1
|
Dlamini SB, Mlambo V, Mnisi CM, Ateba CN. Virulence, multiple drug resistance, and biofilm-formation in Salmonella species isolated from layer, broiler, and dual-purpose indigenous chickens. PLoS One 2024; 19:e0310010. [PMID: 39466757 PMCID: PMC11515961 DOI: 10.1371/journal.pone.0310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, the significant risk to food safety and public health posed by antimicrobial-resistant foodborne Salmonella pathogens is driven by the utilization of in-feed antibiotics, with variations in usage across poultry production systems. The current study investigated the occurrence of virulence, antimicrobial resistant profiles, and biofilm-forming potentials of Salmonella isolates sourced from different chicken types. A total of 75 cloacal faecal samples were collected using sterile swabs from layer, broiler, and indigenous chickens across 15 poultry farms (five farms per chicken type). The samples were analysed for the presence of Salmonella spp. using species-specific PCR analysis. Out of the 150 presumptive isolates, a large proportion (82; 55%) were confirmed as Salmonella species, comprising the serovars S. typhimurium (49%) and S. enteritidis (30%) while 21% were uncategorised. Based on phenotypic antibiotic susceptibility test, the Salmonella isolates were most often resistant to erythromycin (62%), tetracycline (59%), and trimethoprim (32%). The dominant multiple antibiotic resistance phenotypes were SXT-W-TE (16%), E-W-TE (10%), AML-E-TE (10%), E-SXT-W-TE (13%), and AMP-AML-E-SXT-W-TE (10%). Genotypic assessment of antibiotic resistance genes revealed that isolates harboured the ant (52%), tet (A) (46%), sui1 (13%), sui2 (14%), and tet (B) (9%) determinants. Major virulence genes comprising the invasion gene spiC, the SPI-3 encoded protein (misL) that is associated with the establishment of chronic infections and host specificity as well as the SPI-4 encoded orfL that facilitates adhesion, autotransportation and colonisation were detected in 26%, 16%, and 14% of the isolates respectively. There was no significant difference on the proportion of Salmonella species and the occurrence of virulence and antimicrobial resistance determinants among Salmonella isolates obtained from different chicken types. In addition, neither the chicken type nor incubation temperature influenced the potential of the Salmonella isolates to form biofilms, although a large proportion (62%) exhibited weak to strong biofilm-forming potentials. Moderate to high proportions of antimicrobial resistant pathogenic Salmonella serovars were detected in the study but these did not vary with poultry production systems.
Collapse
Affiliation(s)
- Sicelo B. Dlamini
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Victor Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Collins Njie Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| |
Collapse
|
2
|
Khan N, Gillani SM, Bhat MA, ullah I, Yaseen M. Genetic and in-silico approaches for investigating the mechanisms of ciprofloxacin resistance in Salmonella typhi: Mutations, extrusion, and antimicrobial resistance. Heliyon 2024; 10:e38333. [PMID: 39397980 PMCID: PMC11470425 DOI: 10.1016/j.heliyon.2024.e38333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Salmonella enterica serovar Typhi spreads typhoid infection in humans through the consumption of contaminated food and water. Poor sanitation plays a pivotal role in its dissemination. Over time, the bacterium has acquired resistance to many promising antibiotics, posing a growing global health concern and hindering the achievement of sustainable development goals. This study aims to elucidate the molecular complexity of fluoroquinolone resistance, a first-line treatment for typhoid infection. To achieve this aim, 80 clinical isolates were collected from various diagnostic laboratories. These isolates were confirmed based on morphological characteristics and biochemical tests. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates were identified using the Kirby-Bauer disc diffusion method. The mechanism of ciprofloxacin resistance was investigated by sequencing the quinolone resistance-determining region (QRDR) genes and identifying the presence of the qnrS1 gene. As a result of this study, 60 % of isolates showed resistance to ciprofloxacin. At the same time, the qnrS1 gene was present in all the selected strains while mutation analysis identified significant mutation in QRDR of DNA gyrase subunit A (gyrA) and Topoisomerase IV (parC) gene. The combinatorial effect was further investigated by downloading 286 draft genomes. The Mutation analysis reveals significant mutations at gyrA S83F, gyrA D87N, gyrA S83Y, gyrB S464F, parC S80I, and parE L416F. Additionally, docking analysis indicates reduced binding affinity and altered solvent accessibility, which show the structural changes at mutation sites. This study provides crucial insights that mutation reduces the binding affinity while qnrS1 acts as a transport channel to extrude the ciprofloxacin. In the future, further validation through experimental mutagenesis is recommended, for targeted therapeutic interventions against the mounting threat of antibiotic-resistant S. Typhi.
Collapse
Affiliation(s)
- Noman Khan
- Department of Biosciences, Mohammad Ali Jinnah University Karachi Pakistan, Pakistan
- The Gene-omics Bioinformatics Laboratory, Karachi, Pakistan
| | - Syed Maaz Gillani
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ihsan ullah
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
- Institute of Chemical Sciences, University of Swat, Charbagh, 19130, Swat, Pakistan
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Charbagh, 19130, Swat, Pakistan
| |
Collapse
|
3
|
Araújo D, Silva AR, Fernandes R, Serra P, Barros MM, Campos AM, Oliveira R, Silva S, Almeida C, Castro J. Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals. Pathogens 2024; 13:320. [PMID: 38668275 PMCID: PMC11054384 DOI: 10.3390/pathogens13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The importance of addressing the problem of biofilms in farm, wild, and companion animals lies in their pervasive impact on animal health and welfare. Biofilms, as resilient communities of microorganisms, pose a persistent challenge in causing infections and complicating treatment strategies. Recognizing and understanding the importance of mitigating biofilm formation is critical to ensuring the welfare of animals in a variety of settings, from farms to the wild and companion animals. Effectively addressing this issue not only improves the overall health of individual animals, but also contributes to the broader goals of sustainable agriculture, wildlife conservation, and responsible pet ownership. This review examines the current understanding of biofilm formation in animal diseases and elucidates the complex processes involved. Recognizing the limitations of traditional antibiotic treatments, mechanisms of resistance associated with biofilms are explored. The focus is on alternative therapeutic strategies to control biofilm, with illuminating case studies providing valuable context and practical insights. In conclusion, the review highlights the importance of exploring emerging approaches to mitigate biofilm formation in animals. It consolidates existing knowledge, highlights gaps in understanding, and encourages further research to address this critical facet of animal health. The comprehensive perspective provided by this review serves as a foundation for future investigations and interventions to improve the management of biofilm-associated infections in diverse animal populations.
Collapse
Affiliation(s)
- Daniela Araújo
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Rúben Fernandes
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Patrícia Serra
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Maria Margarida Barros
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Maria Campos
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Ricardo Oliveira
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Castro
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Elbarbary NK, Abdelmotilib NM, Salem-Bekhit MM, Salem MM, Singh S, Dandrawy MK. Antibacterial efficiency of apple vinegar marination on beef-borne Salmonella. Open Vet J 2024; 14:274-283. [PMID: 38633164 PMCID: PMC11018434 DOI: 10.5455/ovj.2024.v14.i1.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Salmonella-related foodborne illnesses are a significant public health concern. Naturally, antibacterial food components have been shown to limit microbial growth proliferation with various degrees of efficacy. Aims To examine the occurrence, microbial load, and effect of apple vinegar on Salmonella serovars in beef and beef products. Methods 150 beef and beef products were collected between March and May 2022. Total viable count (TVC), Enterobacteriaceae count (ENT), isolation and identification of Salmonella, and their virulence factors detection by multiplex PCR were determined, and an experimental study of the effect of natural apple vinegar marination on Salmonella spp. Results TVC was higher in meatballs (3.32 × 106 ± 1.07 × 106) while beef burgers (4.22 × 103 ± 0.71 × 103) had the highest ENT. Concerning the prevalence of Salmonella spp., meatball (46.7%) and beef burger (25.3%) samples were the highest contamination rate. The common serovars detected were Salmonella typhimurium (6%), Salmonella enteritidis (6%), and Salmonella infantis (4%). Based on the results of PCR, 12, 11, and 11 out of 18 samples of Salmonella isolates possess hila, stn, and invA genes. By immersing the inoculated steak meat in apple vinegar at different concentrations (50%, 70%, and 100%), the initial populations of the Salmonella strains after 12 hours were reduced to 0.38 × 102 ± 0.05 × 102 log CFU/ml; however, after 48 hours become the most reduction (0.31 × 102 ± 0.07 × 102 log CFU/ml) at a concentration of 100% apple vinegar. An enhancement in the sensory attributes was noted across all concentrations. Conclusion The consumed beef and beef products are contaminated with pathogenic bacteria such as Salmonella spp. Marinades made using apple vinegar concentrations of 50%, 75%, and 100% effectively minimized the prevalence of artificially inoculated Salmonella and extended the shelf life of preserved refrigerated beef products to 48 hours.
Collapse
Affiliation(s)
- Nady Khairy Elbarbary
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Neveen M. Abdelmotilib
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Egypt
| | - Mounir M. Salem-Bekhit
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M. Salem
- College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Soumya Singh
- College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Mohamed K. Dandrawy
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
5
|
Xu B, Hou Z, Liu L, Wei J. Genomic and proteomic analysis of Salmonella Enteritidis isolated from a patient with foodborne diarrhea. World J Microbiol Biotechnol 2023; 40:48. [PMID: 38114804 DOI: 10.1007/s11274-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Salmonella is a major cause of foodborne diseases and clinical infections worldwide. This study aimed to investigate the drug resistance, genomic characteristics, and protein expression of foodborne Salmonella in Shanxi Province. We isolated a strain of Salmonella Enteritidis from patient feces and designated it 31A. The drug resistance of 31A against 14 antibiotics was determined using an antimicrobial susceptibility test. Whole-genome sequencing and quantitative proteomic analysis were performed on the 31A strain. Functional annotation of drug resistance genes/proteins and virulence genes/proteins was conducted using various databases, such as VFDB, ARDB, CAZY, COG, KOG, CARD, GO, and KEGG. The focus of this study was understanding the mechanisms related to food poisoning, and the genetic evolution of 31A was analyzed through comparative genomics. The 31A strain belonged to ST11 Salmonella Enteritidis and showed resistance to β-lactam and quinolone antibiotics. The genome of 31A had 70 drug resistance genes, 321 virulence genes, 12 SPIs, and 3 plasmid replicons. Functional annotation of these drug resistance and virulence genes revealed that drug resistance genes were mainly involved in defense mechanisms to confer resistance to antibiotics, while virulence genes were mainly associated with cellular motility. There were extensive interactions among the virulence genes, which included SPI-1, SPI-2, flagella, fimbriae, capsules and so on. The 31A strain had a close relationship with ASM2413794v1 and ASM130523v1, which were also ST11 Salmonella Enteritidis strains from Asia and originated from clinical patients, animals, and food. These results suggested minimal genomic differences among strains from different sources and the potential for interhost transmission. Differential analysis of the virulence and drug resistance-related proteins revealed their involvement in pathways related to human diseases, indicating that these proteins mediated bacterial invasion and infection. The integration of genomic and proteomic information led to the discovery that Salmonella can survive in a strong acid environment through various acid resistance mechanisms after entering the intestine with food and then invade intestinal epithelial cells to exert its effects. In this study, we comprehensively analyzed the drug resistance and virulence characteristics of Salmonella Enteritidis 31A using a combination of genomic and proteomic approaches, focusing on the pathogenic mechanism of Salmonella Enteritidis in food poisoning. We found significant fluctuations in various virulence factors during the survival, invasion, and infection of Salmonella Enteritidis, which collectively contributed to its pathogenicity. These results provide important information for the source tracing, prevention, and treatment of clinical infections caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| |
Collapse
|
6
|
Xu B, Hou Z, Liu L, Yan R, Zhang J, Wei J, Du M, Xuan Y, Fan L, Li Z. The Resistance and Virulence Characteristics of Salmonella Enteritidis Strain Isolated from Patients with Food Poisoning Based on the Whole-Genome Sequencing and Quantitative Proteomic Analysis. Infect Drug Resist 2023; 16:6567-6586. [PMID: 37823028 PMCID: PMC10564084 DOI: 10.2147/idr.s411125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Objective This paper explores the drug resistance, genome and proteome expression characteristics of Salmonella from a food poisoning event. Methods A multidrug-resistant Salmonella Enteritidis strain, labeled as 27A, was isolated and identified from a food poisoning patient. Antimicrobial susceptibility testing determined the resistance of 27A strain to 14 antibiotics. Then, WGS analysis and comparative genomics analysis were performed on 27A, and the functional annotation of resistance genes, virulence genes were performed based on VFDB, ARDB, COG, CARD, GO, KEGG, and CAZY databases. Meanwhile, based on iTRAQ technology, quantitative proteomic analysis was conducted on 27A to analyze the functions and interactions of differentially expressed proteins related to bacterial resistance and pathogenicity. Results Strain 27A belonged to ST11 S. Enteritidis and was resistant to levofloxacin, ciprofloxacin, ampicillin, piperacillin, and ampicillin/sulbactam. There were 33 drug resistance genes, 384 virulence genes and 2 plasmid replicon, IncFIB(S) and IncFII(S), annotated by WGS. Proteomic analysis revealed significant changes in virulence and drug proteins, which were mainly involved in bacterial pathogenicity and metabolic processes. PPI prediction showed the relationship between virulence proteins and T3SS proteins, and PagN cooperated with proteins related to T3SS to jointly mediate the invasion of 27A strain on the human body. Phylogenetic analysis indicated that S. Enteritidis has potential transmission in humans, food, and animals. Conclusion This study comprehensively analyzed the drug resistance and virulence phenotypes of S. Enteritidis 27A using genomic and proteomic approaches. These helps reveal the drug resistance and virulence mechanisms of S. Enteritidis, and provides important information for the source tracing and the prevention of related diseases, which lays a foundation for research on food safety, public health monitoring, and the drug resistance and pathogenicity of S. Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Zhuru Hou
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Miao Du
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Lei Fan
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Zhuoxi Li
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| |
Collapse
|
7
|
Guidotti-Takeuchi M, Melo RTD, Ribeiro LNDM, Dumont CF, Ribeiro RAC, Brum BDA, de Amorim Junior TLIF, Rossi DA. Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap. Antibiotics (Basel) 2023; 12:1127. [PMID: 37508224 PMCID: PMC10376302 DOI: 10.3390/antibiotics12071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Collapse
Affiliation(s)
- Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Bárbara de Araújo Brum
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
8
|
Sielski Galvão Soares L, Casella T, Kawagoe EK, Benetti Filho V, Omori WP, Nogueira MCL, Wagner G, Rodrigues de Oliveira R, Stahlhofer SR, Antunes Ferreira F, Tondo EC, De Dea Lindner J. Phenotypic and genotypic characterization of antibiotic resistance of Salmonella Heidelberg in the south of Brazil. Int J Food Microbiol 2023; 391-393:110151. [PMID: 36871395 DOI: 10.1016/j.ijfoodmicro.2023.110151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Salmonella is the main human pathogen present in the poultry chain. Salmonella Heidelberg is one of the most important serovars for public health since it has been frequently isolated in broiler chickens from different countries and may present multidrug resistance (MDR). This study was carried out with 130 S. Heidelberg isolates collected from pre-slaughter broiler farms in 2019 and 2020 in 18 cities from three Brazilian states to study relevant aspects regarding their genotypic and phenotypic resistance. The isolates were tested and identified using somatic and flagellar antiserum (0:4, H:2, and H:r), and an antimicrobial susceptibility test (AST) was performed against 11 antibiotics for veterinary use. The strains were typed by Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR, and representatives of the main clusters of the identified profiles were sequenced by Whole Genome Sequencing (WGS). AST results showed that all isolates were resistant to sulfonamide, 54 % (70/130) were resistant to amoxicillin, and only one was sensitive to tetracycline. Twelve isolates (15.4 %) were MDR. The dendrogram obtained from the ERIC-PCR showed that the strains were grouped into 27 clusters with similarity above 90 %, with some isolates showing 100 % similarity but with different phenotypic profiles of antimicrobial resistance. Identical strains collected on the same farm on other dates were identified, indicating that they were residents. WGS identified 66 antibiotic-resistance genes. The sul2 (present in all sequenced samples) and tet(A) genes were highlighted and validated in the experimental analysis. The fosA7 gene was also identified in all sequenced samples, but resistance was not observed in the phenotypic test, possibly due to the heteroresistance of the S. Heidelberg strains evaluated. Considering that chicken meat is one of the most consumed meats in the world, the data obtained in the present study can corroborate the mapping of the origin and trends of antimicrobial resistance.
Collapse
Affiliation(s)
- Luana Sielski Galvão Soares
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Tiago Casella
- Center for Microorganisms Investigation, São José Do Rio Preto Medical School (FAMERP), São José Do Rio Preto, SP, Brazil
| | - Eric Kazuo Kawagoe
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | - Vilmar Benetti Filho
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | | | - Mara Corrêa Lelles Nogueira
- Center for Microorganisms Investigation, São José Do Rio Preto Medical School (FAMERP), São José Do Rio Preto, SP, Brazil
| | - Glauber Wagner
- Laboratory of Bioinformatics, Department of Microbiology, Immunology and Parasitology, UFSC, Florianópolis, SC, Brazil
| | | | | | | | - Eduardo Cesar Tondo
- Laboratory of Food Microbiology and Food Control, Institute of Food Science and Food Technology of Federal University of Rio Grande do Sul (ICTA/UFRGS), Porto Alegre, RS, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocess Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
9
|
Vilela FP, Dos Prazeres Rodrigues D, Allard MW, Falcão JP. Genomic analyses of drug-resistant Salmonella enterica serovar Heidelberg strains isolated from meat and related sources between 2013 and 2017 in the south region of Brazil. Curr Genet 2023; 69:141-152. [PMID: 36920496 DOI: 10.1007/s00294-023-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Salmonella enterica serovar Heidelberg (S. Heidelberg) is a zoonotic, ubiquitous, and worldwide-distributed pathogen, responsible for gastroenteritis in humans caused by the consumption of contaminated food. In this study, 11 S. Heidelberg strains isolated from chicken and bovine meat, drag swab, and animal feed between 2013 and 2017 in states of the southern region of Brazil were characterized by whole-genome sequencing (WGS) analyses. Antimicrobial resistance against 18 antimicrobials was determined by disk-diffusion and ciprofloxacin's minimum inhibitory concentration by Etest®. The search for resistance and virulence genes, plasmids, Salmonella Pathogenicity Islands (SPIs) plus multi-locus sequence typing (MLST), and single-nucleotide polymorphisms (SNPs) analyses was conducted using WGS data. All strains harbored resistance genes fosA7, aac(6')-Iaa, sul2, tet(A), blaCMY-2, mdsA, and mdsB, and point mutations in gyrA and parC. All strains showed a phenotypic multidrug-resistant profile, with resistant or intermediate resistant profiles against 14 antimicrobials tested. Plasmids ColpVC, IncC, IncX1, and IncI1-I(Alpha) were detected. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, and type III secretion systems plus 10 SPIs were detected. All strains were assigned to ST15 and belonged to two SNP clusters showing high similarity to isolates from the United Kingdom, Chile, Germany, the Netherlands, China, South Africa, and South Korea. In conclusion, the presence of multidrug-resistant S. Heidelberg strains in Brazil showing a global genomic relationship may alert for the necessity of stronger surveillance measures by food safety and public health authorities to limit its spread to humans and animals through foods.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/n, Bloco S-Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/n, Bloco S-Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
10
|
Alves VV, Arantes LCRV, de Barros Moreira Filho AL, da Silva Teixeira M, da Silva EFA, de Mesquita Souza Saraiva M, de Lucena RB, Givisiez PEN, de Oliveira CJB, de Freitas Neto OC. Effect of diets containing commercial bioactive compounds on Salmonella Heidelberg infection in broiler chicks. Braz J Microbiol 2023; 54:571-577. [PMID: 36572822 PMCID: PMC9943816 DOI: 10.1007/s42770-022-00899-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella Heidelberg (SH) is responsible for economic losses in poultry farming and food infections in humans and is a serious public health problem. Recently, there has been an increase in the frequency of isolation of this serotype in batches of broilers raised in Brazil. It is necessary to find new ways to help control this pathogen. The present study aimed to evaluate the effect of diets containing the compound Original XPC, which is a prebiotic-like fermented compound (PFC), and/or Sangrovit, which is a sanguinarine-based phytobiotic (SAN), on SH infection in broiler chicks. For this purpose, SH colonization in the cecum and its invasion into the spleen and liver were evaluated, as were the histopathological changes caused in these organs. The lowest cecal SH counts were observed in birds that ingested SAN, followed by those fed PFC (P < 0.05), with no added effect when the two bioproducts were used together (SAN + PFC). The mean SH and liver spleen counts did not differ between groups (P > 0.05). In general, birds from all groups challenged with SH showed similar macroscopic changes, such as hemorrhagic areas, hepatomegaly, and splenomegaly, such changes being more intense in the infected control group. The microscopic changes observed in the liver included hepatocyte congestion, heterophil infiltration in the sinusoid capillaries, areas of necrosis, and mononuclear inflammation. In the cecum, heterophilic infiltrate and thickening of the lamina propria were observed. In the ileum, the most common changes were congestion and thickening of the lamina propria and atrophy of the villi and crypts. The microscopic changes were less intense in the supplemented birds than the infected control group, and those supplemented with SAN developed the least changes. As ideal conditions for histomorphometric parameters of the ileum, the villus:crypt ratio in birds should be high, the villi should be long, and the crypts should be shallow. In the present study, higher mean heights and villus areas were observed in uninfected control and SAN group birds, and the crypt depth was lower in birds in the negative control group. The lowest villus:crypt ratio was observed in the birds of the infected control group. Although additional studies are needed, the preliminary results of the current investigation indicated that the addition of bioproducts, especially SAN, to the diet of birds helped to control SH infection, reducing its count in the cecum and improving overall and intestinal health.
Collapse
Affiliation(s)
- Victória Veiga Alves
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Letícia Cury Rocha Veloso Arantes
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Mailson da Silva Teixeira
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Eudes Fernando Alves da Silva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | | | - Ricardo Barbosa de Lucena
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Patrícia Emília Naves Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
11
|
Santos AFM, Machado SCA, Dias TS, Rodrigues DP, Pereira VLA. High Genetic Similarity Among Salmonella Heidelberg Isolated from Poultry Farms, Wild Animals, Beef, Poultry and Pork Meat, and Humans in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2022-1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
| | | | - TS Dias
- Federal Fluminense University, Brazil
| | | | | |
Collapse
|
12
|
Góes V, Monte DFM, Saraiva MDMS, Maria de Almeida A, Cabrera JM, Rodrigues Alves LB, Ferreira TS, Lima TSD, Benevides VP, Barrow PA, Freitas Neto OCD, Berchieri A. Salmonella Heidelberg side-step gene loss of respiratory requirements in chicken infection model. Microb Pathog 2022; 171:105725. [PMID: 36007847 DOI: 10.1016/j.micpath.2022.105725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/15/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Abstract
Among the important recent observations involving anaerobic respiration was that an electron acceptor produced as a result of an inflammatory response to Salmonella Typhimurium generates a growth advantage over the competing microbiota in the lumen. In this regard, anaerobically, salmonellae can oxidize thiosulphate (S2O32-) converting it into tetrathionate (S4O62-), the process by which it is encoded by ttr gene cluster (ttrSRttrBCA). Another important pathway under aerobic or anaerobic conditions is the 1,2-propanediol-utilization mediated by the pdu gene cluster that promotes Salmonella expansion during colitis. Therefore, we sought to compare in this study, whether Salmonella Heidelberg strains lacking the ttrA, ttrApduA, and ttrACBSR genes experience a disadvantage during cecal colonization in broiler chicks. In contrast to expectations, we found that the gene loss in S. Heidelberg potentially confers an increase in fitness in the chicken infection model. These data argue that S. Heidelberg may trigger an alternative pathway involving the use of an alternative electron acceptor, conferring a growth advantage for S. Heidelberg in chicks.
Collapse
Affiliation(s)
- Vinícius Góes
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil
| | - Daniel F M Monte
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | | | - Adriana Maria de Almeida
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil
| | - Julia Memrava Cabrera
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil
| | - Lucas Bocchini Rodrigues Alves
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil
| | - Taísa Santiago Ferreira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil
| | - Tulio Spina de Lima
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil
| | - Valdinete P Benevides
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Surrey, Guildford, GU2 7AL, United Kingdom
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Angelo Berchieri
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
13
|
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 2022; 9:405. [PMID: 36006320 PMCID: PMC9415136 DOI: 10.3390/vetsci9080405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus is classified into several serovars/lineages, some of them showing high antimicrobial resistance (AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made controlling it a real challenge in the poultry-production chains. This review describes the emergence, dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry. It is reported that few serovars emerged and have been more widely disseminated in breeders, broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms, remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis, Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected, but less frequently and usually in specific poultry-production regions. AMR has been identified in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control this pathogen in Brazilian commercial poultry production chains.
Collapse
Affiliation(s)
- Diéssy Kipper
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Andréa Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
| | - Andressa Matos Carneiro
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - André Felipe Streck
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| |
Collapse
|
14
|
Essential Oil-Based Nanoparticles as Antimicrobial Agents in the Food Industry. Microorganisms 2022; 10:microorganisms10081504. [PMID: 35893562 PMCID: PMC9331367 DOI: 10.3390/microorganisms10081504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
The use of essential oils (EO) loaded with nanoparticles is the most promising alternative to increase food quality and safety. Interesting works describe the antimicrobial properties of EO for pathogen control in natural and processed foods for human health and animal production, also contributing to sustainability. Their association with different nanosystems allows novel developments in the micronutrition, health promotion, and pathogen control fields, preventing the aggravation of bacterial microevolution and combating antibiotic resistance. Benefits to the environment are also provided, as they are biodegradable and biocompatible. However, such compounds have some physicochemical properties that prevent commercial use. This review focuses on recent developments in antimicrobial EO-based nanoparticles and their application in different food matrices.
Collapse
|
15
|
Monteiro GP, de Melo RT, Guidotti-Takeuchi M, Dumont CF, Ribeiro RAC, Guerra W, Ramos LMS, Paixão DA, dos Santos FAL, Rodrigues DDP, Boleij P, Hoepers PG, Rossi DA. A Ternary Copper (II) Complex with 4-Fluorophenoxyacetic Acid Hydrazide in Combination with Antibiotics Exhibits Positive Synergistic Effect against Salmonella Typhimurium. Antibiotics (Basel) 2022; 11:388. [PMID: 35326852 PMCID: PMC8944508 DOI: 10.3390/antibiotics11030388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella spp. continues to figure prominently in world epidemiological registries as one of the leading causes of bacterial foodborne disease. We characterised 43 Brazilian lineages of Salmonella Typhimurium (ST) strains, characterized drug resistance patterns, tested copper (II) complex as control options, and proposed effective antimicrobial measures. The minimum inhibitory concentration was evaluated for seven antimicrobials, isolated and combined with the copper (II) complex [Cu(4-FH)(phen)(ClO4)2] (4-FH = 4-fluorophenoxyacetic acid hydrazide and phen = 1,10-phenanthroline), known as DRI-12, in planktonic and sessile ST. In parallel, 42 resistance genes were screened (PCR/microarray). All strains were multidrug resistant (MDR). Resistance to carbapenems and polymyxins (86 and 88%, respectively) have drawn attention to the emergence of the problem in Brazil, and resistance is observed also to CIP and CFT (42 and 67%, respectively), the drugs of choice in treatment. Resistance to beta-lactams was associated with the genes blaTEM/blaCTX-M in 39% of the strains. Lower concentrations of DRI-12 (62.7 mg/L, or 100 μM) controlled planktonic and sessile ST in relation to AMP/SUL/TET and AMP/SUL/TET/COL, respectively. The synergistic effect provided by DRI-12 was significant for COL/CFT and COL/AMP in planktonic and sessile ST, respectively, and represents promising alternatives for the control of MDR ST.
Collapse
Affiliation(s)
- Guilherme Paz Monteiro
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Rosanne Aparecida Capanema Ribeiro
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Wendell Guerra
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Luana Munique Sousa Ramos
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Drielly Aparecida Paixão
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Fernanda Aparecida Longato dos Santos
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | | | - Peter Boleij
- Check-Points B.V., 6709 PD Wageningen, The Netherlands;
| | - Patrícia Giovana Hoepers
- Postgraduate Program in Veterinary Science, Federal University of Uberlândia, Uberlândia 38402-018, Brazil;
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| |
Collapse
|
16
|
Moreira JPFF, do Monte DFM, Lima CDA, de Oliveira CJB, da Silva Martins NR, Berchieri Junior A, de Freitas Neto OC. Molecular genotyping reveals inter-regional relatedness among antimicrobial resistant Salmonella Minnesota strains isolated from poultry farm and humans, Brazil. Braz J Microbiol 2022; 53:503-508. [PMID: 35061241 PMCID: PMC8882525 DOI: 10.1007/s42770-021-00666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/24/2021] [Indexed: 01/23/2023] Open
Abstract
Genetic profiles of Salmonella Minnesota isolates were analyzed using pulsed-field gel electrophoresis (PFGE). In total, 13 isolates obtained from the broiler industry collected in the states of Minas Gerais (11) and São Paulo (2), as well as five recovered from cases of foodborne infections in humans in the states of Minas Gerais (2), Santa Catarina (1), and Rio Grande do Sul (2), were submitted to PFGE. These 18 S. Minnesota isolates together with other 12 of poultry origin were also subjected to antimicrobial susceptibility testing. The PFGE analysis of 18 strains of S. Minnesota generated a dendrogram that grouped the isolates with 83-90% similarity into four main clusters. Among them, cluster "A" grouped the majority of isolates (13), including two of human origin that showed 90% similarity with a broiler isolate, both recovered in Minas Gerais. The S. Minnesota isolates showed resistance to tetracycline (80%), cefoxitin (80%), ceftazidime (46.7%), nalidixic acid (23.3%), ciprofloxacin (13.3%), and streptomycin (10%). No resistance to gentamicin, chloramphenicol, meropenem, nitrofurantoin, and sulfamethoxazole-trimethoprim was found. Moreover, 23.3% of the evaluated isolates presented multi-resistance profile, all from Minas Gerais. The results highlight the importance of further studies involving S. Minnesota, which is prevalent in the Brazilian broiler flocks and could provoke foodborne infection in humans.
Collapse
Affiliation(s)
- João Paulo Fernandes Ferreira Moreira
- Department of Preventive Veterinary Medicine, School of Veterinary, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos, 6667 - São Luiz, Belo Horizonte, Minas Gerais, CEP: 31270-010, Brazil
| | - Daniel Farias Marinho do Monte
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, São Paulo State University (FCAV-Unesp), Jaboticabal, São Paulo, Brazil
| | - Camila de Aguiar Lima
- Veterinary Science Graduate Program, School of Veterinary, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Nelson Rodrigo da Silva Martins
- Department of Preventive Veterinary Medicine, School of Veterinary, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos, 6667 - São Luiz, Belo Horizonte, Minas Gerais, CEP: 31270-010, Brazil
| | - Angelo Berchieri Junior
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, São Paulo State University (FCAV-Unesp), Jaboticabal, São Paulo, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, School of Veterinary, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos, 6667 - São Luiz, Belo Horizonte, Minas Gerais, CEP: 31270-010, Brazil.
| |
Collapse
|