1
|
Duan S, Hou J, Li Y, Zhang M, Zhao Y, Jin W, Li M, Sun W, Xu H, Liu Q, Chen L, Deng Z, Yang F, Ma S, He Z. Establishment of a rhesus macaque model for coxsackievirus A6 infection: Pilot study to evaluate infection initiated through the respiratory or digestive track. Virology 2025; 601:110268. [PMID: 39522359 DOI: 10.1016/j.virol.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Coxsackievirus A6 (CVA6) is a primary pathogen associated with hand, foot, and mouth disease (HFMD) and is typified by fever, rashes or herpetic lesions at distinct locations. Although HFMD patients exhibit mild symptoms, a subset of patients may develop severe complications, such as viral encephalitis, myocarditis, pneumonia, and neurological disorders. However, in addition to rodent models, such as the CVA6-infected mouse model, no definitive nonhuman primate animal model or related research or analysis tool is available, which makes the development of suitable nonhuman primate animal models particularly crucial. In this study, 3- to 4-month-old rhesus monkeys were infected via the respiratory or digestive tract, and the pathogenic, pathological, and immunological alterations following CVA6 infection were investigated. The results revealed that the infected rhesus monkeys exhibited symptoms similar to those of patients, including signs of HFMD, blood cell changes, viremia, viral excretion, and inflammatory reactions during the acute phase (1-11 days). Pathological observations revealed inflammatory reactions in the intestinal and lymph node tissues. Notably, the acute symptoms gradually waned in the recovery phase (12-120 days), and a high level of neutralizing antibodies was sustained. Intriguingly, no significant disparity was observed between the infections initiated via the respiratory or digestive tract in terms of clinical symptoms, hemogram results or virus shedding. Overall, this study yielded a comprehensive dataset regarding the physiological, pathological, and immunological outcomes of CVA6 infection in a primate host, enhancing our comprehension of the mechanism of CVA6 infection and providing essential data for related vaccine and drug development.
Collapse
MESH Headings
- Animals
- Macaca mulatta
- Disease Models, Animal
- Pilot Projects
- Enterovirus/physiology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Coxsackievirus Infections/virology
- Coxsackievirus Infections/immunology
- Gastrointestinal Tract/virology
- Gastrointestinal Tract/pathology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Hand, Foot and Mouth Disease/virology
- Hand, Foot and Mouth Disease/pathology
- Respiratory System/virology
- Female
- Virus Shedding
- Viremia
- Male
- Enterovirus A, Human/pathogenicity
- Enterovirus A, Human/physiology
- Enterovirus A, Human/immunology
- Respiratory Tract Infections/virology
- Respiratory Tract Infections/immunology
Collapse
Affiliation(s)
- Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Mingxue Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Wenting Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Hongjie Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Quan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Lixiong Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zijun Deng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| |
Collapse
|
2
|
Obong’o BO, Ogutu FO, Hurley SK, Okiko GM, Mahony J. Exploring the Microbial Ecology of Water in Sub-Saharan Africa and the Potential of Bacteriophages in Water Quality Monitoring and Treatment to Improve Its Safety. Viruses 2024; 16:1897. [PMCID: PMC11680409 DOI: 10.3390/v16121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region. Bacteriophages specifically infect bacteria and offer a targeted approach to reducing bacterial load, including multidrug-resistant strains, without the drawbacks of chemical disinfectants. This review also highlights the advantages of phage bioremediation, including its specificity, adaptability, and minimal environmental impact. It also discusses various case studies demonstrating its efficacy in different water systems. Additionally, we underscore the need for further research and the development of region-specific phage applications to improve water quality and public health outcomes in sub-Saharan Africa. By integrating bacteriophage strategies into water treatment and food production, the region can address critical microbial threats, mitigate the spread of antimicrobial resistance, and advance global efforts toward ensuring safe water for all.
Collapse
Affiliation(s)
- Boniface Oure Obong’o
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Fredrick Onyango Ogutu
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Shauna Kathleen Hurley
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Gertrude Maisiba Okiko
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| |
Collapse
|
3
|
Elois MA, da Silva Grisard HB, Rodríguez-Lázaro D, Fongaro G. Challenges and global trends in combating enteric hepatitis. J Gen Virol 2024; 105. [PMID: 39693132 DOI: 10.1099/jgv.0.002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Enteric hepatitis, represented by the hepatitis A virus (HAV) and hepatitis E virus (HEV), remains a significant global public health concern. While much progress has been made, many aspects of the biology and pathophysiology of HAV and HEV are still not fully understood. One of the major challenges is the absence of a reliable system for virus replication. Additionally, the lack of standardized and widely accessible diagnostic tests contributes to the underestimation of the true prevalence of these viruses. Factors such as climate change, environmental shifts, globalization and increased population mobility further complicate the spread of these infections by affecting pathogen transmission, water quality and the distribution of vectors. This review approaches the emergent research challenges and trends of enteric hepatitis and focuses on developing more efficient diagnostic tools, exploring the role of zoonotic transmission and addressing the impact of environmental and climate changes on disease dynamics, underscoring the need for collaborative, interdisciplinary efforts to effectively combat enteric hepatitis in a rapidly changing world.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Henrique Borges da Silva Grisard
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
4
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
5
|
do Nascimento MCA, Smith WJM, Liu Y, Simpson SL, Bivins A, Rahal P, Ahmed W. Development and comparative assessment of RT-qPCR and duplex RT-LAMP assays for the monitoring of Aichi virus A (AiV-A) in untreated wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175440. [PMID: 39153611 DOI: 10.1016/j.scitotenv.2024.175440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Diverse enteric pathogens, transmitted through human and animal feces, can cause gastroenteritis. Enteric viruses, such as human Aichi virus, specifically genotype A (AiV-A), are emerging pathogens that cause illnesses even at low doses and are spreading globally. This research developed a reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the 3CD junction and a reverse transcription colorimetric loop-mediated isothermal amplification (RT-cLAMP) duplex assay targeting junctions 2BC and 3CD of the AiV-A genome for rapid and sensitive detection of this virus in metropolitan and regional wastewater samples in Queensland, Australia. The performance of these assays was evaluated using control materials and by analyzing wastewater samples. In serially diluted control materials, RT-qPCR provided quantifiable data (mean 1.51 log10 GC/2 μL of nucleic acid) down to a dilution of 1 × 10-5 pg/μL. In comparison, the duplex RT-cLAMP assay detected down to 1 × 10-4 pg/μL, indicating that its sensitivity was one order of magnitude less than that of RT-qPCR. Of the 38 wastewater samples from 38 metropolitan and regional wastewater treatment plants (WWTPs) in Queensland, Australia, 21 (55.3 %) tested positive by RT-qPCR with concentrations ranging from 3.60 to 6.23 log10 GC/L. In contrast, only 15 (39.5 %) of 38 wastewater samples were positive using the duplex RT-cLAMP assay. The methods demonstrated substantial qualitative agreement (κ = 0.730), with a concordance of 86.5 %, demonstrating the reliability of RT-cLAMP for detecting AiV-A in wastewater samples. The duplex RT-cLAMP assay, despite demonstrating reduced detection sensitivity, has proven effective and holds promise as a supplementary approach, especially in settings with limited resources where rapid and affordable testing is crucial.
Collapse
Affiliation(s)
- Mariah C A do Nascimento
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.; Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Yawen Liu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.; State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia..
| |
Collapse
|
6
|
Tiwari A, Radu E, Kreuzinger N, Ahmed W, Pitkänen T. Key considerations for pathogen surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173862. [PMID: 38876348 DOI: 10.1016/j.scitotenv.2024.173862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Wastewater surveillance (WWS) has received significant attention as a rapid, sensitive, and cost-effective tool for monitoring various pathogens in a community. WWS is employed to assess the spatial and temporal trends of diseases and identify their early appearances and reappearances, as well as to detect novel and mutated variants. However, the shedding rates of pathogens vary significantly depending on factors such as disease severity, the physiology of affected individuals, and the characteristics of pathogen. Furthermore, pathogens may exhibit differential fate and decay kinetics in the sewerage system. Variable shedding rates and decay kinetics may affect the detection of pathogens in wastewater. This may influence the interpretation of results and the conclusions of WWS studies. When selecting a pathogen for WWS, it is essential to consider it's specific characteristics. If data are not readily available, factors such as fate, decay, and shedding rates should be assessed before conducting surveillance. Alternatively, these factors can be compared to those of similar pathogens for which such data are available.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Elena Radu
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria; Stefan S. Nicolau Institute of Virology, Department of Cellular and Molecular Pathology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; University of Medicine and Pharmacy Carol Davila, Department of Virology, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria.
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
7
|
Shaheen MNF, Elmahdy EM. Seasonal Prevalence and Detection of Enteric and Respiratory Viruses in Wastewater and Hospitalized Children with Acute Gastroenteritis. Curr Microbiol 2024; 81:337. [PMID: 39223408 DOI: 10.1007/s00284-024-03841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Human enteric and some respiratory viruses are identified to be involved with acute gastroenteritis that can be shed in feces of infected persons into the environment. Understanding the abundance of these viruses in wastewater is significant when assessing the public health impacts associated with discharge of wastewater into the environment. This study aimed to investigate the prevalence and seasonal variation of human enteric adenovirus (HAdV), Aichi virus (AiV-1), bocavirus (HBoV), and respiratory syndrome coronavirus 2 virus (SARS-CoV-2) in wastewater as well as their prevalence among hospitalized children with acute gastroenteritis. The viruses were detected and quantified with real-time PCR. HAdV was the most detected virus in raw sewage (88.5%), treated sewage (28%), and stool gastroenteritis (74%), followed by HBoV (45.8% for raw sewage, 14.6% for treated sewage, and 55.3% for stool samples). The detection rate of AiV-1 was 59.4%, 19.8%, and 62.6% in raw sewage, treated sewage, and stool samples, respectively. The rate of SARS-CoV-2 detection in raw sewage, treated sewage, and stool samples was 33.3%, 7.3%, and 20.6%, respectively. The viral concentrations ranged between 4.50 × 101 and 8.75 × 107 GC/ml in raw sewage samples, 1.20 × 101 and 5.43 × 106 GC/ml in treated sewage samples, and 4.80 × 101 and 9.88 × 108 GC/gram in stool samples. The overall log means of virus reduction during the wastewater treatment process ranged from 1.68 log10 (HAdV) to 3.31 log10 (AiV-1). The peak prevalence of the four viruses in raw sewage samples occurred during the winter season. This study showed the high detection rates of the four targeted viruses in wastewater and demonstrated that virological surveillance of wastewater in local wastewater treatment plants is a suitable model for epidemiological monitoring of diarrheal and respiratory diseases in middle- and low-resource countries.
Collapse
Affiliation(s)
- Mohamed Nasr Fathi Shaheen
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Centre, Al-Buhouth Street, Dokki, 12622, Cairo, Egypt.
| | - Elmahdy Mohamed Elmahdy
- Environmental Virology Laboratory, Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Centre, Al-Buhouth Street, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
8
|
Peng L, Yang F, Shi J, Liu Y, Pan L, Mao D, Luo Y. Insights into the panorama of multiple DNA viruses in municipal wastewater and recycled sludge in Tianjin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124215. [PMID: 38797349 DOI: 10.1016/j.envpol.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Environmental viruses in wastewater and sludge are widely recognized for their roles in waterborne diseases. However, previous studies mainly focused on RNA viruses, and little is known about the diversity of DNA viral communities and their driving factors in municipal wastewater treatment environments. Herein, we conducted a pilot study to explore DNA virus profiles in municipal wastewater and recycled sludge by metagenomics method, and track their temporal changes in northern China. Results showed that 467 viral species were co-shared among all the samples. We identified six families of human viruses with a prevalence of 0.1%, which were rare but relatively stable in wastewater and sludge for six months. Adenoviridae, Parvoviridae, and Herpersviridae were the most dominant human viral families in municipal wastewater and recycled sludge. A time series of samples revealed that the dynamic changes of human DNA viruses were stable based on qPCR results, particularly for high-risk fecal-oral transmission viruses of adenovirus, bocavirus, polyomavirus, human gamma herpesvirus, human papillomavirus, and hepatitis B virus. Concentrations of Adenovirus (5.39-7.48 log10 copies/L) and bocavirus (4.36-7.48 log10 copies/L) were observed to be the highest in these samples compared to other viruses. Our findings demonstrated the DNA viruses' high prevalence and persistence in municipal wastewater treatment environments, highlighting the value of enhancing public health responses based on wastewater-based epidemiology.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - YiXin Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
9
|
Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Metabolites profiling and cheminformatics bioprospection of selected medicinal plants against the main protease and RNA-dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 2024; 42:6740-6760. [PMID: 37464870 DOI: 10.1080/07391102.2023.2236718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Despite the existence of some vaccines, SARS-CoV-2 (S-2) infections persist for various reasons relating to vaccine reluctance, rapid mutation rate, and an absence of specific treatments targeted to the infection. Due to their availability, low cost and low toxicity, research into potentially repurposing phytometabolites as therapeutic alternatives has gained attention. Therefore, this study explored the antiviral potential of metabolites of some medicinal plants [Spondias mombin, Macaranga barteri and Dicerocaryum eriocarpum (Sesame plant)] identified using liquid chromatography-mass spectrometry (LCMS) as possible inhibitory agents against the S-2 main protease (S-2 MP) and RNA-dependent RNA polymerase (RP) using computational approaches. Molecular docking was used to identify the compounds with the best affinities for the selected therapeutics targets. Afterwards, compounds with poor physicochemical characteristics, pharmacokinetics, and drug-likeness were screened out. The top-ranked compounds were further subjected to a 120-ns molecular dynamics (MD) simulation. Only quercetin 3-O-rhamnoside (-48.77 kcal/mol) had higher binding free energy than the reference standard (zafirlukast) (-44.99 kcal/mol) against S-2 MP. Conversely, all the top-ranked compounds (ellagic acid hexoside, spiraeoside, apigenin-4'-glucoside and chrysoeriol 7-glucuronide) except gnetin L (-24.24 kcal/mol) had higher binding free energy (-55.19 kcal/mol, -52.75 kcal/mol, -47.22 kcal/mol and -43.35 kcal/mol) respectively, against S-2 RP relative to the reference standard (-34.79 kcal/mol). The MD simulations study further revealed that the investigated inhibitors are thermodynamically stable and form structurally compatible complexes that impede the regular operation of the respective S-2 therapeutic targets. Although, these S-2 therapeutic candidates are promising, further in vitro and in vivo evaluation is required and highly recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adedayo Ayodeji Lanrewaju
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | | | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
10
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
11
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
12
|
Xiong H, Ma F, Tang D, Liu D. Measures for preventing norovirus outbreaks on campus in economically underdeveloped areas and countries: evidence from rural areas in Western China. Front Public Health 2024; 12:1406133. [PMID: 38894991 PMCID: PMC11183813 DOI: 10.3389/fpubh.2024.1406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background The outbreak of norovirus represents a significant public health emergency within densely populated, impoverished, and underdeveloped areas and countries. Our objective is to conduct an epidemiology study of a norovirus outbreak that occurred in a kindergarten located in rural western China. We aim to raise awareness and garner increased attention towards the prevention and control of norovirus, particularly in economically underdeveloped regions. Methods Retrospective on-site epidemiological investigation results, including data on school layout, case symptoms, onset time, disposal methods and sample testing results, questionnaire surveys, and case-control study were conducted in a kindergarten to analyze the underlying causes of the norovirus outbreak. Results A total of 15 cases were identified, with an attack rate of 44.12% (15/34). Among them, 10 cases were diagnosed through laboratory tests, and 5 cases were diagnosed clinically. Vomiting (100%, 15/15) and diarrhea (93.33%, 14/15) were the most common symptoms in the outbreak. Case control study revealed that cases who had close contact (<1 m) with the patient's vomitus (OR = 5.500) and those who had close contact with similar patients (OR = 8.000) had significantly higher ORs compared to the control participants. The current study demonstrated that improper handling of vomitus is positively associated with norovirus outbreak. The absence of standardized disinfection protocols heightens the risk of norovirus outbreaks. Conclusion To our knowledge, this study represents the first investigation into a norovirus outbreak in rural areas of western China. We aspire that amidst rapid economic development, a greater emphasis will be placed on the prevention and control of infectious diseases in economically underdeveloped areas and countries.
Collapse
Affiliation(s)
- Huali Xiong
- Department of Public Health, Health Commission of Rongchang District, Chongqing, China
- Center for Mental Health of Rongchang District, Chongqing, China
| | - Fengxun Ma
- Department of Public Health, The People's Hospital of Rongchang District, Chongqing, China
| | - Dayi Tang
- First Clinical College, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Daiqiang Liu
- Department of Hospital Information, The People's Hospital of Rongchang District, Chongqing, China
| |
Collapse
|
13
|
Yang ZC, Wang WL, Jing ZB, Jiang YQ, Zhang HQ, Lee MY, Peng L, Wu QY. Ozone, hydrogen peroxide, and peroxymonosulfate disinfection of MS2 coliphage in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:824-831. [PMID: 38323647 DOI: 10.1039/d3em00527e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.
Collapse
Affiliation(s)
- Zi-Chen Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Yi-Qing Jiang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - He-Qing Zhang
- CSCEC Scimee Sci.&Tech. Co., Ltd., Beijing 100084, PR China
| | - Min-Yong Lee
- National Institute of Environment Research, Ministry of Environment, Incheon 22689, Republic of Korea
| | - Lu Peng
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
14
|
Ormsby MJ, Woodford L, Quilliam RS. Can plastic pollution drive the emergence and dissemination of novel zoonotic diseases? ENVIRONMENTAL RESEARCH 2024; 246:118172. [PMID: 38220083 DOI: 10.1016/j.envres.2024.118172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
As the volume of plastic in the environment increases, so too does human interactions with plastic pollution. Similarly, domestic, feral, and wild animals are increasingly interacting with plastic pollution, highlighting the potential for contamination of plastic wastes with animal faeces, urine, saliva, and blood. Substantial evidence indicates that once in the environment, plastics rapidly become colonised by microbial biofilm (the so-called 'plastisphere), which often includes potentially harmful microbial pathogens (including pathogens that are zoonotic in nature). Climate change, increased urbanisation, and the intensification of agriculture, mean that the three-way interactions between humans, animals, and plastic pollution are becoming more frequent, which is significant as almost 60% of emerging human infectious diseases during the last century have been zoonotic. Here, we critically review the potential for contaminated environmental plastics to facilitate the evolution of novel pathogenic strains of microorganisms, and the subsequent role of plastic pollution in the cyclical dissemination of zoonotic pathogens. As the interactions between humans, animals, and plastic pollution continues to grow, and the volume of plastics entering the environment increases, there is clearly an urgent need to better understand the role of plastic waste in facilitating zoonotic pathogen evolution and dissemination, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
15
|
Flynn TG, Olortegui MP, Kosek MN. Viral gastroenteritis. Lancet 2024; 403:862-876. [PMID: 38340741 DOI: 10.1016/s0140-6736(23)02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024]
Abstract
Since the discovery of norovirus in 1972 as a cause of what was contemporarily known as acute infectious non-bacterial gastroenteritis, scientific understanding of the viral gastroenteritides has continued to evolve. It is now recognised that a small number of viruses are the predominant cause of acute gastroenteritis worldwide, in both high-income and low-income settings. Although treatment is still largely restricted to the replacement of fluid and electrolytes, improved diagnostics have allowed attribution of illness, enabling both targeted treatment of individual patients and prioritisation of interventions for populations worldwide. Questions remain regarding specific genetic and immunological factors underlying host susceptibility, and the optimal clinical management of patients who are susceptible to severe or prolonged manifestations of disease. Meanwhile, the worldwide implementation of rotavirus vaccines has led to substantial reductions in morbidity and mortality, and spurred interest in vaccine development to diminish the impact of the most prevalent viruses that are implicated in this syndrome.
Collapse
Affiliation(s)
- Thomas G Flynn
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Honorato L, Ferreira NE, Domingues RB, Senne C, Leite FBVDM, Santos MVD, Fernandes GBP, Paião HGO, Vilas Boas LS, da Costa AC, Tozetto-Mendoza TR, Witkin SS, Mendes-Correa MC. Evaluation of enterovirus concentration, species identification, and cerebrospinal fluid parameters in patients of different ages with aseptic meningitis in São Paulo, Brazil. J Med Virol 2024; 96:e29471. [PMID: 38353496 DOI: 10.1002/jmv.29471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Human enteroviruses (EV) are the most common cause of aseptic meningitis worldwide. Data on EV viral load in cerebrospinal fluid (CSF) and related epidemiological studies are scarce in Brazil. This study investigated the influence of EV viral load on CSF parameters, as well as identifying the involved species. CSF samples were collected in 2018-2019 from 140 individuals at The Hospital das Clínicas, São Paulo. The EV viral load was determined using real-time quantitative polymerase chain reaction, while EV species were identified by 5'UTR region sequencing. Median viral load was 5.72 log10 copies/mL and did not differ by subjects' age and EV species. Pleocytosis was observed in 94.3% of cases, with the highest white blood cell (WBC) counts in younger individuals. Viral load and WBC count were correlated in children (p = 0.0172). Elevated lactate levels were observed in 60% of cases and correlated with the viral load in preteen-teenagers (p = 0.0120) and adults (p = 0.0184). Most individuals had normal total protein levels (70.7%), with higher in preteen-teenagers and adults (p < 0.0001). By sequencing, 8.2% were identified as EV species A and 91.8% as species B. Age-specific variations in CSF characteristics suggest distinct inflammatory responses in each group.
Collapse
Affiliation(s)
- Layla Honorato
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Noely Evangelista Ferreira
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Heuder Gustavo Oliveira Paião
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucy Santos Vilas Boas
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tânia Regina Tozetto-Mendoza
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven S Witkin
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Weill Cornel Medicine, New York, New York, USA
| | - Maria Cássia Mendes-Correa
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Ando H, Ahmed W, Okabe S, Kitajima M. Tracking the effects of the COVID-19 pandemic on viral gastroenteritis through wastewater-based retrospective analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166557. [PMID: 37633393 DOI: 10.1016/j.scitotenv.2023.166557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The COVID-19 pandemic possibly disrupted the circulation and seasonality of gastroenteritis viruses (e.g., Norovirus (NoV), Sapovirus (SaV), group A rotavirus (ARoV), and Aichivirus (AiV)). Despite the growing application of wastewater-based epidemiology (WBE), there remains a lack of sufficient investigations into the actual impact of the COVID-19 pandemic on the prevalence of gastroenteritis viruses. In this study, we measured NoV GI and GII, SaV, ARoV, and AiV RNA concentrations in 296 influent wastewater samples collected from three wastewater treatment plants (WWTPs) in Sapporo, Japan between October 28, 2018 and January 12, 2023 using the highly sensitive EPISENS™ method. The detection ratios of SaV and ARoV after May 2020 (SaV: 49.8 % (134/269), ARoV: 57.4 % (151/263)) were significantly lower than those before April 2020 (SaV: 93.9 % (31/33), ARoV: 97.0 % (32/33); SaV: p < 3.5×10-7, ARoV: p < 1.5×10-6). Furthermore, despite comparable detection ratios before (88.5 %, 23/26) and during (66.7 %, 80/120) the COVID-19 pandemic (p = 0.032), the concentrations of NoV GII revealed a significant decrease after the onset of the pandemic (p < 1.5×10-7, Cliff's delta = 0.72). NoV GI RNA were sporadically detected (24.7 %, 8/33) before April 2020 and after May 2020 (6.5 %, 17/263), whereas AiV was consistently (100 %, 33/33) detected from wastewater throughout the study period (95.8 %, 252/263). The WBE results demonstrated the significant influence of COVID-19 countermeasures on the circulation of gastroenteritis viruses, with variations observed in the magnitude of their impact across different types of viruses. These epidemiological findings highlight that the hygiene practices implemented to prevent COVID-19 infections may also be effective for controlling the prevalence of gastroenteritis viruses, providing invaluable insights for public health units and the development of effective disease management guidelines.
Collapse
Affiliation(s)
- Hiroki Ando
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
18
|
Abid I, Blanco A, Al-Otaibi N, Guix S, Costafreda MI, Pintó RM, Bosch A. Dynamic and Seasonal Distribution of Enteric Viruses in Surface and Well Water in Riyadh (Saudi Arabia). Pathogens 2023; 12:1405. [PMID: 38133289 PMCID: PMC10747075 DOI: 10.3390/pathogens12121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Enteric viruses are the major cause of gastroenteritis and enteric hepatitis worldwide, but in some areas like Saudi Arabia, little is known about their presence in water sources. The available information from clinical samples is not enough to figure out their actual prevalence. The aim of this study was to gather information for the first time in Saudi Arabia on the presence of the Norovirus (NoV) genogroup GI and GII, hepatitis A virus (HAV), and hepatitis E virus (HEV) in water. For this purpose, thirteen monthly samples were collected from Lake Wadi Hanifa and surrounding wells from December 2014 to November 2015. Viruses were detected and quantified using real-time RT-qPCR. Despite HEV findings being anecdotic, our results highlight interesting behaviors of the other viruses. There was a higher prevalence of noroviruses in Wadi Hanifa samples than in well water samples (46.43% vs. 12.5% of NoV GI; 66.67% vs. 8.33% of NoV GII). On the contrary, similar levels of HAV positivity were observed (40.48% in surface water vs. 43.06% in well water). Also, a strong influence of flooding events on HAV and NoV GI occurrence was observed in both surface and well water samples, with NoV GII apparently not affected.
Collapse
Affiliation(s)
- Islem Abid
- Center of Excellence in Biotechnology Research, College of Applied Medical Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Albert Blanco
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Nawal Al-Otaibi
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Maria I. Costafreda
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain; (A.B.); (S.G.); (M.I.C.); (R.M.P.)
- Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| |
Collapse
|
19
|
Amaku JF, Taziwa R. Preparation and characterization of Allium cepa extract coated biochar and adsorption performance for hexavalent chromium. Sci Rep 2023; 13:20786. [PMID: 38012367 PMCID: PMC10682498 DOI: 10.1038/s41598-023-48299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
The elimination of hazardous metal ions from contaminated water has been an important procedure to improve the quality of the water source. Hence, this study presents the fabrication of Allium cepa extract-coated biochar for the elimination of Cr (VI) from wastewater. The synthesized biochar (SBCH) and modified biochar (BMOJ) were characterized by making use of FTIR, BET, XRD, TGA and SEM. Optimum Cr (VI) removal was achieved at solution pH 2, 0.05 g adsorbent dosage and 180 min agitation period. The adsorptive removal of Cr (VI) onto SBCH and BMOJ followed the pseudo-second-order kinetic model with a satisfactory sum of square residuals (SSR) of 3.874 and 5.245 for SBCH and BMOJ, respectively. Meanwhile, Freundlich isotherm was found to best describe the uptake of Cr (VI) SBCH and BMOJ. Experimental data showed an adsorption capacity of 37.38 and 25.77 mg g-1 and a maximum efficiency of 85.42% and 51.63% for BMOJ and SBCH, respectively. BMOJ also showed good antioxidant characteristics. Thermodynamic data revealed that the uptake of Cr (VI) onto the SBCH and BMOJ was an exothermic and endothermic (ΔH: SBCH = - 16.22 kJ mol-1 and BMOJ = 13.74 kJ mol-1), entropy-driven (ΔS: SBCH = 40.96 J K-1 mol-1 and BMOJ = 93.26 J K-1 mol-1) and spontaneous process. Furthermore, BMOJ demonstrated excellent reusability and promising characteristics for industrial applications.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London, 5200, South Africa.
| | - Raymond Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London, 5200, South Africa
| |
Collapse
|
20
|
Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Cheminformatics bioprospection of selected medicinal plants metabolites against trypsin cleaved VP4 (spike protein) of rotavirus A. J Biomol Struct Dyn 2023; 42:10652-10671. [PMID: 37728550 DOI: 10.1080/07391102.2023.2258405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Rotaviruses have continued to be the primary cause of acute dehydrating diarrhoea in children under five years of age despite the global introduction of four World Health Organization (WHO) prequalified oral vaccines in over 106 countries. Currently, no medication is approved by the Food and Drug Administration (FDA) specifically for treating rotavirus A-induced diarrhoea. Consequently, it is important to focus on developing prophylactic and curative therapeutics to combat rotaviral infections. For the first time, this study computationally screened and identified metabolites from Spondias mombin, Macaranga barteri and Dicerocaryum eriocarpum as potential novel inhibitors with broad-spectrum activity against VP5* and VP8* (spike protein) of rotavirus A (RVA). The initial top 20 metabolites identified through molecular docking were further filtered using drug-likeness and pharmacokinetics parameters. The molecular properties of the resulting top-ranked compounds were predicted by conducting density functional theory (DFT) calculations, while molecular dynamics (MD) simulation revealed their thermodynamic compatibility with a significant affinity towards VP8* than VP5*. Except for ellagic acid (-11.78 kcal/mol), the lead compounds had higher binding free energy than the reference standard (VP5* (-11.81 kcal/mol), VP8* (-14.12 kcal/mol)) with 2SG (-20.98 kcal/mol) and apigenin-4'-glucoside (-23.56 kcal/mol) having the highest affinity towards VP5* and VP8*, respectively. Of all the top-ranked compounds, better broad-spectrum affinities for both VP5* and VP8* than tizoxanide were observed in 2SG (VP5* (-20.98 kcal/mol), VP8* (-20.13 kcal/mol)) and sericetin (VP5* (-20.46 kcal/mol), VP8* (-18.31 kcal/mol)). While the identified leads could be regarded as potential modulators of the investigated therapeutic targets for effective management of rotaviral infection, additional in vitro and in vivo evaluation is strongly recommended, and efforts are on-going in this regard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
21
|
Contrant M, Bigault L, Andraud M, Desdouits M, Rocq S, Le Guyader FS, Blanchard Y. Porcine Epidemic Diarrhea Virus, Surrogate for Coronavirus Decay Measurement in French Coastal Waters and Contribution to Coronavirus Risk Evaluation. Microbiol Spectr 2023; 11:e0184423. [PMID: 37395665 PMCID: PMC10433961 DOI: 10.1128/spectrum.01844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.
Collapse
Affiliation(s)
- Maud Contrant
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Lionel Bigault
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Mathieu Andraud
- Epidemiology, Animal Health and Welfare Unit (EPISABE), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| | - Marion Desdouits
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | - Sophie Rocq
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, Nantes, France
| | | | - Yannick Blanchard
- Viral Genetics and Biosecurity Unit (GVB), French Agency for Food, Environmental and Occupational Health Safety (ANSES), Ploufragan, France
| |
Collapse
|
22
|
Zhang J, Zhu Y, Zhou Y, Gao F, Qiu X, Li J, Yuan H, Jin W, Lin W. Pediatric adenovirus pneumonia: clinical practice and current treatment. Front Med (Lausanne) 2023; 10:1207568. [PMID: 37476615 PMCID: PMC10354292 DOI: 10.3389/fmed.2023.1207568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Adenovirus pneumonia is common in pediatric upper respiratory tract infection, which is comparatively easy to develop into severe cases and has a high mortality rate with many influential sequelae. As for pathogenesis, adenoviruses can directly damage target cells and activate the immune response to varying degrees. Early clinical recognition depends on patients' symptoms and laboratory tests, including those under 2 years old, dyspnea with systemic toxic symptoms, atelectasis or emphysema in CT image, decreased leukocytes, and significantly increased C-reaction protein (CRP) and procalcitonin (PCT), indicating the possibility of severe cases. Until now, there is no specific drug for adenovirus pneumonia, so in clinical practice, current treatment comprises antiviral drugs, respiratory support and bronchoscopy, immunomodulatory therapy, and blood purification. Additionally, post-infectious bronchiolitis obliterans (PIBO), hemophagocytic syndrome, and death should be carefully noted. Independent risk factors associated with the development of PIBO are invasive mechanical ventilation, intravenous steroid use, duration of fever, and male gender. Meanwhile, hypoxemia, hypercapnia, invasive mechanical ventilation, and low serum albumin levels are related to death. Among these, viral load and serological identification are not only "gold standard" for adenovirus pneumonia, but are also related to the severity and prognosis. Here, we discuss the progress of pathogenesis, early recognition, therapy, and risk factors for poor outcomes regarding severe pediatric adenovirus pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
23
|
Yu M, Gao R, Lv X, Sui M, Li T. Inactivation of phage phiX174 by UV 254 and free chlorine: Structure impairment and function loss. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117962. [PMID: 37086557 DOI: 10.1016/j.jenvman.2023.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Disinfection is widely applied in water and wastewater treatment to inactivate viruses. However, the inactivation mechanism associated with viral structural alteration during disinfection is still not clear. In this work, inactivation of bacteriophage phiX174 by ultraviolet radiation (UV254) and free chlorine (FC), two most commonly used disinfection processes, was studied at the molecular level to investigate the relationship between phiX174 genome impairment and virus inactivation, and the correlation between protein impairment and function loss. Double-layer agar technique, quantitative real-time polymerase chain reaction (qPCR), real-time reverse transcription-polymerase chain reaction (RT-qPCR), and liquid chromatography-tandem mass spectrometry techniques (LC-MS/MS), together with structure impairment and function experiments were implemented to quantitatively analyze the inactivation and damage to genome and proteins of phiX174. Results showed that UV254 and FC could effectively inactivate phiX174 at the practical doses (UV254 dose of 30 mJ/cm2, and FC of 1-3 mg/L) used in water treatment plants, accompanied with the damage to viral genome and proteins. Specifically, a UV254 irradiation dose of 9.6 mJ/cm2, and FC at an initial concentration of 1 mg/L at 4 min could lead to a 4-log10 inactivation. Nevertheless, the combination of these two methods at selected doses played no significant synergistic disinfection effect. During UV254 disinfection, the proportion of phiX174 with damaged genome was similar with that of the inactivated phiX174. In addition, UV254 and FC could disrupt proteins of phiX174 such as H protein, thereby hindering the physiological function associated with these proteins. With these findings, it is suggested that UV254 and FC disinfection could hinder the injection of the viral genome into host cells, thus resulting in the inactivation of phiX174. This work provides a comprehensive study of the inactivation mechanism of phiX174, which can enhance the applicability of UV254 and FC in water treatment plants, and facilitate the design and optimization of disinfection technologies for virus control in drinking water and wastewater worldwide to ensure the biosafety.
Collapse
Affiliation(s)
- Miao Yu
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Rui Gao
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xinyuan Lv
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Minghao Sui
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
24
|
Resende F, de Araújo S, Tavares LP, Teixeira MM, Costa VV. The Multifaceted Role of Annexin A1 in Viral Infections. Cells 2023; 12:1131. [PMID: 37190040 PMCID: PMC10137178 DOI: 10.3390/cells12081131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Dysregulated inflammatory responses are often correlated with disease severity during viral infections. Annexin A1 (AnxA1) is an endogenous pro-resolving protein that timely regulates inflammation by activating signaling pathways that culminate with the termination of response, clearance of pathogen and restoration of tissue homeostasis. Harnessing the pro-resolution actions of AnxA1 holds promise as a therapeutic strategy to control the severity of the clinical presentation of viral infections. In contrast, AnxA1 signaling might also be hijacked by viruses to promote pathogen survival and replication. Therefore, the role of AnxA1 during viral infections is complex and dynamic. In this review, we provide an in-depth view of the role of AnxA1 during viral infections, from pre-clinical to clinical studies. In addition, this review discusses the therapeutic potential for AnxA1 and AnxA1 mimetics in treating viral infections.
Collapse
Affiliation(s)
- Filipe Resende
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Simone de Araújo
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
25
|
Rossiter M. Health risks to athletes at olympic and commonwealth games. Occup Med (Lond) 2023; 73:9-12. [PMID: 36638199 DOI: 10.1093/occmed/kqac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- M Rossiter
- The Candover Clinic, Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK
- Team GB, 101 New Cavendish Street, London W1W 6XH, UK
- Commonwealth Games England, 5th floor, Holborn Tower, 137-144 High Holborn, London WC1V 6PL, UK
| |
Collapse
|
26
|
do Nascimento LG, Sarmento SK, Leonardo R, Gutierrez MB, Malta FC, de Oliveira JM, Guerra CR, Coutinho R, Miagostovich MP, Fumian TM. Detection and Molecular Characterization of Enteric Viruses in Bivalve Mollusks Collected in Arraial do Cabo, Rio de Janeiro, Brazil. Viruses 2022; 14:2359. [PMID: 36366459 PMCID: PMC9695388 DOI: 10.3390/v14112359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Viral bivalve contamination is a recognized food safety hazard. Therefore, this study investigated the detection rates, seasonality, quantification, and genetic diversity of enteric viruses in bivalve samples (mussels and oysters). We collected 97 shellfish samples between March 2018 and February 2020. The screening of samples by qPCR or RT-qPCR revealed the detection of norovirus (42.3%), rotavirus A (RVA; 16.5%), human adenovirus (HAdV; 24.7%), and human bocavirus (HBoV; 13.4%). There was no detection of hepatitis A virus. In total, 58.8% of shellfish samples tested positive for one or more viruses, with 42.1% of positive samples contaminated with two or more viruses. Norovirus showed the highest median viral load (3.3 × 106 GC/g), followed by HAdV (median of 3.5 × 104 GC/g), RVA (median of 1.5 × 103 GC/g), and HBoV (median of 1.3 × 103 GC/g). Phylogenetic analysis revealed that norovirus strains belonged to genotype GII.12[P16], RVA to genotype I2, HAdV to types -C2, -C5, and -F40, and HBoV to genotypes -1 and -2. Our results demonstrate the viral contamination of bivalves, emphasizing the need for virological monitoring programs to ensure the quality and safety of shellfish for human consumption and as a valuable surveillance tool to monitor emerging viruses and novel variants.
Collapse
Affiliation(s)
- Lilian Gonçalves do Nascimento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Sylvia Kahwage Sarmento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Raphael Leonardo
- Laboratory of Viral Morphology and Morphogenesis, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Meylin Bautista Gutierrez
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jaqueline Mendes de Oliveira
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Caroline Rezende Guerra
- Laboratory of Marine Genetics, Department of Marine Biotechnology, Sea Studies Institute Admiral Paulo Moreira (IEAPM), Arraial do Cabo 28930-000, RJ, Brazil
| | - Ricardo Coutinho
- Laboratory of Marine Genetics, Department of Marine Biotechnology, Sea Studies Institute Admiral Paulo Moreira (IEAPM), Arraial do Cabo 28930-000, RJ, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
27
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Swalaha FM. A review on disinfection methods for inactivation of waterborne viruses. Front Microbiol 2022; 13:991856. [PMID: 36212890 PMCID: PMC9539188 DOI: 10.3389/fmicb.2022.991856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination is a global health problem, and the need for safe water is ever-growing due to the public health implications of unsafe water. Contaminated water could contain pathogenic bacteria, protozoa, and viruses that are implicated in several debilitating human diseases. The prevalence and survival of waterborne viruses differ from bacteria and other waterborne microorganisms. In addition, viruses are responsible for more severe waterborne diseases such as gastroenteritis, myocarditis, and encephalitis among others, hence the need for dedicated attention to viral inactivation. Disinfection is vital to water treatment because it removes pathogens, including viruses. The commonly used methods and techniques of disinfection for viral inactivation in water comprise physical disinfection such as membrane filtration, ultraviolet (UV) irradiation, and conventional chemical processes such as chlorine, monochloramine, chlorine dioxide, and ozone among others. However, the production of disinfection by-products (DBPs) that accompanies chemical methods of disinfection is an issue of great concern due to the increase in the risks of harm to humans, for example, the development of cancer of the bladder and adverse reproductive outcomes. Therefore, this review examines the conventional disinfection approaches alongside emerging disinfection technologies, such as photocatalytic disinfection, cavitation, and electrochemical disinfection. Moreover, the merits, limitations, and log reduction values (LRVs) of the different disinfection methods discussed were compared concerning virus removal efficiency. Future research needs to merge single disinfection techniques into one to achieve improved viral disinfection, and the development of medicinal plant-based materials as disinfectants due to their antimicrobial and safety benefits to avoid toxicity is also highlighted.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|