1
|
Niaz K, Rauf M, Arif M, Hamayun M, Gul H, Hashem A, Abd_Allah EF, Wu QS. Drought-tolerant fungal microbes, Aspergillus oryzae and Aspergillus fumigatus, elevate physiohormonal and antioxidant responses of maize under drought stress. Front Microbiol 2024; 15:1488639. [PMID: 39669778 PMCID: PMC11634847 DOI: 10.3389/fmicb.2024.1488639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Temporary and extended drought stress accelerates phytohormones and reactive oxygen species (ROS) in plants, however, the fate of the plants under stress is mostly determined by the metabolic and molecular reprogramming, which can be modulated by the application of habitat-adapted fungi that triggers resistance to stress upon symbiotic association. Methods The present research exhibited the exploitation of the newly isolated, drought habitat-adapted fungal endophytic consortium of SAB (Aspergillus oryzae) and CBW (Aspergillus fumigatus), on maize under drought stress. SAB and CBW primarily hosted the root tissues of Conyza bonariensis L., which have not been reported earlier, and sufficiently produced growth-promoting metabolites and antioxidants. Results SAB and CBW adeptly inhabited the maize roots. They promoted biomass, primary metabolites, osmolytes (protein, sugar, lipids, proline, phenolics, flavonoids), and IAA production while reducing tannins, ABA, and H2O2 contents and increasing antioxidant enzyme activities. In addition, the enhanced adventitious root development at the root/stem interface, and elongated main root development optimum stomatal activity of SAB- and CBW-inoculated maize plants were observed under drought stress. SAB and CBW modulated the expression of the ZmBSK1, ZmAPX, and ZmCAT1 genes in the maize shoot and root tissues under drought stress vs. control, signifying an essential regulatory function for SAB/CBW-induced drought stress tolerance via phytohormonal signaling pathway leading to the antioxidant upregulation. Discussion These findings imply that the exogenous administration of the SAB/CBW consortium might be a rather efficient strategy that contributes to optimizing the physio-hormonal attributes and antioxidant potential to alleviate the drought stress in maize.
Collapse
Affiliation(s)
- Kiran Niaz
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
El-Nahas GA, Ibrahim ME, Baka ZAM, Ibrahim AH. Scrutinizing harsh habitats endophytic fungi and their prospective effect on water-stressed maize seedlings. Int Microbiol 2024:10.1007/s10123-024-00609-4. [PMID: 39541056 DOI: 10.1007/s10123-024-00609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Drought constitutes a significant abiotic stressor that hinders plant growth and productivity in many countries. Habitat-adapted endophytic fungi offer an environmentally sustainable approach to address this issue by promoting plant development and enhancing resilience against abiotic stresses. In this study, 30 endophytic fungal isolates were recovered from some wild plants in the extreme habitats of Port Said Governorate, Egypt, and evaluated for their drought tolerance using polyethylene glycol (PEG-6000). Only eight isolates demonstrated drought tolerance properties and were further evaluated for their plant growth-promoting biochemical activities and ability to improve maize germination under simulated drought conditions. All eight isolates exhibited enzyme activity for endo-1,4-β-glucanase, amylase, and pectinase, and most displayed significant nutrient mobilization, with siderophores production ranging from 4 to 89%, ammonia production from 1 to 7 μmol/ml, and phosphate solubilization from 129 to 256 µg/ml. Additionally, all isolates showed strong antioxidant activity and high total phenolic content, with some also producing notable levels of indole acetic acid (IAA) and gibberellic acid (GA3) as plant growth hormones. Coating maize grains with spore suspensions of the eight fungal isolates, in general, significantly increased their germination parameters and seedling vigor in vitro under 8% PEG-6000. This enhancement was particularly pronounced with Neurospora sitophila (P8L4M1) and Penicillium tardochrysogenum (P15L4M1), which increased the vigor of maize seedlings by approximately 308% compared to untreated control. Molecular identification of P8L4M1 and P15L4M1 was performed by amplifying the 28S rRNA gene. This study disclosed unique endophytic fungal isolates with promising potential for enhancing drought resistance in maize.
Collapse
Affiliation(s)
- Gehad A El-Nahas
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohsen E Ibrahim
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| | - Zakaria A M Baka
- Department of Botany and Microbiology, Faculty of Science, University of Damietta, New Damietta, Egypt
| | - Ali H Ibrahim
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
3
|
Fu CC, Huang BX, Wang SS, Song YC, Metok D, Tan YX, Fan TP, Fernie AR, Zargar M, Wang Y, Chen MX, Yu LW, Zhu FY. Deciphering the roles of bacterial and fungal communities in the formation and quality of agarwood. STRESS BIOLOGY 2024; 4:40. [PMID: 39302547 DOI: 10.1007/s44154-024-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/10/2024] [Indexed: 09/22/2024]
Abstract
Aquilaria sinensis is a significant resin-producing plant worldwide that is crucial for agarwood production. Agarwood has different qualities depending on the method with which it is formed, and the microbial community structures that are present during these methods are also diverse. Furthermore, the microbial communities of plants play crucial roles in determining their health and productivity. While previous studies have investigated the impact of microorganisms on agarwood formation, they lack comprehensiveness, particularly regarding the properties of the microbial community throughout the entire process from seedling to adult to incense formation. We collected roots, stems, leaves, flowers, fruits and other tissues from seedlings, healthy plants and agarwood-producing plants to address this gap and assess the dominant bacterial species in the microbial community structures of A. sinensis at different growth stages and their impacts on growth and agarwood formation. The bacteria and fungi in these tissues were classified and counted from different perspectives. The samples were sequenced using the Illumina sequencing platform, and sequence analyses and species annotations were performed using a range of bioinformatics tools to assess the plant community compositions. An additional comparison of the samples was conducted using diversity analyses to assess their differences. This research revealed that Listeria, Kurtzmanomyces, Ascotaiwania, Acinetobacter, Sphingobium, Fonsecaea, Acrocalymma, Allorhizobium, Bacillus, Pseudomonas, Peethambara, and Debaryomyces are potentially associated with the formation of agarwood. Overall, the data provided in this article help us understand the important roles played by bacteria and fungi in the growth and agarwood formation process of A. sinensis, will support the theoretical basis for the large-scale cultivation of A. sinensis, and provide a basis for further research on microbial community applications in agarwood production and beyond.
Collapse
Affiliation(s)
- Chen-Chen Fu
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, 518000, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Bao-Xing Huang
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Shan-Shan Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Chen Song
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Dolkar Metok
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu-Xiang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- School of Health Sciences, Fuyao University of Science & Technology, Fuzhou, 350000, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia.
| | - Liang-Wen Yu
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Fu-Yuan Zhu
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
4
|
Adan IH, Asudi GO, Niassy S, Jalloh AA, Mutua JM, Chidawanyika F, Khamis F, Khan Z, Subramanian S, Dubois T, Mutyambai DM. Comparative microbiome diversity in root-nodules of three Desmodium species used in push-pull cropping system. Front Microbiol 2024; 15:1395811. [PMID: 38966391 PMCID: PMC11222577 DOI: 10.3389/fmicb.2024.1395811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024] Open
Abstract
Background Desmodium species used as intercrops in push-pull cropping systems are known to repel insect-pests, suppress Striga species weeds, and shift soil microbiome. However, the mechanisms through which Desmodium species impact the soil microbiome, either through its root exudates, changes in soil nutrition, or shading microbes from its nodules into the rhizosphere, are less understood. Here, we investigated the diversity of root-nodule microbial communities of three Desmodium species- Desmodium uncinatum (SLD), Desmodium intortum (GLD), and Desmodium incanum (AID) which are currently used in smallholder maize push-pull technology (PPT). Methods Desmodium species root-nodule samples were collected from selected smallholder farms in western Kenya, and genomic DNA was extracted from the root-nodules. The amplicons underwent paired-end Illumina sequencing to assess bacterial and fungal populations. Results We found no significant differences in composition and relative abundance of bacterial and fungal species within the root-nodules of the three Desmodium species. While a more pronounced shift was observed for fungal community compositions compared to bacteria, no significant differences were observed in the general diversity (evenness and richness) of fungal and bacterial populations among the three Desmodium species. Similarly, beta diversity was not significantly different among the three Desmodium species. The root-nodule microbiome of the three Desmodium species was dominated by Bradyrhizobium and Fusarium species. Nevertheless, there were significant differences in the proportion of marker gene sequences responsible for energy and amino acid biosynthesis among the three Desmodium species, with higher sequence proportions observed in SLD. Conclusion There is no significant difference in the microbial community of the three Desmodium species used in PPT. However, root-nodule microbiome of SLD had significantly higher marker gene sequences responsible for energy and amino acid biosynthesis. Therefore, it is likely that the root-nodules of the three Desmodium species host similar microbiomes and influence soil health, consequently impacting plant growth and agroecosystem functioning.
Collapse
Affiliation(s)
- Isack H. Adan
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - George Ochieng Asudi
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Saliou Niassy
- Inter-African Phytosanitary Council of the African Union, Yaoundé, Cameroon
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | - Frank Chidawanyika
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Free State, Bloemfontein, South Africa
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Zeyaur Khan
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Thomas Dubois
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Life Science, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
5
|
Huertas V, Jiménez A, Diánez F, Chelhaoui R, Santos M. Importance of Dark Septate Endophytes in Agriculture in the Face of Climate Change. J Fungi (Basel) 2024; 10:329. [PMID: 38786684 PMCID: PMC11122602 DOI: 10.3390/jof10050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Climate change is a notable challenge for agriculture as it affects crop productivity and yield. Increases in droughts, salinity, and soil degradation are some of the major consequences of climate change. The use of microorganisms has emerged as an alternative to mitigate the effects of climate change. Among these microorganisms, dark septate endophytes (DSEs) have garnered increasing attention in recent years. Dark septate endophytes have shown a capacity for mitigating and reducing the harmful effects of climate change in agriculture, such as salinity, drought, and the reduced nutrient availability in the soil. Various studies show that their association with plants helps to reduce the harmful effects of abiotic stresses and increases the nutrient availability, enabling the plants to thrive under adverse conditions. In this study, the effect of DSEs and the underlying mechanisms that help plants to develop a higher tolerance to climate change were reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (V.H.); (A.J.); (F.D.); (R.C.)
| |
Collapse
|
6
|
Li S, Shang XJ, Hou R. ©Relationship between endophytic fungal diversity and colonization and soil factors of cultured blueberry roots in Guizhou Province, Southwest China. Arch Microbiol 2024; 206:86. [PMID: 38302781 DOI: 10.1007/s00203-023-03808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Dark septate endophytes (DSEs) inhabit plant roots and soil in ecosystems and host plants worldwide. DSE colonization is influenced by cultivars, soil factors, and specific habitat conditions. The regular diversity of DSEs in blueberries in Guizhou, China, is still unclear. In this study, four cultivars (Gardenblue, Powderblue, O'Neal, and Legacy) in three areas (Gaopo, Majiang, and Fenggang) in Guizhou were used to identify DSEs by morphological and molecular biological methods and to clarify the relationship between DSE diversity and DSE colonization and soil factors of cultivated blueberries in Guizhou. The DSEs isolated from cultivated blueberry roots in 3 areas in Guizhou Province were different, belonging to 17 genera, and the dominant genera were Penicillium, Phialocephala, and Thozetella. DSEs isolated from Majiang belonged to 12 genera and 16 species, those from Gaopo belonged to 7 genera and 15 species, and those from Fenggang belonged to 5 genera and 7 species. Among the different blueberry varieties, 11 genera were isolated from O'Neal, 12 genera were isolated from Powderblue, 11 genera were isolated from Legacy and 13 genera were isolated from Gardenblue. Coniochaeta is endemic to O'Neal, Chaetomium and Curvularia are endemic to Powderblue, and Thielavia is endemic to Legacy. Correlation analysis showed that DSE diversity was significantly correlated with DSE colonization and soil factors.
Collapse
Affiliation(s)
- Si Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Xiao-Jing Shang
- College of Forestry, Guizhou University, Guiyang, 550025, China
- Qian Dong Nan Institute of Forestry, Kaili, 556000, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Gowtham HG, Hema P, Murali M, Shilpa N, Nataraj K, Basavaraj GL, Singh SB, Aiyaz M, Udayashankar AC, Amruthesh KN. Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants. J Fungi (Basel) 2024; 10:116. [PMID: 38392787 PMCID: PMC10890593 DOI: 10.3390/jof10020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The escalating global food demand driven by a gradually expanding human population necessitates strategies to improve agricultural productivity favorably and mitigate crop yield loss caused by various stressors (biotic and abiotic). Biotic stresses are caused by phytopathogens, pests, and nematodes, along with abiotic stresses like salt, heat, drought, and heavy metals, which pose serious risks to food security and agricultural productivity. Presently, the traditional methods relying on synthetic chemicals have led to ecological damage through unintended impacts on non-target organisms and the emergence of microbes that are resistant to them. Therefore, addressing these challenges is essential for economic, environmental, and public health concerns. The present review supports sustainable alternatives, emphasizing the possible application of fungal endophytes as innovative and eco-friendly tools in plant stress management. Fungal endophytes demonstrate capabilities for managing plants against biotic and abiotic stresses via the direct or indirect enhancement of plants' innate immunity. Moreover, they contribute to elevated photosynthesis rates, stimulate plant growth, facilitate nutrient mineralization, and produce bioactive compounds, hormones, and enzymes, ultimately improving overall productivity and plant stress resistance. In conclusion, harnessing the potentiality of fungal endophytes represents a promising approach toward the sustainability of agricultural practices, offering effective alternative solutions to reduce reliance on chemical treatments and address the challenges posed by biotic and abiotic stresses. This approach ensures long-term food security and promotes environmental health and economic viability in agriculture.
Collapse
Affiliation(s)
- H G Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru 570006, Karnataka, India
| | - P Hema
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - K Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - G L Basavaraj
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - Sudarshana Brijesh Singh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - A C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Kestur Nagaraj Amruthesh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
8
|
Chen S, Zhang G, Liang X, Wang L, Li Z, He Y, Li B, Zhan F. A Dark Septate Endophyte Improves Cadmium Tolerance of Maize by Modifying Root Morphology and Promoting Cadmium Binding to the Cell Wall and Phosphate. J Fungi (Basel) 2023; 9:jof9050531. [PMID: 37233243 DOI: 10.3390/jof9050531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Dark septate endophytes (DSEs) can improve the performance of host plants grown in heavy metal-polluted soils, but the mechanism is still unclear. A sand culture experiment was performed to investigate the effects of a DSE strain (Exophiala pisciphila) on maize growth, root morphology, and cadmium (Cd) uptake under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg-1). The results indicated that the DSE significantly improved the Cd tolerance of maize, causing increases in biomass, plant height, and root morphology (length, tips, branch, and crossing number); enhancing the Cd retention in roots with a decrease in the transfer coefficient of Cd in maize plants; and increasing the Cd proportion in the cell wall by 16.0-25.6%. In addition, DSE significantly changed the chemical forms of Cd in maize roots, resulting in decreases in the proportions of pectates and protein-integrated Cd by 15.6-32.4%, but an increase in the proportion of insoluble phosphate Cd by 33.3-83.3%. The correlation analysis revealed a significantly positive relationship between the root morphology and the proportions of insoluble phosphate Cd and Cd in the cell wall. Therefore, the DSE improved the Cd tolerance of plants both by modifying root morphology, and by promoting Cd binding to the cell walls and forming an insoluble phosphate Cd of lower activity. These results of this study provide comprehensive evidence for the mechanisms by which DSE colonization enhances Cd tolerance in maize in root morphology with Cd subcellular distribution and chemical forms.
Collapse
Affiliation(s)
- Si Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Guangqun Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
9
|
Cui X, Lou L, Zhang Y, Yan B. Study of the distribution of Glycyrrhiza uralensis production areas as well as the factors affecting yield and quality. Sci Rep 2023; 13:5160. [PMID: 36991024 PMCID: PMC10060575 DOI: 10.1038/s41598-023-31946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Wild licorice in China is mainly distributed in northern China, such as Gansu, Ningxia, and Inner Mongolia Provinces. The origin of wild licorice has varied among historical periods. The cultivated origin of planted licorice has the same as 59.26% of wild licorice. The distribution of cultivated licorice was shifted to the northwest relative to that of wild licorice. The yield and quality of cultivated licorice vary greatly from different origins, showing a certain pattern of variation from west to east. The same batch of licorice seedlings was planted at 8 sites overlapping the main licorice production areas in China. The yield and quality of licorice in the Baicheng experimental plot were low. The yield of licorice in the Jingtai and Altay experimental plots was high, but the quality was poor. The quality of licorice in Chifeng and Yuzhong experimental sites was high, but the yield was low. Principal component analysis of environmental and soil factors generated five characteristic roots with a cumulative contribution rate of 80%, three of which were related to soil and referred to as the soil charge factor, soil water factor, and soil nutrient factor, and the load coefficients of the water and nutrient factor were the largest. Soil conditions, especially water and nutrients, might have a substantial effect on the observed changes in the licorice production area. Generally, the regulation of water and nutrients merits special attention when selecting areas for the production and cultivation of licorice. This study can provide reference for the selection of cultivated licorice production areas and the research of high-quality cultivation techniques.
Collapse
Affiliation(s)
- Xinping Cui
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Lou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yan Zhang
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Binbin Yan
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
10
|
Miranda V, Silva-Castro GA, Ruiz-Lozano JM, Fracchia S, García-Romera I. Fungal Endophytes Enhance Wheat and Tomato Drought Tolerance in Terms of Plant Growth and Biochemical Parameters. J Fungi (Basel) 2023; 9:jof9030384. [PMID: 36983552 PMCID: PMC10051184 DOI: 10.3390/jof9030384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Drought is a major threat to plant growth in many parts of the world. During periods of drought, multiple aspects of plant physiology are negatively affected. For instance, water shortages induce osmotic imbalance, inhibit photosynthesis, decrease nutrient uptake, and increases the production of reactive oxygen species (ROS). In this context, it is necessary to develop sustainable strategies for crops that would help mitigate these conditions. In previous studies, endophytic Zopfiella erostrata strains were found to extensively colonize plant roots, forming a profuse melanized mycelium in the rhizosphere, which could be involved in improving water uptake and nutrient mineralization in plants. The aim of this study is to evaluate the effect of different strains of Z. erostrata on stress mitigation in wheat and tomato plants grown under water deficit conditions. General plant growth variables, as well as physiological and biochemical parameters, related to oxidative status were determined. Our data demonstrate that inoculation with both Zopfiella strains had a very significant effect on plant growth, even under water deficit conditions. However, we observed an even more pronounced impact, depending on the plant and strain involved, suggesting a certain degree of plant/strain compatibility. The biochemical aspects, the accumulation of proline, the oxidative damage to lipids, and the activity of antioxidant enzymes varied considerably depending on the endophyte and the plant evaluated.
Collapse
Affiliation(s)
- Victoria Miranda
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET, Provincia de La Rioja, UNLAR, SEGEMAR, UNCa), Entre Ríos y Mendoza s/n, Anillaco La Rioja 5301, Argentina
| | - Gloria Andrea Silva-Castro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| | - Sebastian Fracchia
- The Mycology Laboratory, PROPLAME-PRHIDEB-CONICET, Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires 1053, Argentina
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| |
Collapse
|
11
|
Ban Y, Tan J, Xiong Y, Mo X, Li W, Jia C, Ding Y, Xu Z. The responses and detoxification mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13773-13787. [PMID: 36149553 DOI: 10.1007/s11356-022-23099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
To understand the tolerance mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles (CuO-NPs) with different sizes (40 and 150 nm), we investigated the morphology, antioxidant response, Cu subcellular distribution, and the melanin gene expression in the mycelia of E. salmonis. E. salmonis was cultured in liquid and solid media under the stress of increasing CuO-NP concentrations (0, 50, 100, 150, and 250 mg/L). Results showed that (1) E. salmonis showed good CuO-NP tolerance, and the tolerance to CuO-NPs at 150 nm was stronger than that at 40 nm. A large number of agglomeration structures were observed on the mycelia surface with the exception of 50 mg/L CuO-NPs with a diameter of 150 nm. (2) CuO-NP stress significantly stimulated the production of antioxidant enzymes, particularly the CuO-NPs with small particle size (40 nm). (3) Cu uptaken by E. salmonis increased proportionally with the increase of CuO-NP concentration in the medium. More than 80% Cu was absorbed in cell wall of mycelia treated with a small particle size (40 nm). (4) FTIR analysis revealed that hydroxyl, amine, carboxyl, and phosphate groups were associated with CuO-NP binding regardless of particle size. (5) Fungal melanin content increased with the addition of CuO-NPs; the increase of melanin induced by CuO-NPs with small particle size (40 nm) was more significant. (6) The expression of 1,3,6,8-tetrahydroxynaphthalene reductase (Arp2) in the melanin synthesis pathway increased under the stress of CuO-NPs, and CuO-NPs with a small particle size (40 nm) caused a significant change in the expression level of Arp2 gene than those with a large particle size (150 nm). In conclusion, E. salmonis had a strong tolerance to CuO-NPs and mitigated the toxic effects of CuO-NPs through the antioxidant system, the expression of genes related to melanin synthesis, and the synthesis of melanin.
Collapse
Affiliation(s)
- Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jiayuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yang Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiantong Mo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Wenxuan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Chenyue Jia
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yiwen Ding
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
12
|
Zuo YL, Hu QN, Qin L, Liu JQ, He XL. Species identity and combinations differ in their overall benefits to Astragalus adsurgens plants inoculated with single or multiple endophytic fungi under drought conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:933738. [PMID: 36160950 PMCID: PMC9490189 DOI: 10.3389/fpls.2022.933738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Although desert plants often establish multiple simultaneous symbiotic associations with various endophytic fungi in their roots, most studies focus on single fungus inoculation. Therefore, combined inoculation of multiple fungi should be applied to simulate natural habitats with the presence of a local microbiome. Here, a pot experiment was conducted to test the synergistic effects between three extremely arid habitat-adapted root endophytes (Alternaria chlamydospora, Sarocladium kiliense, and Monosporascus sp.). For that, we compared the effects of single fungus vs. combined fungi inoculation, on plant morphology and rhizospheric soil microhabitat of desert plant Astragalus adsurgens grown under drought and non-sterile soil conditions. The results indicated that fungal inoculation mainly influenced root biomass of A. adsurgens, but did not affect the shoot biomass. Both single fungus and combined inoculation decreased plant height (7-17%), but increased stem branching numbers (13-34%). However, fungal inoculation influenced the root length and surface area depending on their species and combinations, with the greatest benefits occurring on S. kiliense inoculation alone and its co-inoculation with Monosporascus sp. (109% and 61%; 54% and 42%). Although A. chlamydospora and co-inoculations with S. kiliense and Monosporascus sp. also appeared to promote root growth, these inoculations resulted in obvious soil acidification. Despite no observed root growth promotion, Monosporascus sp. associated with its combined inoculations maximally facilitated soil organic carbon accumulation. However, noticeably, combined inoculation of the three species had no significant effects on root length, surface area, and biomass, but promoted rhizospheric fungal diversity and abundance most, with Sordariomycetes being the dominant fungal group. This indicates the response of plant growth to fungal inoculation may be different from that of the rhizospheric fungal community. Structural equation modeling also demonstrated that fungal inoculation significantly influenced the interactions among the growth of A. adsurgens, soil factors, and rhizospheric fungal groups. Our findings suggest that, based on species-specific and combinatorial effects, endophytic fungi enhanced the plant root growth, altered soil nutrients, and facilitated rhizospheric fungal community, possibly contributing to desert plant performance and ecological adaptability. These results will provide the basis for evaluating the potential application of fungal inoculants for developing sustainable management for desert ecosystems.
Collapse
Affiliation(s)
- Yi-Ling Zuo
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Qian-Nan Hu
- School of Life Sciences, Hebei University, Baoding, China
| | - Le Qin
- School of Life Sciences, Hebei University, Baoding, China
| | - Jia-Qiang Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Xue-Li He
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
13
|
Malicka M, Magurno F, Piotrowska-Seget Z. Plant association with dark septate endophytes: When the going gets tough (and stressful), the tough fungi get going. CHEMOSPHERE 2022; 302:134830. [PMID: 35525444 DOI: 10.1016/j.chemosphere.2022.134830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Dark septate endophytes (DSEs) comprise a diverse and ubiquitous group of fungal generalists with broad habitat niches that robustly colonize the roots of plants in stressful environments. DSEs possess adaptation strategies that determine their high tolerance to heavy metal (HM) contamination, drought, and salinity. Most DSEs developed efficient melanin-dependent and melanin-independent mechanisms of HM detoxification and osmoprotection, including intracellular immobilization and extracellular efflux of HMs and excess ions, and the scavenging of reactive oxygen species. DSEs form mutualistic relationship with plants according to the hypothesis of "habitat-adapted associations", supporting the survival of their hosts under stressful conditions. As saprophytes, DSEs mineralize a complex soil substrate improving plants' nutrition and physiological parameters. They can protect the host plant from HMs by limiting HM accumulation in plant tissues and causing their sequestration in root cell walls as insoluble compounds, preventing further HM translocation to shoots. The presence of DSE in drought-affected plants can substantially ameliorate the physiology and architecture of root systems, improving their hydraulic properties. Plant growth-promoting features, supported by the versatility and easy culturing of DSEs, determine their high potential to enhance phytoremediation and revegetation projects for HM-contaminated, saline, and desertic lands reclamation.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland.
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| |
Collapse
|
14
|
Zhang D, Yang Z, Song X, Zhang F, Liu Y. TMT-based proteomic analysis of liquorice root in response to drought stress. BMC Genomics 2022; 23:524. [PMID: 35854220 PMCID: PMC9297632 DOI: 10.1186/s12864-022-08733-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought stress is a serious threat to land use efficiency and crop yields worldwide. Understanding the mechanisms that plants use to withstand drought stress will help breeders to develop drought-tolerant medicinal crops. Liquorice (Glycyrrhiza uralensis Fisch.) is an important medicinal crop in the legume family and is currently grown mostly in northwest China, it is highly tolerant to drought. Given this, it is considered an ideal crop to study plant stress tolerance and can be used to identify drought-resistant proteins. Therefore, to understand the effects of drought stress on protein levels of liquorice, we undertook a comparative proteomic analysis of liquorice seedlings grown for 10 days in soil with different relative water content (SRWC of 80%, 65%, 50% and 35%, respectively). We used an integrated approach of Tandem Mass Tag labeling in conjunction with LC-MS/MS. RESULTS A total of 7409 proteins were identified in this study, of which 7305 total proteins could be quantified. There were 837 differentially expressed proteins (DEPs) identified after different drought stresses. Compared with CK, 123 DEPs (80 up-regulated and 43 down-regulated) were found in LS; 353 DEPs (254 up-regulated and 99 down-regulated) in MS; and 564 DEPs (312 up-regulated and 252 down-regulated) in SS.The number of differentially expressed proteins increased with increasing water stress, and the number of up-regulated proteins was higher than that of down-regulated proteins in the different drought stress treatments compared with the CK. Used systematic bioinformatics analysis of these data to identify informative proteins we showed that osmolytes such as cottonseed sugars and proline accumulated under light drought stress and improved resistance. Under moderate and severe drought stress, oxidation of unsaturated fatty acids and accumulation of glucose and galactose increased in response to drought stress. Under moderate and severe drought stress synthesis of the terpene precursors, pentacene 2,3-epoxide and β-coumarin, was inhibited and accumulation of triterpenoids (glycyrrhetinic acid) was also affected. CONCLUSIONS These data provide a baseline reference for further study of the downstream liquorice proteome in response to drought stress. Our data show that liquorice roots exhibit specific response mechanisms to different drought stresses.
Collapse
Affiliation(s)
- Dong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Zhongren Yang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China. .,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Xiaoqing Song
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Fenglan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.,Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Yan Liu
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
15
|
Improved Tolerance of Artemisia ordosica to Drought Stress via Dark Septate Endophyte (DSE) Symbiosis. J Fungi (Basel) 2022; 8:jof8070730. [PMID: 35887485 PMCID: PMC9320036 DOI: 10.3390/jof8070730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Dark septate endophytes (DSEs) usually colonize plant roots, especially in stress environments. However, their relationship with plants ranges from beneficial to harmful and has remained largely uncharacterized. In the present study, 14 DSE species grouped into 11 genera were isolated from the roots of a desert plant, Artemisia ordosica, which is widely distributed in northwest China. Three dominant DSE species—Paraphoma chrysanthemicola (Pc), Alternaria chartarum (Ac), and Acrocalymma vagum (Av)—were selected and tested for their resistance to drought in vitro. Furthermore, we characterized the responses of A. ordosica under drought conditions in relation to the presence of these DSEs following inoculation. The results showed that all three strains grew well under in vitro drought stress, and the biomass of Ac and Av was significantly higher than that of the unstressed control. The effects of DSE inoculation on the growth of A. ordosica under drought stress varied according to the different DSE species but were generally beneficial. Under drought stress, Av and Pc promoted plant growth, antioxidant enzyme activity, and root development of the hosts. The Ac strain conferred obvious positive effects on the antioxidant enzyme activity of the hosts. In general, Av and Pc demonstrated better application potential for improving the drought resistance of A. ordosica.
Collapse
|
16
|
Insights into the beneficial roles of dark septate endophytes in plants under challenging environment: resilience to biotic and abiotic stresses. World J Microbiol Biotechnol 2022; 38:79. [PMID: 35332399 DOI: 10.1007/s11274-022-03264-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
Dark septate endophytes (DSE) exert a plethora of effects in regulating plant growth, signalling and stress tolerance. The advent of metagenomics has led to the identification of various species of DSE to be associated with plant organs. They are known to modulate growth, nutrient uptake, phytohormone biosynthesis and production of active bioconstituents in several plants. The interactions between the DSE and host plants are mostly mutualistic but they can also be neutral or exhibit negative interactions. The DSE has beneficial role in removal/sequestration of toxic heavy metals from various environmental sites. Here, we discuss the beneficial role of DSE in enhancing plant tolerance to heavy metal stress, drought conditions, high salinity and protection from various plant pathogens. Furthermore, the underlying mechanism of stress resilience facilitated by DSE-plant interaction has also been discussed. The article also provides insights to some important future perspectives associated with DSE-mediated phytoremediation and reclamation of polluted land worldwide thus facilitating sustainable agriculture.
Collapse
|
17
|
Zhong F, Fan X, Ji W, Hai Z, Hu N, Li X, Liu G, Yu C, Chen Y, Lian B, Wei H, Zhang J. Soil Fungal Community Composition and Diversity of Culturable Endophytic Fungi from Plant Roots in the Reclaimed Area of the Eastern Coast of China. J Fungi (Basel) 2022; 8:jof8020124. [PMID: 35205878 PMCID: PMC8878519 DOI: 10.3390/jof8020124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
As an important resource for screening microbial strains capable of conferring stress tolerance in plants, the fungal community associated with the plants grown in stressful environments has received great attention. In this study, high-throughput sequencing was employed to study the rhizosphere fungal community in the reclaimed area (i.e., sites F, H, and T) of the eastern coast of China. Moreover, endophytic fungi from the root of six plant species colonizing the investigated sites were isolated and identified. The differences in soil physicochemical parameters, fungal diversity, and community structure were detected among the sampling sites and between the seasons. Ectomycorrhizal (ECM) fungi (e.g., genera Tuber and Geopora) were dominant at site F, which was characterized by high soil total carbon (SC) and total nitrogen (SN) contents and low soil electrical conductivity (EC) value. Arbuscular mycorrhizal (AM) fungi, including genera Glomus, Rhizophagus, and Entrophospora were dominant at sites H (winter), H (summer), and T (summer), respectively. The positive relationship between the EC value and the abundance of genus Glomus indicated the ability of this AM fungus to protect plants against the salt stress. Endophytic fungi at sites F (Aspergillus and Tetracladium), H (Nigrospora), and T (Nigrospora, Coniochaeta and Zopfiella) were recognized as the biomarkers or keystone taxa, among which only genus Aspergillus was isolated from the plant roots. The aforementioned AM fungi and endophytic fungi could contribute to the promotion of plant growth in the newly reclaimed land.
Collapse
Affiliation(s)
- Fei Zhong
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
- Correspondence: (F.Z.); (J.Z.)
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China;
| | - Wenhui Ji
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Zhixing Hai
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Naican Hu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Xintong Li
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Guoyuan Liu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Chunmei Yu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Yanhong Chen
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Bolin Lian
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Hui Wei
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Jian Zhang
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
- Correspondence: (F.Z.); (J.Z.)
| |
Collapse
|
18
|
Advances in the Role of Dark Septate Endophytes in the Plant Resistance to Abiotic and Biotic Stresses. J Fungi (Basel) 2021; 7:jof7110939. [PMID: 34829226 PMCID: PMC8622582 DOI: 10.3390/jof7110939] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Endophytic fungi have been studied in recent decades to understand how they interact with their hosts, the types of relationships they establish, and the potential effects of this interaction. Dark septate endophytes (DSE) are isolated from healthy plants and form melanised structures in the roots, including inter- and intracellular hyphae and microsclerotia, causing low host specificity and covering a wide geographic range. Many studies have revealed beneficial relationships between DSE and their hosts, such as enhanced plant growth, nutrient uptake, and resistance to biotic and abiotic stress. Furthermore, in recent decades, studies have revealed the ability of DSE to mitigate the negative effects of crop diseases, thereby highlighting DSE as potential biocontrol agents of plant diseases (BCAs). Given the importance of these fungi in nature, this article is a review of the role of DSE as BCAs. The findings of increasing numbers of studies on these fungi and their relationships with their plant hosts are also discussed to enable their use as a tool for the integrated management of crop diseases and pests.
Collapse
|