1
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Zepernick BN, McKay RML, Martin RM, Bullerjahn GS, Paerl HW, Wilhelm SW. A tale of two blooms: do ecological paradigms for algal bloom success and succession require revisiting? JOURNAL OF GREAT LAKES RESEARCH 2024; 50:102336. [PMID: 39050868 PMCID: PMC11268832 DOI: 10.1016/j.jglr.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lake Erie algal bloom discussions have historically focused on cyanobacteria, with foundational "blooms like it hot" and "high nutrient" paradigms considered as primary drivers behind cyanobacterial bloom success. Yet, recent surveys have rediscovered winter-spring diatom blooms, introducing another key player in the Lake Erie eutrophication and algal bloom story which has been historically overlooked. These blooms (summer vs. winter) have been treated as solitary events separated by spatial and temporal gradients. However, new evidence suggests they may not be so isolated, linked in a manner that manifests as an algal bloom cycle. Equally notable are the emerging reports of cyanobacterial blooms in cold and/or oligotrophic freshwaters, which have been interpreted by some as shifts in classical bloom paradigms. These emerging bloom reports have led many to ask "what is a bloom?". Furthermore, questioning classic paradigms has caused others to wonder if we are overlooking additional factors which constrain bloom success. In light of emerging data and ideas, we revisited foundational concepts within the context of Lake Erie algal blooms and derived five key take-aways: 1) Additional bloom-formers (diatoms) need to be included in Lake Erie algal discussions, 2) The term "bloom" must be reinforced with a clear definition and quantitative metrics for each event, 3) Algal blooms should not be studied solitarily, 4) Shifts in physiochemical conditions serve as an alternative interpretation to potential shifts in ecological paradigms, 5) Additional factors which constrain bloom success and succession (i.e., pH and light) require consideration.
Collapse
Affiliation(s)
| | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Robbie M. Martin
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - George S. Bullerjahn
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, USA
| | - Hans W. Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
3
|
Li Y, Zhang C, Hu Z. Hydraulic retention time governed the micro/nanostructures of titanium-incorporated diatoms and their photocatalytic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123398. [PMID: 38272163 DOI: 10.1016/j.envpol.2024.123398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Titanium-incorporated diatoms are promising biomaterials to photodegrade micropollutants such as pharmaceuticals and personal care products (PPCPs). Hydraulic retention time (HRT) is a key parameter for diatom cultivation and the incorporation of titanium into diatom frustules. This study assessed how HRT governs the micro/nanostructures, titania (TiO2) content and distribution, and the photocatalytic activity of titanium-incorporated diatom frustules. We cultivated a diatom strain Stephanodiscus hantzschii using a feed solution containing titanium(IV) in membrane bioreactors (MBRs) at a solids retention time (SRT) of 10 d and staged HRTs from 24 to 12 and to 6 h. The decrease in HRT reduced the porosity of diatom frustules but increased their silicon and titania contents. When the HRT decreased from 24 to 12 and to 6 h, the specific surface areas of the diatom decreased from 37.65 ± 3.19 to 31.53 ± 3.71 and to 18.43 ± 2.69 m2·g-1 frustules, while the titanium (Ti) contents increased from 53 ± 14 to 71 ± 9 and to 85 ± 13 mg Ti·g-1 frustules. The increase in the influent flow rates of the MBRs with decreasing HRTs likely enhanced nutrient diffusion inside the diatom valve pores, facilitating the uptake and incorporation of silicon and titanium. The titanium-incorporated frustules were effective in removing two representative PPCPs, bisphenol A (BPA) and N,N-diethyl-meta-toluamide (DEET), from water. As photocatalytic activity depends on the amount of titanium, decreasing the HRT substantially increased the photocatalytic activity of the titanium-incorporated frustules. In batch tests under ultraviolet light, frustules from the diatom cultivated at HRTs of 24, 12, and 6 h had the pseudo-first-order removal (mainly through photodegradation) rate constants of BPA of 0.376, 0.456, and 0.683 h-1, respectively. Under the same experimental condition, the pseudo-first-order removal rate constants of DEET by the frustules cultivated at HRTs of 24, 12, and 6 h increased from 0.270 to 0.330 and to 0.480 h-1.
Collapse
Affiliation(s)
- Yan Li
- NingboTech University, Ningbo, 315000, China; Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| | - Chiqian Zhang
- Civil Engineering Program, College of Engineering & Computer Science, Arkansas State University, Arkansas, 72467, United States.
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| |
Collapse
|
4
|
Baylous HR, Gladfelter MF, Gardner MI, Foley M, Wilson AE, Steffen MM. Indole-3-acetic acid promotes growth in bloom-forming Microcystis via an antioxidant response. HARMFUL ALGAE 2024; 133:102575. [PMID: 38485434 DOI: 10.1016/j.hal.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/19/2024]
Abstract
Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.
Collapse
Affiliation(s)
- Hunter R Baylous
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Malia I Gardner
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Madalynn Foley
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA.
| |
Collapse
|
5
|
Preece EP, Cooke J, Plaas H, Sabo A, Nelson L, Paerl HW. Managing a cyanobacteria harmful algae bloom "hotspot" in the Sacramento - San Joaquin Delta, California. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119606. [PMID: 38081090 DOI: 10.1016/j.jenvman.2023.119606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/14/2024]
Abstract
Cyanobacterial harmful algal blooms (CHABs) have become a persistent seasonal problem in the upper San Francisco Estuary, California also known as the Sacramento-San Joaquin Delta (Delta). The Delta is comprised of a complex network of open water bodies, channels, and sloughs. The terminus of the Stockton Channel is an area identified as a CHAB "hotspot." As CHABs increase in severity, there is an urgent need to better understand CHAB drivers to identify and implement mitigation measures that can be used in an estuarine complex like the Delta. We investigated water quality conditions and nutrient dynamics in the Stockton Channel by measuring nutrients in the water column, sediments, and pore waters. In situ nutrient addition bioassay experiments were used to assess the effects of nutrient enrichment on total algal/cyanobacterial growth and pigment concentrations. In both June and September, relative to unamended controls, total chlorophyll and cyanobacterial pigment concentrations were unaffected by nutrient additions; hence, the study area showed signs of classical hypereutrophication, with ambient nitrogen and phosphorus present in excess of algal growth requirements. A cyanobacterial bloom, dominated by Microcystis spp. was present throughout the study area but was most severe and persistent at the shallowest site at the channel terminus. At this site, Microcystis spp. created water quality conditions that allowed for a prolonged bloom from June through September. While targeted nutrient reductions are recommended for long term mitigation, on a shorter timescale, our findings suggest that physical/mechanical controls are the more promising alternative approaches to reduce the severity of CHABs in the terminus of the Stockton Channel.
Collapse
Affiliation(s)
- Ellen P Preece
- California Department of Water Resources, 3500 Industrial Blvd, West Sacramento, CA, 95691, USA; Robertson-Bryan, Inc., 3100 Zinfandel Dr., Suite 300, Rancho Cordova, CA, 95670, USA.
| | - Janis Cooke
- Central Valley Regional Water Quality Control Board, 11020 Sun Center Drive, #200, Rancho Cordova, CA, 95670, USA
| | - Haley Plaas
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead, City, NC, 28557, USA
| | - Alexandrea Sabo
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead, City, NC, 28557, USA
| | - Leah Nelson
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead, City, NC, 28557, USA
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead, City, NC, 28557, USA
| |
Collapse
|
6
|
Stoll S, Zhang W, Yang Y, Gil K, Kim K, Lee WH. Photodegradation of MC-LR using a novel Au-decorated Ni metal-organic framework (Au/Ni-MOF). CHEMOSPHERE 2023; 344:140404. [PMID: 37827467 DOI: 10.1016/j.chemosphere.2023.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Microcystins (MCs) are toxins produced by cyanobacteria commonly found in harmful algal blooms (HAB) occurring in many surface waters. Conventional methods for removing MC-LR such as membrane filtration and activated carbon are only phase change removal methods and are often expensive in operation and maintenance. It is urgent to develop a rapid, easy-to-use, and cost-effective method for the degradation of MC-LR. In this study, a novel Au-decorated Ni-metal-organic framework (Au/Ni-MOF) was newly developed on a hydrophilic carbon fiber paper (2 cm × 2 cm) using an air spraying method. The Au/Ni-MOF was then applied for the photodegradation of MC-LR in water under UV-Vis. The addition of Au onto the surface of the Ni-MOF resulted in a nearly fivefold enhancement in the reaction rate coefficient (k), reaching a value of 0.0599 min-1 for the photodegradation of MC-LR (initial concentration of 20 ppb). It was found that 94.2% of MC-LR removal was attributed to photodegradation, with the remaining 5.8% from adsorption. The rate coefficient of 20 ppb of MC-LR in the surface water sample (pH 6.0) was 0.06 min-1 likely due to the presence of other contaminates including scavenger agents within the sample which inhibits the degradation reaction of the MC-LR. Overall, this study demonstrated the potential for the novel Au/Ni-MOF to effectively reduce the concentration of the MC-LR toxin in the contaminated water.
Collapse
Affiliation(s)
- Stephanie Stoll
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, United States.
| | - Wei Zhang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, United States.
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, United States; Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, United States.
| | - Kyungik Gil
- Department of Civil Engineering, Seoul National University of Science and Technology, Nowon-gu, Seoul, 01811, South Korea.
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea.
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, United States.
| |
Collapse
|
7
|
Truchon AR, Chase EE, Gann ER, Moniruzzaman M, Creasey BA, Aylward FO, Xiao C, Gobler CJ, Wilhelm SW. Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research. Front Microbiol 2023; 14:1284617. [PMID: 38098665 PMCID: PMC10720644 DOI: 10.3389/fmicb.2023.1284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.
Collapse
Affiliation(s)
- Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R Gann
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
8
|
Li J, Xian X, Xiao X, Li S, Yu X. Dynamic characteristics of total and microcystin-producing Microcystis in a large deep reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122256. [PMID: 37506805 DOI: 10.1016/j.envpol.2023.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Microcystis, one of the common cyanobacteria, often causes blooms in reservoirs, which has seriously threatened the safety of drinking water worldwide. To identify the growth characteristic of total and microcystin-producing Microcystis in large deep reservoirs, we used Quantitative PCR (qPCR) to measure the cell density of total and microcystin-producing Microcystis and monitored water quality in the water samples collected in Dongzhang Reservoir once a month. Microcystis blooms occurred in Dongzhang Reservoir in April 2017, which was composed of microcystin-producing and non-microcystin-producing Microcystis. Water temperature, dissolved oxygen, pH, and chlorophyll-a showed significant vertical stratification during Microcystis blooms. Total and microcystin-producing Microcystis grew rapidly under the high concentration of total phosphorus and rising water temperatures. Nitrate-nitrogen had a significant linear correlation with the abundance of microcystin-producing Microcystis. Our results indicated that nutrients and water temperature could be key triggers of Microcystis blooms and nitrate-nitrogen potentially regulates the competition between microcystin-producing and non-microcystin-producing Microcystis. This study improves our understanding of the characteristics of Microcystis blooms and the competition between microcystin-producing and non-microcystin-producing Microcystis in large deep reservoirs.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Xuanxuan Xian
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinyan Xiao
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Shuai Li
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, No.158 Dongda Road, Gulou District, Fuzhou, 350001, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
9
|
Ahammed MS, Baten MA, Ali MA, Mahmud S, Islam MS, Thapa BS, Islam MA, Miah MA, Tusher TR. Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification. BIOLOGY 2023; 12:biology12050675. [PMID: 37237489 DOI: 10.3390/biology12050675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
This study investigated the phycoremediation abilities of Chlorella vulgaris (microalga) and Anabaena variabilis (cyanobacterium) for the detoxification of polluted river water. Lab-scale phycoremediation experiments were conducted for 20 days at 30 °C using the microalgal and cyanobacterial strains and water samples collected from the Dhaleswari river in Bangladesh. The physicochemical properties such as electrical conductivity (EC), total dissolved solids (TDS), biological oxygen demand (BOD), hardness ions, and heavy metals of the collected water samples indicated that the river water is highly polluted. The results of the phycoremediation experiments demonstrated that both microalgal and cyanobacterial species significantly reduced the pollutant load and heavy metal concentrations of the river water. The pH of the river water was significantly raised from 6.97 to 8.07 and 8.28 by C. vulgaris and A. variabilis, respectively. A. variabilis demonstrated higher efficacy than C. vulgaris in reducing the EC, TDS, and BOD of the polluted river water and was more effective at reducing the pollutant load of SO42- and Zn. In regard to hardness ions and heavy metal detoxification, C. vulgaris performed better at removing Ca2+, Mg2+, Cr, and Mn. These findings indicate that both microalgae and cyanobacteria have great potential to remove various pollutants, especially heavy metals, from the polluted river water as part of a low-cost, easily controllable, environmentally friendly remediation strategy. Nevertheless, the composition of polluted water should be assessed prior to the designing of microalgae- or cyanobacteria-based remediation technology, since the pollutant removal efficiency is found to be species dependent.
Collapse
Affiliation(s)
- Md Shakir Ahammed
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abdul Baten
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Aslam Ali
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sirajul Islam
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Bhim Sen Thapa
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Md Aminul Islam
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Alim Miah
- Department of Environmental Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh 2224, Bangladesh
| | - Tanmoy Roy Tusher
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
10
|
Velez KEC, Leighton RE, Decho AW, Pinckney JL, Norman RS. Modeling pH and Temperature Effects as Climatic Hazards in V ibrio Vulnificus and Vibrio Parahaemolyticus Planktonic Growth and Biofilm Formation. GEOHEALTH 2023; 7:e2022GH000769. [PMID: 37091291 PMCID: PMC10114089 DOI: 10.1029/2022gh000769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Climate-induced stressors, such as changes in temperature, salinity, and pH, contribute to the emergence of infectious diseases. These changes alter geographical constraint, resulting in increased Vibrio spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Multiple efforts have been developed to predict Vibrio exposure and raise awareness of health risks, but most models only use temperature and salinity as prediction factors. This study aimed to better understand the potential effects of temperature and pH on V. vulnificus and V. parahaemolyticus planktonic and biofilm growth. Vibrio strains were grown in triplicate at 25°, 30°, and 37°C in 96 well plates containing Modified Seawater Yeast Extract modified with CaCl2 at pH's ranging from 5 to 9.6. AMiGA software was used to model growth curves using Gaussian process regression. The effects of temperature and pH were evaluated using randomized complete block analysis of variance, and the growth rates of V. parahaemolyticus and V. vulnificus were modeled using the interpolation fit on the MatLab Curve Fitting Toolbox. Different optimal conditions involving temperature and pH were observed for planktonic and biofilm Vibrio growth within- and between-species. This study showed that temperature and pH factors significantly affect Vibrio planktonic growth rates and V. parahaemolyticus biofilm formation. Therefore, pH effects must be added to the Vibrio growth modeling efforts to better predict Vibrio risk in estuarine and coastal zones that can potentially experience the cooccurrence of Vibrio and harmful algal bloom outbreak events.
Collapse
Affiliation(s)
- K. E. Correa Velez
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| | - R. E. Leighton
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| | - A. W. Decho
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| | - J. L. Pinckney
- Department of Biological SciencesUniversity of South CarolinaSCColumbiaUSA
- School of the Earth, Ocean and EnvironmentUniversity of South CarolinaSCColumbiaUSA
| | - R. S. Norman
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| |
Collapse
|
11
|
Peng K, Jiao Y, Gao J, Xiong W, Zhao Y, Yang S, Liao M. Viruses may facilitate the cyanobacterial blooming during summer bloom succession in Xiangxi Bay of Three Gorges Reservoir, China. Front Microbiol 2023; 14:1112590. [PMID: 36970686 PMCID: PMC10030618 DOI: 10.3389/fmicb.2023.1112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
The occurrence of cyanobacterial blooms in summer are frequently accompanied by the succession of phytoplankton communities in freshwater. However, little is known regarding the roles of viruses in the succession, such as in huge reservoirs. Here, we investigated the viral infection characteristics of phytoplankton and bacterioplankton during the summer bloom succession in Xiangxi Bay of Three Gorges Reservoir, China. The results indicated that three distinct bloom stages and two successions were observed. From cyanobacteria and diatom codominance to cyanobacteria dominance, the first succession involved different phyla and led to a Microcystis bloom. From Microcystis dominance to Microcystis and Anabaena codominance, the second succession was different Cyanophyta genera and resulted in the persistence of cyanobacterial bloom. The structural equation model (SEM) showed that the virus had positive influence on the phytoplankton community. Through the Spearman’s correlation and redundancy analysis (RDA), we speculated that both the increase of viral lysis in the eukaryotic community and the increase of lysogeny in cyanobacteria may contributed to the first succession and Microcystis blooms. In addition, the nutrients supplied by the lysis of bacterioplankton might benefit the second succession of different cyanobacterial genera and sustain the dominance of cyanobacteria. Based on hierarchical partitioning method, the viral variables still have a marked effect on the dynamics of phytoplankton community, although the environmental attributes were the major factors. Our findings suggested that viruses played multiple potential roles in summer bloom succession and may help the blooms success of cyanobacteria in Xiangxi Bay. Under the background of increasingly serious cyanobacterial blooms worldwide, our study may have great ecological and environmental significance for understanding the population succession in phytoplankton and controlling the cyanobacterial blooms.
Collapse
Affiliation(s)
- Kaida Peng
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Yiying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Jian Gao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Wen Xiong
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Yijun Zhao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Shao Yang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Mingjun Liao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
- *Correspondence: Mingjun Liao,
| |
Collapse
|
12
|
Linz DM, Sienkiewicz N, Struewing I, Stelzer EA, Graham JL, Lu J. Metagenomic mapping of cyanobacteria and potential cyanotoxin producing taxa in large rivers of the United States. Sci Rep 2023; 13:2806. [PMID: 36797305 PMCID: PMC9935515 DOI: 10.1038/s41598-023-29037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cyanobacteria and cyanotoxin producing cyanobacterial blooms are a trending focus of current research. Many studies focus on bloom events in lentic environments such as lakes or ponds. Comparatively few studies have explored lotic environments and fewer still have examined the cyanobacterial communities and potential cyanotoxin producers during ambient, non-bloom conditions. Here we used a metagenomics-based approach to profile non-bloom microbial communities and cyanobacteria in 12 major U.S. rivers at multiple time points during the summer months of 2019. Our data show that U.S. rivers possess microbial communities that are taxonomically rich, yet largely consistent across geographic location and time. Within these communities, cyanobacteria often comprise significant portions and frequently include multiple species with known cyanotoxin producing strains. We further characterized these potential cyanotoxin producing taxa by deep sequencing amplicons of the microcystin E (mcyE) gene. We found that rivers containing the highest levels of potential cyanotoxin producing cyanobacteria consistently possess taxa with the genetic potential for cyanotoxin production and that, among these taxa, the predominant genus of origin for the mcyE gene is Microcystis. Combined, these data provide a unique perspective on cyanobacteria and potential cyanotoxin producing taxa that exist in large rivers across the U.S. and can be used to better understand the ambient conditions that may precede bloom events in lotic freshwater ecosystems.
Collapse
Affiliation(s)
- David M Linz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Nathan Sienkiewicz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Ian Struewing
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | | | | | - Jingrang Lu
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Zepernick BN, Wilhelm SW, Bullerjahn GS, Paerl HW. Climate change and the aquatic continuum: A cyanobacterial comeback story. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:3-12. [PMID: 36096485 PMCID: PMC10103762 DOI: 10.1111/1758-2229.13122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 05/20/2023]
Abstract
Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era-starting with the Great Oxidation Event-fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co-existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater-marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that "water flows downhill". Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.
Collapse
Affiliation(s)
- Brittany N. Zepernick
- Department of MicrobiologyThe University of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Steven W. Wilhelm
- Department of MicrobiologyThe University of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - George S. Bullerjahn
- NIEHS/NSF Great Lakes Center for Fresh Waters and Human HealthBowling Green State UniversityBowling GreenOhioUSA
| | - Hans W. Paerl
- Institute of Marine SciencesUniversity of North Carolina at Chapel HillMorehead CityNorth CarolinaUSA
| |
Collapse
|
14
|
Mohamed ZA, Mostafa Y, Alamri S, Hashem M, Alrumman S. Biotransformation and detoxification of saxitoxin by Bacillus flexus in batch experiments. Arch Microbiol 2023; 205:63. [PMID: 36629970 DOI: 10.1007/s00203-022-03397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023]
Abstract
Saxitoxins (STXs) are carbamate alkaloid neurotoxins produced by some species of cyanobacteria. They are water soluble and relatively stable in the natural environment, and thereby represent a risk to animal and human health through a long-time exposure. STXs cannot be sufficiently removed by conventional water treatment methods. Therefore, this study investigates the potential STX biodegradation and detoxification by bacteria as a promising method for toxin removal. STX biodegradation experiments were conducted using Bacillus flexus SSZ01 strain in batch cultures. The results revealed that SSZ01 strain grew well and rapidly detoxified STX, with no lag phase observed. STX detoxification by SSZ01 strain was initial-toxin-concentration-dependent. The highest biotransformation rate (10 µg STX L-1 day-1) the pseudo-first-order kinetic constant (0.58 d-1) were obtained at the highest initial toxin concentration (50 µg L-1) and the lowest ones (0.06 µg STX L-1 day-1 and 0.14 d-1, respectively) were recorded at the lowest initial concentration (0.5 µg L-1). STX biotransformation rate increased with temperature, with highest occurred at 30 ºC. This rate was also influenced by pH, with highest obtained at pH8 and lowest at higher and lower pH values. HPLC chromatograms showed that STX biotransformation peak is corresponding to the least toxic STX analog (disulfated sulfocarbamoyl-C1 variant). The Artemia-based toxicity assay revealed that this biotransformation byproduct was nontoxic. This suggests the potential application of this bacterial strain in slow sand filters for cyanotoxin removal in water treatment plants. Being nontoxic, this byproduct needs to be assayed for its therapeutic effects toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Yasser Mostafa
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| | - Saad Alamri
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| | - Sulaiman Alrumman
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
15
|
Tarafdar L, Mohapatra M, Muduli PR, Kumar A, Mishra DR, Rastogi G. Co-occurrence patterns and environmental factors associated with rapid onset of Microcystis aeruginosa bloom in a tropical coastal lagoon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116580. [PMID: 36323116 DOI: 10.1016/j.jenvman.2022.116580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The environmental factors contributing to the Microcystis aeruginosa bloom (hereafter referred to as Microcystis bloom) are still debatable as they vary with season and geographic settings. We examined the environmental factors that triggered Microcystis bloom outbreak in India's largest brackish water coastal lagoon, Chilika. The warmer water temperature (25.31-32.48 °C), higher dissolved inorganic nitrogen (DIN) loading (10.15-13.53 μmol L-1), strong P-limitation (N:P ratio 138.47-246.86), higher water transparency (46.62-73.38 cm), and low-salinity (5.45-9.15) exerted a strong positive influence on blooming process. During the bloom outbreak, M. aeruginosa proliferated, replaced diatoms, and constituted 70-88% of the total phytoplankton population. The abundances of M. aeruginosa increased from 0.89 × 104 cells L-1 in September to 1.85 × 104 cells L-1 in November and reduced drastically during bloom collapse (6.22 × 103 cells L-1) by the late November of year 2017. The decrease in M. aeruginosa during bloom collapse was associated with a decline in DIN loading (2.97 μmol L-1) and N:P ratio (73.95). Sentinel-3 OLCI-based satellite monitoring corroborated the field observations showing Cyanophyta Index (CI) > 0.01 in September, indicative of intense bloom and CI < 0.0001 during late November, suggesting bloom collapse. The presence of M. aeruginosa altered the phytoplankton community composition. Furthermore, co-occurrence network indicated that bloom resulted in a less stable community with low diversity, inter-connectedness, and prominence of a negative association between phytoplankton taxa. Variance partitioning analysis revealed that TSM (16.63%), salinity (6.99%), DIN (5.21%), and transparency (5.15%) were the most influential environmental factors controlling the phytoplankton composition. This study provides new insight into the phytoplankton co-occurrences and combination of environmental factors triggering the rapid onset of Microcystis bloom and influencing the phytoplankton composition dynamics of a large coastal lagoon. These findings would be valuable for future bloom forecast modeling and aid in the management of the lagoon.
Collapse
Affiliation(s)
- Lipika Tarafdar
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India; Department of Marine Sciences, Berhampur University, Bhanjabihar, 760007, Odisha, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Pradipta R Muduli
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Abhishek Kumar
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
| | - Deepak R Mishra
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India.
| |
Collapse
|
16
|
Zepernick BN, Niknejad DJ, Stark GF, Truchon AR, Martin RM, Rossignol KL, Paerl HW, Wilhelm SW. Morphological, physiological, and transcriptional responses of the freshwater diatom Fragilaria crotonensis to elevated pH conditions. Front Microbiol 2022; 13:1044464. [PMID: 36504786 PMCID: PMC9732472 DOI: 10.3389/fmicb.2022.1044464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Harmful algal blooms (HABs) caused by the toxin-producing cyanobacteria Microcystis spp., can increase water column pH. While the effect(s) of these basified conditions on the bloom formers are a high research priority, how these pH shifts affect other biota remains understudied. Recently, it was shown these high pH levels decrease growth and Si deposition rates in the freshwater diatom Fragilaria crotonensis and natural Lake Erie (Canada-US) diatom populations. However, the physiological mechanisms and transcriptional responses of diatoms associated with these observations remain to be documented. Here, we examined F. crotonensis with a set of morphological, physiological, and transcriptomic tools to identify cellular responses to high pH. We suggest 2 potential mechanisms that may contribute to morphological and physiological pH effects observed in F. crotonensis. Moreover, we identified a significant upregulation of mobile genetic elements in the F. crotonensis genome which appear to be an extreme transcriptional response to this abiotic stress to enhance cellular evolution rates-a process we have termed "genomic roulette." We discuss the ecological and biogeochemical effects high pH conditions impose on fresh waters and suggest a means by which freshwater diatoms such as F. crotonensis may evade high pH stress to survive in a "basified" future.
Collapse
Affiliation(s)
| | - David J. Niknejad
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Gwendolyn F. Stark
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Alexander R. Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Robbie M. Martin
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Karen L. Rossignol
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | - Hans W. Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | - Steven W. Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
17
|
Draft Genome Sequence of the Freshwater Diatom Fragilaria crotonensis SAG 28.96. Microbiol Resour Announc 2022; 11:e0028922. [PMID: 35976009 PMCID: PMC9476933 DOI: 10.1128/mra.00289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Here, we report the assembled and annotated genome of the freshwater diatom Fragilaria crotonensis SAG 28.96. The 61.85-Mb nuclear genome was assembled into 879 contigs, has a GC content of 47.40%, contains 26,015 predicted genes, and shows completeness of 81%.
Collapse
|
18
|
Effect of Culture pH on Properties of Exopolymeric Substances from Synechococcus PCC7942: Implications for Carbonate Precipitation. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The role of culture conditions on the production of exopolymeric substances (EPS) by Synechococcus strain PCC7942 was investigated. Carbonate mineral precipitation in these EPS was assessed in forced precipitation experiments. Cultures were grown in HEPES-buffered medium and non-buffered medium. The pH of buffered medium remained constant at 7.5, but in non-buffered medium it increased to 9.5 within a day and leveled off at 10.5. The cell yield at harvest was twice as high in non-buffered medium than in buffered medium. High molecular weight (>10 kDa) and low molecular weight (3–10 kDa) fractions of EPS were obtained from both cultures. The cell-specific EPS production in buffered medium was twice as high as in non-buffered medium. EPS from non-buffered cultures contained more negatively charged macromolecules and more proteins than EPS from buffered cultures. The higher protein content at elevated pH may be due to the induction of carbon-concentrating mechanisms, necessary to perform photosynthetic carbon fixation in these conditions. Forced precipitation showed smaller calcite carbonate crystals in EPS from non-buffered medium and larger minerals in polymers from buffered medium. Vaterite formed only at low EPS concentrations. Experimental results are used to conceptually model the impact of pH on the potential of cyanobacterial blooms to produce minerals. We hypothesize that in freshwater systems, small crystal production may benefit the picoplankton by minimizing the mineral ballast, and thus prolonging the residence time in the photic zone, which might result in slow sinking rates.
Collapse
|