1
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares-Vázquez V, Misteli B, Mori-Bazzano L, Moser V, Rotta F, Schmid-Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2024. [PMID: 39542439 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Jaffer Y Dar
- ICAR-Central Soil Salinity Research Institute, Karnal, 132001, India
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Vanessa De Santis
- Water Research Institute, National Research Council, Corso Tonolli 50, Verbania-Pallanza, Verbania, 28922, Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology Group, University of Vic - Central University of Catalonia, Carrer de la Laura 13, Catalonia, 08500 Vic, Spain
| | - Julia Pasqualini
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brückstr. 3a, Magdeburg, 39114, Germany
| | - Oloyede A Adekolurejo
- Ecology and Evolution, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
- Department of Biology, Adeyemi Federal University of Education, Ondo City, Ondo, PMB 520, Nigeria
| | - Bryan Burri
- Department F-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 30 Quai Ernest-Ansermet Sciences II, Genève, CH-1205, Switzerland
| | - Marco J Cabrerizo
- Department of Ecology & Institute of Water Research, University of Granada, Campus Fuentenueva s/n, Granada, 18071, Spain
- Estación de Fotobiología Playa Unión, casilla de correos 15, Rawson, Chubut, 9103, Argentina
| | - Teofana Chonova
- Department Environmental Chemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, Dübendorf, CH-8600, Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, 20126, Italy
| | - Annemieke M Drost
- Department of Aquatic Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| | - Aida Figler
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, Budapest, 1094, Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, 0803, Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Daniel R Harvey
- Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Víctor Manzanares-Vázquez
- Department of Research and Development, Coccosphere Environmental Analysis, C/Cruz 39, 29120 Alhaurín el Grande, Málaga, Spain
| | - Benjamin Misteli
- WasserCluster Lunz - Biologische Station, Dr Carl Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Laureen Mori-Bazzano
- Department F-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 30 Quai Ernest-Ansermet Sciences II, Genève, CH-1205, Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, CH-8903, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, CH-8600, Switzerland
| | - Federica Rotta
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, Pavia, 27100, Italy
- Institute of Earth Science, University of Applied Science and Arts of Southern Switzerland, Via Flora Ruchat-Roncati 15, Mendrisio, CH-6850, Switzerland
| | - Bianca Schmid-Paech
- University Weihenstephan-Triesdorf of Applied Science, Am Hofgarten 4, Freising, 85354, Germany
| | - Camille M Touchet
- Université Claude Bernard - Lyon 1, "LEHNA UMR 5023, CNRS, ENTPE, 3-6, rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| |
Collapse
|
2
|
Saha G, Chandrasekaran N. A comprehensive review on the adverse effect of microplastics in the gastrointestinal system of Artemia sp. Heliyon 2024; 10:e37720. [PMID: 39309788 PMCID: PMC11416537 DOI: 10.1016/j.heliyon.2024.e37720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Microplastic waste in aquatic environments can lead to the mortality of large marine creatures, as it increases the risk of entanglement, strangulation, and starvation. Even though micro- and nano-plastics pose a hidden threat, researchers still know little about them. The food source is an essential factor in gut microbial diversity. A well-balanced intestinal microbiome impacts animal development and health. According to research, microplastics (MPs) like polyethylene (PE) and polystyrene (PS) affected the gut microbiota of Artemia sp., increasing their genetic diversity. Therefore, the present study examined the negative impacts of MPs within the gastrointestinal tract of Artemia sp., the primary protein source of fish. A comprehensive literature review showed that microplastic contamination and its additives impair environmental and aquatic health. The findings of this research show that MPs alter the gut microbiota of Artemia, which in turn affects fish and, ultimately, human health via a cascade of impacts.
Collapse
Affiliation(s)
- Guria Saha
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
3
|
Wróbel M, Deja-Sikora E, Hrynkiewicz K, Kowalkowski T, Szymańska S. Microbial Allies in Plastic Degradation: Specific bacterial genera as universal plastic-degraders in various environments. CHEMOSPHERE 2024; 363:142933. [PMID: 39067822 DOI: 10.1016/j.chemosphere.2024.142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Microbiological degradation of polymers offers a promising approach for mitigating environmental plastic pollution. This study (i) elucidated the diversity and structure of bacterial microbiomes from distinct environments (landfill soil, sewage sludge, and river water) characterized by specific physicochemical parameters, and (ii) utilized environment-derived microbial cultures enriched with microplastics (MPs) to investigate the degradation of polymers and identify culturable bacterial strains contributing to the plastisphere. We found that alpha diversity was notably higher in river water (∼20%) compared to landfill soil and sewage sludge. Dominant phyla included Pseudomonadota in sewage sludge (39.1%) and water (23.7%), while Actinomycetota prevailed in soil (38.5%). A multistage experiment, involving successive subcultures of environmental microbiomes exposed to polypropylene (PP), polyvinyl chloride (PVC), polycarbonate (PC), and polylactic acid (PLA), facilitated the assessment of MPs degradation processes. Analysis of carbonyl indices CIs and FTIR spectra revealed substantial structural changes in the treatment PVC-landfill soil, as well as in PLA- and PC-sludge enriched cultures. Further, using enriched cultures as a source of microorganisms, the study obtained 17 strains of plastic degraders from landfill soil, 14 from sewage sludge, and 6 from river water. Remarkably, similar bacterial genera were isolated across environmental microbiomes regardless of the MPs substrate used in enriched cultures. Among the 37 identified strains, Pseudomonadota predominated (64.86%) and were accompanied by Bacteroidota (16.22%), Actinomycetota (13.51%), and Bacillota (5.41%). This study highlights the complex relationship between microbiome diversity and the biodegradation efficiency of plastics, showing the potential for using microbial communities in the plastic pollution management.
Collapse
Affiliation(s)
- Mariusz Wróbel
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland; Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Tomasz Kowalkowski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Sonia Szymańska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| |
Collapse
|
4
|
Echeveste P, Fernández-Juárez V, Brito-Echeverría J, Rodríguez-Romero A, Tovar-Sánchez A, Agawin NS. Toxicity of inorganic nanoparticles and commercial sunscreens on marine bacteria. CHEMOSPHERE 2024; 364:143066. [PMID: 39128774 DOI: 10.1016/j.chemosphere.2024.143066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The Balearic Islands, a top tourist destination for sunny beaches, face physical and chemical pressures from human activities, impacting keystone species like the endemic seagrass Posidonia oceanica and its associated microbiome. This study evaluated the effects of ZnO and TiO2 nanoparticles and three commercial sunscreens with varying protection factors (50 or 90) and chemical complexities (1- SPF50_E "eco-friendly"; 2- SPF50 not "eco-friendly"; 3- SPF90 not "eco-friendly") on five heterotrophic bacteria (Pseudomonas azotifigens, Marinobacterium litorale, Thiothrix nivea, Sedimenticola thiotaurini and Cobetia sp) and two autotrophic cyanobacteria (Halothece sp. and Fischerella muscicola) associated to P. oceanica, as well as a natural leaf epiphytic community. Results indicated that TiO2 affected all heterotrophic bacteria, while ZnO was toxic to only two species, while autotrophs were unaffected. Commercial sunscreens impacted three heterotrophs and the natural epiphytic community, while autotrophs were only affected by SPF50. SPF50_E reduced phosphorus uptake, and both SPF50 and SPF90 decreased alkaline phosphatase activity. Reactive oxygen species production was mainly induced by SPF90, followed by SPF50_E and SPF50. Generally, the smallest bacteria were most sensitive to UV-filters (UVFs). This study indicates that UVFs exposure may alter the epiphytic community structure of P. oceanica.
Collapse
Affiliation(s)
- Pedro Echeveste
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain.
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | | | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Nona S Agawin
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain
| |
Collapse
|
5
|
Zhang T, Luo XS, Kumar A, Liu X, Tong X, Yao X, Fan J, Chen Z, Chaturvedi S. Effects of micro-nano plastics on the environmental biogeochemical cycle of nitrogen: A comprehensive review. CHEMOSPHERE 2024; 357:142079. [PMID: 38642771 DOI: 10.1016/j.chemosphere.2024.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Micro-nano plastics (MNPs; size <5 mm), ubiquitous and emerging pollutants, accumulated in the natural environment through various sources, and are likely to interact with nutrients, thereby influencing their biogeochemical cycle. Increasing scientific evidences reveal that MNPs can affect nitrogen (N) cycle processes by affecting biotopes and organisms in the environmental matrix and MNPs biofilms, thus plays a crucial role in nitrous oxide (N2O) and ammonia (NH3) emission. Yet, the mechanism and key processes behind this have not been systematically reviewed in natural environments. In this review, we systematically summarize the effects of MNPs on N transformation in terrestrial, aquatic, and atmospheric ecosystems. The effects of MNPs properties on N content, composition, and function of the microbial community, enzyme activity, gene abundance and plant N uptake in different environmental conditions has been briefly discussed. The review highlights the significant potential of MNPs to alter the properties of the environmental matrix, microbes and plant or animal physiology, resulting in changes in N uptake and metabolic efficiency in plants, thereby inhibiting organic nitrogen (ON) formation and reducing N bioavailability, or altering NH3 emissions from animal sources. The faster the decomposition of plastics, the more intense the perturbation of MNPs to organisms in the natural ecosystem. Findings of this provide a more comprehensive analysis and research directions to the environmentalists, policy makers, water resources planners & managers, biologists, and biotechnologists to do integrate approaches to reach the practical engineering solutions which will further diminish the long-term ecological and climatic risks.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Liu
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Tong
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuewen Yao
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiayi Fan
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihuai Chen
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Sadashiv Chaturvedi
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
6
|
Ledet J, Tan C, Guan XH, Yong CLX, Ying L, Todd P. Trapping of microplastics and other anthropogenic particles in seagrass beds: Ubiquity across a vertical and horizontal sampling gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106487. [PMID: 38583358 DOI: 10.1016/j.marenvres.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Seagrass beds can trap large amounts of marine debris leading to areas of accumulation, known as 'sinks', of anthropogenic particles. While the presence of vegetation can enhance accumulation, less is known about how the trapping effect changes from vegetated to less vegetated patches. To test this, vegetation and sediment were sampled along a vegetation percent cover gradient from the centre of seagrass beds to nearby less vegetated patches. To determine whether trapped particles can lead to increased accumulation in associated fauna, gastropods were also collected from the transects laid across this gradient. Extracted anthropogenic particles were counted and characterised. Particles were detected in all sample types and reached quantifiable limits in at least 50% of sediment and gastropod samples. There was no significant difference in the distribution of particles found in seagrass beds compared to less vegetated patches, suggesting other factors contribute to the trapping efficiency of biogenic habitats besides simply the presence or absence of vegetation.
Collapse
Affiliation(s)
- Janine Ledet
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Chloe Tan
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Xing Hua Guan
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Clara Lei Xin Yong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Lynette Ying
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Peter Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558.
| |
Collapse
|
7
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F. Do microbial decomposers find micro- and nanoplastics to be harmful stressors in the aquatic environment? A systematic review of in vitro toxicological research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166561. [PMID: 37633392 DOI: 10.1016/j.scitotenv.2023.166561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microbial decomposers (bacteria and fungi) are likely to interact with plastic particles introduced into natural systems, particularly micro- and nanoplastics (MNPs), exposing them to a variety of risks. In vitro testing has proven to be an accessible and viable method for gaining insights into how microbial decomposers behave individually and systemically toward MNPs. Recent advances have enhanced our understanding of MNP interactions with organisms, revealing the molecular foundations of adaptive responses as well as the biological impact and potential risks to MNPs. Despite widespread attention, this topic has not yet been reviewed. Here, we conducted a systematic review of the available research to critically assess and highlight the most recent advances in two major areas: (1) methods for in vitro evaluation of environmentally relevant microbial decomposers to MNPs; and (2) current understanding of the underlying toxicity mechanisms gained from in vitro assessments. We also addressed the key considerations throughout and proposed available opportunities in the field. Our analysis revealed that MNPs' toxicity has been studied in vitro either alone or in combination with other contaminants (e.g., antibiotics and metallic nanoparticles), with Escherichia coli and polystyrene particles receiving the most attention. Moreover, there were methodological differences in terms of MNP size, shape, polymer, surface characteristics, exposure period, and concentrations. A combination of methods, including growth-viability tests, biochemical assays, and omics profiling (metabolomics and transcriptomics), were employed to detect the effects of MNP exposure and explain its toxicity mechanism. The current literature suggests that the impacts of MNPs on microbial decomposers include alterations in the antioxidative system, gene expression levels and cell-membrane permeability and oxidative damage, all of which can be further influenced by MNPs interaction with other contaminants. This review will thus provide critical insights and up-to-date knowledge to assist novices and experts in promoting advancements and research.
Collapse
Affiliation(s)
- V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
8
|
Tuuri EM, Leterme SC. How plastic debris and associated chemicals impact the marine food web: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121156. [PMID: 36709917 DOI: 10.1016/j.envpol.2023.121156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Contamination from plastic debris is omnipresent in marine environments, posing a substantial risk to marine organisms, food webs and the ecosystem. The overlap between the size range of marine plastic pollution with prey means that plastics are readily available for consumption by organisms at all trophic levels. Large plastic debris can directly result in the death of larger marine organisms, through entanglement, strangulation, choking and starvation through a false sense of satiation. Whereas smaller plastic debris, such as micro- and nano-plastics can have adverse impact to marine organisms due to their large surface area to volume ratio and their ability to translocate within an organism. Various physiological processes are reported to be impacted by these small contaminants, such as feeding behaviour, reproductive outputs, developmental anomalies, changes in gene expression, tissue inflammation and the inhibition of growth and development to both adults and their offspring. Micro- and nano-plastics are still relatively poorly understood and are considered a hidden threat. Plastic is a complex contaminant due to the diversity in sizes, shapes, polymer compositions, and chemical additives. These factors can each have unique and species-specific impacts. Consumption of plastics can occur directly, through ingestion and indirectly, through trophic transfer, entanglement of prey, adherence of plastics to external surfaces, and adherence of organisms to the external surfaces of plastics. This review investigated the intrusion of plastics into the marine food web and the subsequent consequences of plastic pollution to marine biota.The objective of this review was to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Through a concise analysis of the available literature the review has shown that plastic pollution and their associated additives can adversely impact environmental and biological health.
Collapse
Affiliation(s)
- Elise M Tuuri
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| | - Sophie Catherine Leterme
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
9
|
Khalid N, Aqeel M, Noman A, Fatima Rizvi Z. Impact of plastic mulching as a major source of microplastics in agroecosystems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130455. [PMID: 36463747 DOI: 10.1016/j.jhazmat.2022.130455] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The contamination of agroecosystems by microplastics (MPs) has raised great concerns recently. Plastic mulching has contributed a lot in the building of MP pollution in farmlands. This technique has been in use for decades worldwide because of its immense advantages, preferably in drier and colder regions. The physical extraction of plastic mulches at the end of the growing season is very laborious and ineffective, and thus small pieces of mulches are left in the field which later convert into MP particles after aging, weathering, or on exposure to solar radiation. MPs not only influence physical, chemical, or biological properties of soils but also reduce crop productivity which could be a threat to our food security. They also interact with and accumulate other environmental contaminants such as microbial pathogens, heavy metals, and persistent organic pollutants on their surfaces which increase their risk of toxicity in the environment. MPs also transfer from one trophic level to the other in the food chain and ultimately may impact human health. Because of the ineffectiveness of the recovery of plastic film fragments from fields, researchers are now mainly focusing on alternative solutions to conventional plastic mulch films such as the use of biodegradable mulches. In this review, we have discussed the issue of plastic mulch films in agroecosystems and tried to link already existing knowledge to the current limitations in research on this topic from cropland soils and future prospects have been identified and proposed.
Collapse
Affiliation(s)
- Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| |
Collapse
|
10
|
Amaneesh C, Anna Balan S, Silpa PS, Kim JW, Greeshma K, Aswathi Mohan A, Robert Antony A, Grossart HP, Kim HS, Ramanan R. Gross Negligence: Impacts of Microplastics and Plastic Leachates on Phytoplankton Community and Ecosystem Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5-24. [PMID: 36534053 DOI: 10.1021/acs.est.2c05817] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plastic debris is an established environmental menace affecting aquatic systems globally. Recently, microplastics (MP) and plastic leachates (PL) have been detected in vital human organs, the vascular system, and in vitro animal studies positing severe health hazards. MP and PL have been found in every conceivable aquatic ecosystem─from open oceans and deep sea floors to supposedly pristine glacier lakes and snow covered mountain catchment sites. Many studies have documented the MP and PL impacts on a variety of aquatic organisms, whereby some exclusively focus on aquatic microorganisms. Yet, the specific MP and PL impacts on primary producers have not been systematically analyzed. Therefore, this review focuses on the threats posed by MP, PL, and associated chemicals on phytoplankton, their comprehensive impacts at organismal, community, and ecosystem scales, and their endogenous amelioration. Studies on MP- and PL-impacted individual phytoplankton species reveal the production of reactive oxygen species, lipid peroxidation, physical damage of thylakoids, and other physiological and metabolic changes, followed by homo- and heteroaggregations, ultimately eventuating in decreased photosynthesis and primary productivity. Likewise, analyses of the microbial community in the plastisphere show a radically different profile compared to the surrounding planktonic diversity. The plastisphere also enriches multidrug-resistant bacteria, cyanotoxins, and pollutants, accelerating microbial succession, changing the microbiome, and thus, affecting phytoplankton diversity and evolution. These impacts on cellular and community scales manifest in changed ecosystem dynamics with widespread bottom-up and top-down effects on aquatic biodiversity and food web interactions. These adverse effects─through altered nutrient cycling─have "knock-on" impacts on biogeochemical cycles and greenhouse gases. Consequently, these impacts affect provisioning and regulating ecosystem services. Our citation network analyses (CNA) further demonstrate dire effects of MP and PL on all trophic levels, thereby unsettling ecosystem stability and services. CNA points to several emerging nodes indicating combined toxicity of MP, PL, and their associated hazards on phytoplankton. Taken together, our study shows that ecotoxicity of plastic particles and their leachates have placed primary producers and some aquatic ecosystems in peril.
Collapse
Affiliation(s)
- C Amaneesh
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Shankari Anna Balan
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
- Wageningen University & Research, P.O. Box 8000, 6700 EA, Wageningen, Netherlands
| | - P S Silpa
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - A Aswathi Mohan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Aiswarya Robert Antony
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, 12587 Berlin, Germany
- Potsdam University, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Centre for Policy Research & Governance, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| |
Collapse
|
11
|
Tavelli R, Callens M, Grootaert C, Abdallah MF, Rajkovic A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Birnstiel S, Sebastián M, Romera-Castillo C. Structure and activity of marine bacterial communities responding to plastic leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155264. [PMID: 35439504 DOI: 10.1016/j.scitotenv.2022.155264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 05/12/2023]
Abstract
Plastic in the ocean releases organic compounds that are able to enter the marine dissolved organic carbon pool and be utilized by heterotrophic bacteria. However, no information is known about which groups of bacteria are able to grow and degrade plastic leachates. Here we characterized a marine bacterial community from the NW Mediterranean Sea growing on plastic leachates and quantified its total activity. We used two petro-based plastics, low density polyethylene (LDPE) and polystyrene, and one biodegradable plastic, polylactic acid (PLA), to generate leachates under irradiated (UV-Vis) and non-irradiated conditions. Then we incubated them with a natural bacterial inoculum and determined the single-cell activity and associated taxonomy of the bacterial groups, using a combination of Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARDFISH) and BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT). The community growing in the leachates was mainly composed of Alteromonas (Gammaproteobacteria), followed by Roseobacter (Alphaproteobacteria) and unclassified Gammaproteobacteria. Overall, marine bacteria in the irradiated treatments showed higher total activity compared to the non-irradiated ones, with the community growing on LDPE's leachates presenting the highest values. The biodegradable PLA leachates presented lower activity than those from petro-based plastics but similar bacterial composition, suggesting that it is possible that PLA could last in the ocean as much as petro-based plastics do. The results from this study show the impact of marine plastic debris in the marine microbial community and the marine carbon cycle.
Collapse
|
13
|
Fernández-Juárez V, Jaén-Luchoro D, Brito-Echeverría J, Agawin NSR, Bennasar-Figueras A, Echeveste P. Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean Epiphyte Cobetia Sp. to Varying Nutrient Concentration. MICROBIAL ECOLOGY 2022; 83:296-313. [PMID: 33954842 DOI: 10.1007/s00248-021-01766-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Bacteria are essential in the maintenance and sustainment of marine environments (e.g., benthic systems), playing a key role in marine food webs and nutrient cycling. These microorganisms can live associated as epiphytic or endophytic populations with superior organisms with valuable ecological functions, e.g., seagrasses. Here, we isolated, identified, sequenced, and exposed two strains of the same species (i.e., identified as Cobetia sp.) from two different marine environments to different nutrient regimes using batch cultures: (1) Cobetia sp. UIB 001 from the endemic Mediterranean seagrass Posidonia oceanica and (2) Cobetia sp. 4B UA from the endemic Humboldt Current System (HCS) seagrass Heterozostera chilensis. From our physiological studies, both strains behaved as bacteria capable to cope with different nutrient and pH regimes, i.e., N, P, and Fe combined with different pH levels, both in long-term (12 days (d)) and short-term studies (4 d/96 h (h)). We showed that the isolated strains were sensitive to the N source (inorganic and organic) at low and high concentrations and low pH levels. Low availability of phosphorus (P) and Fe had a negative independent effect on growth, especially in the long-term studies. The strain UIB 001 showed a better adaptation to low nutrient concentrations, being a potential N2-fixer, reaching higher growth rates (μ) than the HCS strain. P-acquisition mechanisms were deeply investigated at the enzymatic (i.e., alkaline phosphatase activity, APA) and structural level (e.g., alkaline phosphatase D, PhoD). Finally, these results were complemented with the study of biochemical markers, i.e., reactive oxygen species (ROS). In short, we present how ecological niches (i.e., MS and HCS) might determine, select, and modify the genomic and phenotypic features of the same bacterial species (i.e., Cobetia spp.) found in different marine environments, pointing to a direct correlation between adaptability and oligotrophy of seawater.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Jocelyn Brito-Echeverría
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Nona S R Agawin
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain
| | | | - Pedro Echeveste
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
- Instituto Milenio de Oceanografía, Concepción, Chile
| |
Collapse
|