1
|
Fang J, Ding H, Huang J, Liu W, Hong T, Yang J, Wu Z, Li Z, Zhang S, Liu P, Fang Y, Wu J, Li X, Lin J. Mac-1 blockade impedes adhesion-dependent neutrophil extracellular trap formation and ameliorates lung injury in LPS-induced sepsis. Front Immunol 2025; 16:1548913. [PMID: 40226627 PMCID: PMC11985419 DOI: 10.3389/fimmu.2025.1548913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background Sepsis is a common critical condition that can lead to multiple organ injury. Sepsis-induced acute respiratory distress syndrome (ARDS) is frequently an important cause of poor prognosis and is associated with high mortality rates, despite existing therapeutic interventions. Neutrophil infiltration and extracellular traps (NET) are implicated in acute lung injury (ALI) and ARDS following sepsis. As circulating neutrophils infiltrate infected tissues, they come into direct contact with vascular endothelial cells (ECs). Although the ability of NETs to induce endothelial damage is well established, the specific role of direct EC-neutrophil interactions in NET formation and lung injury during sepsis is not fully understood. Methods In this study, NET formation was assessed when neutrophils were co-culture with ECs or separated from them and stimulated with phorbol 12-myristate 13-acetate (PMA), lipopolysaccharide (LPS), lipoteichoic acid (LTA), or septic plasma. Results We found that adhesion of neutrophils on ECs is critical in NET formation in response to LPS, LTA, or septic plasma in vitro. Blocking the macrophage-1 antigen (Mac-1) impeded NET formation, while inhibiting P-selectin glycoprotein ligand-1 (PSGL-1) or leukocyte function-associated antigen-1 (LFA-1) did not. This adhesion-dependent NET formation was reliant on the influx of extracellular calcium and peptidylarginine deiminase 4 (PAD4)-mediated citrullination of histone H3. However, Mac-1 blockade did not alter calcium influx. In a murine model of LPS-induced sepsis, Mac-1 blockade reduced NET release, lowered inflammatory cytokine levels, mitigated endothelial damage, and attenuated lung injury. Conclusion Our findings offer insights into the critical role of EC-neutrophil direct contact in NET formation during sepsis and propose Mac-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jinhua Fang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongguang Ding
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Junxian Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiwei Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhuo Li
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shiying Zhang
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Peimin Liu
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Zhai Y, Chen K, Xu Z, Chen X, Tong J, He Y, Chen C, Ding M, Liang G, Zheng X. Harmine alleviates LPS-induced acute lung injury by inhibiting CSF3-mediated MAPK/NF-κB signaling pathway. Respir Res 2025; 26:119. [PMID: 40156005 PMCID: PMC11954213 DOI: 10.1186/s12931-025-03196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a life-threatening inflammatory lung disease that lacks safe and effective treatment strategies. Harmine, an alkaloid derived from Peganum harmala L plants, exhibits anti-inflammatory activity. However, the protective effect of harmine against ALI and its underlying mechanism remain unknown. This study aimed to elucidate the therapeutic effects and molecular mechanisms of harmine against ALI. METHODS The therapeutic effects of harmine were assessed in LPS-induced ALI mice. Serum, bronchoalveolar lavage fluid (BALF), lung tissues were routinely analyzed to evaluated disease severity. The anti-inflammatory mechanism was elucidated in LPS-simulated RAW264.7 cells using a series assays, including RNA-seq, gene silencing, immunofluorescence, western blotting, co-immunoprecipitation and bioinformatic analysis. The biological safety of harmine was determined both in vitro and in vivo through cytotoxicity test, long-term cell proliferation test, acute toxicity test in mice, and assessments of liver and kidney function and structural changes. RESULTS The results showed that harmine inhibited the expression and secretion of LPS-induced inflammatory factors (IL-6, IL-1β and TNF-α) and reduced inflammatory cell infiltration in the lungs, resulting in alleviated LPS-induced histopathological changes and injury in mice. Mechanically, the findings revealed that harmine does not disrupt the TLR4-MD2 interaction but instead attenuates inflammation by suppressing CSF3 transcription and expression, leading to the inhibition of the MAPK/NF-κB signaling pathway activation induced by LPS stimulation. Additionally, both in vitro and in vivo studies demonstrated that harmine administration does not exhibit obvious cytotoxicity or long-term cell proliferation inhibition, nor does it cause functional or organic lesions the liver and kidney in mice, or other acute toxic effects. CONCLUSIONS These findings elucidated that the anti-inflammatory activity of harmine was achieved through the CSF3-mediated inactivation of the MAPK/NF-κB signaling pathway, suggesting that harmine could serve as a promising therapeutic drug for ALI and other inflammatory diseases.
Collapse
Affiliation(s)
- Yihui Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Kejie Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zichuang Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaojian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiaying Tong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yeying He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chaoyue Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Meiqing Ding
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
3
|
Weng J, Wang X, Lin J, Ye Y, Wei J, Yu R, Shang X. Identifying potential drug targets for sepsis-related adult respiratory distress syndrome through comprehensive genetic analysis and druggability assessment. J Glob Health 2025; 15:04117. [PMID: 40116326 PMCID: PMC11927037 DOI: 10.7189/jogh.15.04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Background Sepsis-related adult respiratory distress syndrome (ARDS) is a life-threatening condition characterised by a high mortality rate. This underscores the pressing requirement to identify and develop potential therapeutic targets for the severe condition. This study investigated the genetic predisposition to sepsis-related ARDS in this study. Methods We utilised summary-based Mendelian randomisation (SMR), two-sample MR (TSMR), mediating MR, and multivariate MR (MVMR) analysis to explore the genetic susceptibility of sepsis-related ARDS by integrating over 10 000 cis-expression quantitative trait loci (cis-eQTLs) and over 100 000 participants. Subsequently, we performed drug target analysis to identify potentially druggable cis-eQTL genes. Results The SMR analysis identified 677 cis-eQTL genes associated with sepsis. Further TSMR validation filtered 72 cis-eQTL genes causally associated with sepsis. Sepsis was causally associated with ARDS (beta = 1.80, standard error (SE) = 0.36, P < 0.001). After conducting the mediating MR and MVMR analysis, 50 cis-eQTL genes were reported to be causally associated with sepsis-related ARDS. Subsequent drug target analysis confirmed the role of four targets (PSMA4, PDK2, RPS18, and NDUFV3) as druggable genes for sepsis-related ARDS. Conclusions Through an extensive analysis, we identified potential drug targets for sepsis-related ARDS. Additional research is imperative to substantiate our discoveries and to pave the way for the development of novel pharmaceuticals aimed at these specific targets.
Collapse
Affiliation(s)
- Jinsen Weng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xiaojing Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Critical Care Medicine, Fuzhou Second General Hospital, Fuzhou, Fujian, China
| | - Jingping Lin
- Department of Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yong Ye
- Department of Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Junjie Wei
- Department of Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Rongguo Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, China
| | - Xiuling Shang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Fan Y, Meng S, Song Y, Zhang Y, Song Y, Chen Z, Xie K. Interaction, diagnosis, and treatment of lung microbiota-NLRP3 inflammasome-target organ axis in sepsis. Int Immunopharmacol 2025; 149:114222. [PMID: 39923579 DOI: 10.1016/j.intimp.2025.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Sepsis is defined as a life-threatening condition caused by a dysregulated host response to infection, leading to multi-organ dysfunction, and representing a significant global health burden. The progression of sepsis is closely linked to disruptions in lung microbiota, including bacterial translocation, impaired barrier function, and local microenvironmental disturbances. Conversely, the worsening of sepsis exacerbates lung microbiota imbalances, contributing to multi-organ dysfunction. Recent culture-independent microbiological techniques have unveiled the complexity of the respiratory tract microbiome, necessitating a reassessment of the interactions between the host, microbes, and pathogenesis in sepsis. This review synthesizes current insights into the causes of microbiota dysbiosis and the regulatory mechanisms of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, as well as their interactions during sepsis and sepsis-induced organ dysfunction. In addition, we summarize novel diagnostic and therapeutic approaches from the current study that may offer promising prospects for the management of sepsis.
Collapse
Affiliation(s)
- Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Shuqi Meng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Yu Song
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Ying Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin China
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin China.
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, China.
| |
Collapse
|
5
|
Cheng Y, Hu G, Deng L, Zan Y, Chen X. Therapeutic role of gut microbiota in lung injury-related cognitive impairment. Front Nutr 2025; 11:1521214. [PMID: 40017811 PMCID: PMC11867030 DOI: 10.3389/fnut.2024.1521214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
Lung injury can lead to specific neurocognitive dysfunction, and the "triple-hit" phenomenon may be the key theoretical mechanism for the progressive impairment of lung injury-related cognitive impairment. The lung and brain can communicate biologically through immune regulation pathway, hypoxic pathway, neural circuit, mitochondrial dysfunction, and microbial influence, which is called the "lung-brain axis." The gut microbiota is a highly complex community of microorganisms that reside in the gut and communicate with the lung via the "gut-lung axis." The dysregulation of gut microbiota may lead to the migration of pathogenic bacteria to the lung, and directly or indirectly regulate the lung immune response through their metabolites, which may cause or aggravate lung injury. The gut microbiota and the brain interact through the "gut-brain axis." The gut microbiota can influence and regulate cognitive function and behavior of the brain through neural pathway mechanisms, immune regulation pathway and hypothalamic-pituitary-adrenal (HPA) axis regulation. Based on the gut microbiota regulation mechanism of the "gut-lung axis" and "gut-brain axis," combined with the mechanisms of cognitive impairment caused by lung injury, we proposed the "triple-hit" hypothesis. It states that the pathophysiological changes of lung injury trigger a series of events such as immune disorder, inflammatory responses, and microbiota changes, which activate the "lung-gut axis," thus forming a "triple-hit" that leads to the development or deterioration of cognitive impairment. This hypothesis provides a more comprehensive framework for studying and understanding brain dysfunction in the context of lung injury. This review proposes the existence of an interactive tandem network for information exchange among the gut, lung, and brain, referred to as the "gut-lung-brain axis." It further explores the potential mechanism of lung injury-related cognitive impairment caused by multiple interactions of gut microbiota in the "gut-lung-brain axis." We found that there are many numerous pathophysiological factors that influence the interaction within the "gut-lung-brain axis." The impact of gut microbiota on cognitive functions related to lung injury may be mediated through mechanisms such as the "triple-hit" hypothesis, direct translocation of microbes and their metabolites, hypoxic pathway, immune modulation, vagal nerve activity, and the HPA axis regulation, among others. As the research deepens, based on the "triple-hit" hypothesis of lung injury, it is further discovered that gut microbial therapy can significantly change the pathogenesis of the inflammatory process on the "gut-lung-brain axis." It can also relieve lung injury and therapeutically modulate brain function and behavior. This perspective provides a new idea for the follow-up treatment of lung injury-related cognitive impairment caused by dysregulation of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Xia Chen
- Department of Pediatrics, Child and Adolescent Psychiatric Center of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (Army 958th Hospital), Chongqing, China
| |
Collapse
|
6
|
Xia Q, Liu G, Zhang L, Xie B, Deng L. Anemonin suppresses sepsis-induced acute lung injury by inactivation of nuclear factor-kappa B and activation of nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. FASEB J 2025; 39:e70328. [PMID: 39825692 DOI: 10.1096/fj.202401987rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects. To identify whether anemonin has protective effects on sepsis-induced ALI, a mouse sepsis-induced ALI model and cellular models using the mouse alveolar macrophage MH-S cells and mouse lung epithelial MLE-12 cells were established. Our results showed that anemonin reduced lipopolysaccharide (LPS)-induced mortality, and improved sepsis-induced ALI in the mouse model, as shown by improved histopathological changes, decreased lung wet/dry weight ratio, and myeloperoxidase activity. Anemonin alleviated LPS-induced secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid samples, as well as reversed the LPS-caused increase in malondialdehyde (MDA) content and decrease in activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in lung tissues. In the cellular model, anemonin inhibited the LPS-induced inflammatory responses and oxidative stress in MH-S and MLE-12 cells. In addition, anemonin inhibited LPS-induced nuclear factor-kappa B (NF-κB) pathway, while enhancing the activation of nuclear factor erythroid 2-related factor-2 (Nrf2) in lung tissues, MH-S, and MLE-12 cells. NF-κB inhibition enhanced the anti-inflammatory and anti-oxidative effects of anemonin, while Nrf2 knockdown attenuated these effects of anemonin, implying the critical roles of NF-κB and Nrf2. These results indicated that anemonin suppressed sepsis-induced acute lung injury by inhibition of NF-κB and activation of Nrf2/heme oxygenase-1 pathway, suggesting that anemonin might be developed as a new therapeutic agent for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Qingping Xia
- Department of Science and Education, Gaozhou People's Hospital, Maoming, China
| | - Guohao Liu
- Department of Medical Imaging, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Liangqing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Baodong Xie
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Cardiovascular Surgery, Gaozhou People's Hospital, Maoming, China
| |
Collapse
|
7
|
Zou F, Zou J, Du Q, Liu L, Li D, Zhao L, Tang M, Zuo L, Sun Z. XueBiJing injection improves the symptoms of sepsis-induced acute lung injury by mitigating oxidative stress and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118732. [PMID: 39181287 DOI: 10.1016/j.jep.2024.118732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE XBJ injection is approved by the China Food and Drug Administration for the adjunctive treatment of sepsis, and it is derived from the traditional Chinese medicine (TCM) prescription XuefuZhuyu Decoction. It consists of five Chinese herbal extracts: Carthamus tinctorius, Paeonia lactiflora, Salvia miltiorrhiza, Conioselinum anthriscoides 'Chuanxiong' and Angelica sinensis. AIM OF THE STUDY The purpose of this study was to explore the relationship between ferroptosis and acute septic lung injury, and to evaluate the improvement effect of XBJ injection on acute lung injury in sepsis. MATERIALS AND METHODS Acute lung injury was induced in rats by cecum ligation and puncture, and these rats were treated with XBJ injection. Oxidative stress and inflammation levels were assessed in serum and lung tissue, and tissue samples were collected for histological and protein analyses. To illustrate the mechanism of the improvement effect of XBJ on acute lung injury in sepsis, serum lipidomics was carried out to investigate whether XBJ prevents oxidative stress-induced lipid metabolism disorders. Furthermore, protein expression of ferroptosis-related genes was also examined. RESULTS XBJ was shown to be effective in alleviating sepsis-induced ALI. XBJ also improves sepsis-induced acute lung injury by reducing lipid peroxidation and inflammation and modulating ferroptosis pathways. Specifically, compared with the sham group, XBJ downregulated the levels of Fe2+, MDA and GSSG, and reversed the decrease in the levels of GSH and GSH/GSSH in lung tissue. Metabolic pathways such as glycerophospholipid metabolism, phospholipid metabolism, and lipid metabolism associated with ferroptosis were obtained by lipidomic analysis of differential lipid metabolite enrichment, suggesting that ferroptosis occurs in septic rats, and that XBJ inhibits ferroptosis and thereby improves sepsis-induced ALI. Furthermore, XBJ optimises iron metabolism and lipid oxide metabolism by regulating the expression of a series of proteins that are closely related to ferroptosis, such as GPX4, ACSL4, x-CT, and FTH1. CONCLUSIONS Our findings, initially, indicated that XBJ ameliorates sepsis-induced ALI by reducing oxidative stress and ferroptosis, revealing a previously unrecognised mechanism by which XBJ ameliorates sepsis-induced ALI.
Collapse
Affiliation(s)
- Fanmei Zou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Henan Province, 450052, China
| | - Jing Zou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Henan Province, 450052, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Henan Province, 450052, China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Henan Province, 450052, China
| | - Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lingguo Zhao
- Baoan District Center for Disease Control and Prevention of Shenzhen City, Guangdong Province, 518109, China
| | - Meng Tang
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Henan Province, 450052, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Henan Province, 450052, China.
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan Province, 450052, China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Henan Province, 450052, China.
| |
Collapse
|
8
|
Huang L, Luo J, Wang Y, Gan L, Xu N, Chen J, Li C. Risk factor of postoperative pulmonary complications after colorectal cancer surgery: an analysis of nationwide inpatient sample. Sci Rep 2025; 15:2717. [PMID: 39837854 PMCID: PMC11750964 DOI: 10.1038/s41598-024-84758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
To investigate the incidence rate, risk factors, and clinical implications of postoperative pulmonary complications (PPCs) in patients undergoing colorectal cancer surgery (CRC). The study extracted data from the National Inpatient Sample (NIS) between 2010 and 2019. Patients' data were analyzed to identify predictors of PPCs, and the association between possible factors and PPCs were also assessed. A total of 169,067 CRC surgery patients were included and 15,494 (9.16%) were diagnosed with PPCs in the study. Our study found that age, gender, number of comorbidities, type and location of hospital, and certain preoperative comorbidities, such as fluid and electrolyte disorders (odd ratio [OR] 2.53), coagulopathy (OR 2.16), congestive heart failure (OR 1.91), and chronic pulmonary disease (OR 1.57) were the risk factors of PPCs. In addition, postoperative complications, such as continuous mechanical ventilation (OR 8.18), sepsis (OR 4.46), deep vein thrombosis (OR 4.17) and shock (OR 4.07) were the most important risk factors of PPCs. PPCs prolonged the length of hospital stay (14 days vs. 6 days) and led to a higher mortality rate (13.04% vs. 1.20%). Optimizing perioperative care practices are essential steps to reduce the incidence rate of PPCs in CRC patients.
Collapse
Affiliation(s)
- Liping Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Chengdu Fifth people's hospital, Chengdu, Sichuan, China
| | - Junli Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Gan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nuo Xu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinzi Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Wang X, Zhang K, Zhang J, Xu G, Guo Z, Lu X, Liang C, Gu X, Huang L, Liu S, Wang L, Li J. Cordyceps militaris solid medium extract alleviates lipopolysaccharide-induced acute lung injury via regulating gut microbiota and metabolism. Front Immunol 2025; 15:1528222. [PMID: 39902053 PMCID: PMC11788161 DOI: 10.3389/fimmu.2024.1528222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Acute lung injury (ALI) is a common respiratory disease, Cordycepin has been reported to reduce ALI, which is an effective component in Cordyceps militaris solid medium extract (CMME). Therefore, we aimed to explore the alleviating effect and mechanism of CMME on ALI. This study evaluated the effect of CMME on lipopolysaccharide (LPS)-induced ALI mice by analyzing intestinal flora and metabolomics to explore its potential mechanism. We assessed pulmonary changes, inflammation, oxidative stress, and macrophage and neutrophil activation levels, then we analyzed the gut microbiota through 16S rRNA and analyzed metabolomics profile by UPLC-QTOF/MS. The results showed that CMME treatment improved pulmonary injury, reduced inflammatory factors and oxidative stress levels, and decreased macrophage activation and neutrophil recruitment. The 16S rRNA results revealed that CMME significantly increased gut microbiota richness and diversity and reduced the abundance of Bacteroides compared with Mod group significantly. Metabolic analysis indicated that CMME reversed the levels of differential metabolites and may ameliorate lung injury through purine metabolism, nucleotide metabolism, and bile acid (BA) metabolism, and CMME did reverse the changes of BA metabolites in ALI mice, and BA metabolites were associated with inflammatory factors and intestinal flora. Therefore, CMME may improve lung injury by regulating intestinal flora and correcting metabolic disorders, providing new insights into its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lei Wang
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianxi Li
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Sahin K, Sahin Aktura S, Bahceci I, Mercantepe T, Tumkaya L, Topcu A, Mercantepe F, Duran OF, Uydu HA, Yazici ZA. Is Punica granatum Efficient Against Sepsis? A Comparative Study of Amifostine Versus Pomegranate. Life (Basel) 2025; 15:78. [PMID: 39860018 PMCID: PMC11766669 DOI: 10.3390/life15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Sepsis is a clinical condition causing tissue damage as a result of infection and an exaggerated immune response. Sepsis causes 11 million deaths annually, a third of which are associated with acute lung injury (ALI). Rapid and effective treatment is crucial to improve survival rates. Punica granatum (pomegranate) is rich in polyphenols and demonstrates strong antioxidant activity, while amifostine acts as a free radical scavenger. This study aimed to investigate the antioxidant and anti-inflammatory effects of P. granatum peel extract (PGPE) and amifostine in sepsis-related ALI. Experimental groups included Control, CLP (cecal ligation and puncture-induced sepsis), Amf (200 mg/kg amifostine, intraperitoneally), and PGPE250, and PGPE500 (250 and 500 mg/kg PGPE via oral gavage, respectively). Thiobarbituric acid reactive substances (TBARS), total thiol (TT), tumor necrosis factor-alpha (TNF-α) levels, and metalloproteinases 2 and 9 (MMP-2 and MMP-9) were assessed in the lung tissue. Biochemical analysis demonstrated that TBARS and TNF-α levels significantly decreased in both the PGPE and amifostine treatment groups compared to the CLP group, while TT levels showed notable improvement. Histopathological evaluation revealed reduced MMP-2 and MMP-9 immunopositivity in the PGPE250 and PGPE500 groups. These findings highlight the lung-protective properties of PGPE, underscoring its potential as a therapeutic agent for sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Sena Sahin Aktura
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Ilkay Bahceci
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey;
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Omer Faruk Duran
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Huseyin Avni Uydu
- Department of Biochemistry, Faculty of Medicine, Samsun University, 55080 Samsun, Turkey
| | - Zihni Acar Yazici
- Department of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| |
Collapse
|
11
|
Joshi K, Singh V, Chatterjee S, Khandelwal P, Nair R, Qureshi S, Siddh S, Nunia V. Assessment of lapachol's anti-inflammatory effectiveness in mitigating sepsis-induced acute lung injury. Fitoterapia 2025; 180:106298. [PMID: 39561951 DOI: 10.1016/j.fitote.2024.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Sepsis-induced Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) pose life-threatening risks due to an excessive activation of proinflammatory cytokines via the JAK pathway. Currently, no confirmed drug treatment exists for ALI. In this study, we explored JAK1 as a potential therapeutic target to address this issue. This study evaluates lapachol, a bioactive secondary metabolite, for its potential in treating sepsis-induced Acute Lung Injury (ALI). Lapachol was selected based on in-silico analyses such as binding energy, RMSD, RMSF, H-bond graphs, and lig plots supported the hypothesis that Lapachol binds to JAK1 in a manner similar to Tofacitinib JAK1/3 inhibitor (Positive control). Lapachol, derived from the heartwood of Tecomella undulata, was used in this investigation. Swiss albino mice were categorized into control, LPS treated, positive control (Tofacitinib), and experimental groups (Lapachol at 20 and 40 mg/kg doses). Throughout the experiment, mice behaviour was monitored, and euthanasia was performed at 12 and 24-h intervals. Various analyses, including body weight, W/D ratio, lung weight/body weight ratio, flow cytometry of BAL fluid (at 12 and 24 h), histology, myeloperoxidase assays were performed. Results indicated that both Tofacitinib and Lapachol significantly reduced ALI markers, including lung weight/body weight ratio, cell counts, and granulocytes in bronchoalveolar lavage fluid. Moreover, histopathology and MPO analysis suggested that Lapachol, particularly at 40 mg/kg, exhibited anti-inflammatory effects comparable to Tofacitinib. Conclusively, the findings suggest that Lapachol possesses the potential to inhibit JAK1 kinase domains and mitigate ALI associated with sepsis similar to Tofacitinib.
Collapse
Affiliation(s)
- Kavita Joshi
- Department of Zoology, Govt. M.S. College for women, Bikaner 334001, Rajasthan, India
| | - Vaishnavi Singh
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Samit Chatterjee
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Poonam Khandelwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Rashmy Nair
- Department of Chemistry, S.S. Jain Subodh P.G. College, Jaipur 302004, Rajasthan, India
| | - Sameer Qureshi
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Snigdha Siddh
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vandana Nunia
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India.
| |
Collapse
|
12
|
Zhang P, Liu W, Wang S, Wang Y, Han H. Ferroptosisand Its Role in the Treatment of Sepsis-Related Organ Injury: Mechanisms and Potential Therapeutic Approaches. Infect Drug Resist 2024; 17:5715-5727. [PMID: 39720615 PMCID: PMC11668052 DOI: 10.2147/idr.s496568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis is a complicated clinical disease caused by a defective host response to infection, leading to elevated morbidity and fatality globally. Sepsis patients have a significant risk of life-threatening organ damage, including hearts, brains, lungs, kidneys, and livers. Nevertheless, the molecular pathways driving organ injury in sepsis are not well known. Ferroptosis, a non-apoptotic cell death, occurs due to iron metabolism disturbance and lipid peroxide buildup. Multiple studies indicate that ferroptosis has a significant role in decreasing inflammation and lipid peroxidation during sepsis. Ferroptosis inhibitors and medications, aimed at the most studied ferroptosis process, including Xc-system, Nrf2/GPX4 axis, and NCOA4-FTH1-mediated ferritinophagy, alleviating sepsis effectively. However, few clinical trials demonstrated ferroptosis-targeted drugs's effectiveness in sepsis. Our study examines ferroptosis-targeted medicinal agents and their potential benefits for treating sepsis-associated organ impairment. This review indicates that ferroptosis suppression by pharmaceutical means may be a useful therapy for sepsis-associated organ injury.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Shu Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Han Han
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
13
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
14
|
Liu YY, Bao DQ, Zhang ZS, Zhu Y, Liu LM, Li T. Radix Sanguisorbae Improves Intestinal Barrier in Septic Rats via HIF-1 α/HO-1/Fe 2+ Axis. Chin J Integr Med 2024; 30:1101-1112. [PMID: 38212494 DOI: 10.1007/s11655-023-3550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate whether Radix Sanguisorbae (RS, Diyu) could restore intestinal barrier function following sepsis using a cecal ligation and puncture (CLP)-induced septic rat model and lipopolysaccharide (LPS)-challenged IEC-6 cell model, respectively. METHODS Totally 224 rats were divided into 4 groups including a control, sham, CLP and RS group according to a random number table. The rats in the control group were administrated with Ringer's lactate solution (30 mL/kg) with additional dopamine [10 µ g/(kg·min)] and given intramuscular injections of cefuroxime sodium (10 mg/kg) 12 h following CLP. The rats in the RS group were administrated with RS (10 mg/kg) through tail vein 1 h before CLP and treated with RS (10 mg/kg) 12 h following CLP. The rats in the sham group were only performed abdominal surgery without CLP. The rats in the CLP group were performed with CLP without any treatment. The other steps were same as control group. The effects of RS on intestinal barrier function, mesenteric microvessels barrier function, multi-organ function indicators, inflammatory response and 72 h survival window following sepsis were observed. In vitro, the effects of RS on LPS-challenged IEC-6 cell viability, the expressions of zona occludens-1 (ZO-1) and ferroptosis index were evaluated by cell counting kit-8, immunofluorescence and Western blot analysis. Bioinformatic tools were applied to investigate the pharmacological network of RS in sepsis to predict the active compounds and potential protein targets and pathways. RESULTS The sepsis caused severe intestinal barrier dysfunction, multi-organ injury, lipid peroxidation accumulation, and ferroptosis in vivo. RS treatment significantly prolonged the survival time to 56 h and increased 72-h survival rate to 7/16 (43.75%). RS also improved intestinal barrier function and relieved intestinal inflammation. Moreover, RS significantly decreased lipid peroxidation and inhibited ferroptosis (P<0.05 or P<0.01). Administration of RS significantly worked better than Ringer's solution used alone. Using network pharmacology prediction, we found that ferroptosis and hypoxia inducible factor-1 (HIF-1 α) signaling pathways might be involved in RS effects on sepsis. Subsequent Western blot, ferrous iron measurements, and FerroOrange fluorescence of ferrous iron verified the network pharmacology predictions. CONCLUSION RS improved the intestinal barrier function and alleviated intestinal injury by inhibiting ferroptosis, which was related in part to HIF-1 α/heme oxygenase-1/Fe2+ axis.
Collapse
Affiliation(s)
- Yi-Yan Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Dai-Qin Bao
- Department of Anesthesiology, Army Medical Center of PLA, Chongqing, 400042, China
| | - Zi-Sen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China.
| |
Collapse
|
15
|
Chen F, Wang N, Liao J, Jin M, Qu F, Wang C, Lin M, Cui H, Wen W, Chen F. Esculetin rebalances M1/M2 macrophage polarization to treat sepsis-induced acute lung injury through regulating metabolic reprogramming. J Cell Mol Med 2024; 28:e70178. [PMID: 39535339 PMCID: PMC11558263 DOI: 10.1111/jcmm.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a high incidence and mortality rate, which has caused a serious medical burden. The pharmacological effects of esculetin (ELT), such as antibacterial and anti-inflammatory actions, have been widely confirmed. However, the therapeutic effects and mechanisms of ELT on SALI still need to be further clarified. In this study, we first evaluated the therapeutic potential of ELT on a caecal ligation and puncture (CLP) induced septic rat model, particularly in the treatment of acute lung injury. Afterwards, we explored the effect of ELT on macrophage polarization in vivo and in vitro. Then, we investigated the anti-inflammatory mechanism of ELT based on modulating the metabolic reprogramming of macrophage (the effect on glycolysis in M1, and the effect on fatty acid β-oxidation in M2). In addition, macrophage metabolic inhibitors (glycolysis inhibitor: 2-DG, and fatty acid β-oxidation inhibitor: etomoxir) were used to verify the regulatory effect of ELT on macrophage metabolic reprogramming. Our results proved that ELT intervention could effectively improve the survival rate of SALI rats and ameliorate pathological injury. Next, we found that ELT intervention inhibited M1 polarization and promoted M2 polarization of macrophages in vivo and in vitro, including the downregulation of M1-related markers (CD86, iNOS), the decrease of pro-inflammatory factors (nitric oxide, IL-1β, IL-6, and TNF-α), the upregulation of M2-related markers (CD206, ARG-1), the increase of immunomodulatory factors (IL-4 and IL-10). Subsequently, seahorse analysis showed that ELT intervention inhibited the glycolytic capacity in M1, and promoted the ability of fatty acid β-oxidation in M2. Besides, ELT intervention inhibited the level of glycolysis product (lactic acid), and the expression of glycolysis-related genes (Glut1, Hk2, Pfkfb1, Pkm and Ldha) and promoted the expression of fatty acid β-oxidation related genes (Cpt1a, Cpt2, Acox1). In addition, we found that the inhibitory effect of ELT on M1 polarization was comparable to that of 2-DG, while intervention with etomoxir abolished the promoting effect of ELT on M2 polarization. ELT inhibited the inflammatory response in SALI by correcting macrophage polarization (inhibiting M1 and promoting M2). The mechanism of ELT on macrophage polarization was associated with regulating metabolic reprogramming (inhibiting glycolysis in M1 and promoting fatty acid β-oxidation in M2).
Collapse
Affiliation(s)
- Feng Chen
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Ning Wang
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Jiabao Liao
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Mengxue Jin
- Kunming Municipal Hospital of Traditional Chinese MedicineKunmingYunnanChina
| | - Fei Qu
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Chengxin Wang
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Min Lin
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| | - Huantian Cui
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Weibo Wen
- Yunnan University of Chinese MedicineKunmingYunnanChina
| | - Fengjuan Chen
- Department of Critical Care MedicineJiaxing Hospital of Traditional Chinese MedicineJiaxingZhejiangChina
| |
Collapse
|
16
|
Kaya BS, Yildiz S, Ersoy O, Erge Ü, Taştekin E, Gündüz Ö, Kaya O. Ischemic Postconditioning Mitigates Lipopolysaccharide-induced Acute Lung Injury in Rats. In Vivo 2024; 38:2705-2711. [PMID: 39477422 PMCID: PMC11535931 DOI: 10.21873/invivo.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM Acute lung injury (ALI) is a syndrome characterized by the disruption of alveolar endothelial and epithelial barriers, neutrophilic infiltration in pulmonary regions, and non-cardiogenic edema, associated with high mortality and morbidity. Despite intensive research efforts, there is currently no approved specific treatment for the condition. The aim of this study was to investigate the potential beneficial effect of ischemic post-conditioning in lipopolysaccharide (LPS)-induced lung injury and its possible association with inflammatory and apoptotic processes. MATERIALS AND METHODS Lung injury was induced in rats by a single intraperitoneal administration of 10 mg/kg LPS. Under anesthesia, latex tourniquets were wrapped around both hind limbs of the animals in a region close to the body to achieve complete ischemia. The ischemic conditioning procedure consisted of four cycles of 10 min of ischemia followed by 10 min of reperfusion. Inflammation, and apoptosis levels were measured using ELISA. Hematoxylin and eosin staining was used for histopathological evaluation, while TUNEL staining was employed for apoptotic cell counting. One-way analysis of variance (ANOVA) with post hoc Tukey test was used for comparisons between groups. RESULTS Intraperitoneal LPS administration induced neutrophil infiltration and apoptotic cell death in lung tissue. These effects were prevented by remote ischemic postconditioning (RIPostC) application. Additionally, the beneficial effects of ischemic conditioning can be transferred via serum. CONCLUSION RIPostC can ameliorate LPS-induced ALI. The mechanism of the protective effects of RIPostC may lie in the suppression of apoptosis and neutrophil infiltration.
Collapse
Affiliation(s)
- Bilkay Serez Kaya
- Department of Chest Disease, Trakya University Faculty of Medicine, Edirne, Turkey;
| | - Selen Yildiz
- Department of Physiology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Onur Ersoy
- Trakya University Vocational School of Health Services, Edirne, Turkey
| | - Ümmühan Erge
- Department of Physiology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Ebru Taştekin
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Özgür Gündüz
- Department of Pharmacology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Oktay Kaya
- Department of Physiology, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
17
|
He F, Zhong JS, Chen CL, Tian P, Chen J, Fan XM. Sodium propionate ameliorates lipopolysaccharide-induced acute respiratory distress syndrome in rats via the PI3K/AKT/mTOR signaling pathway. 3 Biotech 2024; 14:286. [PMID: 39493290 PMCID: PMC11525366 DOI: 10.1007/s13205-024-04130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung disease characterized by significant hypoxemia, which impairs the oxygen supply necessary for optimal lung function. This study aimed to investigate the effects of sodium propionate (SP), the primary end product of intestinal flora fermentation of dietary fiber, on lipopolysaccharide (LPS)-induced ARDS in rats. The rats were treated with SP, after which the lung wet/dry ratio, arterial partial oxygen pressure (PaO2), levels of pro- and anti-inflammatory cytokines, tight junction proteins ZO-1 and Occludin, as well as LC3 and phosphorylated PI3K (p-PI3K)/p-AKT/p-mTOR protein levels, were measured. Additionally, histopathological analysis was conducted. The results indicated that SP effectively alleviated arterial hypoxemia in rats and mitigated the pathological damage to both intestinal and lung tissues caused by LPS. Notably, SP significantly reduced the levels of inflammatory factors TNF-α and IL-6 in the blood and bronchoalveolar lavage fluid (BALF) of ARDS rats, while increasing the concentration of the anti-inflammatory factor IL-10. Furthermore, SP inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the LC3II/LC3I ratio in lung tissue. Therefore, SP may improve LPS-induced ARDS in rats by inhibiting the activation of the PI3K/AKT/mTOR signaling pathway, promoting autophagy, decreasing the production and release of inflammatory markers, and reducing alveolar epithelial damage.
Collapse
Affiliation(s)
- Fang He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Jiang-Shan Zhong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Chun-Lan Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Peng Tian
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Jie Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
- Department of Allergy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan China
| |
Collapse
|
18
|
Xuan W, Wu X, Zheng L, Jia H, Zhang X, Zhang X, Cao B. Gut microbiota-derived acetic acids promoted sepsis-induced acute respiratory distress syndrome by delaying neutrophil apoptosis through FABP4. Cell Mol Life Sci 2024; 81:438. [PMID: 39453486 PMCID: PMC11511807 DOI: 10.1007/s00018-024-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1β, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Longcheng Zheng
- People's Hospital of Henan University, Department of Respiratory and Critical Care Medicine, People's Hospital of Henan Province, Zhengzhou, 450003, China
| | - Huayun Jia
- Hunan Province Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
19
|
Lu F, Huang T, Chen R, Yin H. Multi-omics analysis reveals the interplay between pulmonary microbiome and host in immunocompromised patients with sepsis-induced acute lung injury. Microbiol Spectr 2024; 12:e0142424. [PMID: 39422492 PMCID: PMC11619524 DOI: 10.1128/spectrum.01424-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanisms behind the high inflammatory state and immunocompromise in severe sepsis remain unclear. While microbiota's role in immune regulation is known, the impact of pulmonary microbiota on sepsis progression is not fully understood. This study aims to investigate pulmonary microbial characteristics in septic patients and their relationship with host immune-related genes and clinical features. Fifty-four sepsis patients were divided into the immunocompromised host (ICH) group (n = 18) and the control group (n = 36). Bronchoalveolar lavage fluid (BALF) was analyzed using metagenomic next-generation sequencing (mNGS) to assess the pulmonary microbiome, and transcriptomic sequencing evaluated host gene expression. The pulmonary microbiota network in the ICH group showed notable alterations. Symbiotic bacteria like Streptococcus salivarius and Streptococcus oralis were key taxa in the control group. In contrast, opportunistic pathogens such as Campylobacter concisus and Prevotella melaninogenica, typically linked to infections in various body sites, dominated in the ICH group. Transcriptomic analysis revealed differential genes between the two groups. The downregulated differential genes in the ICH group were primarily enriched in pathways related to T-cell activation and the Type I interferon signaling pathway, both crucial for the immune system. Further correlation analysis identified significant associations between certain microbes and host genes, as well as clinical indicators, particularly with species like Campylobacter concisus, Streptococcus salivarius, Streptococcus oralis, and several species of Veillonella. These findings suggest that alterations in the pulmonary microbiome, especially the presence of opportunistic pathogens, may contribute to immune dysregulation in immunocompromised septic patients, warranting further research to explore causal relationships. IMPORTANCE Recent research has substantiated the significant role of microbiota in immune regulation, which could influence high inflammatory state and immunocompromise in patients with severe sepsis, as well as provide new opportunities for acute lung injury induced by sepsis diagnosis and treatment. Our study identified some potential critical microbes (Campylobacter concisus and several species of Veillonella), which were correlated with immune-related genes and might be the novel target to regulate immunotherapy in sepsis.
Collapse
Affiliation(s)
- Fan Lu
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ruichang Chen
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Xie C, Wang T, Liu A, Huang B, Zeng W, Li Z, Peng S, Wu S. Sirt4 Overexpression Modulates the JAK2/STAT3 and PI3K/AKT/mTOR Axes to Alleviate Sepsis-Induced Acute Lung Injury. Cell Biochem Biophys 2024:10.1007/s12013-024-01588-z. [PMID: 39400781 DOI: 10.1007/s12013-024-01588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is a severe organ dysfunction characterized by lung inflammation and apoptosis. The mechanisms underlying sepsis-induced ALI remain poorly understood. Here, we determined the effects of sirtuin 4 (SIRT4) on sepsis-induced ALI. METHODS Lipopolysaccharide (LPS)-induced injury cell and cecal ligation and puncture (CLP) animal models were established. Overexpression vectors and lentiviral transfections were used to upregulate SIRT4 expression. Lung cell apoptosis, inflammation, and the levels of associated factors were evaluated. Changes in the PI3K/AKT/mTOR and JAK2/STAT3 pathways were measured, and their potential involvement was examined using LY294002 (PI3K inhibitor), 740 Y-P (PI3K agonist), AG490 (JAK2 inhibitor), and coumermycin A1 (JAK2 agonist). RESULTS Lower SIRT4 expression was observed in LPS-exposed A549 cells and CLP rats. In LPS-induced A549 cells, Sirt4 overexpression enhanced cell viability, resisted apoptosis, restored the expression of apoptosis-associated proteins (HMB1, cleaved CASP3, BAX, and BCL), and reduced the secretion of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α). In CLP rats, Sirt4 overexpression prolonged survival time, alleviated lung histopathological damage, reduced pulmonary edema, mitigated lung infection, decreased lung apoptosis, and lowered serum levels of inflammatory cytokines. Furthermore, Sirt4 overexpression blocked JAK2/STAT3/AKT/mTOR phosphorylation. 740 Y-P and coumermycin A1 reversed the protective effects of Sirt4 overexpression in LPS-treated A549 cells, resulting in decreased cell viability and increased apoptosis. LY294002 and AG490 enhanced the protective effects of Sirt4 overexpression in LPS-treated A549 cells. CONCLUSION SIRT4 alleviates sepsis-induced ALI by inhibiting JAK2/STAT3/PI3K/AKT/mTOR signaling. Upregulating SIRT4 expression may serve as an innovative therapeutic approach for lung injury management in sepsis.
Collapse
Affiliation(s)
- Cancan Xie
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Ting Wang
- Department of Rehabilitation Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Anmin Liu
- Department of Emergency, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Bing Huang
- Department of Respiratory Medicine, Zhuzhou Central Hospital, Central South University, Zhuzhou, Hunan, China
| | - Weizhong Zeng
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Zhengrong Li
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Suna Peng
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Shuanghua Wu
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
21
|
Tao YL, Wang JR, Liu M, Liu YN, Zhang JQ, Zhou YJ, Li SW, Zhu SF. Progress in the study of the correlation between sepsis and intestinal microecology. Front Cell Infect Microbiol 2024; 14:1357178. [PMID: 39391883 PMCID: PMC11464487 DOI: 10.3389/fcimb.2024.1357178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Sepsis, a disease with high incidence, mortality, and treatment costs, has a complex interaction with the gut microbiota. With advances in high-throughput sequencing technology, the relationship between sepsis and intestinal dysbiosis has become a new research focus. However, owing to the intricate interplay between critical illness and clinical interventions, it is challenging to establish a causal relationship between sepsis and intestinal microbiota imbalance. In this review, the correlation between intestinal microecology and sepsis was summarized, and new therapies for sepsis intervention based on microecological target therapy were proposed, and the shortcomings of bacterial selection and application timing in clinical practice were addressed. In conclusion, current studies on metabolomics, genomics and other aspects aimed at continuously discovering potential probiotics are all providing theoretical basis for restoring intestinal flora homeostasis for subsequent treatment of sepsis.
Collapse
Affiliation(s)
- Yan-Lin Tao
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Ran Wang
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miao Liu
- Department of Respiratory Medicine, Dingzhou People’s Hospital, Dingzhou, Heibei, China
| | - Ya-Nan Liu
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shu-Fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
22
|
陈 凯, 孟 兆, 闵 静, 王 佳, 李 正, 高 琴, 胡 俊. [Curcumin alleviates septic lung injury in mice by inhibiting TXNIP/TRX-1/GPX4-mediated ferroptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1805-1813. [PMID: 39505349 PMCID: PMC11744089 DOI: 10.12122/j.issn.1673-4254.2024.09.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To investigate whether curcumin alleviates septic lung injury by inhibiting ferroptosis through modulating the TXNIP/TRX-1/GPX4 pathway. METHODS Male C57BL/6 mice were randomly divided into Sham group, cecal ligation puncture (CLP)-induced sepsis group, CLP with curcumin treatment (50, 100, and 200 mg/kg) groups, and CLP with both curcumin (200 mg/kg) and TRX-1 inhibitor PX-12 (25 mg/kg) treatment group. Inflammatory factors, MDA, MPO, and GSH levels in the lung tissue of the mice were detected. Beas-2B cells stimulated with lipopolysaccharide (LPS; 1 μg/mL) were treated with 2.5, 5, or 10 μmol/L curcumin or with 10 μmol/L curcumin combined with 5 μmol/L PX-12, and the changes in MDA, Fe2+ and ROS levels were assessed. Western blotting was performed to detect the protein expressions of TXNIP, TRX-1, GPX4 and X-CT in both the mouse lung tissues and Beas-2B cells. RESULTS The mice with CLP-induced sepsis showed severe lung injury with elevated expressions of IL-6, IL-1β, TNF-α, MDA and MPO and decreased GSH expression. In Beas-2B cells, LPS stimulation significantly increased MDA and Fe2+ levels and ROS release, increased TXNIP protein expression, and lowered the protein expression levels of TRX-1, GPX4 and X-CT, and these changes were also observed in the septic mice. Curcumin treatments at different concentrations obviously alleviated lung injury in the septic mice and reduced LPS-induced injury in Beas-2B cells. Curcumin significantly decreased the release of inflammatory factors, MDA and MPO, increased GSH level, lowered Fe2+, MDA and ROS levels, increased TXNIP protein expression, and lowered the protein expressions of TRX-1, GPX4 and X-CT in both septic mouse lung tissues and LPS-stimulated Beas-2B cells. The protective effect of curcumin was effectively blocked by PX-12 treatment. CONCLUSION Curcumin inhibits ferroptosis and alleviates septic lung injury in mice by elevating TRX-1 and GPX4 and decreasing TXNIP in the lung tissue.
Collapse
Affiliation(s)
- 凯 陈
- 蚌埠医科大学第一附属医院呼吸与危重症医学科,安徽 蚌埠 233000Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu 233000, China
| | - 兆菲 孟
- 蚌埠医科大学第一附属医院呼吸与危重症医学科,安徽 蚌埠 233000Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学呼吸系病临床基础安徽省重点实验室,安徽 蚌埠 233000Anhui Key Laboratory of Clinical Basis of Respiratory Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 静婷 闵
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Research of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 佳慧 王
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Research of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 正红 李
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Research of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 琴 高
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Research of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| | - 俊锋 胡
- 蚌埠医科大学第一附属医院呼吸与危重症医学科,安徽 蚌埠 233000Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学呼吸系病临床基础安徽省重点实验室,安徽 蚌埠 233000Anhui Key Laboratory of Clinical Basis of Respiratory Diseases, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
23
|
Xing P, Zhou M, Sun J, Wang D, Huang W, An P. NAT10-mediated ac 4C acetylation of TFRC promotes sepsis-induced pulmonary injury through regulating ferroptosis. Mol Med 2024; 30:140. [PMID: 39251905 PMCID: PMC11382515 DOI: 10.1186/s10020-024-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Sepsis-induced pulmonary injury (SPI) is a common complication of sepsis with a high rate of mortality. N4-acetylcytidine (ac4C) is mediated by the ac4C "writer", N-acetyltransferase (NAT)10, to regulate the stabilization of mRNA. This study aimed to investigate the role of NAT10 in SPI and the underlying mechanism. METHODS Twenty-three acute respiratory distress syndrome (ARDS) patients and 27 non-ARDS volunteers were recruited. A sepsis rat model was established. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of NAT10 and transferrin receptor (TFRC). Cell viability was detected by cell counting kit-8. The levels of Fe2+, glutathione, and malondialdehyde were assessed by commercial kits. Lipid reactive oxygen species production was measured by flow cytometric analysis. Western blot was used to detect ferroptosis-related protein levels. Haematoxylin & eosin staining was performed to observe the pulmonary pathological symptoms. RESULTS The results showed that NAT10 was increased in ARDS patients and lipopolysaccharide-treated human lung microvascular endothelial cell line-5a (HULEC-5a) cells. NAT10 inhibition increased cell viability and decreased ferroptosis in HULEC-5a cells. TFRC was a downstream regulatory target of NAT10-mediated ac4C acetylation. Overexpression of TFRC decreased cell viability and promoted ferroptosis. In in vivo study, NAT10 inhibition alleviated SPI. CONCLUSION NAT10-mediated ac4C acetylation of TFRC aggravated SPI through promoting ferroptosis.
Collapse
Affiliation(s)
- Pengcheng Xing
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Minjie Zhou
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Jian Sun
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Donglian Wang
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Weipeng Huang
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Peng An
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
| |
Collapse
|
24
|
Hu M, Du H, Xu Y, Wang Y. Gentiopicroside Ameliorates Sepsis-Induced Acute Lung Injury via Inhibiting Inflammatory Response. Can Respir J 2024; 2024:1068326. [PMID: 39268525 PMCID: PMC11392574 DOI: 10.1155/2024/1068326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Sepsis is a systemic inflammatory reaction syndrome caused by infections. Acute lung injury (ALI) occurs first and most frequently in patients with sepsis. Gentiopicroside (GPS), which originates mostly from Gentiana, is classified as a secoiridoid glycosides. Terpenoid glycosides have various biological effects, including liver protection, blood glucose and cholesterol level management, and anti-inflammatory and antitumor effects. However, presently, the biochemical foundation and mechanism of the anti-inflammatory effects of GPS in sepsis-induced ALI have not been explained. In the present study, we established a rat model of sepsis ALI induced by cecal ligation and puncture. This enables us to observe the effects of GPS therapy, which significantly reduced the inflammatory response (TNF-α, IL-1β, and IL-6), nitrogen stress, oxidative stress, and severity of ALI at both the whole animal and molecular levels. In addition, GPS ameliorates LPS-induced ALI via regulation of inflammatory response and cell proptosis in BEAS-2B. This study provides a theoretical basis for treating sepsis-induced ALI with GPS.
Collapse
Affiliation(s)
- Mu Hu
- Department of Orthopedics Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 201801, China
| | - Hangxiang Du
- Department of Critical Care Medicine Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Orthopedics Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 201801, China
| | - Yan Wang
- Department of Orthopedics Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 201801, China
| |
Collapse
|
25
|
Zhang J, Yan W, Dong Y, Luo X, Miao H, Maimaijuma T, Xu X, Jiang H, Huang Z, Qi L, Liang G. Early identification and diagnosis, pathophysiology, and treatment of sepsis-related acute lung injury: a narrative review. J Thorac Dis 2024; 16:5457-5476. [PMID: 39268131 PMCID: PMC11388254 DOI: 10.21037/jtd-24-1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Background and Objective Sepsis is a life-threatening organ dysfunction, and the most common and vulnerable organ is the lungs, with sepsis-related acute respiratory distress syndrome (ARDS) increasing mortality. In recent years, an increasing number of studies have improved our understanding of sepsis-related ARDS in terms of epidemiology, risk factors, pathophysiology, prognosis, and other aspects, as well as our ability to prevent, detect, and treat sepsis-related ARDS. However, sepsis-related lung injury remains an important issue and clinical burden. Therefore, a literature review was conducted on sepsis-related lung injury in order to further guide clinical practice in reducing the acute and chronic consequences of this condition. Methods This study conducted a search of the MEDLINE and PubMed databases, among others for literature published from 1991 to 2023 using the following keywords: definition of sepsis, acute lung injury, sepsis-related acute lung injury, epidemiology, risk factors, early diagnosis of sepsis-related acute lung injury, sepsis, ARDS, pathology and physiology, inflammatory imbalance caused by sepsis, congenital immune response, and treatment. Key Content and Findings This review explored the risk factors of sepsis, sepsis-related ARDS, early screening and diagnosis, pathophysiology, and treatment and found that in view of the high mortality rate of ARDS associated with sepsis. In response to the high mortality rate of sepsis-related ARDS, some progress has been made, such as rapid identification of sepsis and effective antibiotic treatment, early fluid resuscitation, lung-protective ventilation, etc. Conclusions Sepsis remains a common and challenging critical illness to cure. In response to the high mortality rate of sepsis-related ARDS, progress has been made in rapid sepsis identification, effective antibiotic treatment, early fluid resuscitation, and lung-protective ventilation. However, further research is needed regarding long-term effects such as lung recruitment, prone ventilation, and the application of neuromuscular blocking agents and extracorporeal membrane oxygenation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wenxiao Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yansong Dong
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xinye Luo
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Hua Miao
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Emergency Medicine, Rudong County People's Hospital, Nantong, China
| | - Talaibaike Maimaijuma
- Department of Emergency Medicine, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Kezhou, China
- Department of Emergency Medicine, Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| | - Xianggui Xu
- Department of Emergency Medicine, Kizilsu Kirghiz Autonomous Prefecture People's Hospital, Kezhou, China
- Department of Emergency Medicine, Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
26
|
He S, Zhuo Y, Cui L, Zhang S, Tu Z, Wang M, Lv X, Ge L, Lin J, Yang L, Wang X. Naringin dihydrochalcone alleviates sepsis-induced acute lung injury via improving gut microbial homeostasis and activating GPR18 receptor. Int Immunopharmacol 2024; 137:112418. [PMID: 38901244 DOI: 10.1016/j.intimp.2024.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Acute lung injury (ALI) is a life-threatening disease characterized by severe lung inflammation and intestinal microbiota disorder. The GPR18 receptor has been demonstrated to be a potential therapeutic target against ALI. Extracting Naringin dihydrochalcone (NDC) from the life-sustaining orange peel is known for its diverse anti-inflammatory properties, yet the specific action target remains uncertain. In the present study, we identified NDC as a potential agonist of the GPR18 receptor using virtual screening and investigated the pharmacological effects of NDC on sepsis-induced acute lung injury in rats and explored underlying mechanisms. In in vivo experiments, CLP-induced ALI model was established by cecum puncture and treated with NDC gavage one hour prior to drug administration, lung histopathology and inflammatory cytokines were evaluated, and feces were subjected to 16s rRNA sequencing and untargeted metabolomics analysis. In in vitro experiments, the anti-inflammatory properties were exerted by evaluating NDC targeting the GPR18 receptor to inhibit lipopolysaccharide (LPS)-induced secretion of TNF-α, IL-6, IL-1β and activation of inflammatory signaling pathways in MH-S cells. Our findings showed that NDC significantly ameliorated lung damage and pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β) in both cells and lung tissues via inhibiting the activation of STAT3, NF-κB, and NLRP3 inflammatory signaling pathways through GRP18 receptor activation. In addition, NDC can also partly reverse the imbalance of gut microbiota composition caused by CLP via increasing the proportion of Firmicutes/Bacteroidetes and Lactobacillus and decreasing the relative abundance of Proteobacteria. Meanwhile, the fecal metabolites in the NDC treatment group also significantly were changed, including decreased secretion of Phenylalanin, Glycine, and bile secretion, and increased secretion of Lysine. In conclusion, these findings suggest that NDC can alleviate sepsis-induced ALI via improving gut microbial homeostasis and metabolism and mitigate inflammation via activating GPR18 receptor. In conclusion, the results indicate that NDC, derived from the typical orange peel of food, could significantly contribute to development by enhancing intestinal microbial balance and metabolic processes, and reducing inflammation by activating the GPR18 receptor, thus mitigating sepsis-induced ALI and expanding the range of functional foods.
Collapse
Affiliation(s)
- Siqi He
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Mukuo Wang
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xinyue Lv
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lixiu Ge
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Jianping Lin
- College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin 300270, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Medical University Third Center Clinical College, Tianjin 300170, China.
| |
Collapse
|
27
|
Cao X, Zhao M, Wang X, Lin J, Yang M, Zhong L, Liang L, Yue Y, Du J, Li J, Zhou T, Yu J, Liang Y, Shi R, Luo R, Shen X, Chen Y, Wang Y, Shu Z. Multi-metabolomics and intestine microbiome analysis: YZC extract ameliorates septic-ALI by modulating intestine microbiota to reduce TMAO/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155345. [PMID: 38810555 DOI: 10.1016/j.phymed.2024.155345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Pharmacy, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou 514000, China.
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Fu CF, Li JL, Chen JW, Liang H, Zhao WR, He SY, Ma XW, Yang XF, Wang HL. Mechanism and therapeutic potential of traditional Chinese medicine extracts in sepsis. Front Pharmacol 2024; 15:1365639. [PMID: 39021837 PMCID: PMC11251979 DOI: 10.3389/fphar.2024.1365639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.
Collapse
Affiliation(s)
- Chen-Fei Fu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian-Long Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Hao Liang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen-Rui Zhao
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Shi-Yu He
- Shenzhen Pingle Orthopedic Hospital, Shenzhen, China
| | - Xiao-Wei Ma
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xiao-Fan Yang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - He-Lin Wang
- Donghuashi Community Health Service Center, Beijing, China
| |
Collapse
|
29
|
Zhang C, Ma J, Liu C, Yan X. The protective effect of karanjin against sepsis-induced acute lung injury in mice is involved in the suppression of the TLR4 pathway. Chem Biol Drug Des 2024; 104:e14579. [PMID: 39013775 DOI: 10.1111/cbdd.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a severe complication of sepsis. Karanjin, a natural flavonoid compound, has been proved to have anti-inflammatory function, but its role in sepsis-stimulated ALI is uncertain. Herein, the effect of karanjin on sepsis-stimulated ALI was investigated. We built a mouse model of lipopolysaccharide (LPS)-stimulated ALI. The histopathological morphology of lung tissues was scrutinized by hematoxylin-eosin (H&E) staining. The lung injury score and lung wet/dry weight ratio were detected. The myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were scrutinized by commercial kits. Murine alveolar lung epithelial (MLE-12) cells were treated with LPS to mimic a cellular model of ALI. The cell viability was scrutinized by the CCK-8 assay. The contents of proinflammatory cytokines were scrutinized by qRT-PCR and ELISA. The TLR4 and MyD88 contents were scrutinized by qRT-PCR and western blotting. Results showed that karanjin alleviated LPS-stimulated ALI in mice by inhibiting lung tissue lesions, edema, and oxidative stress. Moreover, karanjin inhibited LPS-stimulated inflammation and TLR4 pathway activation in mice. However, treatment with GSK1795091, an agonist of TLR4, attenuated the effects of karanjin on LPS-induced ALI. Furthermore, karanjin repressed LPS-stimulated inflammatory response and TLR4 pathway activation in MLE-12 cells. Overexpression of TLR4 attenuated karanjin effects on LPS-stimulated inflammatory responses in MLE-12 cells. In conclusion, karanjin repressed sepsis-stimulated ALI in mice by suppressing the TLR4 pathway.
Collapse
Affiliation(s)
- Chujie Zhang
- Department of Emergency, Huai'an Second People's Hospital, The Affliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Juncong Ma
- Department of Emergency, Lianshui County People's Hospital, Huai'an, China
| | - Chang Liu
- Department of Emergency, Huai'an Second People's Hospital, The Affliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xianliang Yan
- Department of Emergency, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Peng Q, Liu X, Ai M, Huang L, Li L, Liu W, Zhao C, Hu C, Zhang L. Cerebral autoregulation-directed optimal blood pressure management reduced the risk of delirium in patients with septic shock. JOURNAL OF INTENSIVE MEDICINE 2024; 4:376-383. [PMID: 39035614 PMCID: PMC11258506 DOI: 10.1016/j.jointm.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 07/23/2024]
Abstract
Background When resuscitating patients with septic shock, cerebrovascular reactivity parameters are calculated by monitoring regional cerebral oxygen saturation (rSO2) using near-infrared spectroscopy to determine the optimal blood pressure. Here, we aimed to analyze the impact of cerebral autoregulation-directed optimal blood pressure management on the incidence of delirium and the prognosis of patients with septic shock. Methods This prospective randomized controlled clinical study was conducted in the Xiangya Hospital of Central South University, China. Fifty-one patients with septic shock (December 2020-May 2022) were enrolled and randomly allocated to the experimental (n=26) or control group (n=25). Using the ICM+ software, we monitored the dynamic changes in rSO2 and mean arterial pressure (MAP) and calculated the cerebrovascular reactivity parameter tissue oxygen reactivity index to determine the optimal blood pressure to maintain normal cerebral autoregulation function during resuscitation in the experimental group. The control group was treated according to the Surviving Sepsis Campaign Guidelines. Differences in the incidence of delirium and 28-day mortality between the two groups were compared, and the risk factors were analyzed. Results The 51 patients, including 39 male and 12 female, had a mean age of (57.0±14.9) years. The incidence of delirium was 40.1% (23/51), and the 28-day mortality rate was 29.4% (15/51). The mean MAP during the first 24 h of intensive care unit (ICU) admission was higher ([84.5±12.2] mmHg vs. [77.4±11.8] mmHg, P=0.040), and the incidence of delirium was lower (30.8% vs. 60.0%, P=0.036) in the experimental group than in the control group. The use of cerebral autoregulation-directed optimal blood pressure (odds ratio [OR]=0.090, 95% confidence interval [CI]: 0.009 to 0.923, P=0.043) and length of ICU stay (OR=1.473, 95% CI: 1.093 to 1.985, P=0.011) were risk factors for delirium during septic shock. Vasoactive drug dose (OR=8.445, 95% CI: 1.26 to 56.576, P=0.028) and partial pressure of oxygen (PaO2) (OR=0.958, 95% CI: 0.921 to 0.996, P=0.032) were the risk factors for 28-day mortality. Conclusions The use of cerebral autoregulation-directed optimal blood pressure management during shock resuscitation reduces the incidence of delirium in patients with septic shock. Trial Registration ClinicalTrials.gov ldentifer: NCT03879317.
Collapse
Affiliation(s)
- Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xia Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilin Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghuan Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Zheng J, Li Y, Kong X, Guo J. Exploring immune-related pathogenesis in lung injury: Providing new insights Into ALI/ARDS. Biomed Pharmacother 2024; 175:116773. [PMID: 38776679 DOI: 10.1016/j.biopha.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a significant global burden of morbidity and mortality, with lung injury being the primary cause of death in affected patients. The pathogenesis of lung injury, however, remains a complex issue. In recent years, the role of the immune system in lung injury has attracted extensive attention worldwide. Despite advancements in our understanding of various lung injury subtypes, significant limitations persist in both prevention and treatment. This review investigates the immunopathogenesis of ALI/ARDS, aiming to elucidate the pathological processes of lung injury mediated by dendritic cells (DCs), natural killer (NK) cells, phagocytes, and neutrophils. Furthermore, the article expounds on the critical contributions of gut microbiota, inflammatory pathways, and cytokine storms in the development of ALI/ARDS.
Collapse
Affiliation(s)
- Jiajing Zheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Li
- Pharmacy Department of the First Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jinhe Guo
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
32
|
Ziaka M, Exadaktylos A. Exploring the lung-gut direction of the gut-lung axis in patients with ARDS. Crit Care 2024; 28:179. [PMID: 38802959 PMCID: PMC11131229 DOI: 10.1186/s13054-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a life-threatening inflammatory reaction marked by refractory hypoxaemia and pulmonary oedema. Despite advancements in treatment perspectives, ARDS still carries a high mortality rate, often due to systemic inflammatory responses leading to multiple organ dysfunction syndrome (MODS). Indeed, the deterioration and associated mortality in patients with acute lung injury (LI)/ARDS is believed to originate alongside respiratory failure mainly from the involvement of extrapulmonary organs, a consequence of the complex interaction between initial inflammatory cascades related to the primary event and ongoing mechanical ventilation-induced injury resulting in multiple organ failure (MOF) and potentially death. Even though recent research has increasingly highlighted the role of the gastrointestinal tract in this process, the pathophysiology of gut dysfunction in patients with ARDS remains mainly underexplored. This review aims to elucidate the complex interplay between lung and gut in patients with LI/ARDS. We will examine various factors, including systemic inflammation, epithelial barrier dysfunction, the effects of mechanical ventilation (MV), hypercapnia, and gut dysbiosis. Understanding these factors and their interaction may provide valuable insights into the pathophysiology of ARDS and potential therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Gao J, Wang N, Song W, Yuan Y, Teng Y, Liu Z. Mechanisms underlying the synergistic effects of chuanxiong combined with Chishao on treating acute lung injury based on network pharmacology and molecular docking combined with preclinical evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117862. [PMID: 38342157 DOI: 10.1016/j.jep.2024.117862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herb pair of Chuanxiong Rhizome (Ligusticum chuanxiong Hort., Chuanxiong in Chinese, CX) and Paeoniae Radix Rubra (Paeonia lactiflora Pall. Or Paeonia veitchii Lynch, Chishao in Chinese, CS) is a famous blood activating and stasis resolving pair that is often found in traditional Chinese medicine (TCM) formulas for the treatment of acute lung injury (ALI). However, the relationship of CX-CS herb pair to ALI and its underlying mechanisms are unclear. AIM OF THE STUDY The study explored the effect and mechanisms of CX-CS herb pair in LPS induced ALI by network pharmacology and molecular docking combined with preclinical evaluation. MATERIALS AND METHODS The related targets of the active compounds of CX-CS herb pair in regulating ALI were screened by network pharmacology. PPI was constructed and the potential pathways were investigated by GO and KEGG. The contribution of each active ingredient of CX-CS herb pair to ALI were calculated by network-based efficacy. The interactions between potential targets and active ingredients were evaluated by molecular docking. LPS stimulated RAW264.7 cells and mice model experiments were adopted to verify the effect of CX-CS herb pair on ALI. RESULTS A total of 25 compounds and 193 targets were identified in the CX-CS herb pair, of which 19 compounds and 64 targets were associated with ALI, and six compounds including baicalin, ellagic acid, baicalein, beta-sitosterol, paeoniflorin and ferulic acid accounted for 93.12% of the total combination index for ALI prevention. The CX-CS herbal pair against ALI was associated with PI3K/AKT and MAPK signaling pathways by GO and KEGG analysis. The screened active compounds showed good affinity for TNF, MAPK, and AKT by molecular docking. In vitro and in vivo tests showed that CX combined with CS synergistically inhibited LPS-induced ALI at 1:3, suppressed the release of TNF-α, IL-1β and IL-6, inhibited the accumulation of ROS, as well as regulated the content of SOD, MDA and GSH. Meanwhile, the herb pair was effective in inhibiting the expression of p38, ERK, IκBα, p65, caspase 3, PARP, and up-regulating the levels of AKT and Bcl-2/Bax. CONCLUSIONS Our study confirmed the synergistic effect of CX-CS herb pair on the prevention of ALI by inhibiting inflammation, oxidative stress, and apoptosis through MAPK/NF-κB and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenjuan Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yajie Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
34
|
Li C, Qi X, Xu L, Sun Y, Chen Y, Yao Y, Zhao J. Preventive Effect of the Total Polyphenols from Nymphaea candida on Sepsis-Induced Acute Lung Injury in Mice via Gut Microbiota and NLRP3, TLR-4/NF-κB Pathway. Int J Mol Sci 2024; 25:4276. [PMID: 38673868 PMCID: PMC11050158 DOI: 10.3390/ijms25084276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the preventive effects of the total polyphenols from Nymphaea candida (NCTP) on LPS-induced septic acute lung injury (ALI) in mice and its mechanisms. NCTP could significantly ameliorate LPS-induced lung tissue pathological injury in mice as well as lung wet/dry ratio and MPO activities (p < 0.05). NCTP could significantly decrease the blood leukocyte, neutrophil, monocyte, basophil, and eosinophil amounts and LPS contents in ALI mice compared with the model group (p < 0.05), improving lymphocyte amounts (p < 0.05). Moreover, compared with the model group, NCTP could decrease lung tissue TNF-α, IL-6, and IL-1β levels (p < 0.05) and downregulate the protein expression of TLR4, MyD88, TRAF6, IKKβ, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, NLRP3, ASC, and Caspase1 in lung tissues (p < 0.05). Furthermore, NCTP could inhibit ileum histopathological injuries, restoring the ileum tight junctions by increasing the expression of ZO-1 and occludin. Simultaneously, NCTP could reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Clostridiales and Lachnospiraceae, and enhance the content of SCFAs (acetic acid, propionic acid, and butyric acid) in feces. These results suggested that NCTP has preventive effects on septic ALI, and its mechanism is related to the regulation of gut microbiota, SCFA metabolism, and the TLR-4/NF-κB and NLRP3 pathways.
Collapse
Affiliation(s)
- Chenyang Li
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
| | - Xinxin Qi
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
| | - Lei Xu
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Yuan Sun
- School of Pharmacy, Xinjiang Medical University, Urumqi 830011, China;
| | - Yan Chen
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Yuhan Yao
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Jun Zhao
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| |
Collapse
|
35
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
36
|
He W, Xu C, Huang Y, Zhang Q, Chen W, Zhao C, Chen Y, Zheng D, XinyueLin, Luo Q, Chen X, Zhang Z, Wu X, Huang J, Lin C, Huang Y, Zhang S. Therapeutic potential of ADSC-EV-derived lncRNA DLEU2: A novel molecular pathway in alleviating sepsis-induced lung injury via the miR-106a-5p/LXN axis. Int Immunopharmacol 2024; 130:111519. [PMID: 38442573 DOI: 10.1016/j.intimp.2024.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024]
Abstract
This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2. The RNAInter database predicted miRNAs that interact with DLEU2 and LXN. Functional and pathway enrichment analyses were performed using GO and KEGG analysis. A mouse model of sepsis was established, and treatment with a placebo or ADSC-EVs was administered, followed by RT-qPCR analysis. ADSC-EVs were isolated and identified. In vitro cell experiments were conducted using the mouse lung epithelial cell line MLE-12, mouse macrophage cell line RAW264.7, and mouse lung epithelial cell line (LEPC). ADSC-EVs were co-cultured with RAW264.7 and MLE-12/LEPC cells to study the regulatory mechanism of the lncRNA DLEU2. Cell viability, proliferation, and apoptosis of lung injury cells were assessed using CCK-8, EdU, and flow cytometry. ELISA was used to measure the levels of inflammatory cytokines in the sepsis mouse model, flow cytometry was performed to determine the number of M1 and M2 macrophages, lung tissue pathology was evaluated by H&E staining, and immunohistochemistry was conducted to examine the expression of proliferation- and apoptosis-related proteins. High-throughput sequencing and bioinformatics analysis revealed enrichment of the lncRNA DLEU2 in ADSC-EVs in sepsis lung tissue. Animal and in vitro cell experiments showed increased expression of the lncRNA DLEU2 in sepsis lung tissue after treatment with ADSC-EVs. Furthermore, ADSC-EVs were found to transfer the lncRNA DLEU2 to macrophages, promoting M2 polarization, reducing inflammation response in lung injury cells, and enhancing their viability, proliferation, and apoptosis inhibition. Further functional experiments indicated that lncRNA DLEU2 promotes M2 polarization of macrophages by regulating miR-106a-5p/LXN, thereby enhancing the viability and proliferation of lung injury cells and inhibiting apoptosis. Overexpression of miR-106a-5p could reverse the biological effects of ADSC-EVs-DLEU2 on MLE-12 and LEPC in vitro cell models. Lastly, in vivo animal experiments confirmed that ADSC-EVs-DLEU2 promotes high expression of LXN by inhibiting the expression of miR-106a-5p, further facilitating M2 macrophage polarization and reducing lung edema, thus alleviating sepsis-induced lung injury. lncRNA DLEU2 in ADSC-EVs may promote M2 polarization of macrophages and enhance the viability and proliferation of lung injury cells while inhibiting inflammation and apoptosis reactions, thus ameliorating sepsis-induced lung injury in a mechanism involving the regulation of the miR-106a-5p/LXN axis.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Yuying Huang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, PR China
| | - Qiuzhen Zhang
- Department of Pharmacy, Jiangmen central Hospital, Jiangmen 529030, PR China
| | - Wang Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Danling Zheng
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - XinyueLin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Qianhua Luo
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoshan Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Zhihan Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, PR China
| | - Xiaolong Wu
- College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Chaoxian Lin
- Shantou Chaonan Minsheng Hospital, Shantou 515041, PR China.
| | - Yihui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China.
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China.
| |
Collapse
|
37
|
Wang Q, Wen W, Zhou L, Liu F, Ren X, Yu L, Chen H, Jiang Z. LL-37 improves sepsis-induced acute lung injury by suppressing pyroptosis in alveolar epithelial cells. Int Immunopharmacol 2024; 129:111580. [PMID: 38310763 DOI: 10.1016/j.intimp.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND LL-37 (also known as murine CRAMP) is a human antimicrobial peptide that plays a crucial role in innate immune defence against sepsis through various mechanisms. However, its involvement in sepsis-induced lung injury remains unclear. OBJECTIVES This work investigates the impact of LL-37 on pyroptosis generated by LPS in alveolar epithelial cells. The research utilizes both in vivo and in vitro sepsis-associated acute lung injury (ALI) models to understand the underlying molecular pathways. METHODS In vivo, an acute lung injury model induced by sepsis was established by intratracheal administration of LPS in C57BL/6J mice, which were subsequently treated with low-dose CRAMP (recombinant murine cathelicidin, 2.5 mg.kg-1) and high-dose CRAMP (5.0 mg.kg-1). In vitro, pyroptosis was induced in a human alveolar epithelial cell line (A549) by stimulation with LPS and ATP. Treatment was carried out with recombinant human LL-37, or LL-37 was knocked out in A549 cells using small interfering RNA (siRNA). Subsequently, haematoxylin and eosin staining was performed to observe the histopathological changes in lung tissues in the control group and sepsis-induced lung injury group. TUNEL and PI staining were used to observe DNA fragmentation and pyroptosis in mouse lung tissues and cells in the different groups. An lactate dehydrogenase (LDH) assay was performed to measure the cell death rate. The expression levels of NLRP3, caspase1, caspase 1 p20, GSDMD, NT-GSDMD, and CRAMP were detected in mice and cells using Western blotting, qPCR, and immunohistochemistry. ELISA was used to assess the levels of interleukin (IL)-1β and IL-18 in mouse serum, bronchoalveolar lavage fluid (BALF) and lung tissue and cell culture supernatants. RESULTS The expression of NLRP3, caspase1 p20, NT-GSDMD, IL 18 and IL1β in the lung tissue of mice with septic lung injury was increased, which indicated activation of the canonical pyroptosis pathway and coincided with an increase in CRAMP expression. Treatment with recombinant CRAMP improved pyroptosis in mice with lung injury. In vitro, treatment with LPS and ATP upregulated these classic pyroptosis molecules, LL-37 knockdown exacerbated pyroptosis, and recombinant human LL-37 treatment alleviated pyroptosis in alveolar epithelial cells. CONCLUSION These findings indicate that LL-37 protects against septic lung injury by modulating the expression of classic pyroptotic pathway components, including NLRP3, caspase1, and GSDMD and downstream inflammatory factors in alveolar epithelial cells.
Collapse
Affiliation(s)
- Quanzhen Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Wei Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Lei Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China; Department of Respiratory Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Xiaoxu Ren
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Lifeng Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Huanqin Chen
- Department of Gerontology, Qilu Hospital, Shandong University, Jinan, 250012 Shandong, China
| | - Zhiming Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| |
Collapse
|
38
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Fan S, Ma J. The value of five scoring systems in predicting the prognosis of patients with sepsis-associated acute respiratory failure. Sci Rep 2024; 14:4760. [PMID: 38413621 PMCID: PMC10899590 DOI: 10.1038/s41598-024-55257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Our study aimed to identify the optimal scoring system for predicting the prognosis of patients with sepsis-associated acute respiratory failure (SA-ARF). All data were taken from the fourth version of the Markets in Intensive Care Medicine (MIMIC-IV) database. Independent risk factors for death in hospitals were confirmed by regression analysis. The predictive value of the five scoring systems was evaluated by receiving operating characteristic (ROC) curves. Kaplan‒Meier curves showed the impact of acute physiology score III (APSIII) on survival and prognosis in patients with SA-ARF. Decision curve analysis (DCA) identified a scoring system with the highest net clinical benefit. ROC curve analysis showed that APS III (AUC: 0.755, 95% Cl 0.714-0.768) and Logical Organ Dysfunction System (LODS) (AUC: 0.731, 95% Cl 0.717-0.7745) were better than Simplified Acute Physiology Score II (SAPS II) (AUC: 0.727, 95% CI 0.713-0.741), Oxford Acute Severity of Illness Score (OASIS) (AUC: 0.706, 95% CI 0.691-0.720) and Sequential Organ Failure Assessment (SOFA) (AUC: 0.606, 95% CI 0.590-0.621) in assessing in-hospital mortality. Kaplan‒Meier survival analysis patients in the high-APS III score group had a considerably poorer median survival time. The DCA curve showed that APS III may provide better clinical benefits for patients. We demonstrated that the APS III score is an excellent predictor of in-hospital mortality.
Collapse
Affiliation(s)
- Shiqin Fan
- Department of Intensive Care Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Ma
- Department of Intensive Care Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
41
|
Sun B, Bai L, Li Q, Sun Y, Li M, Wang J, Shi X, Zhao M. Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis. Toxicol In Vitro 2024; 94:105709. [PMID: 37820748 DOI: 10.1016/j.tiv.2023.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Sepsis-induced acute lung injury (ALI) is a life-threatening disease. Macrophage pyroptosis has been reported to exert function in ALI. We aimed to investigate the mechanisms of ANGPTL4-mediated cell pyroptosis in sepsis-induced ALI, thus providing new insights into the pathogenesis and prevention and treatment measures of sepsis-induced ALI. METHODS In vivo animal models and in vitro cell models were established by cecal ligation and puncture (CLP) method and lipopolysaccharide-induced macrophages RAW264.7. ANGPTL4 was silenced in CLP mice or macrophages, followed by the determination of ANGPTL4 expression in bronchoalveolar lavage fluid (BALF) or macrophages. Lung histopathology was observed by H&E staining, with pathological injury scores evaluated and lung wet and dry weight ratio recorded. M1/M2 macrophage marker levels (iNOS/CD86/Arg1), inflammatory factor (TNF-α/IL-6/IL-1β/iNOS) expression in BALF, cell death and pyroptosis, NLRP3 inflammasome, cell pyroptosis-related protein (NLRP3/Cleaved-caspase-1/caspase-1/GSDMD-N) levels, NF-κB pathway activation were assessed by RT-qPCR/ELISA/flow cytometry/Western blot, respectively. RESULTS ANGPTL4 was highly expressed in mice with sepsis-induced ALI, and ANGPTL4 silencing ameliorated sepsis-induced ALI in mice. In vivo, ANGPTL4 silencing repressed M1 macrophage polarization and macrophage pyroptosis in mice with sepsis-induced ALI. In vitro, ANGPTL4 knockout impeded LPS-induced activation and pyroptosis of M1 macrophages and hindered LPS-induced activation of the NF-κB pathway in macrophages. CONCLUSION Knockdown of ANGPTL4 blocks the NF-κB pathway activation, hinders macrophage M1 polarization and pyroptosis, thereby suppressing sepsis-induced ALI.
Collapse
Affiliation(s)
- Baisheng Sun
- Medical School of Chinese PLA, Beijing, China; Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lina Bai
- Department of Emergency, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Qinglin Li
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yubo Sun
- The Third Sanatorium, Dalian Rehabilitation and Recuperation Center of Joint Logistic Support Force, Dalian, China
| | - Mei Li
- Department of Radiography, General Hospital of Central Theater Command, PLA, Wuhan 430070, China
| | - Jiazhi Wang
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Xiaoli Shi
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Meng Zhao
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
42
|
Guo L, Bao W, Yang S, Liu Y, Lyu J, Wang T, Lu Y, Li H, Zhu H, Chen D. Rhei Radix et Rhizoma in Xuanbai-Chengqi decoction strengthens the intestinal barrier function and promotes lung barrier repair in preventing severe viral pneumonia induced by influenza A virus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117231. [PMID: 37783404 DOI: 10.1016/j.jep.2023.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanbai-Chengqi decoction (XCD) is a traditional prescription for treating multiple organ injuries, which has been used to manage pneumonia caused by various pathogens. However, the effects of XCD on repairing pulmonary/intestinal barrier damage remain unclear, and there is a need to understand the compatibility mechanism of rhubarb. AIM OF THE STUDY This work aims to investigate the protective effect and mechanism of XCD on the pulmonary/intestinal barrier guided by the theory of "gut-lung concurrent treatment". Moreover, we elucidate the compatibility mechanism of rhubarb in XCD. MATERIALS AND METHODS An H1N1 virus-infected mouse model was adopted to investigate the reparative effects of XCD on the lung-intestinal barrier by assessing lung-intestinal permeability. Additionally, the characterization of type I alveolar epithelial cells (AT1) and type II alveolar epithelial cells (AT2) was performed to evaluate the damage to the alveolar epithelial barrier. The specific barrier-protective mechanisms of XCD were elucidated by detecting tight junction proteins and the epithelial cell repair factor IL-22. The role of rhubarb in XCD to pneumonia treatment was investigated through lung tissue transcriptome sequencing and flow cytometry. RESULTS XCD significantly improved lung tissue edema, inflammation, and alveolar epithelial barrier damage by regulating IL-6, IL-10, and IL-22, which, could further improve pulmonary barrier permeability when combined with the protection of alveolar epithelial cells (AT1 and AT2) as well as inhibition of H1N1 virus replication. Simultaneously, XCD significantly reduced intestinal inflammation and barrier damage by regulating IL-6, IL-1β, and tight junction protein levels (Claudin-1 and ZO-1), improving intestinal barrier permeability. The role of rhubarb in the treatment of pneumonia is clarified for the first time. In the progression of severe pneumonia, rhubarb can significantly protect the intestinal barrier, promote the repair of AT2 cells, and inhibit the accumulation of CD11b+Ly6Gvariable aberrant neutrophils by regulating the S100A8 protein. CONCLUSION In summary, our findings suggest that rhubarb in XCD plays a critical role in protecting intestinal barrier function and promoting lung barrier repair in preventing severe viral pneumonia caused by influenza A virus.
Collapse
Affiliation(s)
- Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Shuiyuan Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Jiaren Lyu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Ting Wang
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, District, Shanghai, 201203, PR China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, Shanghai, 201203, PR China
| | - Haiyan Zhu
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, District, Shanghai, 201203, PR China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China.
| |
Collapse
|
43
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Li H, Xie W, Gao X, Geng Z, Gao J, Ma G, Liu X, Han S, Chen Y, Wen X, Bi Y, Zhang L. Design and synthesis of novel hederagonic acid analogs as potent anti-inflammatory compounds capable of protecting against LPS-induced acute lung injury. Eur J Med Chem 2024; 263:115941. [PMID: 38000214 DOI: 10.1016/j.ejmech.2023.115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Acute lung injury (ALI) presents a significant clinical challenge due to its high mortality rates and the lack of effective treatment strategies. The most effective approaches to treating ALI include disrupting inflammatory cascades and associated inflammatory damage within the lung. Hederagenin was utilized as a core skeleton to design and synthesize 33 hederagonic acid derivatives. Among these derivatives, compound 29 demonstrated potent anti-inflammatory activity without inducing cytotoxicity, inhibiting nitric oxide (NO) release by 78-86 %. Detailed structure-activity relationship studies and the reverse virtual screening of ALI-related targets revealed that compound 29 exhibits a high affinity for the STING protein. Mechanistic studies revealed that compound 29 suppresses macrophage activation, inhibits the nuclear translocation of IRF3 and p65, and disrupts the STING/IRF3/NF-κB signaling pathway, thereby attenuating the inflammatory response. The in vivo administration of compound 29 was sufficient to protect against lipopolysaccharide (LPS)-induced ALI by suppressing the production of inflammatory mediators, including IL-6, TNF-α, and IFN-β, thereby preserving lung tissue integrity. These results substantiate the anti-inflammatory efficacy of compound 29, both in vitro and in vivo, indicating its potential as a promising lead compound in ALI treatment strategies.
Collapse
Affiliation(s)
- Haixia Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaojin Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Zhiyuan Geng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jing Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Gongshan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xuanyu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Song Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yinchao Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaomei Wen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
45
|
Sapra L, Saini C, Das S, Mishra PK, Singh A, Mridha AR, Yadav PK, Srivastava RK. Lactobacillus rhamnosus (LR) ameliorates pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) via targeting neutrophils. Clin Immunol 2024; 258:109872. [PMID: 38113963 DOI: 10.1016/j.clim.2023.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure associated with high mortality. Despite progress in our understanding of the pathological mechanism causing the crippling illness, there are currently no targeted pharmaceutical treatments available for it. Recent discoveries have emphasized the existence of a potential nexus between gut and lung health fueling novel approaches including probiotics for the treatment of ARDS. We thus investigated the prophylactic-potential of Lactobacillus rhamnosus-(LR) in lipopolysaccharide (LPS)-induced pulmonary and cecal ligation puncture (CLP) induced extrapulmonary ARDS mice. Our in-vivo findings revealed that pretreatment with LR significantly ameliorated vascular-permeability (edema) of the lungs via modulating the neutrophils along with significantly reducing the expression of inflammatory-cytokines in the BALF, lungs and serum in both pulmonary and extrapulmonary mice-models. Interestingly, our ex-vivo immunofluorescence and flow cytometric data suggested that mechanistically LR via short chain fatty acids (butyrate being the most potent and efficient in ameliorating the pathophysiology of both pulmonary and extra-pulmonary ARDS) targets the phagocytic and neutrophils extracellular traps (NETs) releasing potential of neutrophils. Moreover, our in-vivo data further corroborated our ex-vivo findings and suggested that butyrate exhibits enhanced potential in ameliorating the pathophysiology of ARDS via reducing the infiltration of neutrophils into the lungs. Altogether, our study establishes the prophylactic role of LR and its associated metabolites in the prevention and management of both pulmonary and extrapulmonary ARDS via targeting neutrophils.
Collapse
Affiliation(s)
- Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Chaman Saini
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sneha Das
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP 462001, India
| | - Anurag Singh
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asit R Mridha
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pardeep K Yadav
- Central Animal Facility, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
46
|
Yang T, Xie S, Cao L, Li M, Ding L, Wang L, Pang S, Wang Z, Geng L. ASTRAGALOSIDE Ⅳ MODULATES GUT MACROPHAGES M1/M2 POLARIZATION BY RESHAPING GUT MICROBIOTA AND SHORT CHAIN FATTY ACIDS IN SEPSIS. Shock 2024; 61:120-131. [PMID: 37962207 PMCID: PMC11841723 DOI: 10.1097/shk.0000000000002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
ABSTRACT M1 macrophage-mediated inflammation is critical in sepsis. We previously found the protective role of astragaloside intravenous (AS-IV) in sepsis-associated gut impairment, whose specific mechanism remains unknown. Gut microbiota modulates gut homeostatic balance to avoid excessive inflammation. Here, we aimed to investigate effects of AS-IV on gut macrophages polarization and potential roles of gut microbiota and short chain fatty acids (SCFAs) in septic gut damage. Mice were pretreated by AS-IV gavage for 7 days before cecal ligation and puncture. M1 polarization of gut lamina propria macrophages (LpMs) was promoted by cecal ligation and puncture, accompanied by abnormal cytokines release and intestinal barrier dysfunction. NLRP3 inflammasome was activated in M1 LpMs. 16S rRNA sequencing demonstrated gut microbiota imbalance. The levels of acetate, propionate, and butyrate in fecal samples decreased. Notably, AS-IV reversed LpMs M1/M2 polarization, lightened gut inflammation and barrier injury, reduced NLRP3 inflammasome expression in LpMs, restored the diversity of gut microbiome, and increased butyrate levels. Similarly, these benefits were mimicked by fecal microbiota transplantation or exogenous butyrate supplementation. In Caco-2 and THP-1 cocultured model, LPS and interferon γ caused THP-1 M1 polarization, Caco-2 barrier impairment, abnormal cytokines release, and high NLRP3 inflammasome expression in THP-1 cells, all of which were mitigated by butyrate administration. However, these protective effects of butyrate were abrogated by NLRP3 gene overexpression in THP-1. In conclusion, AS-IV can ameliorate sepsis-induced gut inflammation and barrier dysfunction by modulating M1/M2 polarization of gut macrophages, whose underlying mechanism may be restoring gut microbiome and SCFA to restrain NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Shuhua Xie
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Man Li
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Ling Ding
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Wang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Shenyue Pang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Zhifen Wang
- Department of Anesthesiology, Tianjin Children's Hospital, Tianjin, China
| | - Licheng Geng
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
47
|
Liao Q, Su X, Tao Z, Li Z, Wang H, Yuan Y. Activation of toll-like receptor 4/nuclear factor-kappa B signaling by triggering a receptor expressed on myeloid cells 1 promotes alveolar macrophage M1 polarization and exacerbates septic acute lung injury. J Gene Med 2024; 26:e3650. [PMID: 38062859 DOI: 10.1002/jgm.3650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Septic acute lung injury (ALI) is a life-threatening condition commonly occurring in the intensive care unit. Inflammation is considered as the basic pathological response of septic ALI. Triggering receptor expressed on myeloid cells 1 (TREM1) is a member of the immunoglobulin superfamily receptors that regulates the inflammatory response. However, the role of TREM1 in septic ALI has not yet been reported. METHODS Cell viability was tested using the MTT assay. TdT-mediated dUTP nick end labeling assay and flow cytometry were used for apoptosis. The level of protein was detected using western blot analysis. The levels of tumor necrosis factor-α and interleukin-1β were assessed using enzyme-linked immunosorbent assay. The lactate dehydrogenase content was assessed using the assay kit. Myeloperoxidase activity was determined using an assay. Histology of lung tissue was further analyzed through hematoxylin-eosin staining. RESULTS We found that TREM1 knockdown by transfection with si-TREM1 inhibited lipopolysaccharide (LPS)-induced cell apoptosis of alveolar macrophage cell line MH-S. The LPS stimulation caused M1 polarization of MH-S cells, which could be reversed by TREM1 knockdown. In vivo assays proved that si-TREM1 injection improved lung injury and inflammation of cecal ligation and puncture-induced ALI in mice. In addition, TREM1 knockdown suppressed the activation of toll-like receptor 4/nuclear factor-kappa B signaling, implying the involvement of TLR4 in the effects of TREM1 in response to LPS stimulation. CONCLUSIONS This study examined the proinflammatory role of TREM1 in septic ALI and its regulatory effect on alveolar macrophage polarization. These results suggest that TREM1 could potentially serve as a therapeutic target in the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Qingwu Liao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaojuan Su
- Department of Geriatrics, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Zhengang Tao
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- Clinical Science Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huilin Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yuan
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Lu Y, Wu Y, Huang M, Chen J, Zhang Z, Li J, Yang R, Liu Y, Cai S. Fuzhengjiedu formula exerts protective effect against LPS-induced acute lung injury via gut-lung axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155190. [PMID: 37972468 DOI: 10.1016/j.phymed.2023.155190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is distinguished by rapid and severe respiratory distress and prolonged hypoxemia. A traditional Chinese medicine (TCM), known as the Fuzhengjiedu formula (FZJDF), has been shown to have anti-inflammatory benefits in both clinical and experimental studies. The precise underlying processes, nevertheless, are yet unclear. PURPOSE This study sought to enlighten the protective mechanism of FZJDF in ALI through the standpoint of the gut-lung crosstalk. METHODS The impact of FZJDF on lipopolysaccharide (LPS)-induced ALI murine model were investigated, and the lung injury score, serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) expression were measured to confirm its anti-inflammatory effects. Additionally, gut microbiota analysis and serum and fecal samples metabolomics were performed using metagenomic sequencing and high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry, respectively. RESULTS FZJDF significantly induced histopathological changes caused by LPS-induced ALI as well as downregulated the serum concentration of IL-1β and TNF-α. Furthermore, FZJDF had an effect in gut microbiota disturbances, and linear discriminant effect size analysis identified signal transduction, cell motility, and amino acid metabolism as the potential mechanisms of action in the FZJDF-treated group. Several metabolites in the LPS and FZJDF groups were distinguished by untargeted metabolomic analysis. Correlations were observed between the relative abundance of microbiota and metabolic products. Comprehensive network analysis revealed connections among lung damage, gut microbes, and metabolites. The expression of glycine, serine, glutamate, cysteine, and methionine in the lung and colon tissues was dysregulated in LPS-induced ALI, and FZJDF reversed these trends. CONCLUSION This study revealed that FZJDF considerably protected against LPS-induced ALI in mice by regulating amino acid metabolism via the gut-microbiota-lung axis and offered thorough and in-depth knowledge of the multi-system linkages of systemic illnesses.
Collapse
Affiliation(s)
- Yue Lu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan Wu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengfen Huang
- The Ninth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiankun Chen
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China
| | - Zhongde Zhang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiqiang Li
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China.
| | - Rongyuan Yang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yuntao Liu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Shubin Cai
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Ren Z, Zheng Z, Feng X. Role of gut microbes in acute lung injury/acute respiratory distress syndrome. Gut Microbes 2024; 16:2440125. [PMID: 39658851 PMCID: PMC11639474 DOI: 10.1080/19490976.2024.2440125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Acute lung injury (ALI) is an acute, diffuse inflammatory lung condition triggered by factors of severe infections, trauma, shock, burns, ischemia-reperfusion, and mechanical ventilation. It is primarily characterized by refractory hypoxemia and respiratory distress. The more severe form, acute respiratory distress syndrome (ARDS), can progress to multi-organ failure and has a high mortality rate. Despite extensive research, the exact pathogenesis of ALI and ARDS remains complex and not fully understood. Recent advancements in studying the gut microecology of patients have revealed the critical role that gut microbes play in ALI/ARDS onset and progression. While the exact mechanisms are still under investigation, evidence increasingly points to the influence of gut microbes and their metabolites on ALI/ARDS. This review aims to summarize the role of gut microbes and their metabolites in ALI/ARDS caused by various triggers. Moreover, it explores potential mechanisms and discusses how gut microbe-targeting interventions might offer new clinical strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Zixuan Ren
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
50
|
Sun B, Lei M, Zhang J, Kang H, Liu H, Zhou F. Acute lung injury caused by sepsis: how does it happen? Front Med (Lausanne) 2023; 10:1289194. [PMID: 38076268 PMCID: PMC10702758 DOI: 10.3389/fmed.2023.1289194] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2024] Open
Abstract
Sepsis is a systemic inflammatory disease caused by severe infections that involves multiple systemic organs, among which the lung is the most susceptible, leaving patients highly vulnerable to acute lung injury (ALI). Refractory hypoxemia and respiratory distress are classic clinical symptoms of ALI caused by sepsis, which has a mortality rate of 40%. Despite the extensive research on the mechanisms of ALI caused by sepsis, the exact pathological process is not fully understood. This article reviews the research advances in the pathogenesis of ALI caused by sepsis by focusing on the treatment regimens adopted in clinical practice for the corresponding molecular mechanisms. This review can not only contribute to theories on the pathogenesis of ALI caused by sepsis, but also recommend new treatment strategies for related injuries.
Collapse
Affiliation(s)
- Baisheng Sun
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Mingxing Lei
- Department of Orthopedic Surgery, Hainan Hospital of Chinese PLA General Hospital, Beijing, China
- Department of Orthopedic Surgery, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiaqi Zhang
- Medical School of Chinese PLA, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hui Liu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical Engineering Laboratory of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|