarchaeota" Uncovered from a Freshwater Lake Metagenome. Appl Environ Microbiol 2020; 86:AEM.02199-20. [PMID: 32978130 DOI: 10.1128/aem.02199-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Acidophilic archaea of the archaeal Richmond Mine acidophilic nanoorganisms (ARMAN) group from the uncultured candidate phylum "Candidatus Micrarchaeota" have small genomes and cell sizes and are known to be metabolically dependent and physically associated with their Thermoplasmatales hosts. However, phylogenetically diverse "Ca Micrarchaeota" are widely distributed in various nonacidic environments, and it remains uncertain because of the lack of complete genomes whether they are also devoted to a partner-dependent lifestyle. Here, we obtained nine metagenome-assembled genomes of "Ca Micrarchaeota" from the sediments of a meromictic freshwater lake, including a complete, closed 1.2 Mbp genome of "Ca Micrarchaeota" Sv326, an archaeon phylogenetically distant from the ARMAN lineage. Genome analysis revealed that, contrary to ARMAN "Ca Micrarchaeota," the Sv326 archaeon has complete glycolytic pathways and ATP generation mechanisms in substrate phosphorylation reactions, the capacities to utilize some sugars and amino acids as substrates, and pathways for de novo nucleotide biosynthesis but lacked an aerobic respiratory chain. We suppose that Sv326 is a free-living scavenger rather than an obligate parasite/symbiont. Comparative analysis of "Ca Micrarchaeota" genomes representing different order-level divisions indicated that evolution of the "Ca Micrarchaeota" from a free-living "Candidatus Diapherotrites"-like ancestor involved losses of important metabolic pathways in different lineages and gains of specific functions in the course of adaptation to a partner-dependent lifestyle and specific environmental conditions. The ARMAN group represents the most pronounced case of genome reduction and gene loss, while the Sv326 lineage appeared to be rather close to the ancestral state of the "Ca Micrarchaeota" in terms of metabolic potential.IMPORTANCE The recently described superphylum DPANN includes several phyla of uncultivated archaea with small cell sizes, reduced genomes, and limited metabolic capabilities. One of these phyla, "Ca Micrarchaeota," comprises an enigmatic group of archaea found in acid mine drainage environments, the archaeal Richmond Mine acidophilic nanoorganisms (ARMAN) group. Analysis of their reduced genomes revealed the absence of key metabolic pathways consistent with their partner-associated lifestyle, and physical associations of ARMAN cells with their hosts were documented. However, "Ca Micrarchaeota" include several lineages besides the ARMAN group found in nonacidic environments, and none of them have been characterized. Here, we report a complete genome of "Ca Micrarchaeota" from a non-ARMAN lineage. Analysis of this genome revealed the presence of metabolic capacities lost in ARMAN genomes that could enable a free-living lifestyle. These results expand our understanding of genetic diversity, lifestyle, and evolution of "Ca Micrarchaeota."
Collapse
|