1
|
Kumar K, Singh D. Toxicity and bioremediation of the lead: a critical review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1879-1909. [PMID: 36617394 DOI: 10.1080/09603123.2023.2165047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Lead is a naturally occurring, bluish-gray metal that is found in small quantities in the earth's crust. The existing literature demonstrates that non-biodegradable character and continuous use results in accumulation of lead concentration in the environment and causes various ill effects such as neurotoxicity, change in psychological and behavioral development of different organisms. Nowadays the most effective technique in the revival of the environment is bioremediation and it is environmentally friendly and cost-effective. Bacterial strains such as Oceanobacillus profundus and Lactobacillus acidophilus ATCC4356 have the ability to reduce lead 97% and 73.9%, respectively. Similarly some species of algae and fungal strains also showed lead removal efficiency as 74% (spirulina), 97.1% (Chlorella kessleri), 95.5% (Penicillium janthinillum) and 86% (Aspergillus flavus). Biodegradation of lead by various microbes would be the most efficient and sustainable approach. This review focuses on toxicity, fate of lead in the environment and its microbial degradation.
Collapse
Affiliation(s)
- Khushhal Kumar
- Department of Zoology, Central University of Jammu, Rahya-Suchani, Samba, Jammu and Kashmir, India
| | - Devinder Singh
- Department of Zoology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Alkhanjaf AAM, Sharma S, Sharma M, Kumar R, Arora NK, Kumar B, Umar A, Baskoutas S, Mukherjee TK. Microbial strategies for copper pollution remediation: Mechanistic insights and recent advances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123588. [PMID: 38401635 DOI: 10.1016/j.envpol.2024.123588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Environmental contamination is aninsistent concern affecting human health and the ecosystem. Wastewater, containing heavy metals from industrial activities, significantly contributes to escalating water pollution. These metals can bioaccumulate in food chains, posing health risks even at low concentrations. Copper (Cu), an essential micronutrient, becomes toxic at high levels. Activities like mining and fungicide use have led to Copper contamination in soil, water, and sediment beyond safe levels. Copper widely used in industries, demands restraint of heavy metal ion release into wastewater for ecosystem ultrafiltration, membrane filtration, nanofiltration, and reverse osmosis, combat heavy metal pollution, with emphasis on copper.Physical and chemical approaches are efficient, large-scale feasibility may have drawbackssuch as they are costly, result in the production of sludge. In contrast, bioremediation, microbial intervention offers eco-friendly solutions for copper-contaminated soil. Bacteria and fungi facilitate these bioremediation avenues as cost-effective alternatives. This review article emphasizes on physical, chemical, and biological methods for removal of copper from the wastewater as well asdetailing microorganism's mechanisms to mobilize or immobilize copper in wastewater and soil.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Sonu Sharma
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monu Sharma
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Raman Kumar
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Naresh Kumar Arora
- Division of Soil and Crop Management, Central Soil Salinity Research Institute, Karnal, 133001, Haryana, India
| | - Brajesh Kumar
- Division of Soil and Crop Management, Central Soil Salinity Research Institute, Karnal, 133001, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| | | |
Collapse
|
3
|
Shen Q, Ruan H, Zhang H, Wu T, Zhu K, Han W, Dong R, Ming T, Qi H, Zhang Y. Utilization of CRISPR-Cas genome editing technology in filamentous fungi: function and advancement potentiality. Front Microbiol 2024; 15:1375120. [PMID: 38605715 PMCID: PMC11007153 DOI: 10.3389/fmicb.2024.1375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Filamentous fungi play a crucial role in environmental pollution control, protein secretion, and the production of active secondary metabolites. The evolution of gene editing technology has significantly improved the study of filamentous fungi, which in the past was laborious and time-consuming. But recently, CRISPR-Cas systems, which utilize small guide RNA (sgRNA) to mediate clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas), have demonstrated considerable promise in research and application for filamentous fungi. The principle, function, and classification of CRISPR-Cas, along with its application strategies and research progress in filamentous fungi, will all be covered in the review. Additionally, we will go over general matters to take into account when editing a genome with the CRISPR-Cas system, including the creation of vectors, different transformation methodologies, multiple editing approaches, CRISPR-mediated transcriptional activation (CRISPRa) or interference (CRISPRi), base editors (BEs), and Prime editors (PEs).
Collapse
Affiliation(s)
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Liu L, Sakai K, Tanaka T, Kusumoto KI. Subcomponents in humic acid structure contribute to the differential responses of Aspergillus oryzae strains to humic acid. J GEN APPL MICROBIOL 2024; 69:260-269. [PMID: 37468259 DOI: 10.2323/jgam.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Humic acid (HA) is a complex natural organic macromolecule, can be decomposed to low-molecular compounds by some soil fungi and then influences the growth of fungi. Aspergillus oryzae is a fungus domesticated from its ancestor, which was supposed to live in soil. Group 3 strains of A. oryzae hold fewer aflatoxin-biosynthetic genes than group 1 strains and may differently response to HA because of the deletion of some genes along with the domestication. However, effect of HA on growth of A. oryzae group 1 and group 3 strains remains unclear. In this study, four strains of A. oryzae in group 1 and four in group 3 were point inoculated on equivalent medium (pH 7.3) with two commercially available HAs. The growth of RIB40 was the most stimulated among group 1 strains and that of RIB143 was the most inhibited among group 3 strains. To identify the basis of these differences, we examined the possible effects of HA subcomponents including polyphenol and minerals on the growth of RIB40 and RIB143. Polyphenol represented by gallic acid (GA), a partial structure common with model HA, and mineral ions including Al 3+ , Ca 2+ , Ti 4+ , Mn 2+ , Sr 2+ , and Ba2+ contributed to stimulating the growth of RIB40, whereas these components generally did not affect the growth of RIB143. Thus, our findings indicate that the sub-compositions of HAs, including GA and several minerals, were the main factors driving the different responses of RIB40 and RIB143 to HAs.
Collapse
Affiliation(s)
- Liyun Liu
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Kanae Sakai
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Takumi Tanaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ken-Ichi Kusumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
5
|
Gao X, Wei M, Zhang X, Xun Y, Duan M, Yang Z, Zhu M, Zhu Y, Zhuo R. Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. BIORESOURCE TECHNOLOGY 2024; 395:130337. [PMID: 38244937 DOI: 10.1016/j.biortech.2024.130337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Addressing the environmental contamination from heavy metals and organic pollutants remains a critical challenge. This study explored the resilience and removal potential of Pleurotus ostreatus GEMB-PO1 for copper. P. ostreatus GEMB-PO1 showed significant tolerance, withstanding copper concentrations up to 2 mM. Its copper removal efficiency ranged from 64.56 % at 0.5 mM to 22.90 % at 8 mM. Transcriptomic insights into its response to copper revealed a marked upregulation in xenobiotic degradation-related enzymes, such as laccase and type II peroxidases. Building on these findings, a co-remediation system using P. ostreatus GEMB-PO1 was developed to remove both copper and organic pollutants. While this approach significantly enhanced the degradation efficiency of organic contaminants, it concurrently exhibited a diminished efficacy in copper removal within the composite system. This study underscores the potential of P. ostreatus GEMB-PO1 in environmental remediation. Nevertheless, further investigation is required to optimize the simultaneous removal of organic pollutants and copper.
Collapse
Affiliation(s)
- Xuan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China
| | - Mi Wei
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaodan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yu Xun
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Mifang Duan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Zhilong Yang
- Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China
| | - Mingdong Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
6
|
Zhang X, Zhang L, Yu T, Gao Y, Zhai T, Zhao T, Xing Z. Genetic response analysis of Beauveria bassiana Z1 under high concentration Cd(II) stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132984. [PMID: 37995637 DOI: 10.1016/j.jhazmat.2023.132984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Cadmium (Cd(II)) has carcinogenic and teratogenic toxicity, which can be accumulated in the human body through the food chain, endangering human health and life. In this study, a highly Cd(II)-tolerant fungus named Beauveria bassiana Z1 was studied, and its Cd(Ⅱ) removal efficiency was 71.2% when the Cd(II) concentration was 10 mM. Through bioanalysis and experimental verification of the transcriptome data, it was found that cadmium entered the cells through calcium ion channels, and then complexed with intracellular glutathione (GSH) and stored in vacuoles or excluded extracellular by ABC transporters. Cytochrome P450 was significantly upregulated in many pathways and actively participated in detoxification related reactions. The addition of cytochrome inhibitor taxifolin reduced the removal efficiency of Cd(II) by 45%. In the analysis, it demonstrated that ACOX1 gene and OPR gene of jasmonic acid (JA) synthesis pathway were significantly up-regulated, and were correlated with bZIP family transcription factors cpc-1_0 and pa p1_0. The results showed that exogenous JA could improve the removal efficiency of Cd(II) by strain Z1.
Collapse
Affiliation(s)
- Xiaoping Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Tiantian Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhui Gao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tianrui Zhai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
7
|
Fakhry H, Ghoniem AA, Al-Otibi FO, Helmy YA, El Hersh MS, Elattar KM, Saber WIA, Elsayed A. A Comparative Study of Cr(VI) Sorption by Aureobasidium pullulans AKW Biomass and Its Extracellular Melanin: Complementary Modeling with Equilibrium Isotherms, Kinetic Studies, and Decision Tree Modeling. Polymers (Basel) 2023; 15:3754. [PMID: 37765609 PMCID: PMC10537747 DOI: 10.3390/polym15183754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Melanin as a natural polymer is found in all living organisms, and plays an important role in protecting the body from harmful UV rays from the sun. The efficiency of fungal biomass (Aureobasidium pullulans) and its extracellular melanin as Cr(VI) biosorbents was comparatively considered. The efficiency of Cr(VI) biosorption by the two sorbents used was augmented up to 240 min. The maximum sorption capacities were 485.747 (fungus biomass) and 595.974 (melanin) mg/g. The practical data were merely fitted to both Langmuir and Freundlich isotherms. The kinetics of the biosorption process obeyed the pseudo-first-order. Melanin was superior in Cr(VI) sorption than fungal biomass. Furthermore, four independent variables (contact time, initial concentration of Cr(VI), biosorbent dosage, and pH,) were modeled by the two decision trees (DTs). Conversely, to equilibrium isotherms and kinetic studies, DT of fungal biomass had lower errors compared to DT of melanin. Lately, the DTs improved the efficacy of the Cr(VI) removal process, thus introducing complementary and alternative solutions to equilibrium isotherms and kinetic studies. The Cr(VI) biosorption onto the biosorbents was confirmed and elucidated through FTIR, SEM, and EDX investigations. Conclusively, this is the first report study attaining the biosorption of Cr(VI) by biomass of A. pullulans and its extracellular melanin among equilibrium isotherms, kinetic study, and algorithmic decision tree modeling.
Collapse
Affiliation(s)
- Hala Fakhry
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11865, Egypt
- Department of Aquatic Environmental Science, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Abeer A. Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Mohammed S. El Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; (A.A.G.); (M.S.E.H.)
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
8
|
Danial AW, Dardir FM. Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt. Microb Cell Fact 2023; 22:152. [PMID: 37573310 PMCID: PMC10422821 DOI: 10.1186/s12934-023-02166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Despite being necessary, copper is a toxic heavy metal that, at high concentrations, harms the life system. The parameters that affect the bioreduction and biosorption of copper are highly copper-resistant bacteria. RESULTS In this work, the ability of the bacterial biomass, isolated from black shale, Wadi Nakheil, Red Sea, Egypt, for Cu2+ attachment, was investigated. Two Cu2+ resistance Bacillus species were isolated; Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871. The most tolerant bacterial isolate to Cu2+ was B. pumilus. Different factors on Cu2+ biosorption were analyzed to estimate the maximum conditions for Cu biosorption. The qmax for Cu2+ by B. pumilus and B. subtilis determined from the Langmuir adsorption isotherm was 11.876 and 19.88 mg. g-1, respectively. According to r2, the biosorption equilibrium isotherms close-fitting with Langmuir and Freundlich model isotherm. Temkin isotherm fitted better to the equilibrium data of B. pumilus and B. subtilis adsorption. Additionally, the Dubinin-Radushkevich (D-R) isotherm suggested that adsorption mechanism of Cu2+ is predominately physisorption. CONCLUSION Therefore, the present work indicated that the biomass of two bacterial strains is an effective adsorbent for Cu2+ removal from aqueous solutions.
Collapse
Affiliation(s)
- Amal William Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
9
|
Hasimuna OJ, Chibesa M, Mumbula I, Mphande J, Jere WWL, Phiri D, Nawanzi K, Siavwapa S, Maseko AF, Munganga BP, Nchima G, Khalil HS, Maulu S. Contamination of selected heavy metals in Limnothrissa miodon (Boulenger, 1906) in the four strata of Lake Kariba Zambia: are the consumers at risk? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:521-529. [PMID: 37458264 DOI: 10.1080/03601234.2023.2235262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Pollution of aquatic ecosystems is one of the major challenges affecting many countries of the world. Heavy metal pollutants, in particular, threaten the life of aquatic organisms (fauna and flora) and, more importantly, humans who consume aquatic products as a critical source of proteins. In the present study, the concentrations of selected heavy metals (cobalt- Co, Chromium-Cr, nickel- Ni and manganese- Mn) in Limnothrissa miodon, locally known as 'Kapenta' were assessed using the Microwave Plasma Atomic Emission Spectrometer (MP AES) 4200 at the Zambia Agricultural Research Institute (ZARI). The fish was collected from Lake Kariba, Zambia, which is divided into four fisheries management strata (I, II, III, and IV). The health risks to consumers were evaluated using the Estimated Daily Intake (EDI), Target Hazard Quotient (THQ) and Hazard Index (HI). Analysis of variance (ANOVA) was used to assess the difference in the means of heavy metal concentration across the four strata for each element. The concentrations of all the heavy metal elements were within the permissible limits considered to be safe for human consumption based on the Food and Agriculture Organization (FAO) standards. However, the concentration of individual heavy metal elements varied significantly across the strata with stratum I and II showing higher levels in general except for Mn which was highest in stratum II and III compared with the other strata. Furthermore, Mn concentration was the highest in all the strata and the highest concentration was observed in the fish from stratum II. The EDIs, THQs and HIs of each heavy metal element did not show any threat to consumers of the fish from the lake. Further studies are required to better understand the potential sources of heavy metals and to regularly monitor existing activities that may elevate the concentration levels.
Collapse
Affiliation(s)
- Oliver J Hasimuna
- National Aquaculture Research and Development Centre, Department of Fisheries, Ministry of Fisheries and Livestock, Kitwe, Zambia
- Department of Zoology and Aquatic Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
- Department of Aquaculture and Fisheries, Faculty of Natural Resources, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Moses Chibesa
- Department of Zoology and Aquatic Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Inyambo Mumbula
- School of Public Health and Community Medicine, The University of Zambia, Lusaka, Zambia
| | - Joseph Mphande
- Department of Aquaculture and Fisheries, Faculty of Natural Resources, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
- Department of Fisheries, Ministry of Fisheries and Livestock, Ndola, Zambia
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Wilson W L Jere
- Department of Aquaculture and Fisheries, Faculty of Natural Resources, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Darius Phiri
- Department of Plant and Environmental Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Kundananji Nawanzi
- Department of Agriculture and Aquatic Sciences, Copperbelt University, Kapasa Makasa University Campus, Chinsali, Zambia
| | - Sillah Siavwapa
- Department of Agriculture and Aquatic Sciences, Copperbelt University, Kapasa Makasa University Campus, Chinsali, Zambia
| | - Alex F Maseko
- School of Public Health and Community Medicine, The University of Zambia, Lusaka, Zambia
| | - Brian P Munganga
- Research and Development, Centre for Innovative Approach Zambia (CIAZ), Lusaka, Zambia
| | - Gilbert Nchima
- Biochemistry and Toxicology Unit, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Chilanga, Zambia
| | - Hala S Khalil
- Aquaculture Division, National Institute of Oceanography and Fisheries, (NIOF), Hurghada, Egypt
| | - Sahya Maulu
- Research and Development, Centre for Innovative Approach Zambia (CIAZ), Lusaka, Zambia
- Faculty of Science and Engineering, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
10
|
Ndlela LL, Schroeder P, Genthe B, Cruzeiro C. Removal of Antibiotics Using an Algae-Algae Consortium ( Chlorella protothecoides and Chlorella vulgaris). TOXICS 2023; 11:588. [PMID: 37505554 PMCID: PMC10383683 DOI: 10.3390/toxics11070588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
The intensive use of antibiotics (for human, veterinary, and agricultural purposes) has steadily increased over the last 30 years. Large amounts of antibiotic residues are released into aquatic systems, mostly due to inefficient wastewater treatment. Conventional wastewater treatments are not designed to remove emerging contaminants (such as antibiotics) from wastewater. Therefore, algae treatment (phycoremediation) has emerged as a promising choice for cost-effective, eco-friendly, and sustainable wastewater treatment. For this reason, we investigated the removal performance of a well-established algal consortia (Chlorella protothecoides and Chlorella vulgaris) used in passive wastewater treatment ponds (Mosselbay, South Africa). Five antibiotics (sulfamethoxazole, amoxicillin, trimethoprim, ofloxacin, and clarithromycin) were selected for their ubiquity and/or low removal efficiency in conventional wastewater treatment plants (WWTPs). For each antibiotic, two concentrations were used: one environmentally relevant (10 ppb) and another 10 times higher (100 ppb), tested in triplicate and collected at two-time points (7 and 10 days). The algae remained viable over the exposure period (which is similar to the retention time within maturation ponds) and exhibited the capacity to remove sulfamethoxazole (77.3% ± 3.0 and 46.5% ± 5.3) and ofloxacin (43.5% ± 18.9 and 55.1% ± 12.0) from samples spiked with 10 and 100 ppb, respectively. This study demonstrates the potential and innovation of algal remediation for contaminants in a developing country context, where minimal infrastructure is available.
Collapse
Affiliation(s)
- Luyanda L Ndlela
- Natural Resources and the Environment Division, Council for Scientific and Industrial Research, Stellenbosch 7599, South Africa
| | - Peter Schroeder
- Unit Environmental Simulation, Helmholtz Zentrum München German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Bettina Genthe
- Natural Resources and the Environment Division, Council for Scientific and Industrial Research, Stellenbosch 7599, South Africa
| | - Catarina Cruzeiro
- Unit Environmental Simulation, Helmholtz Zentrum München German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
11
|
Chau TP, Rajkumar R, S Aloufi A, Krishnan R, Tharifkhan SA. Textile effluents decolourization potential of metal tolerant Aspergillus species and optimization of biomass concentration and temperature. ENVIRONMENTAL RESEARCH 2023:116294. [PMID: 37268209 DOI: 10.1016/j.envres.2023.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This research was performed to assess the physicochemical properties of textile effluents collected from different sampling points (industrial park, Hosur, Tamil Nadu, India) and also evaluate the multiple metal tolerance efficiency of pre-isolated Aspergillus flavus. Moreover, their textile effluent decolourization potential was investigated and quantity and temperature required for effective bioremediation was optimized. About 5 textile effluent samples (S0, S1, S2, S3, and S4) were collected from various sampling points and noted that certain physicochemical properties (pH: 9.64 ± 0.38, Turbidity: 18.39 ± 1.4 NTU, Cl-: 3185.38 ± 15.8 mg L-1, BOD: 82.52 ± 6.9 mg L-1, COD: 342.28 ± 8.9 mg L-1, Ni: 74.21 ± 4.31 mg L-1, Cr: 48.52 ± 18.34 mg L-1, Cd: 34.85 ± 1.2 mg L-1, Zn: 25.52 ± 2.4 mg L-1, Pb: 11.25 ± 1.5 mg L-1, Hg: 1.8 ± 0.05 mg L-1, and As: 7.1 ± 0.41 mg L-1) were beyond the permissible limits. The A. flavus, showed remarkable metal tolerance to Pb, As, Cr, Ni, Cu, Cd, Hg, and Zn on PDA plates with elevated dosage up to 1000 μg mL-1. The optimal dosage required for effective decolourization was found as 3 g (48.2%) and compare to dead biomass (42.1%) of A. flavus, the viable biomass showed remarkable decolourization activity on textile effluents in a short duration of treatment process. The optimal temperature for effective decolourization by viable biomass was found at 32 ᵒC. The toxic effects of S4 samples treated at 32 ᵒC on O. sativa as well as brine shrimp larvae were significantly reduced. These findings show that pre-isolated A. flavus viable biomass can be used to decolorize metal-enriched textile effluent. Furthermore, the effectiveness of their metals remediation should be investigated using ex-situ and ex-vivo approaches.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - R Rajkumar
- Department of Livestock Products Technology, (Meat Science) Veterinary College and Research Institute, Namakkal, Tamil Nadu, India
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | |
Collapse
|
12
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
13
|
Mejia MP, Rojas CA, Curd E, Renshaw MA, Edalati K, Shih B, Vincent N, Lin M, Nguyen PH, Wayne R, Jessup K, Parker SS. Soil Microbial Community Composition and Tolerance to Contaminants in an Urban Brownfield Site. MICROBIAL ECOLOGY 2023; 85:998-1012. [PMID: 35802172 PMCID: PMC10156844 DOI: 10.1007/s00248-022-02061-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/21/2022] [Indexed: 05/04/2023]
Abstract
Brownfields are unused sites that contain hazardous substances due to previous commercial or industrial use. The sites are inhospitable for many organisms, but some fungi and microbes can tolerate and thrive in the nutrient-depleted and contaminated soils. However, few studies have characterized the impacts of long-term contamination on soil microbiome composition and diversity at brownfields. This study focuses on an urban brownfield-a former rail yard in Los Angeles that is contaminated with heavy metals, volatile organic compounds, and petroleum-derived pollutants. We anticipate that heavy metals and organic pollutants will shape soil microbiome diversity and that several candidate fungi and bacteria will be tolerant to the contaminants. We sequence three gene markers (16S ribosomal RNA, 18S ribosomal RNA, and the fungal internal transcribed spacer (FITS)) in 55 soil samples collected at five depths to (1) profile the composition of the soil microbiome across depths; (2) determine the extent to which hazardous chemicals predict microbiome variation; and (3) identify microbial taxonomic groups that may metabolize these contaminants. Detected contaminants in the samples included heavy metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, and volatile organic compounds. Bacterial, eukaryotic, and fungal communities all varied with depth and with concentrations of arsenic, chromium, cobalt, and lead. 18S rRNA microbiome richness and fungal richness were positively correlated with lead and cobalt levels, respectively. Furthermore, bacterial Paenibacillus and Iamia, eukaryotic Actinochloris, and fungal Alternaria were enriched in contaminated soils compared to uncontaminated soils and represent taxa of interest for future bioremediation research. Based on our results, we recommend incorporating DNA-based multi-marker microbial community profiling at multiple sites and depths in brownfield site assessment standard methods and restoration.
Collapse
Affiliation(s)
- Maura Palacios Mejia
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Connie A Rojas
- Ecology, Evolution, and Behavior Program, Michigan State University, Lansing, MI, USA
| | - Emily Curd
- Natural Science, Landmark College, Putney, VT, USA
| | - Mark A Renshaw
- Cherokee Federal, USGS Wetland and Aquatic Research Center, Gainesville, FL, USA
| | - Kiumars Edalati
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beverly Shih
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nitin Vincent
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Meixi Lin
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peggy H Nguyen
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Wayne
- Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
14
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
15
|
Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, Gryzenhout M, Gafforov Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front Bioeng Biotechnol 2023; 11:1106973. [PMID: 36865030 PMCID: PMC9971017 DOI: 10.3389/fbioe.2023.1106973] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa,*Correspondence: Soumya Ghosh, ,
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Lviv, Ukraine
| | - Olena V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Kostyantyn V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yusufjon Gafforov
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan,AKFA University, Tashkent, Uzbekistan
| |
Collapse
|
16
|
Carvajal M, Jeldres P, Vergara A, Lobaina E, Olivares M, Meza D, Velásquez A, Dorta F, Jorquera F, Seeger M, Cereceda-Balic F, Fadic X. Bioremoval of copper by filamentous fungi isolated from contaminated soils of Puchuncaví-Ventanas Central Chile. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01493-z. [PMID: 36729229 DOI: 10.1007/s10653-023-01493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Pollution represents a high risk to plants, animals, and human beings, causing an imbalance and affecting the environment. Soil is considered a universal sink, containing the highest load of environmental pollution. Puchuncaví-Ventanas sector, decreed as a saturated contamination zone in 1993, is considered one of the most affected areas by industrial pollution and belongs to one of the 5 sacrifice zones of Chile. The localities of Puchuncaví and Ventanas have heavy metal pollution levels that exceed up to 99% of the limits allowed by Canadian standards. The objective of this study was to characterize heavy metal tolerance and removal potential of filamentous fungi isolated from polluted soils for their use in decontamination systems and in situ soil improvement. Six fungal strains were selected based on their tolerance and a high capability to accumulate heavy metals, achieving copper bioaccumulation of 84% (Mortierella sp. strain LG01), 49% (Clonostachys sp. strain CQ23) and 48-77.5% (Trichoderma sp. strain LM01A). Trichoderma sp. strain LM01A was able to remove 41% of copper from contaminated soil under ex situ conditions. Some fungal strains belong to beneficial fungal genera, which are used as bioproducts in agriculture. The results of this study highlighted the use of Trichoderma sp. in soils contaminated, which may be of special interest in agriculture due to the large amounts of copper sulfate still applied as a pesticide in Chile and the world.
Collapse
Affiliation(s)
- M Carvajal
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - P Jeldres
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - A Vergara
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - E Lobaina
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - M Olivares
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - D Meza
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - A Velásquez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Department of Ecology, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - F Dorta
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - F Jorquera
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - M Seeger
- Center of Biotechnology "Dr. Daniel Alkalay Lowitt", Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - F Cereceda-Balic
- Centre for Environmental Technologies CETAM, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - X Fadic
- Centre for Environmental Technologies CETAM, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
- Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| |
Collapse
|
17
|
Palanivel TM, Pracejus B, Novo LAB. Bioremediation of copper using indigenous fungi Aspergillus species isolated from an abandoned copper mine soil. CHEMOSPHERE 2023; 314:137688. [PMID: 36584825 DOI: 10.1016/j.chemosphere.2022.137688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of mining soils using metal tolerant fungi is widely considered as a promising cost-effective and ecofriendly approach. This study assessed the copper removal efficiency and bioaccumulation ability of the indigenous species Aspergillus hiratsukae LF1 and Aspergillus terreus LF2 isolated from the soils of an abandoned copper mine in Oman. Nutrient medium containing five different Cu (II) levels (0 - control, 100, 200, 300 and 500 mg/L) was employed for assessing both parameters. The removal efficiency from nutrient medium (100-500 mg Cu per L) ranged from 57% to 21% for A. hiratsukae LF1, and from 69% to 24% for A. terreus LF2. A. hiratsukae LF1 and A. terreus LF2 accumulated a maximum of 4.63 and 5.95 mg Cu/g,espectively, at 500 mg/L of Cu (II) concentration. The compositional analysis of extracellular polymeric substances excreted by both species revealed a hormetic response by A. hiratsukae LF1 at 100 mg/L; whereas increasing media Cu levels induced carbohydrates production in A. terreus LF2. These results hint at the involvement of carbohydrates in the Cu-tolerance mechanism of the latter. Copper accumulation in both species was further demonstrated through scanning electron microscopy and energy dispersive spectrometry. In line with the pertaining literature, our results are somewhat inconclusive concerning whether proteins or carbohydrates play a more pivotal role in copper complexation in both species; yet, FTIR analysis showed the participation of different functional groups in Cu sorption. Overall, although additional research is required to advance the knowledge about both Aspergillus species, our findings suggest that A. terreus LF2 presents greater promise for copper bioremediation due to enhanced tolerance and accumulation capacity.
Collapse
Affiliation(s)
| | - Bernhard Pracejus
- Department of Earth Science, College of Science,Sultan Qaboos University, P.O. Box 36, 123 Al-Khoud, Muscat, Oman
| | - Luís A B Novo
- Scotland's Rural College (SRUC), Peter Wilson Building, King's Buildings, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
18
|
Singh A, Kumar V, Singh S, Ray M. Electrochemical detection of copper(II) in environmental samples using Penicillium sp. IITISM_ANK1 based biosensor. CHEMOSPHERE 2023; 313:137294. [PMID: 36427580 DOI: 10.1016/j.chemosphere.2022.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Detection of toxic metals at the lowest of their concentration in a variety of matrices has become a necessity due to the widespread and persistent nature of the contaminant. In this context, biosensors provide a viable alternative to the large sophisticated instrumentation. This study focuses on the development of a cost-effective fungal biomass-based biosensor that can be used for the detection of Cu(II). The fungal cells were pretreated with formaldehyde and studied with various spectroscopic studies. It was observed that the carbonyl groups along with amine groups played role in the sorption of copper ions which were stripped in an electrolytic solution to quantify the metal. Herein the dried fungal biomass was chemically activated and used to prepare a novel graphite paste electrode by repurposing a plastic pipette tip. The factors affecting the detection signal were optimized in further study. The electrochemical characterization revealed that the prepared bio-electrode was capable of detecting Cu in the range of 1 × 10-7 M to 2 × 10-5 M.
Collapse
Affiliation(s)
- Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India.
| | - Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| | - Madhurya Ray
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| |
Collapse
|
19
|
Mushtaq S, Bareen FE, Tayyeb A. Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10925-10954. [PMID: 36088439 DOI: 10.1007/s11356-022-22860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
This study was aimed at finding the metal sorption potential of six indigenous Trichoderma strains by using batch experiments for Cd (II), Cr (VI), Cu (II), and Pb (II). Trichoderma atrobrunneum showed maximum metal biosorption potential at 800 mg L-1 of initial concentration. Two adsorption isotherm models, (1) Langmuir (2) Freundlich models, were employed on the biosorption data obtained at various initial metal concentrations (10 mg L-1-200 mg L-1) and pseudo-first (PSI) and pseudo-second (PSII) order equilibrium kinetic models were subjected to data of agitation time (3-7 days). A maximum correlation coefficient value (R2) of ≤ 1 was observed for the Langmuir and PSII model. Results revealed that pH 6-7 was the best for metal sorption, while metal removal efficiency was increased by increasing temperature (298 K, 303 K, 308 K, 313 K). The results of thermodynamic study parameters (∆G°, ∆H°, ∆S°) indicated that heavy metal biosorption by Trichoderma strains was an endothermic, spontaneous, and feasible process. Moreover, surface characterization analysis through SEM, BET, FTIR, and XRD showed that T. atrobrunneum and Trichoderma sp. could adsorb more metal ions when grown in high metal concentrations. The results indicate that living biomass of T. atrobrunneum and Trichoderma sp. is an effective multi-metal biosorbent that can be used for efficacious bioremediation of bio-treatment of heavy metal polluted wastewater.
Collapse
Affiliation(s)
- Sobia Mushtaq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Firdaus E Bareen
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
20
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
21
|
Assis da Silva C, Ribeiro BM, Trotta CDV, Perina FC, Martins R, Moledo de Souza Abessa D, Barbieri E, Simões MF, Ottoni CA. Effects of mycogenic silver nanoparticles on organisms of different trophic levels. CHEMOSPHERE 2022; 308:136540. [PMID: 36150482 DOI: 10.1016/j.chemosphere.2022.136540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Biogenic silver nanoparticles (AgNPs) are considered a promising alternative to their synthetic versions. However, the environmental impact of such nanomaterials is still scarcely understood. Thus, the present study aims at assessing the antimicrobial action and ecotoxicity of AgNPs biosynthesized by the fungus Aspergillus niger IBCLP20 towards three freshwater organisms: Chlorella vulgaris, Daphnia similis, and Danio rerio (zebrafish). AgNPs IBCLP20 showed antibacterial action against Klebsiella pneumoniae between 5 and 100 μg mL-1, and antifungal action against Trichophyton mentagrophytes in concentrations ranging from 20 to 100 μg mL-1. The cell density of the microalgae Chlorella vulgaris decreased 40% after 96 h of exposure to AgNPs IBCLP20, at the highest concentration analysed (100 μg L-1). The 48 h median lethal concentration for Daphnia similis was estimated as 4.06 μg L-1 (2.29-6.42 μg L-1). AgNPs IBCLP20 and silver nitrate (AgNO3) caused no acute toxicity on adult zebrafish, although they did induce several physiological changes. Mycosynthetized AgNPs caused a significant increase (p < 0.05) in oxygen consumption at the highest concentration studied (75 μg L-1) and an increase in the excretion of ammonia at the lower concentrations, followed by a reduction at the higher concentrations. Such findings are comparable with AgNO3, which increased the oxygen consumption on low exposure concentrations, followed by a decrease at the high tested concentrations, while impairing the excretion of ammonia in all tested concentrations. The present results show that AgNPs IBCLP20 have biocidal properties. Mycogenic AgNPs induce adverse effects on organisms of different trophic levels and understanding their impact is detrimental to developing countermeasures aimed at preventing any negative environmental effects of such novel materials.
Collapse
Affiliation(s)
- Carolina Assis da Silva
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Institute of Advanced Sea Studies (IEAMar), São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Bruna Marques Ribeiro
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Institute of Advanced Sea Studies (IEAMar), São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Caterina do Valle Trotta
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Institute of Advanced Sea Studies (IEAMar), São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Fernando Cesar Perina
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Roberto Martins
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| | | | - Edison Barbieri
- Instituto de Pesca, Agência Paulista de Tecnologia dos Agronegócios (APTA), Secretaria de Agricultura e Abastecimento, de São Paulo, (SAASP) - Governo do Estado de São Paulo, Brazil
| | - Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau SAR, China; China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Avenida Wai Long, Taipa, Macau SAR, China
| | - Cristiane Angélica Ottoni
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
22
|
Dusengemungu L, Gwanama C, Simuchimba G, Mubemba B. Potential of bioaugmentation of heavy metal contaminated soils in the Zambian Copperbelt using autochthonous filamentous fungi. Front Microbiol 2022; 13:1045671. [PMID: 36532421 PMCID: PMC9752026 DOI: 10.3389/fmicb.2022.1045671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2023] Open
Abstract
There is great potential to remediate heavy metal contaminated environments through bioaugmentation with filamentous fungi. However, these fungi have been poorly investigated in most developing countries, such as Zambia. Therefore, the present study aimed at isolating indigenous filamentous fungi from heavy metal contaminated soil and to explore their potential for use in bioaugmentation. The conventional streak plate method was used to isolate fungi from heavy metal-contaminated soil. Filamentous fungal isolates were identified using morphological and molecular techniques. The radial growth diameter technique was used to evaluate heavy metal tolerance of the fungi. The most abundant and highly tolerant fungi, identified as Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum species, were used to bioremediate heavy metal contaminated soil samples with uncontaminated soil sample being employed as a control. A maximum tolerance index (TI) between 0.7 and 11.0 was observed for A. transmontanensis, and G. candidum while C. cladosporioides displayed the TI between 0.2 and 1.2 in the presence of 1,000 ppm of Cu, Co, Fe, Mn, and Zn. The interspecific interaction was analyzed to determine the compatibility among isolates. Our results showed mutual intermingling between the three evaluated fungal species, which confirms their common influence in biomineralization of heavy metals in contaminated soils. Maximum bio-removal capacities after 90 days were 72% for Cu, 99.8% for Co, 60.6% for Fe, 82.2% for Mn, and 100% for both Pb and Zn. This study has demonstrated the potential of highly resistant autochthonous fungal isolates to remediate the heavy metal contamination problem.
Collapse
Affiliation(s)
- Leonce Dusengemungu
- School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia
- Africa Centre of Excellence for Sustainable Mining, The Copperbelt University, Kitwe, Zambia
| | - Cousins Gwanama
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| | - Grant Simuchimba
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| | - Benjamin Mubemba
- School of Natural Resources, The Copperbelt University, Kitwe, Zambia
| |
Collapse
|
23
|
Tamjidi S, Ameri A, Esmaeili H. A review of the application of fungi as an effective and attractive bio-adsorbent for biosorption of heavy metals from wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:91. [PMID: 36352328 DOI: 10.1007/s10661-022-10687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
One of the most hazardous environmental pollutants is the pollution risen by heavy metal ions in effluents, which is increasing due to the increasing human activity and the development of urbanization. Notwithstanding the economic challenges to control the pollution of effluent treatment processes, it seems necessary to provide effective approaches. The sorption method is widely used due to low-cost, flexibility in design and operation, repeatability, and significant performance. Hence, the need for more environmentally friendly sorbents to eliminate metal ions is greater than ever. Due to the unique features such as the presence of chitin and chitosan in the cell wall, high absorption capacity, environmental friendliness, availability, and cheapness, the use of fungi as adsorbent has received much attention. Therefore, this work tries to address the use of fungi as biosorbents to remove these metals, the dangers of heavy metals, and their sources. Moreover, equilibrium, kinetic, and thermodynamic behaviors of the heavy metal ion adsorption process in the literature are briefly studied.
Collapse
Affiliation(s)
- Sajad Tamjidi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Abolhasan Ameri
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Hosein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
24
|
Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. CHEMOSPHERE 2022; 307:135957. [PMID: 35985378 DOI: 10.1016/j.chemosphere.2022.135957] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Globally, ecotoxicologists, environmental biologists, biochemists, pathologists, and other experts are concerned about environmental contamination. Numerous pollutants, such as harmful heavy metals and emerging hazardous chemicals, are pervasive sources of water pollution. Water pollution and sustainable development have several eradication strategies proposed and used. Biosorption is a low-cost, easy-to-use, profitable, and efficient method of removing pollutants from water resources. Microorganisms are effective biosorbents, and their biosorption efficacy varies based on several aspects, such as ambient factors, sorbing materials, and metals to be removed. Microbial culture survival is also important. Biofilm agglomerates play an important function in metal uptake by extracellular polymeric molecules from water resources. This study investigates the occurrence of heavy metals, their removal by biosorption techniques, and the influence of variables such as those indicated above on biosorption performance. Ion exchange, complexation, precipitation, and physical adsorption are all components of biosorption. Between 20 and 35 °C is the optimal temperature range for biosorption efficiency from water resources. Utilizing living microorganisms that interact with the active functional groups found in the water contaminants might increase biosorption efficiency. This article discusses the negative impacts of microorganisms on living things and provides an outline of how they affect the elimination of heavy metals.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | | |
Collapse
|
25
|
Jakovljević V, Grujić S, Simić Z, Ostojić A, Radojević I. Finding the best combination of autochthonous microorganisms with the most effective biosorption ability for heavy metals removal from wastewater. Front Microbiol 2022; 13:1017372. [PMID: 36267171 PMCID: PMC9577556 DOI: 10.3389/fmicb.2022.1017372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of heavy metals (HMs) in the environment represents a serious environmental problem. In this regard, this work was conceived with the aim of finding, among indigenous microorganisms, the species and their combinations with the best biosorption activity for the following HMs: zinc, lead, cadmium, copper, and nickel. The experiment was carried out in several steps: (1) isolation and identification of microbial strains from the Central Effluent Treatment Plant’s wastewater; (2) studying the interaction of microorganisms and the ability to form biofilms in 96-well plates; (3) testing the resistance of biofilms to HMs; (4) testing the growth of biofilms on AMB media carriers in the presence of HMS; and (5) biosorption assay. The selected strains used in this study were: Enterobacter cloacae, Klebsiella oxytoca, Serratia odorifera, and Saccharomyces cerevisiae. The best biofilm producers in control medium were K. oxytoca/S. odorifera (KS), followed by K. oxytoca/S. odorifera/S. cerevisiae (KSC), and E. cloacae/K. oxytoca/S. odorifera (EKS) after 10 days of incubation. Mixed cultures composed of three species showed the highest resistance to the presence of all tested metals. The best biosorption capacity was shown by KSC for Cu2+ (99.18%), followed by EKS for Pb2+ (99.14%) and Cd2+ (99.03%), K. oxytoca for Ni2+ (98.47%), and E. cloacae for Zn2+ (98.06%). This research offers a novel approach to using mixed biofilms for heavy metal removal processes as well as its potential application in the bioremediation of wastewater.
Collapse
Affiliation(s)
- Violeta Jakovljević
- Department of Natural-Mathematic Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| | - Sandra Grujić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Zoran Simić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Ostojić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ivana Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
- *Correspondence: Ivana Radojević,
| |
Collapse
|
26
|
Beltrán-Flores E, Pla-Ferriol M, Martínez-Alonso M, Gaju N, Blánquez P, Sarrà M. Fungal bioremediation of agricultural wastewater in a long-term treatment: biomass stabilization by immobilization strategy. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129614. [PMID: 35882168 DOI: 10.1016/j.jhazmat.2022.129614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Fungal bioremediation emerges as an effective technology for pesticide treatment, but its successful implementation depends on overcoming the problem of microbial contamination. In this regard, fungal immobilization on wood seems to be a promising strategy, but there are two main drawbacks: the predominant removal of pesticides by sorption and fungal detachment. In this study, agricultural wastewater with pesticides was treated by Trametes versicolor immobilized on wood chips in a rotary drum bioreactor (RDB) for 225 days, achieving fungal consolidation and high pesticide biodegradation through two main improvements: the use of a more favorable substrate and the modification of operating conditions. Fungal community dynamic was assessed by denaturing gradient gel electrophoresis (DGGE) analysis and subsequent prominent band sequencing, showing a quite stable community in the RDB, mainly attributed to the presence of T. versicolor. Pesticide removals were up to 54 % diuron and 48 % bentazon throughout the treatment. Afterwards, pesticide-contaminated wood chips were treated by T. versicolor in a solid biopile-like system. Hence, these results demonstrate that the microbial contamination constraint has definitely been overcome, and fungal bioremediation technology is ready to be implemented on a larger scale.
Collapse
Affiliation(s)
- Eduardo Beltrán-Flores
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Martí Pla-Ferriol
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Maira Martínez-Alonso
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Núria Gaju
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
27
|
Anupong W, Jutamas K, On-Uma R, Alshiekheid M, Sabour A, Krishnan R, Lan Chi NT, Pugazhendhi A, Brindhadevi K. Bioremediation competence of Aspergillus flavus DDN on pond water contaminated by mining activities. CHEMOSPHERE 2022; 304:135250. [PMID: 35675871 DOI: 10.1016/j.chemosphere.2022.135250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This research was performed to evaluate the possibilities of reducing the physicochemical properties of polluted pond water situated around the magnesite mine tailing through indigenous metal tolerant fungi. The physicochemical analysis results revealed that most of the physicochemical properties of pond water sample were crossing the permissible limits. From the muddy pond soil sample, Aspergillus flavus DDN was identified (through molecular characterization) as predominant metal tolerant fungal strain and it showed resistance to Cr(VI), Pb(II), Zn(II), Cd(II), and Mg(IV) up to 1000 μg mL-1 concentrations. This strain also effectively reduced (through biosorption) these metals in a short duration of the bioremediation process. In a lab-scale bioremediation study, the A. flavus DDN significantly reduced most of the physicochemical parameters crossing the permissible limit in polluted pond water in the presence of FM1 minimal media in 10 days of incubation. The dissolved oxygen level was significantly increased up to 74.91% from 5.86 ± 0.39 to 10.25 ± 0.95 in 10 days of treatment. The metal reduction and other physicochemical properties reduction were directly related to the biomass of A. flavus DDN. These findings suggest that A. flavus DDN can remove pollutants from magnesite mine tailing polluted pond water because elevated fungal biomass resulted in the highest percentage of pollutant reduction from the sample.
Collapse
Affiliation(s)
- Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khumchai Jutamas
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA, 17101, USA
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
28
|
Pitarch A, Diéguez-Uribeondo J, Martín-Torrijos L, Sergio F, Blanco G. Fungal signatures of oral disease reflect environmental degradation in a facultative avian scavenger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155397. [PMID: 35460785 DOI: 10.1016/j.scitotenv.2022.155397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Degradation of natural ecosystems increases the risk of infections in wildlife due to microbiota dysbiosis. However, little is known about its influence on the development of fungal communities in predators and facultative avian scavengers. We evaluated the incidence of oral disease in wild nestling black kites (Milvus migrans) under contrasting environmental degradation conditions, and explored their oral fungal patterns using molecular methods and multivariate analysis. Oral lesions were found in 36.8% of the 38 nestlings examined in an anthropogenically altered habitat (southeastern Madrid, Spain), but in none of the 105 nestlings examined in a well-conserved natural area (Doñana National Park, Spain). In a subsample of 48 black kites, the composition of the oral fungal community differed among symptomatic nestlings from Madrid (SM) and asymptomatic nestlings from Madrid (AM) and Doñana (AD). Opportunistic fungal pathogens (e.g., Fusarium incarnatum-equiseti species complex, Mucor spp., Rhizopus oryzae) were more prevalent in SM and AM than in AD. Hierarchical clustering and principal component analyses revealed that fungal patterns were distinct between both study areas, and that anthropogenic and natural environmental factors had a greater impact on them than oral disease. Fungal signatures associated with anthropogenic and natural stresses harbored some taxa that could be used to flag oral infection (F. incarnatum-equiseti species complex and Alternaria), indicate environmental degradation (Alternaria) or provide protective benefits in degraded environments (Trichoderma, Epicoccum nigrum and Sordaria). Co-occurrence associations between potentially beneficial and pathogenic fungi were typical of AM and AD, hinting at a possible role in host health. This study shows that early-life exposure to highly degraded environments induces a shift towards a higher prevalence of pathogenic species in the oral cavity of black kites, favoring oral disease. Furthermore, our findings suggest potential ecological applications of the monitoring of oral mycobiome as a bioindication of oral disease and environmental degradation.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Teaching Unit of Microbiology and Parasitology, Faculty of Optics and Optometry, Complutense University of Madrid (UCM), Arcos de Jalón, 118, 28037 Madrid, Spain.
| | | | - Laura Martín-Torrijos
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain
| | - Fabrizio Sergio
- Department of Conservation Biology, Estacion Biologica de Doñana-CSIC, Americo Vespucio 26, 41092 Sevilla, Spain
| | - Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
29
|
Küpper V, Steiner U, Kortekamp A. Trichoderma species isolated from grapevine with tolerance towards common copper fungicides used in viticulture for plant protection. PEST MANAGEMENT SCIENCE 2022; 78:3266-3276. [PMID: 35524976 DOI: 10.1002/ps.6951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Copper-containing fungicides are applied broadly in organic viticulture against downy mildew caused by Plasmopara viticola. Although long-term application of copper-based fungicides is associated with ecotoxic effects on the environment, their use in viticulture is required until sustainable alternatives are available. Trichoderma spp. might be a promising approach to fungicide reduction while promoting plant growth and development and displaying biocontrol activity. This study aims to examine the tolerance and compatibility of Trichoderma spp. to copper fungicides. This work contributes to the development of a spray application consisting of a copper-tolerant Trichoderma sp. combined with a downscaled copper fungicide rate against P. viticola. RESULTS Trichoderma spp. isolated from grapevine wood in vineyards were identified and used for tolerance screening in various concentrations of copper fungicides. Copper hydroxide was identified as being highly compatible with Trichoderma. Two Trichoderma candidates, T. koningiopsis and T. harzianum, showed high copper tolerance in mycelial growth and germination tests, and were adapted to 2.85 g Cu L-1 of the selected fungicide. Microscopic investigations showed the attachment of copper compounds to fungal cell walls and copper uptake within the cytoplasm. In the case of high tolerance, large-scale copper uptake was prevented. CONCLUSION Our findings identified two highly copper-tolerant Trichoderma isolates with natural adaptation to the vineyard ecosystem, which could be further tested as biostimulants and biocontrol agents, combined with a reduced fungicide rate for sustainable plant protection. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Verena Küpper
- Institute for Plant Protection, Department of Phytomedicine, State Education and Research Center of Viticulture, Horticulture and Rural Development (DLR) Rheinpfalz, Neustadt/Weinstraße, Germany
- Institute for Crop Science and Resource Conservation (INRES), Department of Plant Pathology, University of Bonn, Bonn, Germany
| | - Ulrike Steiner
- Institute for Crop Science and Resource Conservation (INRES), Department of Plant Pathology, University of Bonn, Bonn, Germany
| | - Andreas Kortekamp
- Institute for Plant Protection, Department of Phytomedicine, State Education and Research Center of Viticulture, Horticulture and Rural Development (DLR) Rheinpfalz, Neustadt/Weinstraße, Germany
| |
Collapse
|
30
|
Abedi T, Gavanji S, Mojiri A. Lead and Zinc Uptake and Toxicity in Maize and Their Management. PLANTS 2022; 11:plants11151922. [PMID: 35893627 PMCID: PMC9332466 DOI: 10.3390/plants11151922] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
Soil contamination with heavy metals is a global problem, and these metals can reach the food chain through uptake by plants, endangering human health. Among the metal pollutants in soils, zinc (Zn) and lead (Pb) are common co-pollutants from anthropogenic activities. Thus, we sought to define the accumulation of Zn and Pb in agricultural soils and maize. Concentrations of Pb in agricultural soil (in Namibia) could reach 3015 mg/Kg, whereas concentrations of Zn in soil (in China) could reach 1140 mg/Kg. In addition, the maximum concentrations of Zn and Pb were 27,870 and 2020 mg/Kg in maize roots and 4180 and 6320 mg/Kg in shoots, respectively. Recent studies have shown that soil properties (such as organic matter content, pH, cation exchange capacity (CEC), texture, and clay content) can play important roles in the bioavailability of Zn and Pb. We also investigated some of the genes and proteins involved in the uptake and transport of Zn and Pb by maize. Among several amendment methods to reduce the bioavailability of Zn and Pb in soils, the use of biochar, bioremediation, and the application of gypsum and lime have been widely reported as effective methods for reducing the accumulation of metals in soils and plants.
Collapse
Affiliation(s)
- Tayebeh Abedi
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan;
| | - Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
- Correspondence:
| |
Collapse
|
31
|
Comparative Copper Resistance Strategies of Rhodonia placenta and Phanerochaete chrysosporium in a Copper/Azole-Treated Wood Microcosm. J Fungi (Basel) 2022; 8:jof8070706. [PMID: 35887462 PMCID: PMC9320278 DOI: 10.3390/jof8070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
Copper-based formulations of wood preservatives are widely used in industry to protect wood materials from degradation caused by fungi. Wood treated with preservatives generate toxic waste that currently cannot be properly recycled. Despite copper being very efficient as an antifungal agent against most fungi, some species are able to cope with these high metal concentrations. This is the case for the brown-rot fungus Rhodonia placenta and the white-rot fungus Phanerochaete chrysosporium, which are able to grow efficiently in pine wood treated with Tanalith E3474. Here, we aimed to test the abilities of the two fungi to cope with copper in this toxic environment and to decontaminate Tanalith E-treated wood. A microcosm allowing the growth of the fungi on industrially treated pine wood was designed, and the distribution of copper between mycelium and wood was analysed within the embedded hyphae and wood particles using coupled X-ray fluorescence spectroscopy and Scanning Electron Microscopy (SEM)/Electron Dispersive Spectroscopy (EDS). The results demonstrate the copper biosorption capacities of P. chrysosporium and the production of copper-oxalate crystals by R. placenta. These data coupled to genomic analysis suggest the involvement of additional mechanisms for copper tolerance in these rot fungi that are likely related to copper transport (import, export, or vacuolar sequestration).
Collapse
|
32
|
El-Bondkly AMA, El-Gendy MMAA. Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 2022; 8:e09854. [PMID: 35815132 PMCID: PMC9260626 DOI: 10.1016/j.heliyon.2022.e09854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Myco-remediation of heavy metals using indigenous fungi of different petroleum refining areas in Egypt was applied. Among the physicochemical parameters determined in these refineries effluents, the highest levels of heavy metals were recorded for the most toxic heavy metals Fe3+ and Co2+. The fungal isolates under the isolation codes AHM69 and AHM96 isolated from the mycobiome of Mostorod and Tanta refineries, respectively showed the best bioremoval efficiency toward heavy metals from the real wastewater mixture and polycyclic aromatic hydrocarbons from aqueous solutions. Based on phenotypic and genotypic analysis they were identified as Aspergillus sp. AHM69 and Penicillium sp. AHM96. The optimum conditions for the best bioremoval of Fe3+ and Co2+ from aqueous solutions by Aspergillus sp. AHM69 were live biomass, temperature 45–55 °C, pH 4.5–5.0, contact time 180 min, metal concentration equal to 1000 and 400 mg/L of Fe3+ and Co2+ with live fungal biomass dose of 0.5% and 0.4% with Fe3+ and Co2+, respectively. Concerning to the biomass of Penicillium sp. AHM96, the optimum operation conditions for the best removal of Fe3+ and Co2+ were 45 °C, pH 5.0 and 400 mg/L of Fe3+ with 1.0% biosorbent dosage or 1000 mg/L of Co2+ with 0.5% biosorbent dosage for 180 min as process time. Furthermore, FTIR analysis showed masking, shifting, creating and absenting of different functional groups in the fungal biomass surface of AHM96 and AHM69 strains in the presence of Fe3+ and Co2+ compared to unloaded biomasses. Microscopy with Energy Dispersive X-ray analysis (SEM-EDX) indicated that the removal of Fe3+ and Co2+ by fungi AHM69 and AHM96 was via biosorption and bioaccumulation on the biomass surface. Our results suggested that in the near future, fungal treatment is likely to outperform and replace other chemical and biological treatments in industrial wastewater treatment for oil refining.
Collapse
|
33
|
Zhen Y, Ge L, Chen Q, Xu J, Duan Z, Loor JJ, Wang M. Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock-Environment-Plant-Human Health Axis and Microbial Homeostasis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6943-6962. [PMID: 35666880 DOI: 10.1021/acs.jafc.2c01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extensive use of high-concentration copper (Cu) in feed additives, fertilizers, pesticides, and nanoparticles (NPs) inevitably causes significant pollution in the ecological environment. This type of chain pollution begins with animal husbandry: first, Cu accumulation in animals poisons them; second, high Cu enters the soil and water sources with the feces and urine to cause toxicity, which may further lead to crop and plant pollution; third, this process ultimately endangers human health through consumption of livestock products, aquatic foods, plants, and even drinking water. High Cu potentially alters the antibiotic resistance of soil and water sources and further aggravates human disease risks. Thus, it is necessary to formulate reasonable Cu emission regulations because the benefits of Cu for livestock and plants cannot be ignored. The present review evaluates the potential hazards and benefits of high Cu in livestock, the environment, the plant industry, and human health. We also discuss aspects related to bacterial and fungal resistance and homeostasis and perspectives on the application of Cu-NPs and microbial high-Cu removal technology to reduce the spread of toxicity risks to humans.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoqing Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| |
Collapse
|
34
|
Dey P, Malik A, Singh DK, Haange SB, von Bergen M, Jehmlich N. Insight Into the Molecular Mechanisms Underpinning the Mycoremediation of Multiple Metals by Proteomic Technique. Front Microbiol 2022; 13:872576. [PMID: 35756008 PMCID: PMC9221998 DOI: 10.3389/fmicb.2022.872576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the fungus Aspergillus fumigatus PD-18 responses when subjected to the multimetal combination (Total Cr, Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+) in synthetic composite media. To understand how multimetal stress impacts fungal cells at the molecular level, the cellular response of A. fumigatus PD-18 to 30 mg/L multimetal stress (5 mg/L of each heavy metal) was determined by proteomics. The comparative fungal proteomics displayed the remarkable inherent intracellular and extracellular mechanism of metal resistance and tolerance potential of A. fumigatus PD-18. This study reported 2,238 proteins of which 434 proteins were exclusively expressed in multimetal extracts. The most predominant functional class expressed was for cellular processing and signaling. The type of proteins and the number of proteins that were upregulated due to various stress tolerance mechanisms were post-translational modification, protein turnover, and chaperones (42); translation, ribosomal structure, and biogenesis (60); and intracellular trafficking, secretion, and vesicular transport (18). In addition, free radical scavenging antioxidant proteins, such as superoxide dismutase, were upregulated upto 3.45-fold and transporter systems, such as protein transport (SEC31), upto 3.31-fold to combat the oxidative stress caused by the multiple metals. Also, protein–protein interaction network analysis revealed that cytochrome c oxidase and 60S ribosomal protein played key roles to detoxify the multimetal. To the best of our knowledge, this study of A. fumigatus PD-18 provides valuable insights toward the growing research in comprehending the metal microbe interactions in the presence of multimetal. This will facilitate in development of novel molecular markers for contaminant bioremediation.
Collapse
Affiliation(s)
- Priyadarshini Dey
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- Department of Biotechnology, MS Ramaiah Institute of Technology, Bengaluru, India
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Dileep Kumar Singh
- Department of Zoology, Faculty of Science, University of Delhi, New Delhi, India
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity, Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- *Correspondence: Nico Jehmlich,
| |
Collapse
|
35
|
Bhattacharyya K, Sen D, Dey BB, De A, Bhattacharjee N, Biswas AB, Ganguly S. Isolation and characterization of heavy metals and non-metallic pollutant-tolerant microorganism from wastewater of Tollygunge Canal (Kolkata) West Bengal, India. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
Tofan L. Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis. Polymers (Basel) 2022; 14:1647. [PMID: 35566817 PMCID: PMC9102464 DOI: 10.3390/polym14091647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/23/2022] Open
Abstract
The gradual replacement of conventional materials with materials tailored to the green development goals is one of the needs of the day. Correspondingly, this article reviews and integrates, for the first time, the gathered knowledge on the use of the adsorbents based on polymeric biomasses (biosorbents) for a cleaner separation of cobalt (Co) from synthetic and actual solutions. It is a two-part comprehensive approach that debates the Co biosorption potential of bio-based polymers from the perspective of their virtual and real applications for decontamination, recovery, and analytical purposes. First, the removal performances of these materials to batch and fixed column biosorption of Co(II) from mono-component and multi-metallic laboratory solutions are systematized and discussed. Following that, the focus of the first part is shifted to the analytical capabilities of the biosorbents proposed for Co(II) quantification from synthetic solutions. The second section considers the polymeric biomasses successfully incorporated in practical strategies for the removal and recovery of Co(II) from real solutions. The opportunities provided by the use of biosorbents for the development of accurate and greener procedures in Co(II) analysis are also highlighted. The directions in which the research on this topic should be continued and strengthened are suggested.
Collapse
Affiliation(s)
- Lavinia Tofan
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 D. Mangeron Blvd, 700050 Iasi, Romania
| |
Collapse
|
37
|
Ume OL, Ekeoma BC, Yusuf M, Al-Kahtani AA, Ubaidullah M, Sillanpää M. Batch studies of hexavalent chromium biosorption from mining wastewater using Aspergillus niger. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
38
|
Rissoni Toledo AG, Reyes Andrade JC, Palmieri MC, Bevilaqua D, Pombeiro Sponchiado SR. Innovative method for encapsulating highly pigmented biomass from Aspergillus nidulans mutant for copper ions removal and recovery. PLoS One 2021; 16:e0259315. [PMID: 34727135 PMCID: PMC8562857 DOI: 10.1371/journal.pone.0259315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
Biosorption has been considered a promising technology for the treatment of industrial effluents containing heavy metals. However, the development of a cost-effective technique for biomass immobilization is essential for successful application of biosorption in industrial processes. In this study, a new method of reversible encapsulation of the highly pigmented biomass from Aspergillus nidulans mutant using semipermeable cellulose membrane was developed and the efficiency of the encapsulated biosorbent in the removal and recovery of copper ions was evaluated. Data analysis showed that the pseudo-second-order model better described copper adsorption by encapsulated biosorbent and a good correlation (r2 > 0.96) to the Langmuir isotherm was obtained. The maximum biosorption capacities for the encapsulated biosorbents were higher (333.5 and 116.1 mg g-1 for EB10 and EB30, respectively) than that for free biomass (92.0 mg g-1). SEM-EDXS and FT-IR analysis revealed that several functional groups on fungal biomass were involved in copper adsorption through ion-exchange mechanism. Sorption/desorption experiments showed that the metal recovery efficiency by encapsulated biosorbent remained constant at approximately 70% during five biosorption/desorption cycles. Therefore, this study demonstrated that the new encapsulation method of the fungal biomass using a semipermeable cellulose membrane is efficient for heavy metal ion removal and recovery from aqueous solutions in multiple adsorption-desorption cycles. In addition, this reversible encapsulation method has great potential for application in the treatment of heavy metal contaminated industrial effluents due to its low cost, the possibility of recovering adsorbed ions and the reuse of biosorbent in consecutive biosorption/desorption cycles with high efficiency of metal removal and recovery.
Collapse
Affiliation(s)
- Ailton Guilherme Rissoni Toledo
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Jazmina Carolina Reyes Andrade
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | | | - Denise Bevilaqua
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | | |
Collapse
|
39
|
Emri T, Gila B, Antal K, Fekete F, Moon H, Yu JH, Pócsi I. AtfA-Independent Adaptation to the Toxic Heavy Metal Cadmium in Aspergillus nidulans. Microorganisms 2021; 9:microorganisms9071433. [PMID: 34361869 PMCID: PMC8307709 DOI: 10.3390/microorganisms9071433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Cadmium is an exceptionally toxic industrial and environmental pollutant classified as a human carcinogen. In order to provide insight into how we can keep our environment safe from cadmium contamination and prevent the accumulation of it in the food chain, we aim to elucidate how Aspergillus nidulans, one of the most abundant fungi in soil, survives and handles cadmium stress. As AtfA is the main transcription factor governing stress responses in A. nidulans, we examined genome-wide expression responses of wild-type and the atfA null mutant exposed to CdCl2. Both strains showed up-regulation of the crpA Cu2+/Cd2+ pump gene and AN7729 predicted to encode a putative bis(glutathionato)-cadmium transporter, and transcriptional changes associated with elevated intracellular Cys availability leading to the efficient adaptation to Cd2+. Although the deletion of atfA did not alter the cadmium tolerance of the fungus, the cadmium stress response of the mutant differed from that of a reference strain. Promoter and transcriptional analyses of the “Phospho-relay response regulator” genes suggest that the AtfA-dependent regulation of these genes can be relevant in this phenomenon. We concluded that the regulatory network of A. nidulans has a high flexibility allowing the fungus to adapt efficiently to stress both in the presence and absence of this important transcription factor.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
- Correspondence:
| | - Barnabás Gila
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly University, 3300 Eger, Hungary;
| | - Fanni Fekete
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
| | - Heungyun Moon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (H.M.); (J.-H.Y.)
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (H.M.); (J.-H.Y.)
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
| |
Collapse
|
40
|
Removal of Cobalt (II) from Waters Contaminated by the Biomass of Eichhornia crassipes. WATER 2021. [DOI: 10.3390/w13131725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the increase in contamination of aquatic niches by different heavy metals, different technologies have been studied to eliminate these pollutants from contaminated aquatic sources. So the objective of this work was to determine the removal of cobalt (II) in aqueous solution by the biomass of the aquatic lily or water hyacinth (Eichhornia crassipes) which, is one of the main weeds present in fresh water, due to its rapid reproduction, growth, and high competitiveness, by the colorimetric method of the methyl isobutyl ketone. The removal was evaluated at different pHs (4.0–8.0) for 28 h. The effect of temperature in the range from 20 °C to 50 °C and the removal at different initial concentrations of cobalt (II) of 100 to 500 mg/L was also studied. The highest bioadsorption (100 mg/L) was at 28 h, at pH 5.0 and 28 °C, with a removal capacity of 73.1%, which is like some reports in the literature. Regarding the temperature, the highest removal was at 50 °C, at 28 h, with a removal of 89%. At the metal and biomass concentrations analyzed, its removal was 82% with 400–500 mg/L, and 100% with 5 g of natural biomass at 20 h. In addition, this completely removes the metal in situ (100 mg/L in contaminated water, at 7 days of incubation, with 10 g of natural biomass in 100 mL). So, the natural biomass can be used to remove it from industrial wastewater, even if in vivo, only eliminate 17.3% in 4 weeks.
Collapse
|
41
|
Chi BB, Lu YN, Yin PC, Liu HY, Chen HY, Shan Y. Sequencing and Comparative Genomic Analysis of a Highly Metal-Tolerant Penicillium janthinellum P1 Provide Insights Into Its Metal Tolerance. Front Microbiol 2021; 12:663217. [PMID: 34149650 PMCID: PMC8212970 DOI: 10.3389/fmicb.2021.663217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Heavy metal pollution is a global knotty problem and fungi hold promising potential for the remediation of wastewater containing heavy metals. Here, a new highly chromium-tolerance species, Penicillium janthinellum P1, is investigated. The genome of P1 was sequenced and assembled into 30 Mb genome size containing 10,955 predicted protein-coding genes with a GC content of 46.16% through an integrated method of Illumina short-read sequencing and single-molecule real-time Pacific Biosciences sequencing platforms. Through a phylogenetic analysis with model species of fungi, the evolutionary divergence time of Penicillium janthinellum P1 and Penicillium oxalicum 114-2 was estimated to be 74 MYA. 33 secondary metabolism gene clusters were identified via antiSMASH software, mainly including non-ribosomal peptide synthase genes and T1 polyketide synthase genes. 525 genes were annotated to encode enzymes that act on carbohydrates, involving 101 glucose-degrading enzymes and 24 polysaccharide synthase. By whole-genome sequence analysis, large numbers of metal resistance genes were found in strain P1. Especially ABC transporter and Superoxide dismutase ensure that the P1 fungus can survive in a chromium-polluted environment. ChrA and ChrR were also identified as key genes for chromium resistance. Analysis of their genetic loci revealed that the specific coding-gene arrangement may account for the fungus’s chromium resistance. Genetic information and comparative analysis of Penicillium janthinellum are valuable for further understanding the mechanism of high resistance to heavy metal chromium, and gene loci analysis provides a new perspective for identifying chromium-resistant strains.
Collapse
Affiliation(s)
- Bin-Bin Chi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Ya-Nan Lu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Ping-Chuan Yin
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hong-Yan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hui-Ying Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|