1
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2024; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Calabrese EJ, Mattson MP. The catabolic - anabolic cycling hormesis model of health and resilience. Ageing Res Rev 2024; 102:102588. [PMID: 39551161 DOI: 10.1016/j.arr.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
A major goal of aging research is to identify ways of extending productive and disease-free lifespans. Here we present the catabolic - anabolic cycling hormesis (CACH) model for optimizing health. The CACH model is based on the concept that cells and organ systems respond to catabolic challenges in ways that bolster their resilience and that an anabolic recovery period is required to effectuate the benefits of the catabolic challenge. As two prominent real-world examples we highlight the literature on the molecular and cellular mechanisms by which physical exercise and intermittent fasting bolster cellular and organismal performance and resilience, and suppress disease processes. Over periods of weeks and months the CACH of exercise and fasting promote optimal health. The hormesis concept is integral to the CACH model and predicts an upper limit to the beneficial effects of catabolic - anabolic cycling that reflects a limit of biological plasticity. This paper extends the hormesis model of health by proposing that 1) it is comprised of two complementary phases: catabolic (adaptive stress responses and conservation of resources) and anabolic (growth and plasticity) and, 2) that CACH is metabolically integrated, quantitatively flexible and dynamically regulated. This model has important implications for future basic and translational research in the fields of aging and related disease processes.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA 01003. USA.
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205. USA.
| |
Collapse
|
3
|
Baeken MW. Sirtuins and their influence on autophagy. J Cell Biochem 2024; 125:e30377. [PMID: 36745668 DOI: 10.1002/jcb.30377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
4
|
Richardson KK, Adam GO, Ling W, Warren A, Marques-Carvalho A, Thostenson JD, Krager K, Aykin-Burns N, Byrum SD, Almeida M, Kim HN. Mitochondrial protein deacetylation by SIRT3 in osteoclasts promotes bone resorption with aging in female mice. Mol Metab 2024; 88:102012. [PMID: 39154858 PMCID: PMC11399565 DOI: 10.1016/j.molmet.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVES The mitochondrial deacetylase sirtuin-3 (SIRT3) is necessary for the increased bone resorption and enhanced function of mitochondria in osteoclasts that occur with advancing age; how SIRT3 drives bone resorption remains elusive. METHODS To determine the role of SIRT3 in osteoclast mitochondria, we used mice with conditional loss of Sirt3 in osteoclast lineage and mice with germline deletion of either Sirt3 or its known target Pink1. RESULTS SIRT3 stimulates mitochondrial quality in osteoclasts in a PINK1-independent manner, promoting mitochondrial activity and osteoclast maturation and function, thereby contributing to bone loss in female but not male mice. Quantitative analyses of global proteomes and acetylomes revealed that deletion of Sirt3 dramatically increased acetylation of osteoclast mitochondrial proteins, particularly ATPase inhibitory factor 1 (ATPIF1), an essential protein for mitophagy. Inhibition of mitophagy via mdivi-1 recapitulated the effect of deletion of Sirt3 or Atpif1 in osteoclast formation and mitochondrial function. CONCLUSIONS Decreasing mitophagic flux in osteoclasts may be a promising pharmacotherapeutic approach to treat osteoporosis in older adults.
Collapse
Affiliation(s)
- Kimberly K Richardson
- Center for Musculoskeletal Disease Research, USA; Division of Endocrinology, Department of Internal Medicine, USA
| | - Gareeballah Osman Adam
- Center for Musculoskeletal Disease Research, USA; Division of Endocrinology, Department of Internal Medicine, USA
| | - Wen Ling
- Center for Musculoskeletal Disease Research, USA; Division of Endocrinology, Department of Internal Medicine, USA
| | - Aaron Warren
- Center for Musculoskeletal Disease Research, USA; Division of Endocrinology, Department of Internal Medicine, USA
| | - Adriana Marques-Carvalho
- Center for Musculoskeletal Disease Research, USA; Division of Endocrinology, Department of Internal Medicine, USA
| | - Jeff D Thostenson
- Center for Musculoskeletal Disease Research, USA; Department of Biostatistics, USA
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, USA; Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research, USA; Division of Endocrinology, Department of Internal Medicine, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, USA
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research, USA; Division of Endocrinology, Department of Internal Medicine, USA.
| |
Collapse
|
5
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
6
|
Song D, Zhou X, Yu Q, Li R, Dai Q, Zeng M. ML335 inhibits TWIK2 channel-mediated potassium efflux and attenuates mitochondrial damage in MSU crystal-induced inflammation. J Transl Med 2024; 22:785. [PMID: 39175013 PMCID: PMC11342740 DOI: 10.1186/s12967-024-05303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/22/2023] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Activation of the NLRP3 inflammasome is critical in the inflammatory response to gout. Potassium ion (K+) efflux mediated by the TWIK2 channel is an important upstream mechanism for NLRP3 inflammasome activation. Therefore, the TWIK2 channel may be a promising therapeutic target for MSU crystal-induced inflammation. In the present study, we investigated the effect of ML335, a known K2P channel modulator, on MSU crystal-induced inflammatory responses and its underlying molecular mechanisms. METHODS By molecular docking, we calculated the binding energies and inhibition constants of five K2P channel modulators (Hydroxychloroquine, Fluoxetine, DCPIB, ML365 and ML335) with TWIK2. Intracellular potassium ion concentration and mitochondrial function were assessed by flow cytometry. The interaction between MARCH5 and SIRT3 was demonstrated by immunoprecipitation and Western blotting assay. MSU suspensions were injected into mouse paw and peritoneal cavity to induce acute gout model. RESULTS ML335 has the highest binding energy and the lowest inhibition constant with TWIK2 in the five calculated K2P channel modulators. In comparison, among these five compounds, ML335 efficiently inhibited the release of IL-1β from MSU crystal-treated BMDMs. ML335 decreased MSU crystal-induced K+ efflux mainly dependent on TWIK2 channel. More importantly, ML335 can effectively inhibit the expression of the mitochondrial E3 ubiquitin ligase MARCH5 induced by MSU crystals, and MARCH5 can interact with the SIRT3 protein. ML335 blocked MSU crystal-induced ubiquitination of SIRT3 protein by MARCH5. In addition, ML335 improved mitochondrial dynamics homeostasis and mitochondrial function by inhibiting MARCH5 protein expression. ML335 attenuated the inflammatory response induced by MSU crystals in vivo and in vitro. CONCLUSION Inhibition of TWIK2-mediated K+ efflux by ML335 alleviated mitochondrial injury via suppressing March5 expression, suggesting that ML335 may be an effective candidate for the future treatment of gout.
Collapse
Affiliation(s)
- Dianze Song
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Xiaoqin Zhou
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Qingqing Yu
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Renjie Li
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China
| | - Qian Dai
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
| | - Mei Zeng
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College and Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
- North Sichuan Medical College Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
7
|
Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B, Sheng X, Xia Y. Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis. Biomolecules 2024; 14:970. [PMID: 39199358 PMCID: PMC11352324 DOI: 10.3390/biom14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass, decreased bone mineral density, and degradation of bone tissue microarchitecture. However, our understanding of the mechanisms of bone remodeling and factors affecting bone mass remains incomplete. Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that regulates a variety of cellular metabolisms, including inflammation, tumorigenesis, and bone metabolism. Recent studies have emphasized the important role of SIRT1 in bone homeostasis. This article reviews the role of SIRT1 in bone metabolism and OP and also discusses therapeutic strategies and future research directions for targeting SIRT1.
Collapse
Affiliation(s)
- Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Fei Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Xiaoyun Sheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
8
|
Trinh D, Al Halabi L, Brar H, Kametani M, Nash JE. The role of SIRT3 in homeostasis and cellular health. Front Cell Neurosci 2024; 18:1434459. [PMID: 39157755 PMCID: PMC11327144 DOI: 10.3389/fncel.2024.1434459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria are responsible for maintaining cellular energy levels, and play a major role in regulating homeostasis, which ensures physiological function from the molecular to whole animal. Sirtuin 3 (SIRT3) is the major protein deacetylase of mitochondria. SIRT3 serves as a nutrient sensor; under conditions of mild metabolic stress, SIRT3 activity is increased. Within the mitochondria, SIRT3 regulates every complex of the electron transport chain, the tricarboxylic acid (TCA) and urea cycles, as well as the mitochondria membrane potential, and other free radical scavengers. This article reviews the role of SIRT3 in regulating homeostasis, and thus physiological function. We discuss the role of SIRT3 in regulating reactive oxygen species (ROS), ATP, immunological function and mitochondria dynamics.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Marie Kametani
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Joanne E. Nash
- Department of Biological Sciences, University of Toronto Scarborough Graduate Department of Cells Systems Biology, University of Toronto Cross-Appointment with Department of Psychology, University of Toronto Scarborough Scientist – KITE, Toronto, ON, Canada
| |
Collapse
|
9
|
Fenili G, Scaricamazza S, Ferri A, Valle C, Paronetto MP. Physical exercise in amyotrophic lateral sclerosis: a potential co-adjuvant therapeutic option to counteract disease progression. Front Cell Dev Biol 2024; 12:1421566. [PMID: 39156974 PMCID: PMC11327861 DOI: 10.3389/fcell.2024.1421566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the selective degeneration of upper and lower motor neurons, leading to progressive muscle weakness and atrophy. The mean survival time is two to five years. Although the hunt for drugs has greatly advanced over the past decade, no cure is available for ALS yet. The role of intense physical activity in the etiology of ALS has been debated for several decades without reaching a clear conclusion. The benefits of organized physical activity on fitness and mental health have been widely described. Indeed, by acting on specific mechanisms, physical activity can influence the physiology of several chronic conditions. It was shown to improve skeletal muscle metabolism and regeneration, neurogenesis, mitochondrial biogenesis, and antioxidant defense. Interestingly, all these pathways are involved in ALS pathology. This review will provide a broad overview of the effect of different exercise protocols on the onset and progression of ALS, both in humans and in animal models. Furthermore, we will discuss challenges and opportunities to exploit physiological responses of imposed exercise training for therapeutic purposes.
Collapse
Affiliation(s)
- Gianmarco Fenili
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Scaricamazza
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Alberto Ferri
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Cristiana Valle
- Laboratory of Metabolomics, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
10
|
Laderian A, Ghasemi M, Mortazavi P, Mousavi Z, Ale-Ebrahim M. Hepatoprotective effect of astaxanthin against cholestasis liver fibrosis induced by bile duct ligation in adult Wistar rats. J Biochem Mol Toxicol 2024; 38:e23788. [PMID: 39087918 DOI: 10.1002/jbt.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.
Collapse
Affiliation(s)
- Azadeh Laderian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Oppedisano F, Nesci S, Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism. Crit Rev Biochem Mol Biol 2024; 59:199-220. [PMID: 38993040 DOI: 10.1080/10409238.2024.2377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-Università di Bologna, Ozzano Emilia, Italy
| | - Anna Spagnoletta
- Laboratory "Regenerative Circular Bioeconomy", ENEA-Trisaia Research Centre, Rotondella, Italy
| |
Collapse
|
12
|
Rühling MR, Hartmann H, Das AM. Simplification of Dietary Treatment in Pharmacoresistant Epilepsy: Impact of C8 and C10 Fatty Acids on Sirtuins of Neuronal Cells In Vitro. Nutrients 2024; 16:1678. [PMID: 38892612 PMCID: PMC11174688 DOI: 10.3390/nu16111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pharmacotherapy is the therapeutic mainstay in epilepsy; however, in about 30% of patients, epileptic seizures are drug-resistant. A ketogenic diet (KD) is an alternative therapeutic option. The mechanisms underlying the anti-seizure effect of a KD are not fully understood. Epileptic seizures lead to an increased energy demand of neurons. An improvement in energy provisions may have a protective effect. C8 and C10 fatty acids have been previously shown to activate mitochondrial function in vitro. This could involve sirtuins (SIRTs) as regulatory elements of energy metabolism. The aim of the present study was to investigate whether ß-hydroxybutyrate (ßHB), C8 fatty acids, C10 fatty acids, or a combination of C8 and C10 (250/250 µM) fatty acids, which all increase under a KD, could up-regulate SIRT1, -3, -4, and -5 in HT22 hippocampal murine neurons in vitro. Cells were incubated for 1 week in the presence of these metabolites. The sirtuins were measured at the enzyme (fluorometrically), protein (Western blot), and gene expression (PCR) levels. In hippocampal cells, the C8, C10, and C8 and C10 incubations led to increases in the sirtuin levels, which were not inferior to a ßHB incubation as the 'gold standard'. This may indicate that both C8 and C10 fatty acids are important for the antiepileptic effect of a KD. A KD may be replaced by nutritional supplements of C8 and C10 fatty acids, which could facilitate the diet.
Collapse
|
13
|
Yan Q, Zheng R, Li Y, Hu J, Gong M, Lin M, Xu X, Wu J, Sun S. PM 2.5-induced premature senescence in HUVECs through the SIRT1/PGC-1α/SIRT3 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171177. [PMID: 38402989 DOI: 10.1016/j.scitotenv.2024.171177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Vascular endothelial cell senescence plays a pivotal role in the development of atherosclerosis. Recent studies have demonstrated that ambient fine particulate matter (PM2.5) induces stress-induced premature senescence (SIPS) in vascular endothelial cells. However, the precise mechanisms underlying this process remain to be fully elucidated. Cellular senescence is closely associated with reactive oxygen species (ROS), and emerging research has established a strong connection between the SIRT1/PGC-1α/SIRT3 signaling pathway and the antioxidant system in vascular endothelial cells. In this study, we aimed to investigate the impact of PM2.5 on vascular endothelial cell senescence and to elucidate the underlying mechanisms. Our findings revealed that PM2.5 exposure led to an increase in senescence-associated β-galactosidase (SA-β-gal) activity and the expression of the cell cycle-blocking proteins P53/P21 and P16 in human umbilical vein endothelial cells (HUVECs). Flow cytometry analysis demonstrated an elevated proportion of cells arrested in the G0/G1 phase after PM2.5 exposure. In addition, PM2.5-induced cellular senescence was attributed to the disruption of the cellular antioxidative defense system through the SIRT1/PGC-1α/SIRT3 signaling pathway. The expression of cellular senescence markers was reduced after targeted scavenging of mitochondrial ROS using MitoQ. Moreover, treatment with SRT1720, a SIRT1-specific activator, upregulated the SIRT1/PGC-1α/SIRT3 signaling pathway, restored the antioxidant system, and attenuated the expression of cellular senescence markers. Taken together, our results suggest that PM2.5 downregulates the SIRT1/PGC-1α/SIRT3 signaling pathway, resulting in impaired antioxidant defenses in HUVECs. This, in turn, allows for the accumulation of ROS, leading to inhibition of endothelial cell cycle progression and the onset of stress-induced senescence in HUVECs.
Collapse
Affiliation(s)
- Qing Yan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Rao Zheng
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yi Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Juan Hu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Meidi Gong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Manman Lin
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Xuecong Xu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Shikun Sun
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
14
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Hayasaka O, Shibukawa M, Kamei H. Cellular Energy Sensor Sirt1 Augments Mapk Signaling to Promote Hypoxia/Reoxygenation-Induced Catch-up Growth in Zebrafish Embryo. Zoolog Sci 2024; 41:21-31. [PMID: 38587514 DOI: 10.2108/zs230059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2023] [Indexed: 04/09/2024]
Abstract
Animal growth is blunted in adverse environments where catabolic metabolism dominates; however, when the adversity disappears, stunted animals rapidly catch up to age-equivalent body size. This phenomenon is called catch-up growth, which we observe in various animals. Since growth retardation and catch-up growth are sequential processes, catabolism or stress response molecules may remain active, especially immediately after growth resumes. Sirtuins (Sirt1-7) deacetylate target proteins in a nicotinamide adenine dinucleotide-dependent manner, and these enzymes govern diverse alleys of cellular functions. Here, we investigated the roles of Sirt1 and its close paralog Sirt2 in the hypoxia/reoxygenation-induced catch-up growth model using zebrafish embryos. Temporal blockade of Sirt1/2 significantly reduced the growth rate of the embryos in reoxygenation, but it was not evident in constant normoxia. Subsequent gene knockdown and chemical inhibition experiments demonstrated that Sirt1, but not Sirt2, was required for the catchup growth. Inhibition of Sirt1 significantly reduced the activity of mitogen-activated kinase (Mapk) of embryos in the reoxygenation condition. In addition, co-inhibition of Sirt1- and Igf-signaling did not further reduce the body growth or Mapk activation compared to those of the Igf-signaling-alone-inhibited embryos. Furthermore, in the reoxygenation condition, Sirt1- or Igf-signaling inhibition similarly blunted Mapk activity, especially in anterior tissues and trunk muscle, where the sirt1 expression was evident in the catching-up embryos. These results suggest that the catch-up growth requires Sirt1 action to activate the somatotropic Mapk pathway, likely by modifying the Igf-signaling.
Collapse
Affiliation(s)
- Oki Hayasaka
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mukaze Shibukawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Ikedamohando Co., Ltd., Nakaniikawa-gun, Toyama 930-0365, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan,
| |
Collapse
|
16
|
Soares JP, Cardoso R, Almeida V, Pereira AF, Silva AM, Mota MP. The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation. Healthcare (Basel) 2024; 12:350. [PMID: 38338233 PMCID: PMC10855888 DOI: 10.3390/healthcare12030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The sirtuins (SIRT) protein family and the mechanistic/mammalian target of rapamycin (mTOR) are intracellular molecules that have been involved in the regulation of several biological processes, as well as in various aging-related processes. This pilot study, in small scale, aimed to analyze the effects of an 8-week physical exercise program on SIRT3 and mTOR levels in lymphocytes, as well as on lipid peroxidation in middle aged and older men. A total of 9 participants aged between 56 and 73 years were enrolled in an 8-week physical exercise program comprising cardiovascular and high-intensity interval training. The program involved three sessions per week, each lasting 45-60 min, conducted on non-consecutive days. Tests were conducted before and after the experimental period (pre- and post-training). Assessments included a vertical jump, 20 m velocity, ball throwing, and an aerobic capacity test. Lipid peroxidation (MDA) was measured in plasma as an oxidative stress biomarker. Additionally, sirtuin 3 (SIRT3/β-actin) and mTOR (mTOR/β-actin) levels were measured in isolated lymphocytes extracted from venous blood. Following the exercise training period, our results demonstrated a significant improvement in aerobic capacity (pre-training: 615.4 ± 45.3 m; post-training: 687.2 ± 34.6 m; t = -2.521; p = 0.012) and 20 m velocity (pre-training: 4.6 ± 0.5 s; post-training: 4.3 ± 0.3 s; t = -2.023; p = 0.04). Concerning blood variables, there was a significant decrease in mTOR levels (pre-training: 0.857 ± 0.593; post-training: 0.214 ± 0.097; t = -2.547; p = 0.011), while no changes were observed in SIRT3 (pre-training: 0.608 ± 0.404; post-training: 0.516 ± 0.390; t = 0.533; p = 0.594) and MDA (pre-training: 8420 ± 4615; post-training: 8800 ± 3163; t = -0.533; p = 0.594). The notable reduction in mTOR levels in lymphocytes following the 8-week physical exercise program suggests a potential role of exercise in modulating immune cell dynamics, particularly in middle-aged and older individuals. Furthermore, the exercise regimen resulted in improvements in physical function, including enhanced aerobic capacity and walking velocity.
Collapse
Affiliation(s)
- Jorge Pinto Soares
- Research Centre in Sports Sciences, Health, and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
- Department of Sport of Science Exercise and Health, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ricardo Cardoso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
| | - Vanessa Almeida
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
| | | | - Amélia M. Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria Paula Mota
- Research Centre in Sports Sciences, Health, and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
- Department of Sport of Science Exercise and Health, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
17
|
Xu K, Li J, Wen R, Chang B, Cheng Y, Yi X. Role of SIRT3 in bone homeostasis and its application in preventing and treating bone diseases. Front Pharmacol 2023; 14:1248507. [PMID: 38192409 PMCID: PMC10773770 DOI: 10.3389/fphar.2023.1248507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Bone homeostasis refers to the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption and the maintenance of stable bone mass. SIRT3 is a class of mitochondrial protein deacetylase that influences various mitochondrial functions and is involved in the mechanisms underlying resistance to aging; regulation of bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts; and development of osteoporosis, osteoarthritis, and other bone diseases. Moreover, exercise affects bones through SIRT3. Thus, studies on SIRT3 may provide insights for the treatment of bone diseases. Although SIRT3 can exert multiple effects on bone, the specific mechanism by which it regulates bone homeostasis remains unclear. By evaluating the relevant literature, this review discusses the structure and function of SIRT3, reveals the role and associated mechanisms of SIRT3 in regulating bone homeostasis and mediating bone health during exercise, and highlights the potential pharmacological value of SIRT3 in treating bone diseases.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
18
|
Noone J, Rochfort KD, O'Sullivan F, O'Gorman DJ. SIRT4 is a regulator of human skeletal muscle fatty acid metabolism influencing inner and outer mitochondrial membrane-mediated fusion. Cell Signal 2023; 112:110931. [PMID: 37858614 DOI: 10.1016/j.cellsig.2023.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE The mitochondrial phenotype, governed by the balance of fusion-fission, is a key determinant of energy metabolism. The inner and outer mitochondrial membrane (IMM) fusion proteins optic atrophy 1 (OPA1) and Mitofusin 1 and 2 (Mfn1/2) play an important role in this process. Recent evidence also shows that Sirtuin 4 (SIRT4), located within the mitochondria, is involved in the regulation of fatty acid oxidation. The purpose of this study was to determine if SIRT4 expression regulates inner and outer mitochondrial-mediated fusion and substrate utilization within differentiated human skeletal muscle cells (HSkMC). MATERIAL AND METHODS SIRT4 expression was knocked down using small interfering RNA (siRNA) transfection in differentiated HSkMC. Following knockdown, mitochondrial respiration was determined by high-resolution respirometry (HRR) using the Oroboros Oxygraph O2k. Live cell confocal microscopy, quantified using the Mitochondrial Network Analysis (MiNA) toolset, was used to examine mitochondrial morphological change. This was further examined through the measurement of key metabolic and mitochondrial morphological regulators (mRNA and protein) induced by knockdown. RESULTS SIRT4 knockdown resulted in a significant decrease in LEAK respiration, potentially explained by a decrease in ANT1 protein expression. Knockdown further increased oxidative phosphorylation and protein expression of key regulators of fatty acid metabolism. Quantitative analysis of live confocal imaging of fluorescently labelled mitochondria following SIRT4 knockdown supported the role SIRT4 plays in the regulation of mitochondrial morphology, as emphasized by an increase in mitochondrial network branches and junctions. Measurement of key regulators of mitochondrial dynamics illustrated a significant increase in mitochondrial fusion proteins Mfn1, OPA1 respectively, indicative of an increase in mitochondrial size. CONCLUSIONS This study provides evidence of a direct relationship between the mitochondrial phenotype and substrate oxidation in HSkMC. We identify SIRT4 as a key protagonist of energy metabolism via its regulation of IMM and OMM fusion proteins, OPA1 and Mfn1. SIRT4 knockdown increases mitochondrial capacity to oxidize fatty acids, decreasing LEAK respiration and further increasing mitochondrial elongation via its regulation of mitochondrial fusion.
Collapse
Affiliation(s)
- John Noone
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Keith D Rochfort
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin 9, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals
| | - Donal J O'Gorman
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin, Ireland; National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals.
| |
Collapse
|
19
|
Maurmann RM, Schmitt BL, Mosalmanzadeh N, Pence BD. Mitochondrial dysfunction at the cornerstone of inflammatory exacerbation in aged macrophages. EXPLORATION OF IMMUNOLOGY 2023; 3:442-452. [PMID: 38831878 PMCID: PMC11147369 DOI: 10.37349/ei.2023.00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 06/05/2024]
Abstract
Immunosenescence encompasses multiple age-related adaptations that result in increased susceptibility to infections, chronic inflammatory disorders, and higher mortality risk. Macrophages are key innate cells implicated in inflammatory responses and tissue homeostasis, functions progressively compromised by aging. This process coincides with declining mitochondrial physiology, whose integrity is required to sustain and orchestrate immune responses. Indeed, multiple insults observed in aged macrophages have been implied as drivers of mitochondrial dysfunction, but how this translates into impaired immune function remains sparsely explored. This review provides a perspective on recent studies elucidating the underlying mechanisms linking dysregulated mitochondria homeostasis to immune function in aged macrophages. Genomic stress alongside defective mitochondrial turnover accounted for the progressive accumulation of damaged mitochondria in aged macrophages, thus resulting in a higher susceptibility to excessive mitochondrial DNA (mtDNA) leakage and reactive oxygen species (ROS) production. Increased levels of these mitochondrial products following infection were demonstrated to contribute to exacerbated inflammatory responses mediated by overstimulation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and cyclic GMP-ATP synthase (cGAS)-stimulator of interferon genes (STING) pathways. While these mechanisms are not fully elucidated, the present evidence provides a promising area to be explored and a renewed perspective of potential therapeutic targets for immunological dysfunction.
Collapse
Affiliation(s)
| | | | - Negin Mosalmanzadeh
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Brandt D. Pence
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| |
Collapse
|
20
|
Tan Q, Zhang X, Li S, Liu W, Yan J, Wang S, Cui F, Li D, Li J. DMT1 differentially regulates mitochondrial complex activities to reduce glutathione loss and mitigate ferroptosis. Free Radic Biol Med 2023; 207:32-44. [PMID: 37419216 DOI: 10.1016/j.freeradbiomed.2023.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Mitochondria are vital for energy production and redox homeostasis, yet knowledge of relevant mechanisms remains limited. Here, through a genome-wide CRISPR-Cas9 knockout screening, we have identified DMT1 as a major regulator of mitochondria membrane potential. Our findings demonstrate that DMT1 deficiency increases the activity of mitochondrial complex I and reduces that of complex III. Enhanced complex I activity leads to increased NAD+ production, which activates IDH2 by promoting its deacetylation via SIRT3. This results in higher levels of NADPH and GSH, which improve antioxidant capacity during Erastin-induced ferroptosis. Meanwhile, loss of complex III activity impairs mitochondrial biogenesis and promotes mitophagy, contributing to suppression of ferroptosis. Thus, DMT1 differentially regulates activities of mitochondrial complex I and III to cooperatly suppress Erastin-induced ferroptosis. Furthermore, NMN, an alternative method of increasing mitochondrial NAD+, exhibits similar protective effects against ferroptosis by boosting GSH in a manner similar to DMT1 deficiency, shedding a light on potential therapeutic strategy for ferroptosis-related pathologies.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiaoqian Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Shuxiang Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wenbin Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jiaqi Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Siqi Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Feng Cui
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dan Li
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Qinhuangdao, Qinhuangdao, 066000, China.
| | - Jun Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
21
|
Chirumbolo S, Bertossi D, Magistretti P. Insights on the role of L-lactate as a signaling molecule in skin aging. Biogerontology 2023; 24:709-726. [PMID: 36708434 PMCID: PMC9883612 DOI: 10.1007/s10522-023-10018-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
L-lactate is a catabolite from the anaerobic metabolism of glucose, which plays a paramount role as a signaling molecule in various steps of the cell survival. Its activity, as a master tuner of many mechanisms underlying the aging process, for example in the skin, is still presumptive, however its crucial position in the complex cross-talk between mitochondria and the process of cell survival, should suggest that L-lactate may be not a simple waste product but a fine regulator of the aging/survival machinery, probably via mito-hormesis. Actually, emerging evidence is highlighting that ROS are crucial in the signaling of skin health, including mechanisms underlying wound repair, renewal and aging. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Physiological ROS levels are essential for cutaneous health and the wound repair process. Aberrant redox signaling activity drives chronic skin disease in elderly. On the contrary, impaired redox modulation, due to enhanced ROS generation and/or reduced levels of antioxidant defense, suppresses wound healing via promoting lymphatic/vascular endothelial cell apoptosis and death. This review tries to elucidate this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology-Unit of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - Pierre Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
22
|
Debsharma S, Pramanik S, Bindu S, Mazumder S, Das T, Saha D, De R, Nag S, Banerjee C, Siddiqui AA, Ghosh Z, Bandyopadhyay U. Honokiol, an inducer of sirtuin-3, protects against non-steroidal anti-inflammatory drug-induced gastric mucosal mitochondrial pathology, apoptosis and inflammatory tissue injury. Br J Pharmacol 2023; 180:2317-2340. [PMID: 36914615 DOI: 10.1111/bph.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial oxidative stress, inflammation and apoptosis primarily underlie gastric mucosal injury caused by the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Alternative gastroprotective strategies are therefore needed. Sirtuin-3 pivotally maintains mitochondrial structural integrity and metabolism while preventing oxidative stress; however, its relevance to gastric injury was never explored. Here, we have investigated whether and how sirtuin-3 stimulation by the phytochemical, honokiol, could rescue NSAID-induced gastric injury. EXPERIMENTAL APPROACH Gastric injury in rats induced by indomethacin was used to assess the effects of honokiol. Next-generation sequencing-based transcriptomics followed by functional validation identified the gastroprotective function of sirtuin-3. Flow cytometry, immunoblotting, qRT-PCR and immunohistochemistry were used measure effects on oxidative stress, mitochondrial dynamics, electron transport chain function, and markers of inflammation and apoptosis. Sirtuin-3 deacetylase activity was also estimated and gastric luminal pH was measured. KEY RESULTS Indomethacin down-regulated sirtuin-3 to induce oxidative stress, mitochondrial hyperacetylation, 8-oxoguanine DNA glycosylase 1 depletion, mitochondrial DNA damage, respiratory chain defect and mitochondrial fragmentation leading to severe mucosal injury. Indomethacin dose-dependently inhibited sirtuin-3 deacetylase activity. Honokiol prevented mitochondrial oxidative damage and inflammatory tissue injury by attenuating indomethacin-induced depletion of both sirtuin-3 and its transcriptional regulators PGC1α and ERRα. Honokiol also accelerated gastric wound healing but did not alter gastric acid secretion, unlike lansoprazole. CONCLUSIONS AND IMPLICATIONS Sirtuin-3 stimulation by honokiol prevented and reversed NSAID-induced gastric injury through maintaining mitochondrial integrity. Honokiol did not affect gastric acid secretion. Sirtuin-3 stimulation by honokiol may be utilized as a mitochondria-based, acid-independent novel gastroprotective strategy against NSAIDs.
Collapse
Affiliation(s)
- Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, West Bengal, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Kolkata, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Garcia Castro DR, Mazuk JR, Heine EM, Simpson D, Pinches RS, Lozzi C, Hoffman K, Morrin P, Mathis D, Lebedev MV, Nissley E, Han KH, Farmer T, Merry DE, Tong Q, Pennuto M, Montie HL. Increased SIRT3 combined with PARP inhibition rescues motor function of SBMA mice. iScience 2023; 26:107375. [PMID: 37599829 PMCID: PMC10433013 DOI: 10.1016/j.isci.2023.107375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 07/08/2023] [Indexed: 08/22/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease with substantial mitochondrial and metabolic dysfunctions. SBMA is caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Activating or increasing the NAD+-dependent deacetylase, SIRT3, reduced oxidative stress and death of cells modeling SBMA. However, increasing diminished SIRT3 in AR100Q mice failed to reduce acetylation of the SIRT3 target/antioxidant, SOD2, and had no effect on increased total acetylated peptides in quadriceps. Yet, overexpressing SIRT3 resulted in a trend of motor recovery, and corrected TCA cycle activity by decreasing acetylation of SIRT3 target proteins. We sought to boost blunted SIRT3 activity by replenishing diminished NAD+ with PARP inhibition. Although NAD+ was not affected, overexpressing SIRT3 with PARP inhibition fully restored hexokinase activity, correcting the glycolytic pathway in AR100Q quadriceps, and rescued motor endurance of SBMA mice. These data demonstrate that targeting metabolic anomalies can restore motor function downstream of polyQ-expanded AR.
Collapse
Affiliation(s)
- David R. Garcia Castro
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Joseph R. Mazuk
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Erin M. Heine
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Daniel Simpson
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - R. Seth Pinches
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Caroline Lozzi
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Kathryn Hoffman
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Phillip Morrin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Dylan Mathis
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Maria V. Lebedev
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Elyse Nissley
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Kang Hoo Han
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Tyler Farmer
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiang Tong
- USDA/ARS Children’s Nutrition Research Center, Departments of Pediatrics, Medicine, Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Heather L. Montie
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| |
Collapse
|
24
|
Chen C, McDonald D, Blain A, Mossman E, Atkin K, Marusich MF, Capaldi R, Bone L, Smith A, Filby A, Erskine D, Russell O, Hudson G, Vincent AE, Reeve AK. Parkinson's disease neurons exhibit alterations in mitochondrial quality control proteins. NPJ Parkinsons Dis 2023; 9:120. [PMID: 37553379 PMCID: PMC10409763 DOI: 10.1038/s41531-023-00564-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.
Collapse
Affiliation(s)
- Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - David McDonald
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Mossman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kiera Atkin
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Laura Bone
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Smith
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Filby
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver Russell
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Xu C, Han J, Jia D, Cai J, Yuan J, Ge X. Sirtuin3 confers protection against acute pulmonary embolism through anti-inflammation, and anti-oxidative stress, and anti-apoptosis properties: participation of the AMP-activated protein kinase/mammalian target of rapamycin pathway. Exp Anim 2023; 72:346-355. [PMID: 36858596 PMCID: PMC10435360 DOI: 10.1538/expanim.22-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
An increasing number of studies have suggested that oxidative stress and inflammation play momentous roles in acute pulmonary embolism (APE). Honokiol, a bioactive biphenolic phytochemical substance, is known for its strong anti-oxidative and anti-inflammatory effects, and it served as an activator of sirtuin3 (SIRT3) in the present study. The purposes of the study were to explore the effects of honokiol on APE rats and investigate whether the function of honokiol is mediated by SIRT3 activation. In the study, the rats received a right femoral vein injection of dextran gel G-50 particles (12 mg/kg) to establish the APE model and were subsequently administered honokiol and/or a selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP; 5 mg/kg) intraperitoneally. The results showed that SIRT3 activation by honokiol attenuated the loss in lung function, ameliorated the inflammatory response and oxidative damage, and inhibited apoptosis in lung tissues of the rats with APE but that this was reversed by 3-TYP. In addition, we found that the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway might be activated by honokiol but restrained by 3-TYP. These results indicated that honokiol was capable of suppressing the adverse effects of APE and that this was diminished by SIRT3 suppression, implying that activation of SIRT3 might serve as a therapeutic method for APE.
Collapse
Affiliation(s)
- Ce Xu
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, P.R. China
| | - Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, P.R. China
| | - Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, P.R. China
| | - Jimin Cai
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, P.R. China
| | - Jianming Yuan
- Department of Science and Education, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, P.R. China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, P.R. China
- Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
26
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
27
|
Liang HZ, Lu PX, Chu LL, Li G, Li CB, Chen XJ, Zhang J, Song J, Zhang T, Luo Y, Hu Y, Ma BP. Dammarane-type saponins from Gynostemma pentaphyllum and their anti-aging activities via up-regulating mitochondria related proteins. PHYTOCHEMISTRY 2023:113744. [PMID: 37301356 DOI: 10.1016/j.phytochem.2023.113744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
The importance of mitochondria in regulation of aging has been extensively recognized and confirmed. Gynostemma pentaphyllum (Thunb.) Makino, a homology of medicine and food, has been widely utilized as dietary supplement. In this study, the transcriptome of normal cells (wild type mouse embryo fibroblasts) regulated by the 30% aqueous EtOH extract of G. pentaphyllum was firstly evaluated by RNA sequencing and the results revealed that the G. pentaphyllum could up-regulate the genes involved in oxidative phosphorylation (OXPHOS) and sirtuin (SIRT) signaling pathways, indicating its effect in promoting cell viability might be attributed to the role of improving mitochondrial functions. To further discover the bioactive compounds, sixteen undescribed dammarane-type saponins along with twenty-eight known analogues were isolated from the active extract of G. pentaphyllum. Their structures were elucidated by means of comprehensive analysis of NMR and HRMS spectroscopic data. All isolates were evaluated for the regulatory effects on SIRT3 and translocase of the outer membrane 20 (TOM20), and thirteen of them exhibited satisfactory agonist activities on both SIRT3 and TOM20 at 5 μM. Furthermore, the preliminary structure-activity relationships analysis demonstrated the additional hydroxymethyl and carbonyl groups or less sugar residues in saponins could contribute positively to the up-regulatory effect on SIRT3 and TOM20. These findings encouraged the potential roles of G. pentaphyllum and its bioactive saponins in the development of natural drugs for the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Hai-Zhen Liang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Peng-Xin Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li-Li Chu
- School of Basic Medicine, Guizhou Medical University, Guizhou, 550025, China
| | - Gang Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chuan-Biao Li
- School of Basic Medicine, Guizhou Medical University, Guizhou, 550025, China
| | - Xiao-Juan Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Juan Song
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tao Zhang
- AnKang Chia Tai Pharmaceutical Co. Ltd., Shaanxi, 725000, China
| | - Ying Luo
- School of Basic Medicine, Guizhou Medical University, Guizhou, 550025, China
| | - Ying Hu
- School of Basic Medicine, Guizhou Medical University, Guizhou, 550025, China.
| | - Bai-Ping Ma
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
28
|
Wang H, Su J, Yu M, Xia Y, Wei Y. PGC-1α in osteoarthritic chondrocytes: From mechanism to target of action. Front Pharmacol 2023; 14:1169019. [PMID: 37089944 PMCID: PMC10117990 DOI: 10.3389/fphar.2023.1169019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases, often involving the entire joint. The degeneration of articular cartilage is an important feature of OA, and there is growing evidence that the mitochondrial biogenesis master regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) exert a chondroprotective effect. PGC-1α delays the development and progression of OA by affecting mitochondrial biogenesis, oxidative stress, mitophagy and mitochondrial DNA (mtDNA) replication in chondrocytes. In addition, PGC-1α can regulate the metabolic abnormalities of OA chondrocytes and inhibit chondrocyte apoptosis. In this paper, we review the regulatory mechanisms of PGC-1α and its effects on OA chondrocytes, and introduce potential drugs and novel nanohybrid for the treatment of OA which act by affecting the activity of PGC-1α. This information will help to further elucidate the pathogenesis of OA and provide new ideas for the development of therapeutic strategies for OA.
Collapse
Affiliation(s)
- Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yang Xia, ; Yingliang Wei,
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yang Xia, ; Yingliang Wei,
| |
Collapse
|
29
|
Gu C, Kong F, Zeng J, Geng X, Sun Y, Chen X. Remote ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in mice by activating NMDAR/AMPK/PGC-1α/SIRT3 signaling. Cell Biosci 2023; 13:57. [PMID: 36927808 PMCID: PMC10018930 DOI: 10.1186/s13578-023-00999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND To study the protective effects of delayed remote ischemic preconditioning (RIPC) against spinal cord ischemia-reperfusion injury (SCIRI) in mice and determine whether SIRT3 is involved in this protection and portrayed its upstream regulatory mechanisms. METHODS In vivo, WT or SIRT3 global knockout (KO) mice were exposed to right upper and lower limbs RIPC or sham ischemia. After 24 h, the abdominal aorta was clamped for 20 min, then re-perfused for 3 days. The motor function of mice, number of Nissl bodies, apoptotic rate of neurons, and related indexes of oxidative stress in the spinal cord were measured to evaluate for neuroprotective effects. The expression and correlation of SIRT3 and NMDAR were detected by WB and immunofluorescence. In vitro, primary neurons were exacted and OGD/R was performed to simulate SCIRI in vivo. Neuronal damage was assessed by observing neuron morphology, detecting LDH release ratio, and flow cytometry to analyze the apoptosis. MnSOD and CAT enzyme activities, GSH and ROS level were also measured to assess neuronal antioxidant capacity. NMDAR-AMPK-PGC-1α signaling was detected by WB to portray upstream regulatory mechanisms of RIPC regulating SIRT3. RESULTS Compared to the SCIRI mice without RIPC, mice with RIPC displayed improved motor function recovery, a reduced neuronal loss, and enhanced antioxidant capacity. To the contrary, the KO mice did not exhibit any effect of RIPC-induced neuroprotection. Similar results were observed in vitro. Further analyses with spinal cord tissues or primary neurons detected enhanced MnSOD and CAT activities, as well as increased GSH level but decreased MDA or ROS production in the RIPC + I/R mice or NMDA + OGD/R neurons. However, these changes were completely inhibited by the absence of SIRT3. Additionally, NMDAR-AMPK-PGC-1α signaling was activated to upregulate SIRT3 levels, which is essential for RIPC-mediated neuroprotection. CONCLUSIONS RIPC enhances spinal cord ischemia tolerance in a SIRT3-dependent manner, and its induced elevated SIRT3 levels are mediated by the NMDAR-AMPK-PGC-1α signaling pathway. Combined therapy targeting SIRT3 is a promising direction for treating SCIRI.
Collapse
Affiliation(s)
- Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Fanqi Kong
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Yanqing Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China. .,Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| |
Collapse
|
30
|
Smirnov D, Eremenko E, Stein D, Kaluski S, Jasinska W, Cosentino C, Martinez-Pastor B, Brotman Y, Mostoslavsky R, Khrameeva E, Toiber D. SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death Dis 2023; 14:35. [PMID: 36653345 PMCID: PMC9849342 DOI: 10.1038/s41419-022-05542-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
The SIRT6 deacetylase has been implicated in DNA repair, telomere maintenance, glucose and lipid metabolism and, importantly, it has critical roles in the brain ranging from its development to neurodegeneration. Here, we combined transcriptomics and metabolomics approaches to characterize the functions of SIRT6 in mouse brains. Our analysis reveals that SIRT6 is a central regulator of mitochondrial activity in the brain. SIRT6 deficiency in the brain leads to mitochondrial deficiency with a global downregulation of mitochondria-related genes and pronounced changes in metabolite content. We suggest that SIRT6 affects mitochondrial functions through its interaction with the transcription factor YY1 that, together, regulate mitochondrial gene expression. Moreover, SIRT6 target genes include SIRT3 and SIRT4, which are significantly downregulated in SIRT6-deficient brains. Our results demonstrate that the lack of SIRT6 leads to decreased mitochondrial gene expression and metabolomic changes of TCA cycle byproducts, including increased ROS production, reduced mitochondrial number, and impaired membrane potential that can be partially rescued by restoring SIRT3 and SIRT4 levels. Importantly, the changes we observed in SIRT6-deficient brains are also occurring in aging human brains and particularly in patients with Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis disease. Overall, our results suggest that the reduced levels of SIRT6 in the aging brain and neurodegeneration initiate mitochondrial dysfunction by altering gene expression, ROS production, and mitochondrial decay.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Ekaterina Eremenko
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Shai Kaluski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Claudia Cosentino
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Barbara Martinez-Pastor
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ekaterina Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
31
|
Li Q, Wang R, Zhang Z, Wang H, Lu X, Zhang J, Kong APS, Tian XY, Chan HF, Chung ACK, Cheng JCY, Jiang Q, Lee WYW. Sirt3 mediates the benefits of exercise on bone in aged mice. Cell Death Differ 2023; 30:152-167. [PMID: 36153410 PMCID: PMC9883264 DOI: 10.1038/s41418-022-01053-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023] Open
Abstract
Exercise in later life is important for bone health and delays the progression of osteoporotic bone loss. Osteocytes are the major bone cells responsible for transforming mechanical stimuli into cellular signals through their highly specialized lacunocanalicular networks (LCN). Osteocyte activity and LCN degenerate with aging, thus might impair the effectiveness of exercise on bone health; however, the underlying mechanism and clinical implications remain elusive. Herein, we showed that deletion of Sirt3 in osteocytes could impair the formation of osteocyte dendritic processes and inhibit bone gain in response to exercise in vivo. Mechanistic studies revealed that Sirt3 regulates E11/gp38 through the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling pathway. Additionally, the Sirt3 activator honokiol enhanced the sensitivity of osteocytes to fluid shear stress in vitro, and intraperitoneal injection of honokiol reduced bone loss in aged mice in a dose-dependent manner. Collectively, Sirt3 in osteocytes regulates bone mass and mechanical responses through the regulation of E11/gp38. Therefore, targeting Sirt3 could be a novel therapeutic strategy to prevent age-related bone loss and augment the benefits of exercise on the senescent skeleton.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaomin Lu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiajun Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Arthur Chi-Kong Chung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jack Chun-Yiu Cheng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Akhtar A, Gupta SM, Dwivedi S, Kumar D, Shaikh MF, Negi A. Preclinical Models for Alzheimer's Disease: Past, Present, and Future Approaches. ACS OMEGA 2022; 7:47504-47517. [PMID: 36591205 PMCID: PMC9798399 DOI: 10.1021/acsomega.2c05609] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
A robust preclinical disease model is a primary requirement to understand the underlying mechanisms, signaling pathways, and drug screening for human diseases. Although various preclinical models are available for several diseases, clinical models for Alzheimer's disease (AD) remain underdeveloped and inaccurate. The pathophysiology of AD mainly includes the presence of amyloid plaques and neurofibrillary tangles (NFT). Furthermore, neuroinflammation and free radical generation also contribute to AD. Currently, there is a wide gap in scientific approaches to preventing AD progression. Most of the available drugs are limited to symptomatic relief and improve deteriorating cognitive functions. To mimic the pathogenesis of human AD, animal models like 3XTg-AD and 5XFAD are the primarily used mice models in AD therapeutics. Animal models for AD include intracerebroventricular-streptozotocin (ICV-STZ), amyloid beta-induced, colchicine-induced, etc., focusing on parameters such as cognitive decline and dementia. Unfortunately, the translational rate of the potential drug candidates in clinical trials is poor due to limitations in imitating human AD pathology in animal models. Therefore, the available preclinical models possess a gap in AD modeling. This paper presents an outline that critically assesses the applicability and limitations of the current approaches in disease modeling for AD. Also, we attempted to provide key suggestions for the best-fit model to evaluate potential therapies, which might improve therapy translation from preclinical studies to patients with AD.
Collapse
Affiliation(s)
- Ansab Akhtar
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shraddha M. Gupta
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shubham Dwivedi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Devendra Kumar
- Faculty
of Pharmacy, DIT University, Uttarakhand, Dehradun 248009, India
| | - Mohd. Farooq Shaikh
- Neuropharmacology
Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
- E-mail:
| |
Collapse
|
33
|
Mishra J, Bhatti GK, Sehrawat A, Singh C, Singh A, Reddy AP, Reddy PH, Bhatti JS. Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sci 2022; 311:121153. [PMID: 36343743 PMCID: PMC9712237 DOI: 10.1016/j.lfs.2022.121153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The high prevalence of neurodegenerative diseases has become a major public health challenge and is associated with a tremendous burden on individuals, society and federal governments worldwide. Protein misfolding and aggregation are the major pathological hallmarks of several neurodegenerative disorders. The cells have evolved several regulatory mechanisms to deal with aberrant protein folding, namely the classical ubiquitin pathway, where ubiquitination of protein aggregates marks their degradation via lysosome and the novel autophagy or mitophagy pathways. Autophagy is a catabolic process in eukaryotic cells that allows the lysosome to recycle the cell's own contents, such as organelles and proteins, known as autophagic cargo. Their most significant role is to keep cells alive in distressed situations. Mitophagy is also crucial for reducing abnormal protein aggregation and increasing organelle clearance and partly accounts for maintaining cellular homeostasis. Furthermore, substantial data indicate that any disruption in these homeostatic mechanisms leads to the emergence of several age-associated metabolic and neurodegenerative diseases. So, targeting autophagy and mitophagy might be a potential therapeutic strategy for a variety of health conditions.
Collapse
Affiliation(s)
- Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
34
|
Jeske R, Chen X, Ma S, Zeng EZ, Driscoll T, Li Y. Bioreactor Expansion Reconfigures Metabolism and Extracellular Vesicle Biogenesis of Human Adipose-derived Stem Cells In Vitro. Biochem Eng J 2022; 188:108711. [PMID: 36540623 PMCID: PMC9762695 DOI: 10.1016/j.bej.2022.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human mesenchymal stem cells (hMSCs), including human adipose tissue-derived stem cells (hASCs), as well as the secreted extracellular vesicles (EVs), are promising therapeutics in treating inflammatory and neural degenerative diseases. However, prolonged expansion can lead to cellular senescence characterized by a gradual loss of self-renewal ability while altering secretome composition and EV generation. Additionally, hMSCs are highly sensitive to biophysical microenvironment in bioreactor systems utilized in scaling production. In this study, hASCs grown on Plastic Plus or Synthemax II microcarriers in a spinner flask bioreactor (SFB) system were compared to traditional 2D culture. The SFB microenvironment was found to increase the expression of genes associated with hASC stemness, nicotinamide adenine dinucleotide (NAD+) metabolism, glycolysis, and the pentose phosphate pathway as well as alter cytokine secretion (e.g., PGE2 and CXCL10). Elevated reactive oxidative species levels in hASCs of SFB culture were observed without increasing rates of cellular senescence. Expression levels of Sirtuins responsible for preventing cellular senescence through anti-oxidant and DNA repair mechanisms were also elevated in SFB cultures. In particular, the EV biogenesis genes were significantly upregulated (3-10 fold) and the EV production increased 40% per cell in SFB cultures of hASCs. This study provides advanced understanding of hASC sensitivity to the bioreactor microenvironment for EV production and bio-manufacturing towards the applications in treating inflammatory and neural degenerative diseases.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Eric Z Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU college of engineering, Florida state university, USA
| |
Collapse
|
35
|
Dhillon RS, Qin Y(A, van Ginkel PR, Fu VX, Vann JM, Lawton AJ, Green CL, Manchado‐Gobatto FB, Gobatto CA, Lamming DW, Prolla TA, Denu JM. SIRT3 deficiency decreases oxidative metabolism capacity but increases lifespan in male mice under caloric restriction. Aging Cell 2022; 21:e13721. [PMID: 36199173 PMCID: PMC9741511 DOI: 10.1111/acel.13721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial NAD+ -dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)-dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR-mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole-body aerobic capacity but is dispensable for CR-dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3-/- ) yielded a longer overall and maximum lifespan as compared to Sirt3+/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3-/- CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.
Collapse
Affiliation(s)
- Rashpal S. Dhillon
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yiming (Amy) Qin
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Paul R. van Ginkel
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Vivian X. Fu
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - James M. Vann
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alexis J. Lawton
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Cara L. Green
- Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | | | - Claudio A. Gobatto
- Laboratory of Applied Sport Physiology, School of Applied SciencesUniversity of CampinasLimeiraBrazil
| | - Dudley W. Lamming
- Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Medicine, SMPHUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Tomas A. Prolla
- Department of Genetics and Medical GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John M. Denu
- Department of Biomolecular ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Interdepartmental Graduate Program in Nutritional SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
36
|
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise Against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation 2022; 146:1537-1557. [PMID: 36134579 DOI: 10.1161/circulationaha.122.059631] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective β-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS Treadmill exercise markedly induced cardiac expression of β-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of β-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03240978.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Lei Ying
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Kevin Ye
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada (K.Y.)
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yin Cai
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Health Technology and Informatics, Hong Kong Polytechnic University, China (Y.C.)
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Xingqun Yan
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Jie Liu
- Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada (G.S.)
| | - Connie Wai Hong Woo
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (Z.X.)
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| |
Collapse
|
37
|
The SWGEDWGEIW from Soybean Peptides Reduce Oxidative Damage-Mediated Apoptosis in PC-12 Cells by Activating SIRT3/FOXO3a Signaling Pathway. Molecules 2022; 27:molecules27217610. [PMID: 36364437 PMCID: PMC9657979 DOI: 10.3390/molecules27217610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The goal of the investigation was to study the protective effects of the SWGEDWGEIW (the single peptide, TSP) from soybean peptides (SBP) on hydrogen peroxide (H2O2)-induced apoptosis together with mitochondrial dysfunction in PC-12 cells and their possible implications to protection mechanism. Meanwhile, the SBP was used as a control experiment. The results suggested that SBP and TSP significantly (p < 0.05) inhibited cellular oxidative damage and ROS-mediated apoptosis. In addition, SBP and TSP also enhanced multiple mitochondrial biological activities, decreased mitochondrial ROS levels, amplified mitochondrial respiration, increased cellular maximal respiration, spare respiration capacity, and ATP production. In addition, SBP and TSP significantly (p < 0.05) raised the SIRT3 protein expression and the downstream functional gene FOXO3a. In the above activity tests, the activity of TSP was slightly higher than that of SBP. Taken together, our findings suggested that SBP and TSP can be used as promising nutrients for oxidative damage reduction in neurons, and TSP is more effective than SBP. Therefore, TSP has the potential to replace SBP and reduce neuronal oxidative damage.
Collapse
|
38
|
Kinin B1 receptor modulates mitochondrial activity responsivity in fasting and voluntary exercise. Life Sci 2022; 309:121034. [DOI: 10.1016/j.lfs.2022.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
|
39
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
40
|
Jiang Y, Xiang Y, Lin C, Zhang W, Yang Z, Xiang L, Xiao Y, Chen L, Ran Q, Li Z. Multifunctions of CRIF1 in cancers and mitochondrial dysfunction. Front Oncol 2022; 12:1009948. [PMID: 36263222 PMCID: PMC9574215 DOI: 10.3389/fonc.2022.1009948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sustaining proliferative signaling and enabling replicative immortality are two important hallmarks of cancer. The complex of cyclin-dependent kinase (CDK) and its cyclin plays a decisive role in the transformation of the cell cycle and is also critical in the initiation and progression of cancer. CRIF1, a multifunctional factor, plays a pivotal role in a series of cell biological progresses such as cell cycle, cell proliferation, and energy metabolism. CRIF1 is best known as a negative regulator of the cell cycle, on account of directly binding to Gadd45 family proteins or CDK2. In addition, CRIF1 acts as a regulator of several transcription factors such as Nur77 and STAT3 and partly determines the proliferation of cancer cells. Many studies showed that the expression of CRIF1 is significantly altered in cancers and potentially regarded as a tumor suppressor. This suggests that targeting CRIF1 would enhance the selectivity and sensitivity of cancer treatment. Moreover, CRIF1 might be an indispensable part of mitoribosome and is involved in the regulation of OXPHOS capacity. Further, CRIF1 is thought to be a novel target for the underlying mechanism of diseases with mitochondrial dysfunctions. In summary, this review would conclude the latest aspects of studies about CRIF1 in cancers and mitochondria-related diseases, shed new light on targeted therapy, and provide a more comprehensive holistic view.
Collapse
Affiliation(s)
- Yangzhou Jiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yang Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Chuanchuan Lin
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Lixin Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
41
|
Mezhnina V, Ebeigbe OP, Poe A, Kondratov RV. Circadian Control of Mitochondria in Reactive Oxygen Species Homeostasis. Antioxid Redox Signal 2022; 37:647-663. [PMID: 35072523 PMCID: PMC9587791 DOI: 10.1089/ars.2021.0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Significance: Mitochondria produce most of the cellular ATP through the process of oxidative phosphorylation. Energy metabolism in the mitochondria is associated with the production of reactive oxygen species (ROS). Excessive ROS production leads to oxidative stress and compromises cellular physiology. Energy metabolism in the mitochondria depends on nutrient flux and cellular metabolic needs, which are in turn connected with the feeding/fasting cycle. In animals, the feeding/fasting cycle is controlled by the circadian clock that generates 24-h rhythms in behavior, metabolism, and signaling. Recent Advances: Here, we discuss the role of the circadian clock and rhythms in mitochondria on ROS homeostasis. The circadian clock is involved in mitochondrial ROS production and detoxification through the control of nutrient flux and oxidation, uncoupling, antioxidant defense, and mitochondrial dynamics. Critical Issues: Little is known on the molecular mechanisms of circadian control of mitochondrial functions. The circadian clock regulates the expression and activity of mitochondrial metabolic and antioxidant enzymes. The regulation involves a direct transcriptional control by Circadian Locomotor Output Cycles Kaput/brain and muscle ARNT-like 1(CLOCK/BMAL1), nuclear factor erythroid-2-related factor 2 (NRF2) transcriptional network, and sirtuin-dependent posttranslational protein modifications. Future Perspectives: We hypothesize that the circadian clock orchestrates mitochondrial physiology to synchronize it with the feeding/fasting cycle. Circadian coordination of mitochondrial function couples energy metabolism with diets and contributes to antioxidant defense to prevent metabolic diseases and delay aging. Antioxid. Redox Signal. 37, 647-663.
Collapse
Affiliation(s)
- Volha Mezhnina
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Oghogho P. Ebeigbe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Allan Poe
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| | - Roman V. Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Abstract
It is central to biology that sequence conservation suggests functional conservation. Animal longevity is an emergent property of selected traits that integrates capacities to perform physical and mental functions after reproductive maturity. Though the yeast SIR2 gene was nominated as a longevity gene based on extended replicative longevity of old mother cells, this is not a selected trait: SIR2 is selected against in chronological aging and the direct targets of SIR2 in replicative lifespan are not conserved. Though it would be difficult to imagine how a gene that advantages 1 in 5 million yeast cells could have anticipated causes of aging in animals, overexpression of SIR2 homologs was tested in invertebrates for longevity. Because artifactual positive results were reported years before they were sorted out and because it was not known that SIR2 functions as a pro-aging gene in yeast chronological aging and in flies subject to amino acid deprivation, a global pursuit of longevity phenotypes was driven by a mixture of framing bias, confirmation bias and hype. Review articles that propagate these biases are so rampant that few investigators have considered how weak the case ever was for sirtuins as longevity genes. Acknowledging that a few positive associations between sirtuins and longevity have been identified after thousands of person-years and billions of dollars of effort, we review the data and suggest rejection of the notions that sirtuins 1) have any specific connection to lifespan in animals and 2) are primary mediators of the beneficial effects of NAD repletion.
Collapse
Affiliation(s)
- Charles Brenner
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
43
|
Ghosh C, Westcott R, Perucca E, Hossain M, Bingaman W, Najm I. Cytochrome P450-mediated antiseizure medication interactions influence apoptosis, modulate the brain BAX/Bcl-X L ratio and aggravate mitochondrial stressors in human pharmacoresistant epilepsy. Front Pharmacol 2022; 13:983233. [PMID: 36515436 PMCID: PMC9441576 DOI: 10.3389/fphar.2022.983233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022] Open
Abstract
Polytherapy with antiseizure medications (ASMs) is often used to control seizures in patients suffering from epilepsy, where about 30% of patients are pharmacoresistant. While drug combinations are intended to be beneficial, the consequence of CYP-dependent drug interactions on apoptotic protein levels and mitochondrial function in the epileptic brain remains unclear. We examined the interactions of ASMs given prior to surgery in surgically resected brain tissues and of three ASMs (lacosamide, LCM; oxcarbazepine, OXC; levetiracetam LEV) in isolated brain cells from patients with drug-resistant epilepsy (n = 23). We divided the patients into groups-those who took combinations of NON-CYP + CYP substrate ASMs, NON-CYP + CYP inducer ASMs, CYP substrate + CYP substrate or CYP substrate + CYP inducer ASMs-to study the 1) pro- and anti-apoptotic protein levels and other apoptotic signaling proteins and levels of reactive oxygen species (reduced glutathione and lipid peroxidation) in brain tissues; 2) cytotoxicity at blood-brain barrier epileptic endothelial cells (EPI-ECs) and subsequent changes in mitochondrial membrane potential in normal neuronal cells, following treatment with LCM + OXC (CYP substrate + CYP inducer) or LCM + LEV (CYP substrate + NON-CYP-substrate) after blood-brain barrier penetration, and 3) apoptotic and mitochondrial protein targets in the cells, pre-and post-CYP3A4 inhibition by ketoconazole and drug treatments. We found an increased BAX (pro-apoptotic)/Bcl-XL (anti-apoptotic) protein ratio in epileptic brain tissue after treatment with CYP substrate + CYP substrate or inducer compared to NON-CYP + CYP substrate or inducer, and subsequently decreased glutathione and elevated lipid peroxidation levels. Further, increased cytotoxicity and Mito-ID levels, indicative of compromised mitochondrial membrane potential, were observed after treatment of LCM + OXC in combination compared to LCM + LEV or these ASMs alone in EPI-ECs, which was attenuated by pre-treatment of CYP inhibitor, ketoconazole. A combination of two CYP-mediated ASMs on EPI-ECs resulted in elevated caspase-3 and cytochrome c with decreased SIRT3 levels and activity, which was rescued by CYP inhibition. Together, the study highlights for the first time that pro- and anti-apoptotic proteins levels are dependent on ASM combinations in epilepsy, modulated via a CYP-mediated mechanism that controls free radicals, cytotoxicity and mitochondrial activity. These findings lead to a better understanding of future drug selection choices offsetting pharmacodynamic CYP-mediated interactions.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Department of Biomedical Engineering, Cerebrovascular Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Rosemary Westcott
- Department of Biomedical Engineering, Cerebrovascular Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
- Australia and Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mohammed Hossain
- Department of Biomedical Engineering, Cerebrovascular Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William Bingaman
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Imad Najm
- Australia and Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022; 11:2277. [PMID: 35892574 PMCID: PMC9330437 DOI: 10.3390/cells11152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms. ROS levels are kept in check through redundant detoxification processes controlled largely by antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional control, each of which is posited to be activated upon reaching a particular stress threshold, among them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been implicated recently in regulating oxidative stress-with roles in ROS detoxification, the inflammatory response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly, the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue and the regulation of redox imbalance are considered, further highlighting the expanded redox reset arsenal available to cells.
Collapse
Affiliation(s)
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
45
|
Yapryntseva MA, Maximchik PV, Zhivotovsky B, Gogvadze V. Mitochondrial sirtuin 3 and various cell death modalities. Front Cell Dev Biol 2022; 10:947357. [PMID: 35938164 PMCID: PMC9354933 DOI: 10.3389/fcell.2022.947357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in the regulation of multiple processes in cells. It is a major mitochondrial NAD+-dependent deacetylase with a broad range of functions, such as regulation of oxidative stress, reprogramming of tumor cell energy pathways, and metabolic homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of mitochondrial outer membrane permeabilization, a key step in apoptosis initiation/progression. Moreover, sirtuin 3 is involved in the execution of various cell death modalities, which makes sirtuin 3 a possible regulator of crosstalk between them. This review is focused on the role of sirtuin 3 as a target for tumor cell elimination and how mitochondria and reactive oxygen species (ROS) are implicated in this process.
Collapse
Affiliation(s)
| | - Polina V. Maximchik
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Vladimir Gogvadze
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- *Correspondence: Vladimir Gogvadze,
| |
Collapse
|
46
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
47
|
Abstract
Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis via lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of SIRT3 has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.,Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| | - Zhi-You Cai
- Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| |
Collapse
|
48
|
The Role of Mitochondrial Metabolism, AMPK-SIRT Mediated Pathway, LncRNA and MicroRNA in Osteoarthritis. Biomedicines 2022; 10:biomedicines10071477. [PMID: 35884782 PMCID: PMC9312479 DOI: 10.3390/biomedicines10071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease characterized by degeneration of articular cartilage and causes severe joint pain, physical disability, and impaired quality of life. Recently, it was found that mitochondria not only act as a powerhouse of cells that provide energy for cellular metabolism, but are also involved in crucial pathways responsible for maintaining chondrocyte physiology. Therefore, a growing amount of evidence emphasizes that impairment of mitochondrial function is associated with OA pathogenesis; however, the exact mechanism is not well known. Moreover, the AMP-activated protein kinase (AMPK)–Sirtuin (SIRT) signaling pathway, long non-coding RNA (lncRNA), and microRNA (miRNA) are important for regulating the physiological and pathological processes of chondrocytes, indicating that these may be targets for OA treatment. In this review, we first focus on the importance of mitochondria metabolic dysregulation related to OA. Then, we show recent evidence on the AMPK-SIRT mediated pathway associated with OA pathogenesis and potential treatment options. Finally, we discuss current research into the effects of lncRNA and miRNA on OA progression or inhibition.
Collapse
|
49
|
Sanati M, Afshari AR, Kesharwani P, Sukhorukov VN, Sahebkar A. Recent trends in the application of nanoparticles in cancer therapy: The involvement of oxidative stress. J Control Release 2022; 348:287-304. [PMID: 35644289 DOI: 10.1016/j.jconrel.2022.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
Abstract
In the biomedical area, the interdisciplinary field of nanotechnology has the potential to bring numerous unique applications, including better tactics for cancer detection, diagnosis, and therapy. Nanoparticles (NPs) have been the topic of many research and material applications throughout the last decade. Unlike small-molecule medications, NPs are defined by distinct physicochemical characteristics, such as a large surface-to-volume ratio, which allows them to permeate live cells with relative ease. The versatility of NPs as both therapeutics and diagnostics makes them ideal for a broad spectrum of illnesses, from infectious diseases to cancer. A significant amount of data has been participated in the current scientific publications, emphasizing the concept that NPs often produce reactive oxygen species (ROS) to a larger degree than micro-sized particles. It is important to note that oxidative stress governs a wide range of cell signaling cascades, many of which are responsible for cancer cell cytotoxicity. Here, we aimed to provide insight into the signaling pathways triggered by oxidative stress in cancer cells in response to several types of nanomaterials, such as metallic and polymeric NPs and quantum dots. We discuss recent advances in developing integrated anticancer medicines based on NPs targeted to destroy malignant cells by increasing their ROS setpoint.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Vasily N Sukhorukov
- Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu P, Zhang X. The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications. Front Pharmacol 2022; 13:871560. [PMID: 35571098 PMCID: PMC9092499 DOI: 10.3389/fphar.2022.871560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Reprogramming of cellular energy metabolism is considered an emerging feature of cancer. Mitochondrial metabolism plays a crucial role in cancer cell proliferation, survival, and metastasis. As a major mitochondrial NAD+-dependent deacetylase, sirtuin3 (SIRT3) deacetylates and regulates the enzymes involved in regulating mitochondrial energy metabolism, including fatty acid oxidation, the Krebs cycle, and the respiratory chain to maintain metabolic homeostasis. In this article, we review the multiple roles of SIRT3 in various cancers, and systematically summarize the recent advances in the discovery of its activators and inhibitors. The roles of SIRT3 vary in different cancers and have cell- and tumor-type specificity. SIRT3 plays a unique function by mediating interactions between mitochondria and intracellular signaling. The critical functions of SIRT3 have renewed interest in the development of small molecule modulators that regulate its activity. Delineation of the underlying mechanism of SIRT3 as a critical regulator of cell metabolism and further characterization of the mitochondrial substrates of SIRT3 will deepen our understanding of the role of SIRT3 in tumorigenesis and progression and may provide novel therapeutic strategies for cancer targeting SIRT3.
Collapse
Affiliation(s)
- Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiyi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Linlin Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|