1
|
Gunter K, Omoga D, Bowen JM, Gonzalez LR, Severt S, Davis M, Szymanski M, Sandusky G, Duprex WP, Tilston-Lunel NL. A reporter Oropouche virus expressing ZsGreen from the M segment enables pathogenesis studies in mice. J Virol 2024; 98:e0089324. [PMID: 39194249 PMCID: PMC11406970 DOI: 10.1128/jvi.00893-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Oropouche fever caused by Oropouche virus (OROV) is a significant zoonosis in Central and South America. Despite its public health significance, we lack high-throughput diagnostics, therapeutics, and a comprehensive knowledge of OROV biology. Reporter viruses are valuable tools to rapidly study virus dynamics and develop neutralization and antiviral screening assays. OROV is a tri-segmented bunyavirus, which makes generating a reporter virus challenging, as introducing foreign elements into the viral genome typically affects fitness. We previously demonstrated that the non-structural gene NSm on the OROV medium (M) segment is non-essential for replication in vitro. Taking advantage of this, we have now generated a recombinant OROV expressing fluorescent protein ZsGreen in place of NSm. This reporter OROV is both stable and pathogenic in IFNAR-/- mice and provides a powerful tool for OROV pathogenesis studies and assay development.IMPORTANCEEmerging and reemerging infectious agents such as zoonotic bunyaviruses are of global health concern. Oropouche virus (OROV) causes recurring outbreaks of acute febrile illness in the Central and South American human populations. Biting midges are the primary transmission vectors, whereas sloths and non-human primates are their reservoir hosts. As global temperatures increase, we will likely see an expansion in arthropod-borne pathogens such as OROV. Therefore, developing reagents to study pathogen biology to aid in identifying druggable targets is essential. Here, we demonstrate the feasibility and use of a fluorescent OROV reporter in mice to study viral dynamics and pathogenesis. We show that this reporter OROV maintains characteristics such as growth and pathogenicity similar to the wild-type virus. Using this reporter virus, we can now develop methods to assist OROV studies and establish various high-throughput assays.
Collapse
Affiliation(s)
- Krista Gunter
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dorcus Omoga
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James M. Bowen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lorimar Robledo Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sydney Severt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mackenzie Davis
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Megan Szymanski
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - W. Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natasha L. Tilston-Lunel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Wilson LR, McElroy AK. Rift Valley Fever Virus Encephalitis: Viral and Host Determinants of Pathogenesis. Annu Rev Virol 2024; 11:309-325. [PMID: 38635867 PMCID: PMC11427164 DOI: 10.1146/annurev-virology-093022-011544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus endemic to Africa and the Middle East. RVFV infection can cause encephalitis, which is associated with significant morbidity and mortality. Studies of RVFV encephalitis following percutaneous inoculation, as would occur following a mosquito bite, have historically been limited by a lack of consistent animal models. In this review, we describe new insights into the pathogenesis of RVFV and the opportunities provided by new mouse models. We underscore the need to consider viral strain and route of inoculation when interpreting data obtained using animal models. We discuss the trafficking of RVFV and the role of host genetics and immunity in modulating the pathogenesis of RVFV encephalitis. We also explore potential strategies to prevent and treat central nervous system disease caused by RVFV and discuss remaining knowledge gaps.
Collapse
Affiliation(s)
- Lindsay R Wilson
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Anita K McElroy
- Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
3
|
Connors KA, Chapman NS, McMillen CM, Hoehl RM, McGaughey JJ, Frey ZD, Midgett M, Williams C, Reed DS, Crowe JE, Hartman AL. Potent neutralizing human monoclonal antibodies protect from Rift Valley fever encephalitis. JCI Insight 2024; 9:e180151. [PMID: 39088277 PMCID: PMC11457859 DOI: 10.1172/jci.insight.180151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development. Few small-animal models of RVF encephalitis exist, further complicating countermeasure assessment. Human mAbs RVFV-140, RVFV-268, and RVFV-379 are recombinant potently neutralizing antibodies that prevent infection by binding the RVFV surface glycoproteins. Previous studies showed that both RVFV-268 and RVFV-140 improve survival in a lethal mouse model of disease, and RVFV-268 has prevented vertical transmission in a pregnant rat model of infection. Despite these successes, evaluation of mAbs in the context of brain disease has been limited. This is the first study to our knowledge to assess neutralizing antibodies for prevention of RVF neurologic disease using a rat model. Administration of RVFV-140, RVFV-268, or RVFV-379 24 hours prior to aerosol exposure to the virulent ZH501 strain of RVFV resulted in substantially enhanced survival and lack of neurological signs of disease. These results using a stringent and highly lethal aerosol infection model support the potential use of human mAbs to prevent the development of RVF encephalitis.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel S. Chapman
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cynthia M. McMillen
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jackson J. McGaughey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Alkan C, Jurado-Cobena E, Ikegami T. Distinct Pathological Changes in Preweaning Mice Infected with Live-Attenuated Rift Valley Fever Virus Strains. Viruses 2024; 16:999. [PMID: 39066162 PMCID: PMC11281583 DOI: 10.3390/v16070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Middle East. Live-attenuated RVF vaccines have been studied for both veterinary and human use due to their strong immunogenicity and cost-effective manufacturing. The live-attenuated MP-12 vaccine has been conditionally approved for veterinary use in the U.S.A., and next-generation live-attenuated RVF vaccine candidates are being actively researched. Assessing the virulence phenotype of vaccine seeds or lots is crucial for managing vaccine safety. Previously, preweaning 19-day-old outbred CD1 mice have been used to evaluate the MP-12 strain. This study aimed to characterize the relative virulence of three live-attenuated RVF vaccine strains in 19-day-old inbred C57BL/6 mice: the recombinant MP-12 (rMP-12), the RVax-1, and the ∆NSs-∆NSm-rZH501 strains. Although this mouse model did not show dose-dependent pathogenesis, mice that succumbed to the infection exhibited distinct brain pathology. Mice infected with ∆NSs-∆NSm-rZH501 showed an infiltration of inflammatory cells associated with infected neurons, and focal lesions formed around virus-infected cells. In contrast, mice infected with rMP-12 or RVax-1 showed a minimal association of inflammatory cells in the brain, yet the virus spread diffusely. The preweaning model is likely useful for evaluating host responses to attenuated RVFV strains, although further refinement may be necessary to quantitate the virulence among different RVFV strains or vaccine lots.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
5
|
Kandiyil PC. Quantification of RVFV Specific T Cell Responses in Mice Pre-immunized with Potential Vaccine Candidates. Methods Mol Biol 2024; 2824:385-395. [PMID: 39039425 DOI: 10.1007/978-1-0716-3926-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever (RVF) caused by Rift Valley fever virus (RVFV) is a major health concern for both domesticated animals and humans in certain endemic areas of Africa. With changing environmental conditions and identification of vectors capable of transmitting the virus, there is high risk of RVFV spreading into other parts of the world. Furthermore, unavailability of effective vaccines in the event of an outbreak can be a major challenge as witnessed recently in case of SARS-CoV2 pandemic. Hence, identifying potential vaccines and testing their protective efficacy in preclinical models before clinical testing is the absolute need of the hour. Here, we describe methods used to quantify virus-specific T cell responses in mice that were immunized with RVFV strains or antigens.
Collapse
Affiliation(s)
- Prajeeth Chittappen Kandiyil
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
6
|
Freeman TL, McElroy AK. Laboratory Animal Models for Rift Valley Fever Virus Disease. Methods Mol Biol 2024; 2824:425-445. [PMID: 39039428 DOI: 10.1007/978-1-0716-3926-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection. In this chapter, we describe major clinical manifestations of RVFV infection and discuss the laboratory animal models used to study each.
Collapse
Affiliation(s)
- Tracey L Freeman
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA
| | - Anita K McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA.
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Graham VA, Easterbrook L, Kennedy E, Rayner E, Findlay-Wilson S, Flett L, Wise EL, Treagus S, Fotheringham S, Kempster S, Almond N, Dowall S. Pathogenesis of Rift Valley Fever Virus in a BALB/c Mouse Model Is Affected by Virus Culture Conditions and Sex of the Animals. Viruses 2023; 15:2369. [PMID: 38140610 PMCID: PMC10747589 DOI: 10.3390/v15122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease in livestock and humans. Whilst initially restricted to the African continent, recent spread to the Arabian Peninsula has highlighted the likelihood of entry into new regions. Due to the absence of a regulatory-approved human vaccine, work is ongoing to develop and assess countermeasures. As such, small animal models play a pivotal role in providing information on disease pathogenesis and elucidating which intervention strategies confer protection. To develop and establish the BALB/c mouse model, we challenged mice with RVFV grown from two separate cell lines: one derived from mosquitoes (C6/36) and the other mammalian derived (Vero E6). Following infection, we assessed the clinical course of disease progression at days 1 and 3 post-challenge and evaluated viral tropism and immune analytes. The results demonstrated that RVFV infection was affected by the cell line used to propagate the challenge virus, with those grown in insect cells resulting in a more rapid disease progression. The lowest dose that caused uniform severe disease remained the same across both virus preparations. In addition, to demonstrate reproducibility, the lowest dose was used for a subsequent infection study using male and female animals. The results further demonstrated that male mice succumbed to infection more rapidly than their female counterparts. Our results establish an RVFV mouse model and key parameters that affect the course of disease progression in BALB/c mice.
Collapse
Affiliation(s)
- Victoria A. Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Stephen Findlay-Wilson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Lucy Flett
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Louise Wise
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Samantha Treagus
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Sarah Kempster
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, UK; (S.K.); (N.A.)
| | - Neil Almond
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, UK; (S.K.); (N.A.)
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| |
Collapse
|
8
|
Bian T, Hao M, Zhao X, Zhao C, Luo G, Zhang Z, Fu G, Yang L, Chen Y, Wang Y, Yu C, Yang Y, Li J, Chen W. A Rift Valley fever mRNA vaccine elicits strong immune responses in mice and rhesus macaques. NPJ Vaccines 2023; 8:164. [PMID: 37891181 PMCID: PMC10611786 DOI: 10.1038/s41541-023-00763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Rift Valley fever virus (RVFV) is listed as a priority pathogen by the World Health Organization (WHO) because it causes serious and fatal disease in humans, and there are currently no effective countermeasures. Therefore, it is urgent to develop a safe and efficacious vaccine. Here, we developed six nucleotide-modified mRNA vaccines encoding different regions of the Gn and Gc proteins of RVFV encapsulated in lipid nanoparticles, compared their ability to induce immune responses in mice and found that mRNA vaccine encoding the full-length Gn and Gc proteins had the strongest ability to induce cellular and humoral immune responses. IFNAR(-/-) mice vaccinated with mRNA-GnGc were protected from lethal RVFV challenge. In addition, mRNA-GnGc induced high levels of neutralizing antibodies and cellular responses in rhesus macaques, as well as antigen-specific memory B cells. These data demonstrated that mRNA-GnGc is a potent and promising vaccine candidate for RVFV.
Collapse
Affiliation(s)
- Ting Bian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Frontier Biotechnology Laboratory, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Meng Hao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaofan Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chuanyi Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Guangcheng Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Lu Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yi Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yudong Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Changming Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yilong Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
- Frontier Biotechnology Laboratory, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
9
|
Xu Y, Wang X, Jiang L, Zhou Y, Liu Y, Wang F, Zhang L. Natural hosts and animal models for Rift Valley fever phlebovirus. Front Vet Sci 2023; 10:1258172. [PMID: 37929288 PMCID: PMC10621046 DOI: 10.3389/fvets.2023.1258172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-transmitted arbovirus, presenting a serious threat to humans and animals. Susceptible hosts are of great significance for the prevention of RVFV. Appropriate animal models are helpful to better understand the onset and development of diseases, as well as the control measures and vaccine research. This review focuses on the role of animal hosts in the maintenance of the virus, and summarizes the host range of RVFV. We list some common animal models in the process of RVFV research, which would provide some important insights into the prevention and treatment of RVFV, as well as the study of Rift Valley fever (RVF) pathogenesis and vaccines.
Collapse
Affiliation(s)
- Yuqing Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lu Jiang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yixuan Zhou
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yihan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fei Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Xu L, Paine AC, Barbeau DJ, Alencastro F, Duncan AW, McElroy AK. Limiting viral replication in hepatocytes alters Rift Valley fever virus disease manifestations. J Virol 2023; 97:e0085323. [PMID: 37695055 PMCID: PMC10537571 DOI: 10.1128/jvi.00853-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
Rift Valley fever virus (RVFV) causes mild to severe disease in humans and livestock. Outbreaks of RVFV have been reported throughout Africa and have spread outside Africa since 2000, calling for urgent worldwide attention to this emerging virus. RVFV directly infects the liver, and elevated transaminases are a hallmark of severe RVFV infection. However, the specific contribution of viral replication in hepatocytes to pathogenesis of RVFV remains undefined. To address this, we generated a recombinant miRNA-targeted virus, RVFVmiR-122, to limit hepatocellular replication. MicroRNAs are evolutionarily conserved non-coding RNAs that regulate mRNA expression by targeting them for degradation. RVFVmiR-122 includes an insertion of four target sequences of the liver-specific miR-122. In contrast to control RVFVmiR-184, which contains four target sequences of mosquito-specific miR-184, RVFVmiR-122 has restricted replication in vitro in primary mouse hepatocytes. RVFVmiR-122-infected C57BL/6 mice survived acute hepatitis and instead developed late-onset encephalitis. This difference in clinical outcome was eliminated in Mir-122 KO mice, confirming the specificity of the finding. Interestingly, C57BL/6 mice infected with higher doses of RVFVmiR-122 had a higher survival rate which was correlated with faster clearance of virus from the liver, suggesting a role for activation of host immunity in the phenotype. Together, our data demonstrate that miR-122 can specifically restrict the replication of RVFVmiR-122 in liver tissue both in vitro and in vivo, and this restriction alters the clinical course of disease following RVFVmiR-122 infection. IMPORTANCE Rift Valley fever virus (RVFV) is a hemorrhagic fever virus that causes outbreaks in humans and livestock throughout Africa and has spread to continents outside Africa since 2000. However, no commercial vaccine or treatment is currently available for human use against RVFV. Although the liver has been demonstrated as a key target of RVFV, the contribution of viral replication in hepatocytes to overall RVFV pathogenesis is less well defined. In this study we addressed this question by using a recombinant miRNA-targeted virus with restricted replication in hepatocytes. We gained a better understanding of how this individual cell type contributes to the development of disease caused by RVFV. Techniques used in this study provide an innovative tool to the RVFV field that could be applied to study the consequences of limited RVFV replication in other target cells.
Collapse
Affiliation(s)
- Lingqing Xu
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alden C. Paine
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dominique J. Barbeau
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Frances Alencastro
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anita K. McElroy
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
12
|
Bisom TC, Smelser H, Lanchy JM, Lodmell JS. Alternative Splicing of RIOK3 Engages the Noncanonical NFκB Pathway during Rift Valley Fever Virus Infection. Viruses 2023; 15:1566. [PMID: 37515252 PMCID: PMC10383813 DOI: 10.3390/v15071566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Although the noncanonical NFκB pathway was originally identified as a cellular pathway contributing to lymphoid organogenesis, in the past 20 years, its involvement in innate immunity has become more appreciated. In particular, the noncanonical NFκB pathway has been found to be activated and even exploited by some RNA viruses during infection. Intriguingly, activation of this pathway has been shown to have a role in disrupting transcription of type 1 interferon (IFN), suggesting a rationale for why this response could be co-opted by some viruses. Rift Valley fever virus (RVFV) is a trisegmented ambisense RNA virus that poses a considerable threat to domestic livestock and human health. Previously, we showed the atypical kinase RIOK3 is important for mounting an IFN response to RVFV infection of human epithelial cells, and shortly following infection with RVFV (MP12 strain), RIOK3 mRNA is alternatively spliced to its X2 isoform that encodes a truncated RIOK3 protein. Alternative splicing of RIOK3 mRNA has an inhibitory effect on the IFN response but also stimulates an NFκB-mediated inflammatory response. Here, we demonstrate alternative splicing of RIOK3 mRNA is associated with activation of the noncanonical NFκB pathway and suggest this pathway is co-opted by RVFV (MP12) to enhance viral success during infection.
Collapse
Affiliation(s)
- Thomas Charles Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA; (T.C.B.); (H.S.)
| | - Hope Smelser
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA; (T.C.B.); (H.S.)
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA;
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA;
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59801, USA
| |
Collapse
|
13
|
Schwarz MM, Ganaie SS, Feng A, Brown G, Yangdon T, White JM, Hoehl RM, McMillen CM, Rush RE, Connors KA, Cui X, Leung DW, Egawa T, Amarasinghe GK, Hartman AL. Lrp1 is essential for lethal Rift Valley fever hepatic disease in mice. SCIENCE ADVANCES 2023; 9:eadh2264. [PMID: 37450601 PMCID: PMC10348670 DOI: 10.1126/sciadv.adh2264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.
Collapse
Affiliation(s)
- Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Safder S. Ganaie
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Griffin Brown
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tenzin Yangdon
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - J. Michael White
- Transgenic, Knockout and Micro-Injection Core, Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael E. Rush
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaleigh A. Connors
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W. Leung
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Takeshi Egawa
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Gaya K. Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Immune correlates of protection following Rift Valley fever virus vaccination. NPJ Vaccines 2022; 7:129. [PMID: 36307416 PMCID: PMC9616434 DOI: 10.1038/s41541-022-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a hemorrhagic fever virus with the potential for significant economic and public health impact. Vaccination with an attenuated strain, DelNSsRVFV, provides protection from an otherwise lethal RVFV challenge, but mechanistic determinants of protection are undefined. In this study, a murine model was used to assess the contributions of humoral and cellular immunity to DelNSsRVFV-mediated protection. Vaccinated mice depleted of T cells were protected against subsequent challenge, and passive transfer of immune serum from vaccinated animals to naïve animals was also protective, demonstrating that T cells were dispensable in the presence of humoral immunity and that humoral immunity alone was sufficient. Animals depleted of B cells and then vaccinated were protected against challenge. Total splenocytes, but not T cells alone, B cells alone, or B + T cells harvested from vaccinated animals and then transferred to naïve animals were sufficient to confer protection, suggesting that multiple cellular interactions were required for effective cellular immunity. Together, these data indicate that humoral immunity is sufficient to confer vaccine-mediated protection and suggests that cellular immunity plays a role in protection that requires the interaction of various cellular components.
Collapse
|
15
|
Rift Valley Fever Virus Infects the Posterior Segment of the Eye and Induces Inflammation in a Rat Model of Ocular Disease. J Virol 2022; 96:e0111222. [PMID: 36194021 PMCID: PMC9599513 DOI: 10.1128/jvi.01112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
People infected with the mosquito-borne Rift Valley fever virus (RVFV) can suffer from eye-related problems resulting in ongoing vision issues or even permanent blindness. Despite ocular disease being the most frequently reported severe outcome, it is vastly understudied compared to other disease outcomes caused by RVFV. Ocular manifestations of RVFV include blurred vision, uveitis, and retinitis. When an infected individual develops macular or paramacular lesions, there is a 50% chance of permanent vision loss in one or both eyes. The cause of blinding ocular pathology remains unknown in part due to the lack of a tractable animal model. Using 3 relevant exposure routes, both subcutaneous (SC) and aerosol inoculation of Sprague Dawley rats led to RVFV infection of the eye. Surprisingly, direct inoculation of the conjunctiva did not result in successful ocular infection. The posterior segment of the eye, including the optic nerve, choroid, ciliary body, and retina, were all positive for RVFV antigen in SC-infected rats, and live virus was isolated from the eyes. Proinflammatory cytokines and increased leukocyte counts were also found in the eyes of infected rats. Additionally, human ocular cell lines were permissive for Lrp1-dependent RVFV infection. This study experimentally defines viral tropism of RVFV in the posterior segment of the rat eye and characterizes virally-mediated ocular inflammation, providing a foundation for evaluation of vaccines and therapeutics to protect against adverse ocular outcomes. IMPORTANCE Rift Valley fever virus (RVFV) infection leads to eye damage in humans in up to 10% of reported cases. Permanent blindness occurs in 50% of individuals with significant retinal scarring. Despite the prevalence and severity of this outcome, very little is known about the mechanisms of pathogenesis. We addressed this gap by developing a rodent model of ocular disease. Subcutaneous infection of Sprague Dawley rats resulted in infection of the uvea, retina, and optic nerve along with the induction of inflammation within the posterior eye. Infection of human ocular cells induced inflammatory responses and required host entry factors for RVFV infection similar to rodents. This work provides evidence of how RVFV infects the eye, and this information can be applied to help mitigate the devastating outcomes of RVF ocular disease through vaccines or treatments.
Collapse
|
16
|
Abstract
Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.
Collapse
Affiliation(s)
- Kaleigh A Connors
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine; and Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
17
|
Schwarz MM, Price DA, Ganaie SS, Feng A, Mishra N, Hoehl RM, Fatma F, Stubbs SH, Whelan SPJ, Cui X, Egawa T, Leung DW, Amarasinghe GK, Hartman AL. Oropouche orthobunyavirus infection is mediated by the cellular host factor Lrp1. Proc Natl Acad Sci U S A 2022; 119:e2204706119. [PMID: 35939689 PMCID: PMC9388146 DOI: 10.1073/pnas.2204706119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.
Collapse
Affiliation(s)
- Madeline M. Schwarz
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Price
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Safder S. Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Annie Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Ryan M. Hoehl
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213
| | - Farheen Fatma
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Sarah H. Stubbs
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University, St. Louis, MO, 63110
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Daisy W. Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
18
|
Cartwright HN, Barbeau DJ, Doyle JD, Klein E, Heise MT, Ferris MT, McElroy AK. Genetic diversity of collaborative cross mice enables identification of novel rift valley fever virus encephalitis model. PLoS Pathog 2022; 18:e1010649. [PMID: 35834486 PMCID: PMC9282606 DOI: 10.1371/journal.ppat.1010649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is an arboviral disease of humans and livestock responsible for severe economic and human health impacts. In humans, RVF spans a variety of clinical manifestations, ranging from an acute flu-like illness to severe forms of disease, including late-onset encephalitis. The large variations in human RVF disease are inadequately represented by current murine models, which overwhelmingly die of early-onset hepatitis. Existing mouse models of RVF encephalitis are either immunosuppressed, display an inconsistent phenotype, or develop encephalitis only when challenged via intranasal or aerosol exposure. In this study, the genetically defined recombinant inbred mouse resource known as the Collaborative Cross (CC) was used to identify mice with additional RVF disease phenotypes when challenged via a peripheral foot-pad route to mimic mosquito-bite exposure. Wild-type Rift Valley fever virus (RVFV) challenge of 20 CC strains revealed three distinct disease phenotypes: early-onset hepatitis, mixed phenotype, and late-onset encephalitis. Strain CC057/Unc, with the most divergent phenotype, which died of late-onset encephalitis at a median of 11 days post-infection, is the first mouse strain to develop consistent encephalitis following peripheral challenge. CC057/Unc mice were directly compared to C57BL/6 mice, which uniformly succumb to hepatitis within 2–4 days of infection. Encephalitic disease in CC057/Unc mice was characterized by high viral RNA loads in brain tissue, accompanied by clearance of viral RNA from the periphery, low ALT levels, lymphopenia, and neutrophilia. In contrast, C57BL/6 mice succumbed from hepatitis at 3 days post-infection with high viral RNA loads in the liver, viremia, high ALT levels, lymphopenia, and thrombocytopenia. The identification of a strain of CC mice as an RVFV encephalitis model will allow for future investigation into the pathogenesis and treatment of RVF encephalitic disease and indicates that genetic background makes a major contribution to RVF disease variation.
Collapse
Affiliation(s)
- Haley N. Cartwright
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Dominique J. Barbeau
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Joshua D. Doyle
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Ed Klein
- University of Pittsburgh, Division of Laboratory Animal Resources, Pittsburgh, Pennsylvania, United States of America
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anita K. McElroy
- University of Pittsburgh, School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, and Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Barbeau DJ, Cartwright HN, Harmon JR, Spengler JR, Spiropoulou CF, Sidney J, Sette A, McElroy AK. Identification and Characterization of Rift Valley Fever Virus-Specific T Cells Reveals a Dependence on CD40/CD40L Interactions for Prevention of Encephalitis. J Virol 2021; 95:e0150621. [PMID: 34495703 PMCID: PMC8577384 DOI: 10.1128/jvi.01506-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus found throughout Africa. It causes disease that is typically mild and self-limiting; however, some infected individuals experience severe manifestations, including hepatitis, encephalitis, or even death. Reports of RVFV encephalitis are notable among immunosuppressed individuals, suggesting a role for adaptive immunity in preventing this severe complication. This phenomenon has been modeled in C57BL/6 mice depleted of CD4 T cells prior to infection with DelNSs RVFV (RVFV containing a deletion of nonstructural protein NSs), resulting in late-onset encephalitis accompanied by high levels of viral RNA in the brain in 30% of animals. In this study, we sought to define the specific type(s) of CD4 T cells that mediate protection from RVFV encephalitis. The viral epitopes targeted by CD4 and CD8 T cells were defined in C57BL/6 mice, and tetramers for both CD4 and CD8 T cells were generated. RVFV-specific CD8 T cells were expanded and of a cytotoxic and proliferating phenotype in the liver following infection. RVFV-specific CD4 T cells were identified in the liver and spleen following infection and phenotyped as largely Th1 or Tfh subtypes. Knockout mice lacking various aspects of pathways important in Th1 and Tfh development and function were used to demonstrate that T-bet, CD40, CD40L, and major histocompatibility complex class II (MHC-II) mediated protection from RVFV encephalitis, while gamma interferon (IFN-γ) and interleukin-12 (IL-12) were dispensable. Virus-specific antibody responses correlated with protection from encephalitis in all mouse strains, suggesting that Tfh/B cell interactions modulate clinical outcome in this model. IMPORTANCE The prevention of RVFV encephalitis requires intact adaptive immunity. In this study, we developed reagents to detect RVFV-specific T cells and provide evidence for Tfh cells and CD40/CD40L interactions as critical mediators of this protection.
Collapse
Affiliation(s)
- Dominique J. Barbeau
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| | - Haley N. Cartwright
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| | - Jessica R. Harmon
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - Jessica R. Spengler
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| | - Anita K. McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, UPMC Children’s Hospital, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Isotype-Specific Fc Effector Functions Enhance Antibody-Mediated Rift Valley Fever Virus Protection In Vivo. mSphere 2021; 6:e0055621. [PMID: 34494884 PMCID: PMC8550229 DOI: 10.1128/msphere.00556-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovered in 1931, Rift Valley fever virus (RVFV) is an arbovirus that causes disease in humans and livestock. In humans, disease ranges from a self-limiting febrile illness to a more severe hepatitis or encephalitis. There are currently no licensed human therapeutics for RVFV disease. Given the recent advances in the use of monoclonal antibodies (MAbs) for treating infectious disease, a panel of anti-RVFV Gn glycoprotein MAbs was developed and characterized. RVFV MAbs spanned a range of neutralizing abilities and mapped to distinct epitopes along Gn. The contribution of Fc effector functions in providing MAb-mediated protection from RVFV was assessed. IgG2a version MAbs had increased capacity to induce effector functions and conferred better protection from RVFV challenge in a lethal mouse model than IgG1 version MAbs. Overall, this study shows that Fc-mediated functions are a critical component of humoral protection from RVFV. IMPORTANCE Rift Valley fever virus (RVFV) is a mosquito-borne virus found throughout Africa and into the Middle East. It has a substantial disease burden; in areas of endemicity, up to 60% of adults are seropositive. With a case fatality rate of up to 3% and the ability to cause hemorrhagic fever and encephalitis, RVFV poses a serious threat to human health. Despite the known human disease burden and the fact that it is a NIAID category A priority pathogen and a WHO priority disease for research and development, there are no vaccines or therapeutics available for RVF. In this study, we developed and characterized a panel of monoclonal antibodies against the RVFV surface glycoprotein, Gn. We then demonstrated therapeutic efficacy in the prevention of RVF in vivo in an otherwise lethal mouse model. Finally, we revealed a role for Fc-mediated function in augmenting the protection provided by these antibodies.
Collapse
|
21
|
Ganaie SS, Schwarz MM, McMillen CM, Price DA, Feng AX, Albe JR, Wang W, Miersch S, Orvedahl A, Cole AR, Sentmanat MF, Mishra N, Boyles DA, Koenig ZT, Kujawa MR, Demers MA, Hoehl RM, Moyle AB, Wagner ND, Stubbs SH, Cardarelli L, Teyra J, McElroy A, Gross ML, Whelan SPJ, Doench J, Cui X, Brett TJ, Sidhu SS, Virgin HW, Egawa T, Leung DW, Amarasinghe GK, Hartman AL. Lrp1 is a host entry factor for Rift Valley fever virus. Cell 2021; 184:5163-5178.e24. [PMID: 34559985 DOI: 10.1016/j.cell.2021.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/29/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Madeline M Schwarz
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Price
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annie X Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Joseph R Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenjie Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shane Miersch
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Aidan R Cole
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Monica F Sentmanat
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Devin A Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary T Koenig
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Kujawa
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A Demers
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan M Hoehl
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah H Stubbs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Lia Cardarelli
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Joan Teyra
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Anita McElroy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoxia Cui
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tom J Brett
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Current address: Vir Biotechnology, San Francisco, CA, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Chapman NS, Zhao H, Kose N, Westover JB, Kalveram B, Bombardi R, Rodriguez J, Sutton R, Genualdi J, LaBeaud AD, Mutuku FM, Pittman PR, Freiberg AN, Gowen BB, Fremont DH, Crowe JE. Potent neutralization of Rift Valley fever virus by human monoclonal antibodies through fusion inhibition. Proc Natl Acad Sci U S A 2021; 118:e2025642118. [PMID: 33782133 PMCID: PMC8040655 DOI: 10.1073/pnas.2025642118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus (RVFV), an emerging arboviral and zoonotic bunyavirus, causes severe disease in livestock and humans. Here, we report the isolation of a panel of monoclonal antibodies (mAbs) from the B cells of immune individuals following natural infection in Kenya or immunization with MP-12 vaccine. The B cell responses of individuals who were vaccinated or naturally infected recognized similar epitopes on both Gc and Gn proteins. The Gn-specific mAbs and two mAbs that do not recognize either monomeric Gc or Gn alone but recognized the hetero-oligomer glycoprotein complex (Gc+Gn) when Gc and Gn were coexpressed exhibited potent neutralizing activities in vitro, while Gc-specific mAbs exhibited relatively lower neutralizing capacity. The two Gc+Gn-specific mAbs and the Gn domain A-specific mAbs inhibited RVFV fusion to cells, suggesting that mAbs can inhibit the exposure of the fusion loop in Gc, a class II fusion protein, and thus prevent fusion by an indirect mechanism without direct fusion loop contact. Competition-binding analysis with coexpressed Gc/Gn and mutagenesis library screening indicated that these mAbs recognize four major antigenic sites, with two sites of vulnerability for neutralization on Gn. In experimental models of infection in mice, representative mAbs recognizing three of the antigenic sites reduced morbidity and mortality when used at a low dose in both prophylactic and therapeutic settings. This study identifies multiple candidate mAbs that may be suitable for use in humans against RVFV infection and highlights fusion inhibition against bunyaviruses as a potential contributor to potent antibody-mediated neutralization.
Collapse
Affiliation(s)
- Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonna B Westover
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jessica Rodriguez
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Joseph Genualdi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305
| | - Francis M Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Phillip R Pittman
- Medical Research and Material Command, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Brian B Gowen
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
23
|
Abstract
Rift Valley fever virus (RVFV) is a pathogen of both humans and livestock in Africa and the Middle East. Severe human disease is associated with hepatitis and/or encephalitis. Current pathogenesis studies rely on rodents and nonhuman primates, which have advantages and disadvantages. We evaluated disease progression in Mustela putorius furo (the ferret) following intradermal (i.d.) or intranasal (i.n.) infection. Infected ferrets developed hyperpyrexia, weight loss, lymphopenia, and hypoalbuminemia. Three of four ferrets inoculated intranasally with RVFV developed central nervous system (CNS) disease that manifested as seizure, ataxia, and/or hind limb weakness at 8 to 11 days postinfection (dpi). Animals with clinical CNS disease had transient viral RNAemia, high viral RNA loads in the brain, and histopathological evidence of encephalitis. The ferret model will facilitate our understanding of how RVFV accesses the CNS and has utility for the evaluation of vaccines and/or therapeutics in preventing RVFV CNS disease.IMPORTANCE Animal models of viral disease are very important for understanding how viruses make people sick and for testing out drugs and vaccines to see if they can prevent disease. In this study, we identify the ferret as a model of encephalitis caused by Rift Valley fever virus (RVFV). This novel model will allow researchers to evaluate ways to prevent RVFV encephalitis.
Collapse
|