1
|
Zhang X, Gao M, Zhang C, Peng B. Enzymatic processes for animal hide/skin collagen fiber purification processing: Recent progress, challenges and recommendations. BIORESOURCE TECHNOLOGY 2025; 418:131955. [PMID: 39643060 DOI: 10.1016/j.biortech.2024.131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/15/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Collagen fiber purification is the most important pretreatment process in the recycling of animal hide/skin, by-products of meat production, and can be utilized to produce value-added materials. Traditional animal hide/skin resource utilization technologies face serious challenges in the aspect of production efficiency and environmental sustainability. Enzymatic collagen fiber purification processing is thought to be one of the most promising technologies that can minimize the use of chemicals and energy, reduce CO2-eq emissions, and achieve sustainable development of animal hide/skin reutilization. However, enzymatic processes have not been well accepted for industrial-scale applications in factories so far. In this review, recent progress and challenges of enzymatic collagen fiber purification processing were comprehensively overviewed in the aspect of the key mechanisms and technologies of enzyme application. Recommendations for the direction of enzyme selection and development were put forward, which is expected to pave the way for the industrial-scale application of enzymes in animal hide/skin collagen fiber purification processing.
Collapse
Affiliation(s)
- Xu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Mengchu Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Shandong Lonct Enzymes Co., Ltd., Linyi 276400, PR China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Biyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Gao B, Tan C, Roshani D, Yang R, Lv Z, Li P, Shang N. Microbial collagenases: an updated review on their characterization, degradation mechanisms, and current applications. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39673346 DOI: 10.1080/10408398.2024.2438408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Collagen, recognized as a fundamental protein present in biological tissues and structures, plays a crucial role in maintaining organ structure and tissue integrity. Microbial collagenases are specific for the degradation of collagen. The specific three-stranded helix region of natural collagen can be identified and hydrolyzed by microbial collagenases under physiological conditions, producing collagen peptides with high physiological activity. This article describes microbial collagenases, providing an introduction to the structure, physiological characteristics, factors affecting enzyme activity, and hydrolysis mechanisms of various classes of these enzymes. Microbial collagenase is the most widely used class of collagenase and plays an important role in all aspects of human life, and various applications of microbial collagenases in food industry, healthcare and environmental protection will be addressed in this review. In addition to its beneficial functions, microbial collagenase can exist as a virulence factor for pathogenic bacteria, and enhanced research on its structure and mechanism of action will help us to investigate more effective inhibitors as well as therapeutic agents and tools for the treatment of the corresponding diseases. Finally, this review critically analyses existing challenges and outlines prospects for future advancements in the field.
Collapse
Affiliation(s)
- Boya Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Health, Jiangxi Normal University, Jiangxi, China
| | - Dumila Roshani
- College of Engineering, China Agricultural University, Beijing, China
| | - Ruoqiu Yang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihao Lv
- College of Engineering, China Agricultural University, Beijing, China
| | - Pinglan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Sun XH, Zhang XD, Zhang XR, Wang XF, Zhang XY, Zhang YZ, Zhang YQ, Xu F. Direct Preparation of Alginate Oligosaccharides from Brown Algae by an Algae-Decomposing Alginate Lyase AlyP18 from the Marine Bacterium Pseudoalteromonas agarivorans A3. Mar Drugs 2024; 22:483. [PMID: 39590763 PMCID: PMC11595925 DOI: 10.3390/md22110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Alginate oligosaccharides (AOs), derived from alginate degradation, exhibit diverse biological activities and hold significant promise in various fields. The enzymatic preparation of AOs relies on alginate lyases, which offers distinct advantages. In contrast to the conventional use of sodium alginate derived from brown algae as the substrate for the enzymatic preparation of AOs, AO preparation directly from brown algae is more appealing due to its time and energy efficiency. Thus, the identification of potent alginate lyases and cost-effective brown algae substrates is crucial for optimizing AO production. Herein, we identified and characterized an alginate lyase, AlyP18, capable of efficiently decomposing algae, from a marine bacterium Pseudoalteromonas agarivorans A3 based on secretome analysis. AlyP18 is a mesothermal, endo-type and bifunctional alginate lyase with high enzymatic activity. Two brown algae substrates, Laminaria japonica roots and Macrocystis pyrifera, were used for the AO preparation by AlyP18. Upon optimization of AlyP18 hydrolysis parameters, the substrate degradation efficiency and AO production reached 53% and ~32% for L. japonica roots, respectively, and 77% and ~46.5% for M. pyrifera. The generated AOs primarily consisted of dimers to pentamers, with trimers and tetramers being dominant. This study provides an efficient alginate lyase and alternative brown algal feedstock for the bioconversion of high-value AOs from brown algae.
Collapse
Affiliation(s)
- Xiao-Hui Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266237, China
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250199, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xin-Ru Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xiao-Fei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266237, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| |
Collapse
|
4
|
Jiang T, Zhang B, Zhang H, Wei M, Su Y, Song T, Ye S, Zhu Y, Wu W. Purification and Properties of a Plasmin-like Marine Protease from Clamworm ( Perinereis aibuhitensis). Mar Drugs 2024; 22:68. [PMID: 38393039 PMCID: PMC10890283 DOI: 10.3390/md22020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Marine organisms are a rich source of enzymes that exhibit excellent biological activity and a wide range of applications. However, there has been limited research on the proteases found in marine mudflat organisms. Based on this background, the marine fibrinolytic enzyme FELP, which was isolated and purified from clamworm (Perinereis aibuhitensis), has exhibited excellent fibrinolytic activity. We demonstrated the FELP with a purification of 10.61-fold by precipitation with ammonium sulfate, ion-exchange chromatography, and gel-filtration chromatography. SDS-PAGE, fibrin plate method, and LC-MS/MS indicated that the molecular weight of FELP is 28.9 kDa and identified FELP as a fibrinolytic enzyme-like protease. FELP displayed the maximum fibrinolytic activity at pH 9 (407 ± 16 mm2) and 50 °C (724 ± 27 mm2) and had excellent stability at pH 7-11 (50%) or 30-60 °C (60%), respectively. The three-dimensional structure of some amino acid residues of FELP was predicted with the SWISS-MODEL. The fibrinolytic and fibrinogenolytic assays showed that the enzyme possessed direct fibrinolytic activity and indirect fibrinolysis via the activation of plasminogen; it could preferentially degrade Aα-chains of fibrinogen, followed by Bβ- and γ-chains. Overall, the fibrinolytic enzyme was successfully purified from Perinereis aibuhitensis, a marine Annelida (phylum), with favorable stability that has strong fibrinolysis activity in vitro. Therefore, FELP appears to be a potent fibrinolytic enzyme with an application that deserves further investigation.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Bing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Lane 218, Haiji Sixth Road, Shanghai 201306, China
| | - Haixing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Mingjun Wei
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Yue Su
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Tuo Song
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Shijia Ye
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Yuping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, Shanghai 200433, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
- East China Sea Marine Biological Resources Engineering Technology Center, Zhongke Road, Putuo District, Zhoushan 316104, China
| |
Collapse
|
5
|
Arbita AA, Zhao J. Milk clotting enzymes from marine resources and their role in cheese-making: A mini review. Crit Rev Food Sci Nutr 2023; 64:10036-10047. [PMID: 37287272 DOI: 10.1080/10408398.2023.2220030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the continual increase in global cheese consumption, rennet, the traditional milk coagulant, is unable to meet the growing demand in cheese production. Although several proteases from other sources have been used for cheese-making, they suffer various shortcomings. The ocean is home to a huge and diverse range of life forms, which represent a vast potential source of proteases. Marine proteases have been isolated from a number of marine species, including sponge, jellyfish, seaweed and marine animals, and some have been shown to be suitable as milk-clotting enzymes for cheese making. This review summarizes the latest studies on rennet substitutes from marine resources and their role in cheese-making. The emphasis of the review is on the isolation and purification of the marine proteases, the biochemical characteristics of these enzymes, especially their caseinolytic and milk-clotting properties, as well as their cleavage sites on casein. Some of the marine proteases have been applied as milk-clotting agent in cheese-making, with the resultant production of cheese with comparable characteristics, including sensory characteristics, to calf rennet cheese. The review concludes by highlighting the challenges and opportunities for future research in the field.
Collapse
Affiliation(s)
- Ariestya Arlene Arbita
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
- School of Chemical Engineering, Faculty of Industrial and Technology, Parahyangan Catholic University, Bandung, Indonesia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Mechanistic Insight into the Fragmentation of Type I Collagen Fibers into Peptides and Amino Acids by a Vibrio Collagenase. Appl Environ Microbiol 2022; 88:e0167721. [PMID: 35285716 DOI: 10.1128/aem.01677-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.
Collapse
|
7
|
Cheng JH, Wang Y, Zhang XY, Sun ML, Zhang X, Song XY, Zhang YZ, Zhang Y, Chen XL. Characterization and Diversity Analysis of the Extracellular Proteases of Thermophilic Anoxybacillus caldiproteolyticus 1A02591 From Deep-Sea Hydrothermal Vent Sediment. Front Microbiol 2021; 12:643508. [PMID: 33796092 PMCID: PMC8007923 DOI: 10.3389/fmicb.2021.643508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Protease-producing bacteria play key roles in the degradation of marine organic nitrogen. Although some deep-sea bacteria are found to produce proteases, there has been no report on protease-secreting Anoxybacillus from marine hydrothermal vent regions. Here, we analyzed the diversity and functions of the proteases, especially the extracellular proteases, of Anoxybacillus caldiproteolyticus 1A02591, a protease-secreting strain isolated from a deep-sea hydrothermal vent sediment of the East Pacific Ocean. Strain 1A02591 is a thermophilic bacterium with a strong protease-secreting ability, which displayed the maximum growth rate (0.139 h–1) and extracellular protease production (307.99 U/mL) at 55°C. Strain 1A02591 contains 75 putative proteases, including 65 intracellular proteases and 10 extracellular proteases according to signal peptide prediction. When strain 1A02591 was cultured with casein, 12 proteases were identified in the secretome, in which metalloproteases (6/12) and serine proteases (4/12) accounted for the majority, and a thermolysin-like protease of the M4 family was the most abundant, suggesting that strain 1A02591 mainly secreted a thermophilic metalloprotease. Correspondingly, the secreted proteases of strain 1A02591 showed the highest activity at the temperature as high as 70°C, and was inhibited 70% by metalloprotease inhibitor o-phenanthroline and 50% by serine protease inhibitor phenylmethylsulfonyl fluoride. The secreted proteases could degrade different proteins, suggesting the role of strain 1A02591 in organic nitrogen degradation in deep-sea hydrothermal ecosystem. These results provide the first insight into the proteases of an Anoxybacillus strain from deep-sea hydrothermal ecosystem, which is helpful in understanding the function of Anoxybacillus in the marine biogeochemical cycle.
Collapse
Affiliation(s)
- Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Hasan R, Rony MNH, Ahmed R. In silico characterization and structural modeling of bacterial metalloprotease of family M4. J Genet Eng Biotechnol 2021; 19:25. [PMID: 33528696 PMCID: PMC7851659 DOI: 10.1186/s43141-020-00105-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND The M4 family of metalloproteases is comprised of a large number of zinc-containing metalloproteases. A large number of these enzymes are important virulence factors of pathogenic bacteria and therefore potential drug targets. Whereas some enzymes have potential for biotechnological applications, the M4 family of metalloproteases is known almost exclusively from bacteria. The aim of the study was to identify the structure and properties of M4 metalloprotease proteins. RESULTS A total of 31 protein sequences of M4 metalloprotease retrieved from UniProt representing different species of bacteria have been characterized for various physiochemical properties. They were thermostable, hydrophillic protein of a molecular mass ranging from 38 to 66 KDa. Correlation on the basis of both enzymes and respective genes has also been studied by phylogenetic tree. B. cereus M4 metalloprotease (PDB ID: 1NPC) was selected as a representative species for secondary and tertiary structures among the M4 metalloprotease proteins. The secondary structure displaying 11 helices (H1-H11) is involved in 15 helix-helix interactions, while 4 β-sheet motifs composed of 15 β-strands in PDBsum. Possible disulfide bridges were absent in most of the cases. The tertiary structure of B. cereus M4 metalloprotease was validated by QMEAN4 and SAVES server (Ramachandran plot, verify 3D, and ERRAT) which proved the stability, reliability, and consistency of the tertiary structure of the protein. Functional analysis was done in terms of membrane protein topology, disease-causing region prediction, proteolytic cleavage sites prediction, and network generation. Transmembrane helix prediction showed absence of transmembrane helix in protein. Protein-protein interaction networks demonstrated that bacillolysin of B. cereus interacted with ten other proteins in a high confidence score. Five disorder regions were identified. Active sites analysis showed the zinc-binding residues-His-143, His-147, and Glu-167, with Glu-144 acting as the catalytic residues. CONCLUSION Moreover, this theoretical overview will help researchers to get a details idea about the protein structure and it may also help to design enzymes with desirable characteristics for exploiting them at industrial level or potential drug targets.
Collapse
Affiliation(s)
- Rajnee Hasan
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| | - Md. Nazmul Haq Rony
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| | - Rasel Ahmed
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| |
Collapse
|