1
|
Zhang ZH, Chen J, Huang X, Aadil RM, Li B, Gao X. Natural pigments in the food industry: Enhancing stability, nutritional benefits, and gut microbiome health. Food Chem 2024; 460:140514. [PMID: 39047471 DOI: 10.1016/j.foodchem.2024.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Natural pigments are increasingly favored in the food industry for their vibrant colors, fewer side effects and potential health benefits compared to synthetic pigments. However, their application in food industry is hindered by their instability under harsh environmental conditions. This review evaluates current strategies aimed at enhancing the stability and bioactivity of natural pigments. Advanced physicochemical methods have shown promise in enhancing the stability of natural pigments, enabling their incorporation into food products to enhance sensory attributes, texture, and bioactive properties. Moreover, recent studies demonstrated that most natural pigments offer health benefits. Importantly, they have been found to positively influence gut microbiota, in particular their regulation of the beneficial and harmful flora of the gut microbiome, the reduction of ecological dysbiosis through changes in the composition of the gut microbiome, and the alleviation of systemic inflammation caused by a high-fat diet in mice, suggesting a beneficial role in dietary interventions.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jialin Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Huang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Li L, Yang S, Liang X, Liu Y, Xu H, Guo X, Xie C, Xu X. Saikosaponin D improves nonalcoholic fatty liver disease via gut microbiota-bile acid metabolism pathway. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2703-2717. [DOI: 10.26599/fshw.2022.9250218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Bao X, Ju T, Tollenaar S, Sergi C, Willing BP, Wu J. Ovomucin and its hydrolysates differentially influenced colitis severity in Citrobacter rodentium-infected mice. Food Funct 2024; 15:8496-8509. [PMID: 39056151 DOI: 10.1039/d4fo01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Egg white protein ovomucin and its hydrolysates were previously reported to exhibit anti-inflammatory and anti-adhesive activities. However, their potential to regulate pathogen colonization and disease severity has not been fully characterized. To investigate the effects of ovomucin (OVM) and its hydrolysates including ovomucin-Protex 26L (OP) and -pepsin/pancreatin (OPP) on host resistance to pathogen infection, a well-documented colitis model in mice for attaching and effacing E. coli pathogens, Citrobacter rodentium, was used in the current study. C57Bl/6J female mice were fed on a basal diet supplemented with OVM or its hydrolysates for 3 weeks prior to the C. rodentium challenge, with the dietary treatments continued for seven days. Body weight was not affected throughout the experimental period. OP supplementation resulted in lower (P < 0.05) pathogen loads at 7 dpi. Attenuated colitis severity was observed in mice that received OVM and OP, as indicated by reduced colonic pathological scores and pro-inflammatory responses compared with the infected control group. In contrast, OPP consumption resulted in enhanced C. rodentium colonization and disease severity. Notably, reduced microbial diversity indices of the gut microbiota were observed in the OPP-supplemented mice compared with the OVM- and OP-supplemented groups. This study showed the potential of OVM and OP to alleviate the severity of colitis induced by infection while also suggesting the opposite outcome of OPP in mitigating enteric infection.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Consolato Sergi
- Division of Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Ontario, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Jiang Y, Li Y. Nutrition Intervention and Microbiome Modulation in the Management of Breast Cancer. Nutrients 2024; 16:2644. [PMID: 39203781 PMCID: PMC11356826 DOI: 10.3390/nu16162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
5
|
Mohammadhasani K, Vahedi Fard M, Mottaghi Moghaddam Shahri A, Khorasanchi Z. Polyphenols improve non-alcoholic fatty liver disease via gut microbiota: A comprehensive review. Food Sci Nutr 2024; 12:5341-5356. [PMID: 39139973 PMCID: PMC11317728 DOI: 10.1002/fsn3.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols, natural micronutrients derived from plants, are valued for their anti-inflammatory and antioxidant properties. The escalating global prevalence of non-alcoholic fatty liver disease (NAFLD) underscores its status as a chronic progressive liver condition. Furthermore, the dysregulation of gut microbiota (GM) is implicated in the onset and progression of NAFLD through the actions of metabolites such as bile acids (BAs), lipopolysaccharide (LPS), choline, and short-chain fatty acids (SCFAs). Additionally, GM may influence the integrity of the intestinal barrier. This review aims to evaluate the potential effects of polyphenols on GM and intestinal barrier function, and their subsequent impact on NAFLD. We searched through a wide range of databases, such as Web of Science, PubMed, EMBASE, and Scopus to gather information for our non-systematic review of English literature. GM functions and composition can be regulated by polyphenols such as chlorogenic acid, curcumin, green tea catechins, naringenin, quercetin, resveratrol, and sulforaphane. Regulating GM composition improves NAFLD by alleviating inflammation, liver fat accumulation, and liver enzymes. Furthermore, it improves serum lipid profile and gut barrier integrity. All of these components affect NAFLD through the metabolites of GM, including SCFAs, choline, LPS, and BAs. Current evidence indicates that chlorogenic acid, resveratrol, quercetin, and curcumin can modulate GM, improving intestinal barrier integrity and positively impacting NAFLD. More studies are necessary to evaluate the safety and efficacy of naringenin, sulforaphane, and catechin.
Collapse
Affiliation(s)
- Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Ali Mottaghi Moghaddam Shahri
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Servida S, Piontini A, Gori F, Tomaino L, Moroncini G, De Gennaro Colonna V, La Vecchia C, Vigna L. Curcumin and Gut Microbiota: A Narrative Overview with Focus on Glycemic Control. Int J Mol Sci 2024; 25:7710. [PMID: 39062953 PMCID: PMC11277527 DOI: 10.3390/ijms25147710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Turmeric is a spice widely used in China, Southeast Asia, and in traditional Ayurvedic medicine. Its safety profile and efficacy as an antioxidant, anti-inflammatory, antimicrobial, antitumor, antidiabetic, and anti-obesity agent have led to extensive research into its potential role in preventing and treating metabolic diseases. The active compound in turmeric is curcumin, which exhibits low systemic bioavailability after oral administration. However, it is detectable in the gut, where it bidirectionally interacts with the gut microbiota (GM), which plays a crucial role in maintaining host health. The favorable effects of curcumin, particularly its hypoglycemic properties, are linked to alteration in intestinal dysbiosis observed in type 2 diabetes mellitus and metabolic syndrome patients. Restoration of the eubiotic GM may contribute to glycemic homeostasis. Preclinical and clinical studies have demonstrated the involvement of the GM in the regulation of glucose and lipid metabolism. Although the underlying mechanism remains incompletely understood, intestinal dysbiosis is associated with insulin resistance, hyperglycemia, and low-grade inflammation. In the present overview, we summarize the biological properties of curcumin, focusing on its link with GM and, therefore, on its potential role in metabolic diseases.
Collapse
Affiliation(s)
- Simona Servida
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| | - Alessandra Piontini
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| | - Francesca Gori
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Laura Tomaino
- Postgraduate School of Emergency Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Vito De Gennaro Colonna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi, 20122 Milan, Italy;
| | - Carlo La Vecchia
- Department of Clinical Science and Community Health, DISSCO, Università degli Studi, 20122 Milan, Italy;
| | - Luisella Vigna
- Obesity and Work Centre, Occupational Medicine Unit, Clinica del Lavoro L. Devoto, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.S.); (A.P.); (V.D.G.C.)
| |
Collapse
|
7
|
Chen Y, Liu L, Yu L, Li S, Zhu N, You J. Curcumin Supplementation Improves Growth Performance and Anticoccidial Index by Improving the Antioxidant Capacity, Inhibiting Inflammatory Responses, and Maintaining Intestinal Barrier Function in Eimeria tenella-Infected Broilers. Animals (Basel) 2024; 14:1223. [PMID: 38672370 PMCID: PMC11047685 DOI: 10.3390/ani14081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study was conducted to investigate the effects of dietary curcumin supplementation on growth performance, anticoccidial index, antioxidant capacity, intestinal inflammation, and cecum microbiota in broilers infected with Eimeria tenella. A total of 234 one-day-old broilers were categorized into three treatments, with six replicates per treatment containing 13 broilers each. The three treatments included the control group, Eimeria tenella group, and Eimeria tenella + curcumin (200 mg/kg) group. The feeding trial lasted for 42 days, during which the broilers were orally administered with 0.9% saline or 5 × 104Eimeria tenella oocysts on day 14 of the study. On day 17 and day 21, one bird per replicate was selected for slaughtering. Results indicated an increased survival rate and anticoccidial index and improved productive performance in coccidia-infected broilers with curcumin supplementation. Furthermore, curcumin enhanced the serum antioxidant capacity in Eimeria tenella-infected broilers, evidenced by increased serum catalase activity (3d, 7d), as well as decreased malondialdehyde level (3d, 7d) and nitric oxide synthase activity (7d) (p < 0.05). Curcumin also improved intestinal inflammation and barrier function, evidenced by the downregulation of interleukin (IL)-1β (3d, 7d), TNF-alpha (TNF-α) (3d, 7d), and IL-2 (7d) and the up-regulated mRNA levels of claudin-1 (7d), zonula occludens (ZO-1; 3d, 7d), and occludin (3d, 7d) in the ceca of infected broilers (p < 0.05). Eimeria tenella infection significantly disrupted cecum microbial balance, but curcumin did not alleviate cecum microbial disorder in broilers infected with Eimeria tenella. Collectively, curcumin supplementation enhanced growth performance and anticoccidial index in Eimeria tenella-infected broilers via improving antioxidant ability and cecum inflammation without affecting cecum microbiota.
Collapse
Affiliation(s)
- Yan Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Liheng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Longfei Yu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Nianhua Zhu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| |
Collapse
|
8
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Li Y, Deng X, Tan X, Li Q, Yu Z, Wu W, Ma X, Zeng J, Wang X. Protective role of curcumin in disease progression from non-alcoholic fatty liver disease to hepatocellular carcinoma: a meta-analysis. Front Pharmacol 2024; 15:1343193. [PMID: 38313314 PMCID: PMC10834658 DOI: 10.3389/fphar.2024.1343193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Pathological progression from non-alcoholic fatty liver disease (NAFLD) to liver fibrosis (LF) to hepatocellular carcinoma (HCC) is a common dynamic state in many patients. Curcumin, a dietary supplement derived from the turmeric family, is expected to specifically inhibit the development of this progression. However, there is a lack of convincing evidence. Methods: The studies published until June 2023 were searched in PubMed, Web of Science, Embase, and the Cochrane Library databases. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) approach was used to evaluate the certainty of evidence. StataSE (version 15.1) and Origin 2021 software programs were used to analyze the critical indicators. Results: Fifty-two studies involving 792 animals were included, and three disease models were reported. Curcumin demonstrates a significant improvement in key indicators across the stages of NAFLD, liver fibrosis, and HCC. We conducted a detailed analysis of common inflammatory markers IL-1β, IL-6, and TNF-α, which traverse the entire disease process. The research results reveal that curcumin effectively hinders disease progression at each stage by suppressing inflammation. Curcumin exerted hepatoprotective effects in the dose range from 100 to 400 mg/kg and treatment duration from 4 to 10 weeks. The mechanistic analysis reveals that curcumin primarily exerts its hepatoprotective effects by modulating multiple signaling pathways, including TLR4/NF-κB, Keap1/Nrf2, Bax/Bcl-2/Caspase 3, and TGF-β/Smad3. Conclusion: In summary, curcumin has shown promising therapeutic effects during the overall progression of NAFLD-LF-HCC. It inhibited the pathological progression by synergistic mechanisms related to multiple pathways, including anti-inflammatory, antioxidant, and apoptosis regulation.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianrong Li
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi Yu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbin Wu
- Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyin Wang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Afarin R, Dinarvand N, Azizi Dariuni H, Orak G, Jaberian Asl B, Azizi R, Khedri A. Curcumin and saroglitazar attenuate diet-induced nonalcoholic steatohepatitis by activating the Nrf2 pathway and suppressing ERK1/2 signaling. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1015-1022. [PMID: 38911240 PMCID: PMC11193507 DOI: 10.22038/ijbms.2024.75293.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
Objectives Non-alcoholic fatty liver disease (NAFLD) is a chronic steatohepatitis disorder. If left untreated, it can progress to hepatocellular carcinoma. Several studies have shown that saroglitazar, a PPARα/γ dual agonist, and curcumin (the principal constituent of turmeric) may be effective in the treatment of NAFLD. This research aimed to study the pharmacological mechanism of these compounds in rats with NAFLD. Materials and Methods NAFLD was induced in male Wistar rats (aged 6-8 weeks) by feeding them a high-fat diet (HFD) for 6 weeks. Subsequently, the rats were divided into four groups, with Group 1 continuing on HFD, while groups 2, 3, and 4 received HFD supplemented with saroglitazar, curcumin, and both saroglitazar and curcumin, respectively. We evaluated the expression of Nrf2, ERK1/2, NOX1,2,4, antioxidant enzymes, PPARα, γ, and genes regulating lipid metabolism in the liver. Histopathology of liver tissue was also examined. Furthermore, we analyzed serum levels of lipid profiles and hepatic enzymes. Results Rats with NAFLD that received treatment involving saroglitazar and curcumin showed a significant decrease in the expression of ERK1/2, SREBP1, PPARγ, pro-inflammatory cytokines, NOXs, and ROS levels. Additionally, the levels of Nrf2, PPARα, and antioxidant enzymes showed a significant increase. The serum levels of lipid profiles and hepatic enzymes also decreased significantly after drug treatment. Conclusion Our results confirm that both saroglitazar and curcumin ameliorate NAFLD by regulating the Nrf2 and ERK1/2 signaling pathways. These findings suggest that curcumin could serve as a suitable substitute for saroglitazar, although they appear to have a synergistic effect.
Collapse
Affiliation(s)
- Reza Afarin
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Azizi Dariuni
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghazal Orak
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahar Jaberian Asl
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizi
- Department of Basic and Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Azam Khedri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Tu X, Ren H, Bu S. Therapeutic effects of curcumin on constipation-predominant irritable bowel syndrome is associated with modulating gut microbiota and neurotransmitters. Front Microbiol 2023; 14:1274559. [PMID: 38163069 PMCID: PMC10757613 DOI: 10.3389/fmicb.2023.1274559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Constipation-predominant irritable bowel syndrome (IBS-C) is a functional bowel disease that affects 10-20% of the population worldwide. Curcumin (CUR) is widely used in traditional Chinese medicine to treat IBS, but its mechanism of action needs further investigation. Methods In this study, we used mosapride (MOS) as a positive control to evaluate the changes in gut microbiota in IBS-C rat models after treatment with CUR or MOS by analyzing 16S rDNA variation. In addition, we used enzyme immunoassay kits and immunohistochemical analysis to investigate whether CUR or MOS influenced serotonin (5-HT), substance P (SP), and vasoactive intestinal peptide (VIP) levels in the serum and colon of IBS-C rats. Results The study showed that rats supplemented with CUR showed significantly increased fecal weight, fecal water content, small intestine transit rate and significantly decreased serum levels of 5-HT, VIP and SP compared to the IBS group (p < 0.05). In addition, treatment with CUR changed the relative abundance of Blautia, Sutterella, Acetanaerobacterium and Ruminococcus2 in the gut microbiota. Discussion This study showed that the efficacy of CUR on IBS-C was possibly by modulating the microbiota and lowering the serum levels of HT, SP, and VIP.
Collapse
Affiliation(s)
- Xiaoting Tu
- Department of Gastroenterology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co. Ltd., Shanghai, China
| | - Shurui Bu
- Department of Gastroenterology, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
12
|
Guariglia M, Saba F, Rosso C, Bugianesi E. Molecular Mechanisms of Curcumin in the Pathogenesis of Metabolic Dysfunction Associated Steatotic Liver Disease. Nutrients 2023; 15:5053. [PMID: 38140312 PMCID: PMC10745597 DOI: 10.3390/nu15245053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial condition characterized by insulin resistance, oxidative stress, chronic low-grade inflammation, and sometimes fibrosis. To date, no effective pharmacological therapy has been approved for the treatment of metabolic-associated steatohepatitis (MASH), the progressive form of MASLD. Recently, numerous in vitro and in vivo studies have described the efficacy of nutraceutical compounds in the diet has been tested. Among them, curcumin is the most widely used polyphenol in the diet showing potent anti-inflammatory and antifibrotic activities. This review aims to summarize the most important basic studies (in vitro and animal models studies), describing the molecular mechanisms by which curcumin acts in the context of MASLD, providing the rationale for its effective translational use in humans.
Collapse
Affiliation(s)
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.G.); (F.S.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.G.); (F.S.)
| |
Collapse
|
13
|
Li S, Guo Y, Guo X, Shi B, Ma G, Yan S, Zhao Y. Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats. Animals (Basel) 2023; 13:3575. [PMID: 38003192 PMCID: PMC10668836 DOI: 10.3390/ani13223575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this experiment was to investigate the effect of dietary supplementation with Artemisia ordosica crude polysaccharide (AOCP) on growth performance, nutrient digestibility, antioxidant and immunity capacity, rumen fermentation parameters, and the microbiota of cashmere goats. A total of 12 cashmere goats (2 years old) with similar weight (38.03 ± 2.42 kg of BW ± SD) were randomly divided into two dietary treatments with six replicates. The treatments were as follows: (1) control (CON, basal diet); and (2) AOCP treatment (AOCP, basal diet with 0.3% AOCP). Pre-feeding was conducted for 7 days, followed by an experimental period of 21 days. The results showed that the ADG; feed/gain (F/G); and the digestibility of DM, CP, and ADF of cashmere goats in the AOCP group were greater than in the CON group (p < 0.05). Still, there was no significant effect on the digestibility of EE, NDF, Ca, and P (p > 0.05). Compared to the CON group, AOCP increased BCP, propionate, butyrate, isobutyrate, valerate, isovalerate, and TVFA concentrations (p < 0.05), but it reduced the protozoa numbers of acetate and A/P (p < 0.05). The serum CAT, GSH-Px, T-SOD, 1L-6, and NO levels were higher in AOCP than in the CON group (p < 0.05). The addition of AOCP increased the Sobs and Ace estimators (p < 0.05) and reduced the Simpson estimator in the ruminal fluid compared to the CON group (p < 0.05). Additionally, the AOCP group increased the colonization of beneficial bacteria by positively influencing GSH-Px and IL-6 (norank_f__F082, unclassified_p__Firmicutes), as well as bacteria negatively associated with F/G (norank_f__norank_o__Bacteroidales, unclassified_p__Firmicutes, and norank_f__F082). It decreased the colonization of potential pathogenic bacteria (Aeromonas and Escherichia-Shigella) (p < 0.05) compared to the CON group. In conclusion, 0.3% AOCP improves the growth performance, nutrient digestibility, antioxidant status, immune function, rumen fermentation, and microflora of cashmere goats.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumei Yan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Huhhot 010018, China; (S.L.); (Y.G.); (X.G.); (B.S.); (G.M.)
| | - Yanli Zhao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Huhhot 010018, China; (S.L.); (Y.G.); (X.G.); (B.S.); (G.M.)
| |
Collapse
|
14
|
Afshari H, Noori S, Zarghi A. A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3135-3148. [PMID: 37209153 DOI: 10.1007/s00210-023-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder that is associated with the accumulation of triglycerides (TG) in hepatocytes. Resveratrol (RSV), as a natural product, and metformin have been reported to have potential lipid-lowering effects for the treatment of NAFLD via autophagy, but the combined effects of both have not yet been studied. The current study aimed to investigate the role of autophagy in the lipid-lowering effects of RSV, alone and in combination with metformin, on the hepatic steatosis model of HepG2 cells and elucidate the mechanism of action. Triglyceride measurement and real-time PCR showed that RSV-metformin reduced lipid accumulation and the expression of lipogenic genes in palmitic acid (PA)-induced HepG2 cells. Additionally, the LDH release assay indicated that this combination protected HepG2 cells against PA-induced cell death through autophagy. The western blotting analysis revealed that RSV-metformin induced autophagy by reducing the expression of p62 and increasing LC3-I and LC3-II proteins. This combination also enhanced cAMP, phosphorylated AMP-activated protein kinase (p-AMPK), and Beclin-1 levels in HepG2 cells. Furthermore, SIRT1 inhibitor treatment inhibited autophagy induced by RSV-metformin, which indicated the autophagy induction is SIRT1-dependent. This study demonstrated for the first time that RSV-metformin reduced hepatic steatosis by triggering autophagy via the cAMP/AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Gull N, Arshad F, Naikoo GA, Hassan IU, Pedram MZ, Ahmad A, Aljabali AAA, Mishra V, Satija S, Charbe N, Negi P, Goyal R, Serrano-Aroca Á, Al Zoubi MS, El-Tanani M, Tambuwala MM. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J Gastrointest Cancer 2023; 54:368-390. [PMID: 35285010 PMCID: PMC8918363 DOI: 10.1007/s12029-022-00809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.
Collapse
Affiliation(s)
- Nighat Gull
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, U.P., India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman.
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Mona Zamani Pedram
- Faculty of Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran, 1999 143344, Iran
| | - Arif Ahmad
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001, Valencia, Spain
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Northern Ireland, Coleraine, BT52 1SA, County Londonderry, UK.
| |
Collapse
|
16
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
18
|
Chen Q, Zhao L, Mei L, Zhao X, Han P, Liu J, Meng C, Li R, Zhong R, Wang K, Li J. Vitamin C and vitamin D3 alleviate metabolic-associated fatty liver disease by regulating the gut microbiota and bile acid metabolism via the gut-liver axis. Front Pharmacol 2023; 14:1163694. [PMID: 37089915 PMCID: PMC10113476 DOI: 10.3389/fphar.2023.1163694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Background: Previous studies have demonstrated that both vitamin C (VC) and vitamin D3 (VD3) have therapeutic potential against metabolic disorders, including obesity, diabetes, and metabolic-associated fatty liver disease (MAFLD). However, it is unclear whether VC supplementation is associated with improving the intestinal flora and regulating the metabolism of bile acids via the gut-liver axis in MAFLD. There is still no direct comparison or combination study of these two vitamins on these effects.Methods: In this study, we employed biochemical, histological, 16S rDNA-based microbiological, non-targeted liver metabolomic, and quantitative real-time polymerase chain reaction analyses to explore the intervening effect and mechanism of VC and VD3 on MAFLD by using a high-fat diet (HFD)-induced obese mouse model.Results: Treatment of mice with VC and VD3 efficiently reversed the characteristics of MAFLD, such as obesity, dyslipidemia, insulin resistance, hepatic steatosis, and inflammation. VC and VD3 showed similar beneficial effects as mentioned above in HFD-induced obese mice. Interestingly, VC and VD3 reshaped the gut microbiota composition; improved gut barrier integrity; ameliorated oxidative stress and inflammation in the gut-liver axis; inhibited bile acid salt reflux-related ASBT; activated bile acid synthesis-related CYP7A1, bile acid receptor FXR, and bile acid transportation-related BSEP in the gut-liver axis; and improved bile secretion, thus decreasing the expression of FAS in the liver and efficiently ameliorating MAFLD in mice.Conclusion: Together, the results indicate that the anti-MAFLD activities of VC and VD3 are linked to improved gut-liver interactions via regulation of the gut microbiota and bile acid metabolism, and they may therefore prove useful in treating MAFLD clinically.
Collapse
Affiliation(s)
- Qingling Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Lili Zhao
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Ling Mei
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Xiaotong Zhao
- Department of Clinical Laboratory, Tianjin Second People’s Hospital, Tianjin, China
| | - Ping Han
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Jie Liu
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Chao Meng
- Department of Clinical Laboratory, Tianjin Second People’s Hospital, Tianjin, China
| | - Ruifang Li
- School of Medicine, Nankai University, Tianjin, China
| | - Rui Zhong
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Kai Wang, ; Jia Li,
| | - Jia Li
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
- *Correspondence: Kai Wang, ; Jia Li,
| |
Collapse
|
19
|
Slevin E, Koyama S, Harrison K, Wan Y, Klaunig JE, Wu C, Shetty AK, Meng F. Dysbiosis in gastrointestinal pathophysiology: Role of the gut microbiome in Gulf War Illness. J Cell Mol Med 2023; 27:891-905. [PMID: 36716094 PMCID: PMC10064030 DOI: 10.1111/jcmm.17631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 01/31/2023] Open
Abstract
Gulf War Illness (GWI) has been reported in 25%-35% of veterans returned from the Gulf war. Symptoms of GWI are varied and include both neurological and gastrointestinal symptoms as well as chronic fatigue. Development of GWI has been associated with chemical exposure particularly with exposure to pyridostigmine bromide (PB) and permethrin. Recent studies have found that the pathology of GWI is connected to changes in the gut microbiota, that is the gut dysbiosis. In studies using animal models, the exposure to PB and permethrin resulted in similar changes in the gut microbiome as these found in GW veterans with GWI. Studies using animal models have also shown that phytochemicals like curcumin are beneficial in reducing the symptoms and that the extracellular vesicles (EV) released from gut bacteria and from the intestinal epithelium can both promote diseases and suppress diseases through the intercellular communication mechanisms. The intestinal epithelium cells produce EVs and these EVs of intestinal epithelium origin are found to suppress inflammatory bowel disease severity, suggesting the benefits of utilizing EV in treatments. On the contrary, EV from the plasma of septic mice enhanced the level of proinflammatory cytokines in vitro and neutrophils and macrophages in vivo, suggesting differences in the EV depending on the types of cells they were originated and/or influences of environmental changes. These studies suggest that targeting the EV that specifically have positive influences may become a new therapeutic strategy in the treatment of veterans with GWI.
Collapse
Affiliation(s)
- Elise Slevin
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Kelly Harrison
- Department of Transplant SurgeryBaylor Scott & White Memorial HospitalTempleTexasUSA
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - James E. Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Chaodong Wu
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Ashok K. Shetty
- Department of Molecular and Cellular MedicineInstitute for Regenerative Medicine, Texas A&M College of MedicineCollege StationTexasUSA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
20
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kanezawa S, Moriyama M, Kanda T, Fukushima A, Masuzaki R, Sasaki-Tanaka R, Tsunemi A, Ueno T, Fukuda N, Kogure H. Gut-Microbiota Dysbiosis in Stroke-Prone Spontaneously Hypertensive Rats with Diet-Induced Steatohepatitis. Int J Mol Sci 2023; 24:ijms24054603. [PMID: 36902037 PMCID: PMC10002594 DOI: 10.3390/ijms24054603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Metabolic-dysfunction-associated fatty-liver disease (MAFLD) is the principal worldwide cause of liver disease. Individuals with nonalcoholic steatohepatitis (NASH) have a higher prevalence of small-intestinal bacterial overgrowth (SIBO). We examined gut-microbiota isolated from 12-week-old stroke-prone spontaneously hypertensive-5 rats (SHRSP5) fed on a normal diet (ND) or a high-fat- and high-cholesterol-containing diet (HFCD) and clarified the differences between their gut-microbiota. We observed that the Firmicute/Bacteroidetes (F/B) ratio in both the small intestines and the feces of the SHRSP5 rats fed HFCD increased compared to that of the SHRSP5 rats fed ND. Notably, the quantities of the 16S rRNA genes in small intestines of the SHRSP5 rats fed HFCD were significantly lower than those of the SHRSP5 rats fed ND. As in SIBO syndrome, the SHRSP5 rats fed HFCD presented with diarrhea and body-weight loss with abnormal types of bacteria in the small intestine, although the number of bacteria in the small intestine did not increase. The microbiota of the feces in the SHRSP5 rats fed HFCD was different from those in the SHRP5 rats fed ND. In conclusion, there is an association between MAFLD and gut-microbiota alteration. Gut-microbiota alteration may be a therapeutic target for MAFLD.
Collapse
Affiliation(s)
- Shini Kanezawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.M.); (T.K.); Tel.: +81-3-3972-8111 (M.M. & T.K.)
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.M.); (T.K.); Tel.: +81-3-3972-8111 (M.M. & T.K.)
| | - Akiko Fukushima
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Reina Sasaki-Tanaka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Akiko Tsunemi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Takahiro Ueno
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Hirofumi Kogure
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
22
|
Han J, Fan H, Dai Y, Cheng X. Serum C1q/TNF-Related Protein 4 Levels are Associated with Nonalcoholic Fatty Liver Disease in Type 2 Diabetic Patients. Metab Syndr Relat Disord 2023; 21:163-168. [PMID: 36787473 DOI: 10.1089/met.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Introduction: There is a strong bidirectional relationship between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), both of which can lead to an increase in harmful metabolism and cardiovascular risk. It was discovered that C1q/TNF-related protein 4 (CTRP4) regulates glucolipid metabolism and feeding behavior. However, the correlation between serum CTRP4 and NAFLD in T2DM patients is not yet fully understood. Methods: This study enrolled 188 T2DM participants who were separated into 2 distinct groups (NAFLD and non-NAFLD) according to abdominal ultrasound imaging results. The enzyme-linked immunosorbent assay was utilized to evaluate the levels of serum CTRP4. Clinical data and CTRP4 concentration were compared between the two groups. Linear and logistic regression analyses were performed to evaluate the correlation of serum CTRP4 levels with NAFLD risk in T2DM patients. Results: Compared with non-NAFLD, the concentration of CTRP4 was lower in NAFLD group (median 2.46 vs. 2.89, P < 0.001). The log(CTRP4) value was found to be negatively correlated with alanine aminotransferase, aspartate aminotransferase, body mass index (BMI), and waist circumference in a Pearson correlation analyses (r = -0.159, -0.156, -0.224, -0.268, all P < 0.05); besides, the trend χ2 test demonstrated that the prevalence of NAFLD rose as CTRP4 concentration decreased (P < 0.001). Regression analysis suggested that NAFLD served as an independent factor influencing log(CTRP4) independently (β-coefficient = -0.12, P = 0.011), even after adjusting for high-sensitivity C-reactive protein and white blood cells. Finally, the results of the logistic regression analysis demonstrated that BMI [odds ratio (OR) = 1.196, P = 0.028], triglyceride (OR = 2.744, P < 0.001), and CTRP4 (OR = 0.615, P = 0.032) were independently associated with NAFLD in T2DM. Conclusions: T2DM patients with NAFLD have lower CTRP4 serum concentrations than those without NAFLD. The risk of NAFLD in patients with T2DM is inversely correlated with serum CTRP4 levels.
Collapse
Affiliation(s)
- Junxia Han
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Huaying Fan
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Yunlang Dai
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou City, People's Republic of China
| |
Collapse
|
23
|
Xu Y, Huang X, Huangfu B, Hu Y, Xu J, Gao R, Huang K, He X. Sulforaphane Ameliorates Nonalcoholic Fatty Liver Disease Induced by High-Fat and High-Fructose Diet via LPS/TLR4 in the Gut-Liver Axis. Nutrients 2023; 15:nu15030743. [PMID: 36771448 PMCID: PMC9920698 DOI: 10.3390/nu15030743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The gut-liver axis has emerged as a key player in the progression of non-alcoholic fatty liver disease (NAFLD). Sulforaphane (SFN) is a bioactive compound found in cruciferous vegetables; however, it has not been reported whether SFN improves NAFLD via the gut-liver axis. C57BL/6 mice were fed a high-fat and high-fructose (HFHFr) diet, with or without SFN gavage at doses of 15 and 30 mg·kg-1 body weight for 12 weeks. The results showed that SFN reduced weight gain, hepatic inflammation, and steatosis in HFHFr mice. SFN altered the composition of gut microbes. Moreover, SFN enhanced the intestinal tight junction protein ZO-1, reduced serum LPS, and inhibited LPS/TLR4 and ERS pathways to reduce intestinal inflammation. As a result, SFN protected the intestinal integrity and declined the gut-derived LPS translocations to the liver in HFHFr diet-induced mice. SFN decreased the liver LPS levels and inhibited the LPS/TLR4 pathway activations, thus inhibiting the pro-inflammatory cytokines. Notably, Spearman correlation analysis showed that the protective effect of SFN on intestinal barrier integrity and its anti-inflammatory effect on the liver was associated with improved intestinal dysbiosis. Above all, dietary intervention with SFN attenuates NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Ye Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xianghui Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Henan Shuanghui Investment and Development Co., Ltd., Luohe 462000, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Correspondence:
| |
Collapse
|
24
|
Yan G, Li S, Wen Y, Luo Y, Huang J, Chen B, Lv S, Chen L, He L, He M, Yang Q, Yu Z, Xiao W, Tang Y, Li W, Han J, Zhao F, Yu S, Kong F, Abbasi B, Yin H, Gu C. Characteristics of intestinal microbiota in C57BL/6 mice with non-alcoholic fatty liver induced by high-fat diet. Front Microbiol 2022; 13:1051200. [PMID: 36620001 PMCID: PMC9813237 DOI: 10.3389/fmicb.2022.1051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction As a representation of the gut microbiota, fecal and cecal samples are most often used in human and animal studies, including in non-alcoholic fatty liver disease (NAFLD) research. However, due to the regional structure and function of intestinal microbiota, whether it is representative to use cecal or fecal contents to study intestinal microbiota in the study of NAFLD remains to be shown. Methods The NAFLD mouse model was established by high-fat diet induction, and the contents of the jejunum, ileum, cecum, and colon (formed fecal balls) were collected for 16S rRNA gene analysis. Results Compared with normal mice, the diversity and the relative abundance of major bacteria and functional genes of the ileum, cecum and colon were significantly changed, but not in the jejunum. In NAFLD mice, the variation characteristics of microbiota in the cecum and colon (feces) were similar. However, the variation characteristics of intestinal microbiota in the ileum and large intestine segments (cecum and colon) were quite different. Discussion Therefore, the study results of cecal and colonic (fecal) microbiota cannot completely represent the results of jejunal and ileal microbiota.
Collapse
Affiliation(s)
- Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
| | - Shuaibing Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lang Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yong Tang
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhong Han
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Fangfang Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Kong
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Benazir Abbasi
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Hongmei Yin
- College of Animal Science, Xichang University, Xichang, China,*Correspondence: Hongmei Yin,
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Congwei Gu,
| |
Collapse
|
25
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:toxins14120859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85283756
| |
Collapse
|
26
|
Cong S, Wang L, Meng Y, Cai X, Zhang C, Gu Y, Ma X, Luo L. Saussurea involucrata
oral liquid regulates gut microbiota and serum metabolism during alleviation of collagen‐induced arthritis in rats. Phytother Res 2022; 37:1242-1259. [PMID: 36451529 DOI: 10.1002/ptr.7681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Saussurea involucrata oral liquid (SIOL) can clinically relieve symptoms, such as joint pain and swelling, and morning stiffness, in patients with rheumatoid arthritis (RA). However, the mechanism of action remains unclear. This study used a combination of gut microbiota and serum metabolomics analysis to investigate the effects and potential mechanisms of SIOL intervention on rats with RA induced by type II bovine collagen and Freund's complete adjuvant. Results showed that SIOL treatment consequently improved the degree of ankle joint swelling, joint histopathological changes, joint pathological score, and expression of serum-related inflammatory cytokines (interleukin (IL)-1β, IL-4, IL-6, IL-10, and tumor necrosis factor-α) in RA model rats. 16 S rRNA sequencing results showed that SIOL increased the relative richness of the Lactobacillus and Bacteroides genus and decreased the relative richness of Romboutsia, Alloprevotella, Blautia, and Helicobacter genus. Serum nontargeted metabolomic results indicated that SIOL could regulate metabolites related to metabolic pathways, such as glycine, serine, threonine, galactose, cysteine, and methionine metabolism. Spearman correlation analysis showed that the regulatory effects of SIOL on the tricarboxylic acid (TCA) cycle, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and glyoxylate and dicarboxylate metabolism pathways were correlated with changes in the richness of the Lactobacillus, Romboutsia, Bacteroides, and Alloprevotella genus in the gut microbiome. In conclusion, this study revealed the ameliorative effects of SIOL on RA and suggested that the therapeutic effects of SIOL on RA may be related to the regulation of the community richness of the Lactobacillus, Romboutsia, Bacteroides, and Alloprevotella genus, thereby improving the TCA cycle; phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis, and glyoxylate and dicarboxylate metabolism-related pathways.
Collapse
Affiliation(s)
- Shan Cong
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Lingrui Wang
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Yan Meng
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Xuanlin Cai
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Chenxi Zhang
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Yanqin Gu
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| | - Xiumin Ma
- Tumor Hospital Affiliated to Xinjiang Medical University Xinjiang China
| | - Li Luo
- First Affiliated Hospital of Xinjiang Medical University Xinjiang China
| |
Collapse
|
27
|
Sun C, Wang Z, Hu L, Zhang X, Chen J, Yu Z, Liu L, Wu M. Targets of statins intervention in LDL-C metabolism: Gut microbiota. Front Cardiovasc Med 2022; 9:972603. [PMID: 36158845 PMCID: PMC9492915 DOI: 10.3389/fcvm.2022.972603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing researches have considered gut microbiota as a new “metabolic organ,” which mediates the occurrence and development of metabolic diseases. In addition, the liver is an important organ of lipid metabolism, and abnormal lipid metabolism can cause the elevation of blood lipids. Among them, elevated low-density lipoprotein cholesterol (LDL-C) is related with ectopic lipid deposition and metabolic diseases, and statins are widely used to lower LDL-C. In recent years, the gut microbiota has been shown to mediate statins efficacy, both in animals and humans. The effect of statins on microbiota abundance has been deeply explored, and the pathways through which statins reduce the LDL-C levels by affecting the abundance of microbiota have gradually been explored. In this review, we discussed the interaction between gut microbiota and cholesterol metabolism, especially the cholesterol-lowering effect of statins mediated by gut microbiota, via AMPK-PPARγ-SREBP1C/2, FXR and PXR-related, and LPS-TLR4-Myd88 pathways, which may help to explain the individual differences in statins efficacy.
Collapse
Affiliation(s)
- ChangXin Sun
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZePing Wang
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LanQing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoNan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiYe Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZongLiang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LongTao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: LongTao Liu
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Min Wu
| |
Collapse
|
28
|
Kan J, Wu F, Wang F, Zheng J, Cheng J, Li Y, Yang Y, Du J. Phytonutrients: Sources, bioavailability, interaction with gut microbiota, and their impacts on human health. Front Nutr 2022; 9:960309. [PMID: 36051901 PMCID: PMC9424995 DOI: 10.3389/fnut.2022.960309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Phytonutrients are natural bioactive components present in the daily diet that can exert a positive impact on human health. Studies have shown that phytonutrients may act as antioxidants and improve metabolism after being ingested, which help to regulate physiological processes and prevent metabolic disorders and diseases. However, their efficacy is limited by their low bioavailability. The gut microbiota is symbiotic with humans and its abundance and profile are related to most diseases. Interestingly, studies have shown that the gut microbiota is associated with the metabolism of phytonutrients by converting them into small molecules that can be absorbed by the body, thereby enhancing their bioavailability. Furthermore, phytonutrients can modulate the composition of the gut microbiota, and therefore improve the host's health. Here, we focus on uncovering the mechanisms by which phytonutrients and gut microbiota play roles in health, and the interrelationships between phytonutrients and gut microbiota were summarized. We also reviewed the studies that reported the efficacy of phytonutrients in human health and the future directions.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., Shanghai, China
| | | | | | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis, NC, United States
| | - Yuan Li
- Sequanta Technologies Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Yuexin Yang
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Jun Du
| |
Collapse
|
29
|
Li M, Yang L, Zhao L, Bai F, Liu X. Comparison of Intestinal Microbes in Noninfectious Anterior Scleritis Patients With and Without Rheumatoid Arthritis. Front Microbiol 2022; 13:925929. [PMID: 35756002 PMCID: PMC9218904 DOI: 10.3389/fmicb.2022.925929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
We compared intestinal microbes in anterior noninfectious scleritis patients with and without rheumatoid arthritis. Active noninfectious anterior scleritis patients without other immune diseases (G group, 16 patients) or with active rheumatoid arthritis (GY group, seven patients) were included in this study. Eight age- and sex-matched healthy subjects served as controls (N group). DNA was extracted from fecal samples. The V3-V4 16S rDNA region was amplified and sequenced by high-throughput 16S rDNA analysis, and microbial contents were determined. A significant decrease in species richness in the GY group was revealed by α- and β-diversity analyses (p = 0.02 and p = 0.004, respectively). At the genus level, 14 enriched and 10 decreased microbes in the G group and 13 enriched and 18 decreased microbes in the GY group were identified. Among them, four microbes were enriched in both the G and GY groups, including Turicibacter, Romboutsia, Atopobium, and Coprobacillus. Although two microbes (Lachnospiraceae_ND3007_group and Eggerthella) exhibited similar tendencies in the G and GY groups, changes in these microbes were more significant in the GY group (p < 0.05). Interaction analysis showed that Intestinibacter, Romboutsia, and Turicibacter, which were enriched in both the G and GY groups, correlated positively with each other. In addition, nine microbes were decreased in the GY group, which demonstrates a potential protective role for these microbes in the pathogenesis of scleritis via interactions with each other.
Collapse
Affiliation(s)
- Mengyao Li
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Li Yang
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Liangliang Zhao
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Feng Bai
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
30
|
Dietary γ-Aminobutyric Acid Supplementation Inhibits High-Fat Diet-Induced Hepatic Steatosis via Modulating Gut Microbiota in Broilers. Microorganisms 2022; 10:microorganisms10071281. [PMID: 35889001 PMCID: PMC9323641 DOI: 10.3390/microorganisms10071281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aims to investigate the effect of γ-aminobutyric acid (GABA) on liver lipid metabolism and on AA broilers. Broilers were divided into three groups and fed with low-fat diets, high-fat diets, and high-fat diets supplemented with GABA. Results showed that GABA supplementation decreased the level of triglyceride (TG) in the serum and liver of broilers fed high-fat diets, accompanied by up-regulated mRNA expression of genes related to lipolysis and β-oxidation in the liver (p < 0.05). Furthermore, GABA supplementation increased liver antioxidant capacity, accompanied by up-regulated mRNA expression of antioxidant genes (p < 0.05). 16S rRNA gene sequencing showed that GABA improved high-fat diet-induced dysbiosis of gut microbiota, increased the relative abundance of Bacteroidetes phylum and Barnesiella genus, and decreased the relative abundance of Firmicutes phylum and Ruminococcus_torques_group and Romboutsia genus (p < 0.05). Moreover, GABA supplementation promoted the production of propionic acid and butyric acid in cecal contents. Correlation analysis further suggested the ratio of Firmicutes/Bacteroidetes negatively correlated with hepatic TG content, and positively correlated with cecal short chain fatty acids content (r > 0.6, p < 0.01). Together, these data suggest that GABA supplementation can inhibit hepatic TG deposition and steatosis via regulating gut microbiota in broilers.
Collapse
|
31
|
Lee SJ, Chandrasekran P, Mazucanti CH, O’Connell JF, Egan JM, Kim Y. Dietary curcumin restores insulin homeostasis in diet-induced obese aged mice. Aging (Albany NY) 2022; 14:225-239. [PMID: 35017319 PMCID: PMC8791219 DOI: 10.18632/aging.203821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Although aging is a physiological process to which all organisms are subject, the presence of obesity and type 2 diabetes accelerates biological aging. Recent studies have demonstrated the causal relationships between dietary interventions suppressing obesity and type 2 diabetes and delaying the onset of age-related endocrine changes. Curcumin, a natural antioxidant, has putative therapeutic properties such as improving insulin sensitivity in obese mice. However, how curcumin contributes to maintaining insulin homeostasis in aged organisms largely remains unclear. Thus, the objective of this study is to examine the pleiotropic effect of dietary curcumin on insulin homeostasis in a diet-induced obese (DIO) aged mouse model. Aged (18-20 months old) male mice given a high-fat high-sugar diet supplemented with 0.4% (w/w) curcumin (equivalent to 2 g/day for a 60 kg adult) displayed a different metabolic phenotype compared to mice given a high-fat high-sugar diet alone. Furthermore, curcumin supplementation altered hepatic gene expression profiling, especially insulin signaling and senescence pathways. We then mechanistically investigated how curcumin functions to fine-tune insulin sensitivity. We found that curcumin supplementation increased hepatic insulin-degrading enzyme (IDE) expression levels and preserved islet integrity, both outcomes that are beneficial to preserving good health with age. Our findings suggest that the multifaceted therapeutic potential of curcumin can be used as a protective agent for age-induced metabolic diseases.
Collapse
Affiliation(s)
- Su-Jeong Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Prabha Chandrasekran
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Caio Henrique Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
32
|
Shan D, Wang J, Di Q, Jiang Q, Xu Q. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food Funct 2021; 13:327-343. [PMID: 34904613 DOI: 10.1039/d1fo02481g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has increasingly become a serious public health problem. There is growing evidence that nonylphenol (NP) exposure may cause steatosis, but the underlying mechanism is not fully understood. Curcumin (CUR) improves NAFLD-related lipid metabolism disorders and oxidative stress, but its preventive and therapeutic effects on NP-induced steatosis have not been reported. The objective of this investigation was to determine the capability and potential mechanism of NP to induce steatosis in vitro and the intervention of curcumin. HepG2 cells were treated with 0 μM, 20 μM, 30 μM, 40 μM NP for 24 h. Lipid droplets accumulated significantly in HepG2 cells after NP treatment, and the concentration of triglyceride (TG) and total cholesterol (T-CHO) increased significantly. Simultaneously, lipogenesis gene expression was up-regulated significantly, fatty acid oxidation (FAO) gene expression was significantly down-regulated, and reactive oxygen species (ROS) were overproduced. Meanwhile, the expression of p-AMPK/AMPK in the AMPK/mTOR signaling pathway was significantly down-regulated and the expression of p-mTOR/mTOR was markedly up-regulated. However, blocking ROS production with N-acetyl-L-cysteine (NAC) can reverse these phenomena. In addition, our study found that curcumin effectively ameliorated the effects of NP-induced steatosis. Our study indicates that NP can induce steatosis in HepG2 cells, and may be implicated in inhibiting the ROS-dependent AMPK/mTOR pathway, and that curcumin ameliorates the NAFLD-like changes induced by NP in HepG2 cells.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Jinming Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qianqian Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
33
|
Cao RR, He P, Lei SF. Novel microbiota-related gene set enrichment analysis identified osteoporosis associated gut microbiota from autoimmune diseases. J Bone Miner Metab 2021; 39:984-996. [PMID: 34338852 DOI: 10.1007/s00774-021-01247-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Gut microbiota is now considered to be a hidden organ that interacts bidirectionally with cellular responses in numerous organs belonged to the immune, bone, and nervous systems. Here, we aimed to investigate the relationships between gut microbiota and complex diseases by utilizing multiple publicly available genome-wide association. MATERIALS AND METHODS We applied a novel microbiota-related gene set enrichment analysis approach to detect the associations between gut microbiota and complex diseases by processing genome-wide association studies (GWASs) data sets of six autoimmune diseases (including celiac disease (CeD), inflammatory bowel diseases (IBD), multiple sclerosis (MS), primary biliary cirrhosis (PBC), type 1 diabetes (T1D) and primary sclerosing cholangitis (PSC)) and osteoporosis (OP). RESULTS The family Oxalobacteraceae and genus Candidatus_Soleaferrea were found to be correlated with all of the six autoimmune diseases (FDR adjusted P < 0.05). Moreover, we observed that the six autoimmune diseases except PBC shared 3 overlapping features (including family Peptostreptococcaceae, order Gastranaerophilales and genus Romboutsia). For all of the six autoimmune diseases and BMDs (LS-BMD and TB-BMD), an association signal was observed for genus Candidatus_Soleaferrea (FDR adjusted P < 0.05). Notably, FA / FN-BMD shared the maximum number of overlapping microbial features (e.g., genus Ruminococcaceae_UCG009, Erysipelatoclostridium and Ruminococcaceae_UCG013). CONCLUSION Our study found that part of the gut microbiota could be novel regulators of BMDs and autoimmune diseases via the effects of its metabolites and may lead to a better understanding of the role played by gut microbiota in the communication of the microbiota-skeletal/immune-gut axis.
Collapse
Affiliation(s)
- Rong-Rong Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
34
|
Analyzing Type 2 Diabetes Associations with the Gut Microbiome in Individuals from Two Ethnic Backgrounds Living in the Same Geographic Area. Nutrients 2021; 13:nu13093289. [PMID: 34579166 PMCID: PMC8468640 DOI: 10.3390/nu13093289] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
It is currently unknown whether associations between gut microbiota composition and type 2 diabetes (T2D) differ according to the ethnic background of individuals. Thus, we studied these associations in participants from two ethnicities characterized by a high T2D prevalence and living in the same geographical area, using the Healthy Life In Urban Settings (HELIUS) study. We included 111 and 128 T2D participants on metformin (Met-T2D), 78 and 49 treatment-naïve T2D (TN-T2D) participants, as well as a 1:1 matched group of healthy controls from, respectively, African Surinamese and South-Asian Surinamese descent. Fecal microbiome profiles were obtained through 16S rRNA gene sequencing. Univariate and machine learning analyses were used to explore the associations between T2D and the composition and function of the gut microbiome in both ethnicities, comparing Met-T2D and TN-T2D participants to their respective healthy control. We found a lower α-diversity for South-Asian Surinamese TN-T2D participants but no significant associations between TN-T2D status and the abundance of bacterial taxa or functional pathways. In African Surinamese participants, we did not find any association between TN-T2D status and the gut microbiome. With respect to Met-T2D participants, we identified several bacterial taxa and functional pathways with a significantly altered abundance in both ethnicities. More alterations were observed in South-Asian Surinamese. Some altered taxa and pathways observed in both ethnicities were previously related to metformin use. This included a strong negative association between the abundance of Romboutsia and Met-T2D status. Other bacterial taxa were consistent with previous observations in T2D, including reduced butyrate producers such as Anaerostipes hadrus. Hence, our results highlighted both shared and unique gut microbial biomarkers of Met-T2D in individuals from different ethnicities but living in the same geographical area. Future research using higher-resolution shotgun sequencing is needed to clarify the role of ethnicity in the association between T2D and gut microbiota composition.
Collapse
|