1
|
Schuurman T, Bruner E. An inclusive anatomical network analysis of human craniocerebral topology. J Anat 2024; 245:686-698. [PMID: 38822698 PMCID: PMC11470797 DOI: 10.1111/joa.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human craniocerebral topology is presented, based on the bony elements of the skull at birth and a previously designed model of the brain. The goal was to investigate the topological components fundamental to the craniocerebral geometric balance, to identify underlying phenotypic patterns of spatial arrangement, and to understand how these patterns might have influenced the evolution of human brain morphology. Analysis of the craniocerebral network model revealed that the combined structure of the body and lesser wings of the sphenoid bone, the parahippocampal gyrus, and the parietal and ethmoid bones are susceptible to sustain and apply major spatial constraints that are likely to limit or channel their morphological evolution. The results also showcase a high level of global integration and efficient diffusion of biomechanical forces across the craniocerebral system, a fundamental aspect of morphological variability in terms of plasticity. Finally, community detection in the craniocerebral system highlights the concurrence of a longitudinal and a vertical modular partition. The former reflects the distinct morphogenetic environments of the three endocranial fossae, while the latter corresponds to those of the basicranium and calvaria.
Collapse
Affiliation(s)
- Tim Schuurman
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
| | - Emiliano Bruner
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofía-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Bruner E, Eisová S. Vascular microforamina and endocranial surface: Normal variation and distribution in adult humans. Anat Rec (Hoboken) 2024; 307:3375-3383. [PMID: 38465854 DOI: 10.1002/ar.25426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
The term craniovascular traits refers to the imprints left by arteries and veins on the skull bones. These features can be used in biological anthropology and archaeology to investigate the morphology of the vascular network in extinct species and past populations. Generally, the term refers to macrovascular features of the endocranial cavity, like those associated with the middle meningeal artery, venous sinuses, emissary foramina, and diploic channels. However, small vascular passages (here called microforamina or microchannels) have been occasionally described on the endocranial surface. The larger ones (generally with a diameter between 0.5 and 2.0 mm) can be detected through medical scanners on osteological collections. In this study, we describe and quantify the number and distribution of these microforamina in adult humans (N = 45) and, preliminarily, in a small sample of children (N = 7). Adults display more microchannels than juvenile skulls. A higher frequency in females is also observed, although this result is not statistically significant and might be associated with allometric cranial variations. The distribution of the microforamina is particularly concentrated on the top of the vault, in particular along the sagittal, metopic, and coronal sutures, matching the course of major venous sinuses and parasagittal bridging veins. Nonetheless, the density is lower in the region posterior to bregma. Beyond oxygenation, these vessels are likely involved in endocranial thermal regulation, infection, inflammation, and immune responses, and their distribution and prevalence can hence be of interest in human biology, evolutionary anthropology, and medicine.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Stanislava Eisová
- Antropologické oddělení, Přírodovědecké muzeum, Národní Muzeum, Prague, Czech Republic
| |
Collapse
|
3
|
Schuurman T, Bruner E. A comparative anatomical network analysis of the human and chimpanzee brains. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24988. [PMID: 38877829 DOI: 10.1002/ajpa.24988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Spatial interactions among anatomical elements help to identify topological factors behind morphological variation and can be investigated through network analysis. Here, a whole-brain network model of the chimpanzee (Pan troglodytes, Blumenbach 1776) is presented, based on macroanatomical divisions, and compared with a previous equivalent model of the human brain. The goal was to contrast which regions are essential in the geometric balance of the brains of the two species, to compare underlying phenotypic patterns of spatial variation, and to understand how these patterns might have influenced the evolution of human brain morphology. The human and chimpanzee brains share morphologically complex inferior-medial regions and a topological organization that matches the spatial constraints exerted by the surrounding braincase. These shared topological features are interesting because they can be traced back to the Chimpanzee-Human Last Common Ancestor, 7-10 million years ago. Nevertheless, some key differences are found in the human and chimpanzee brains. In humans, the temporal lobe, particularly its deep and medial limbic aspect (the parahippocampal gyrus), is a crucial node for topological complexity. Meanwhile, in chimpanzees, the cerebellum is, in this sense, more embedded in an intricate spatial position. This information helps to interpret brain macroanatomical change in fossil hominids.
Collapse
Affiliation(s)
- Tim Schuurman
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Emiliano Bruner
- Museo Nacional de Ciencias Naturales - CSIC, Madrid, Spain
- Alzheimer's Centre Reina Sofía-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Wu Y, Fan H, Feng Y, Yang J, Cen X, Li W. Unveiling the gut microbiota and metabolite profiles in guinea pigs with form deprivation myopia through 16S rRNA gene sequencing and untargeted metabolomics. Heliyon 2024; 10:e30491. [PMID: 38756593 PMCID: PMC11096930 DOI: 10.1016/j.heliyon.2024.e30491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Aim The aim of this study was to confirm the presence of the form deprivation myopia (FDM) guinea pig eye-gut axis and investigate the relationship between serum vasoactive intestinal peptide (VIP), lipopolysaccharides (LPS), specific gut microbiota and their metabolites. Method 20 specific-pathogen-free (SPF) guinea pigs were divided into the FDM and the control(Con) group. Following model induction, serum levels of VIP and LPS were quantified. A combination of 16S ribosomal ribosomal Ribonucleic Acid (rRNA) gene sequencing, non-targeted metabolomics and bioinformatics analysis were employed to identify disparities in gut microbiota and metabolites between the two groups of guinea pigs. Result Compared to the control group, FDM guinea pigs exhibited a significant trend towards myopia, along with significantly elevated concentrations of LPS and VIP (p < 0.0001). Furthermore, Ruminococcus_albus emerged as the predominant bacterial community enriched in FDM (p < 0.05), and demonstrated positive correlations with 10 metabolites, including l-Glutamic acid, Additionally, Ruminococcus_albus exhibited positive correlations with VIP and LPS levels (p < 0.05). Conclusion The findings suggest that the Ruminococcus_Albus and glutamate metabolic pathways play a significant role in myopia development, leading to concurrent alterations in serum VIP and LPS levels in FDM guinea pigs. This underscores the potential of specific gut microbiota and their metabolites as pivotal biomarkers involved in the pathogenesis of myopia.
Collapse
Affiliation(s)
- Yajun Wu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Hua Fan
- Shanxi Aier Eye Hospital, Taiyuan, Shanxi, 030000, China
| | - Yuliang Feng
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Jiasong Yang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Xiaobo Cen
- WestChina-Frontier PharmaTech Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Wensheng Li
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| |
Collapse
|
5
|
Schuurman T, Bruner E. Modularity and community detection in human brain morphology. Anat Rec (Hoboken) 2024; 307:345-355. [PMID: 37615332 DOI: 10.1002/ar.25308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Humans possess morphologically complex brains, which are spatially constrained by their many intrinsic and extrinsic physical interactions. Anatomical network analysis can be used to study these constraints and their implications. Modularity is a key issue in this framework, namely, the presence of groups of elements that undergo morphological evolution in a concerted way. An array of community detection algorithms was tested on a previously designed anatomical network model of the human brain in order to provide a detailed assessment of modularity in this context. The algorithms that provide the highest quality partitions also reveal general phenotypic patterns underlying the topology of human brain morphology. Taken together, the community detection algorithms highlight the simultaneous presence of a longitudinal and a vertical modular partition of the brain's topology, the combination of which matches the organization of the enveloping braincase. Specifically, the longitudinal organization is in line with the different morphogenetic environments of the three endocranial fossae, while the vertical arrangement corresponds to the distinct developmental processes associated with the cranial base and vault, respectively. The results are robust and have the potential to be compared with equivalent network models of other species. Furthermore, they suggest a degree of concerted topological reciprocity in the spatial organization of brain and skull elements, and posit questions about the extent to which geometrical constraints of the cranial base and the modular partition of the corresponding brain regions may channel both evolutionary and developmental trajectories.
Collapse
Affiliation(s)
- Tim Schuurman
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
6
|
Tunç M, Polat S, Öksüzler M, Göker P. Evaluation of the Anatomical and Radiological Morphometry of Optic Nerve and Cranium in Healthy Individuals. J Craniofac Surg 2024:00001665-990000000-01305. [PMID: 38284899 DOI: 10.1097/scs.0000000000009972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
This paper determined the morphometric measurements' reference values and relationship of the optic nerve and cranium in Turkish healthy individuals according to age and sex. Five hundred fifty-nine (280 females and 279 males) patients aged from 2 to 90 years were included in this study. The measurements were taken from patients having brain magnetic resonance images in sagittal, axial, and coronal sections in the radiology department. Eyeball transverse diameter, optic nerve sheath thickness (ONST), optic chiasm length, optic chiasm width, and cranium morphometric measurements of all individuals who participated in the study were taken. Except for the width of the optic chiasm, all measurements showed significant differences between the sexes (P < 0.05). In contrast, all measurement values were higher in males than females, except for the clival angle. According to the result of Pearson correlation analysis, in which the existence of a relationship between ONST and craniometric measurements was evaluated, a low but significant correlation was found between ONST and craniometric measurements (r < 0.4; P < 0.05). In the post hoc test performed to compare the decades, it was seen that the most significant changes in our measurements were in the 2 to 10 age range and the measurement values decreased in old age. We think that revealing the age and sex-related changes in the optic nerve and cranium morphometry of our population anatomically and radiologically will be an important source in terms of creating reference values for our population.
Collapse
Affiliation(s)
- Mahmut Tunç
- Department of Anatomy, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Sema Polat
- Department of Anatomy, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Mahmut Öksüzler
- Department of Radiology, Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Pinar Göker
- Department of Anatomy, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
7
|
Bruner E. Cognitive Archeology and the Attentional System: An Evolutionary Mismatch for the Genus Homo. J Intell 2023; 11:183. [PMID: 37754912 PMCID: PMC10532831 DOI: 10.3390/jintelligence11090183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Brain evolution is a key topic in evolutionary anthropology. Unfortunately, in this sense the fossil record can usually support limited anatomical and behavioral inferences. Nonetheless, information from fossil species is, in any case, particularly valuable, because it represents the only direct proof of cerebral and behavioral changes throughout the human phylogeny. Recently, archeology and psychology have been integrated in the field of cognitive archeology, which aims to interpret current cognitive models according to the evidence we have on extinct human species. In this article, such evidence is reviewed in order to consider whether and to what extent the archeological record can supply information regarding changes of the attentional system in different taxa of the human genus. In particular, behavioral correlates associated with the fronto-parietal system and working memory are employed to consider recent changes in our species, Homo sapiens, and a mismatch between attentional and visuospatial ability is hypothesized. These two functional systems support present-moment awareness and mind-wandering, respectively, and their evolutionary unbalance can explain a structural sensitivity to psychological distress in our species.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain
| |
Collapse
|
8
|
Schuurman T, Bruner E. A comprehensive anatomical network analysis of human brain topology. J Anat 2023; 242:973-985. [PMID: 36691774 PMCID: PMC10184545 DOI: 10.1111/joa.13828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
A network approach to the macroscopic anatomy of the human brain can be used to model physical interactions among regions in order to study their topological properties, as well as the topological properties of the overall system. Here, a comprehensive model of human brain topology is presented, based on traditional macroanatomical divisions of the whole brain, which includes its subcortical regions. The aim was to localise anatomical elements that are essential for the geometric balance of the brain, as to identify underlying phenotypic patterns of spatial arrangement and understand how these patterns may influence brain morphology in ontogeny and phylogeny. The model revealed that the parahippocampal gyrus, the anterior lobe of the cerebellum and the ventral portion of the midbrain are subjected to major topological constraints that are likely to limit or channel their morphological evolution. The present model suggests that the brain can be divided into a superior and an inferior morphological block, linked with extrinsic topological constraints imposed by the surrounding braincase. This information should be considered duly both in ontogenetic and phylogenetic studies of primate neuroanatomy.
Collapse
Affiliation(s)
- Tim Schuurman
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
9
|
Bruner E, Beaudet A. The brain of Homo habilis: Three decades of paleoneurology. J Hum Evol 2023; 174:103281. [PMID: 36455402 DOI: 10.1016/j.jhevol.2022.103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
In 1987, Phillip Tobias published a comprehensive anatomical analysis of the endocasts attributed to Homo habilis, discussing issues dealing with brain size, sulcal patterns, and vascular traces. He suggested that the neuroanatomy of this species evidenced a clear change toward many cerebral traits associated with our genus, mostly when concerning the morphology of the frontal and parietal cortex. After more than 30 years, the fossil record associated with this taxon has not grown that much, but we have much more information on cranial and brain biology, and we are using a larger array of digital methods to investigate the paleoneurological variation observed in the human genus. Brain volume, the size of the frontal lobe, or the gross hemispheric asymmetries are still relevant issues, but they are considered to be less central than before. More attention is instead being paid to the cortical organization, the relationships with the cranial architecture, and the influence of molecular or ecological factors. Although the field of paleoneurology can currently count on a larger range of tools and principles, there is still a general lack of anatomical information on many endocranial traits. This aspect is probably crucial for the agenda of paleoneurology. More importantly, the whole science is undergoing a delicate change, because of the growing influence of the social environment. In this sense, the disciplines working with fossils (and, in particular, with brain evolution) should take particular care to maintain a healthy professional situation, avoiding an excess of speculation and overstatement.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain.
| | - Amélie Beaudet
- University of Cambridge, Henry Wellcome Building, Fitzwilliam St, Cambridge CB2 1QH, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Carrer de l'Escola Industrial, 23, 08201 Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
10
|
Bruner E, Battaglia-Mayer A, Caminiti R. The parietal lobe evolution and the emergence of material culture in the human genus. Brain Struct Funct 2023; 228:145-167. [PMID: 35451642 DOI: 10.1007/s00429-022-02487-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Traditional and new disciplines converge in suggesting that the parietal lobe underwent a considerable expansion during human evolution. Through the study of endocasts and shape analysis, paleoneurology has shown an increased globularity of the braincase and bulging of the parietal region in modern humans, as compared to other human species, including Neandertals. Cortical complexity increased in both the superior and inferior parietal lobules. Emerging fields bridging archaeology and neuroscience supply further evidence of the involvement of the parietal cortex in human-specific behaviors related to visuospatial capacity, technological integration, self-awareness, numerosity, mathematical reasoning and language. Here, we complement these inferences on the parietal lobe evolution, with results from more classical neuroscience disciplines, such as behavioral neurophysiology, functional neuroimaging, and brain lesions; and apply these to define the neural substrates and the role of the parietal lobes in the emergence of functions at the core of material culture, such as tool-making, tool use and constructional abilities.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
| | | | - Roberto Caminiti
- Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia (IIT), Roma, Italy.
| |
Collapse
|
11
|
Bruner E. A network approach to the topological organization of the Brodmann map. Anat Rec (Hoboken) 2022; 305:3504-3515. [PMID: 35485307 DOI: 10.1002/ar.24941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022]
Abstract
Brain morphology is the result of functional factors associated with cortical areas, but it is also influenced by structural aspects due to physical and spatial constraints. Despite the noticeable advances in brain mapping, Brodmann's map is still used in many research fields that rely on macroscopic cortical features for practical or theoretical issues. Here, the topological relationships among the Brodmann areas were modelled according to the principles of network analysis, in order to provide a synthetic view of their spatial properties following a criterion of contiguity. The model evidences the importance of the parieto-temporal region in terms of biological burden and topological complexity. The retrosplenial region is particularly influenced by spatial constraints, and the cingulate cortex occupies a position that bridges the anterior and posterior topological blocks. Such spatial framework should be taken into account when dealing with brain morphology in both ontogeny and phylogeny. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
12
|
Pereira‐Pedro AS, Bruner E. Craniofacial orientation and parietal bone morphology in adult modern humans. J Anat 2022; 240:330-338. [PMID: 34498271 PMCID: PMC8742967 DOI: 10.1111/joa.13543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
In adult humans, the orbits vary mostly in their orientation in relation to the frontal bone profile, while the orientation of the cranial base and face are associated with the anteroposterior dimensions of the parietal bone. Here we investigate the effect of parietal bone length on the orientation of the orbits, addressing craniofacial integration and head orientation. We applied shape analysis to a sample of computed tomography scans from 30 adult modern humans, capturing the outlines of the parietal and frontal bones, the orbits, and the lateral and midline cranial base, to investigate shape variation, covariation, and modularity. Results show that the orientation of the orbits varies in accordance with the anterior cranial base, and in association with changes in parietal bone longitudinal extension. Flatter, elongated parietal bones are associated with downwardly oriented orbits and cranial bases. Modularity analysis points to a significant integration among the orbits, anterior cranial base, and the frontal profile. While the orbits are morphologically integrated with the adjacent structures in terms of shape, the association with parietal bone size depends on the spatial relationship between the two blocks. Complementary changes in orbit and parietal bone might play a role in accommodating craniofacial variability and may contribute to maintain the functional axis of the head. To better understand how skull morphology and head posture relate, future studies should account for the spatial relationship between the head and the neck.
Collapse
Affiliation(s)
| | - Emiliano Bruner
- Grupo de PaleobiologíaCentro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
13
|
KUBO DAISUKE. Internal carotid supply to the parietal meninges: a comparative study based on cranio-orbital vascular traces in modern humans and Indonesian <i>Homo erectus</i>. ANTHROPOL SCI 2022. [DOI: 10.1537/ase.211223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- DAISUKE KUBO
- Faculty of Medicine, Hokkaido University, Sapporo
| |
Collapse
|
14
|
Eisová S, Naňka O, Velemínský P, Bruner E. Craniovascular traits and braincase morphology in craniosynostotic human skulls. J Anat 2021; 239:1050-1065. [PMID: 34240418 PMCID: PMC8546506 DOI: 10.1111/joa.13506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Middle meningeal vessels, dural venous sinuses, and emissary veins leave imprints and canals in the endocranium, and thus provide evidence of vascular patterns in osteological samples. This paper investigates whether craniovascular morphology undergoes changes in craniosynostotic human skulls, and if specific alterations may reflect structural and functional relationships in the cranium. The analyzed osteological sample consists of adult individuals with craniosynostoses generally associated with dolichocephalic or brachycephalic proportions, and a control sample of anatomically normal adult skulls. The pattern and dominance of the middle meningeal artery, the morphology of the confluence of the sinuses, and the size and number of the emissary foramina were evaluated. Craniovascular morphology was more diverse in craniosynostotic skulls than in anatomically normal skulls. The craniosynostotic skulls often displayed enlarged occipito-marginal sinuses and more numerous emissary foramina. The craniosynostotic skulls associated with more brachycephalic morphology often presented enlarged emissary foramina, while the craniosynostotic skulls associated with dolichocephalic effects frequently displayed more developed posterior branches of the middle meningeal artery. The course and morphology of the middle meningeal vessels, dural venous sinuses, and emissary veins in craniosynostotic skulls can be related to the redistribution of growth forces, higher intracranial pressure, venous hypertension, or thermal constraints. These functional and structural changes are of interest in both anthropology and medicine, involving epigenetic traits that concern the functional and ontogenetic balance between soft and hard tissues.
Collapse
Affiliation(s)
- Stanislava Eisová
- Katedra antropologie a genetiky člověkaPřírodovědecká fakultaUniverzita KarlovaPragueCzech Republic
- Antropologické odděleníPřírodovědecké muzeum, Národní muzeumPragueCzech Republic
| | - Ondřej Naňka
- Anatomický ústav1. lékařská fakultaUniverzita KarlovaPragueCzech Republic
| | - Petr Velemínský
- Antropologické odděleníPřírodovědecké muzeum, Národní muzeumPragueCzech Republic
| | - Emiliano Bruner
- Programa de PaleobiologíaCentro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
15
|
Rangel‐de Lázaro G, Neubauer S, Gunz P, Bruner E. Ontogenetic changes of diploic channels in modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:96-111. [DOI: 10.1002/ajpa.24085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Gizéh Rangel‐de Lázaro
- Department of Earth SciencesNatural History Museum London UK
- Institut Català de Paleoecologia Humana i Evolució Social Tarragona Spain
- Departament d'Història i Història de l'ArtUniversitat Rovira i Virgili Tarragona Spain
| | - Simon Neubauer
- Department of Human EvolutionMax Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Philipp Gunz
- Department of Human EvolutionMax Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| |
Collapse
|
16
|
Perez Velazquez JL, Mateos DM, Guevara Erra R. On a Simple General Principle of Brain Organization. Front Neurosci 2019; 13:1106. [PMID: 31680839 PMCID: PMC6804438 DOI: 10.3389/fnins.2019.01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
A possible framework to characterize nervous system dynamics and its organization in conscious and unconscious states is introduced, derived from a high level perspective on the coordinated activity of brain cell ensembles. Some questions are best addressable in a global framework and here we build on past observations about the structure of configurations of brain networks in conscious and unconscious states and about neurophysiological results. Aiming to bind some results together into some sort of coherence with a central theme, the scenario that emerges underscores the crucial importance of the creation and dissipation of energy gradients in brain cellular ensembles resulting in maximization of the configurations in the functional connectivity among those networks that favor conscious awareness and healthy conditions. These considerations are then applied to indicate approaches that can be used to improve neuropathological syndromes.
Collapse
Affiliation(s)
| | - Diego M. Mateos
- Instituto de Matemática Aplicada del Litoral–CONICET–UNL, CCT CONICET, Santa Fe, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Entre Ríos, Argentina
| | - Ramon Guevara Erra
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Eisová S, Píšová H, Velemínský P, Bruner E. Normal craniovascular variation in two modern European adult populations. J Anat 2019; 235:765-782. [PMID: 31236921 PMCID: PMC6742892 DOI: 10.1111/joa.13019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 01/06/2023] Open
Abstract
The vascular networks running into the meningeal layers, between the brain and braincase, leave imprints on the endocranial surface. These traces are visible in osteological specimens and skeletal collections, providing indirect evidence of vascular patterns in those cases in which bone remains are the only source of anatomical information, such as in forensic science, bioarchaeology and paleontology. The main vascular elements are associated with the middle meningeal artery, the venous sinuses of the dura mater, and the emissary veins. Most of these vascular systems have been hypothesized to be involved in endocranial thermal regulation. Although these traits deal with macroanatomical features, much information on their variation is still lacking. In this survey, we analyze a set of craniovascular imprints in two European dry skull samples with different neurocranial proportions: a brachycephalic Czech sample (n = 103) and a mesocephalic Italian sample (n = 152). We analyzed variation and distribution, correlation with cranial metrics, and sex differences in the dominance of the branches of the middle meningeal artery, the patterns of confluence of the sinuses, and the size of the emissary foramina. The descriptive statistics provide a reference to compare specimens and samples from different case studies. When compared with the Italian skulls, the Czech skulls display a greater dominance of the anterior branch of the middle meningeal artery and more asymmetric right-dominance of the confluence of the venous sinuses. There is no sex difference in the middle meningeal vessels, but males show a greater prevalence of the occipito-marginal draining system. Differences in the middle meningeal vessels or venous sinuses are apparently not influenced by cranial dimensions or proportions. The mastoid foramina are larger in larger and more brachycephalic skulls, which increases the emissary potential flow in the Czech sample and males, when compared with the Italian samples and females, respectively. The number of mastoid foramina increases in wider skulls. This anatomic information is necessary to develop further morphological and functional inferences on the relationships between neurocranial bones and vessels at the genetic, ontogenetic, and phylogenetic levels.
Collapse
Affiliation(s)
- Stanislava Eisová
- Department of Anthropology and Human GeneticsCharles UniversityPragueCzech Republic
- Department of AnthropologyNational MuseumPragueCzech Republic
| | - Hana Píšová
- Department of Anthropology and Human GeneticsCharles UniversityPragueCzech Republic
| | - Petr Velemínský
- Department of AnthropologyNational MuseumPragueCzech Republic
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
18
|
Bruner E. Human paleoneurology: Shaping cortical evolution in fossil hominids. J Comp Neurol 2019; 527:1753-1765. [PMID: 30520032 DOI: 10.1002/cne.24591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
Abstract
Evolutionary neuroanatomy must integrate two different sources of information, namely from fossil and from living species. Fossils supply information concerning the process of evolution, whereas living species supply information on the product of evolution. Unfortunately, the fossil record is partial and fragmented, and often cannot support validations for specific evolutionary hypotheses. Living species can provide more comprehensive indications, but they do not represent ancestral groups or primitive forms. Macaques or chimpanzees are frequently used as proxy for human ancestral conditions, despite the fact they are divergent and specialized lineages, with their own biological features. Similarly, in paleoanthropology independent lineages (such as Neanderthals) should not be confused with ancestral modern human stages. In this comparative framework, paleoneurology deals with the analysis of the endocranial cavity in extinct species, in order to make inferences on brain evolution. A main target of this field is to distinguish the endocranial variations due to brain changes, from those due to cranial constraints. Digital anatomy and computed morphometrics have provided major advances in this field. However, brains and endocasts can be hard to analyze with geometrical models, because of uncertainties due to the localization of cortical landmarks and boundaries. The study of the evolution of the parietal cortex supplies an interesting case-study in which paleontological and neontological data can integrate and test evolutionary hypotheses based on multiple sources of evidence. The relationships with visuospatial functions and brain-body-tool integration stress further that the analysis of the cognitive system should go beyond the neural boundaries of the brain.
Collapse
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología de Homínidos, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
19
|
Bruner E, Esteve-Altava B, Rasskin-Gutman D. A network approach to brain form, cortical topology and human evolution. Brain Struct Funct 2019; 224:2231-2245. [DOI: 10.1007/s00429-019-01900-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
|
20
|
Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep 2019; 9:8463. [PMID: 31186485 PMCID: PMC6560109 DOI: 10.1038/s41598-019-44877-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Throughout the past decade, studying ancient genomes has provided unique insights into human prehistory, and differences between modern humans and other branches like Neanderthals can enrich our understanding of the molecular basis of unique modern human traits. Modern human variation and the interactions between different hominin lineages are now well studied, making it reasonable to go beyond fixed genetic changes and explore changes that are observed at high frequency in present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency. We suggest that molecular mechanisms in cell division and networks affecting cellular features of neurons were prominently modified by these changes. Complex phenotypes in brain growth trajectory and cognitive traits are likely influenced by these networks and other non-coding changes presented here. We propose that at least some of these changes contributed to uniquely human traits, and should be prioritized for experimental validation.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Barcelona, Spain
| | - Cedric Boeckx
- ICREA, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- UB Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
21
|
Lesciotto KM, Richtsmeier JT. Craniofacial skeletal response to encephalization: How do we know what we think we know? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168 Suppl 67:27-46. [PMID: 30680710 PMCID: PMC6424107 DOI: 10.1002/ajpa.23766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size (encephalization) have caused alterations to the modern human skull, resulting in a suite of traits unique among extant primates, including a domed cranial vault, highly flexed cranial base, and retracted facial skeleton. Most prior studies have used fossil or comparative primate data to establish correlations between brain size and cranial form, but the mechanistic basis for how changes in brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and has only rarely been investigated critically. We argue that understanding how changes in human skull morphology could have resulted from increased encephalization requires the direct testing of hypotheses relating to interaction of embryonic development of the bones of the skull and the brain. Fossil and comparative primate data have thoroughly described the patterns of association between brain size and skull morphology. Here we suggest complementing such existing datasets with experiments focused on mechanisms responsible for producing the observed patterns to more thoroughly understand the role of encephalization in shaping the modern human skull.
Collapse
Affiliation(s)
- Kate M Lesciotto
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
22
|
Beaudet A, Du A, Wood B. Evolution of the modern human brain. PROGRESS IN BRAIN RESEARCH 2019; 250:219-250. [DOI: 10.1016/bs.pbr.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Visuospatial Integration and Hand-Tool Interaction in Cognitive Archaeology. Curr Top Behav Neurosci 2019; 41:13-36. [PMID: 30547431 DOI: 10.1007/7854_2018_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Testing cognitive hypotheses in extinct species can be challenging, but it can be done through the integration of independent sources of information (e.g., anatomy, archaeology, neurobiology, psychology), and validated with quantitative and experimental approaches. The parietal cortex has undergone changes and specializations in humans, probably in regions involved in visuospatial integration. Visual imagery and hand-eye coordination are crucial for a species with a remarkable technological and symbolic capacity. Hand-tool relationships are not only a matter of spatial planning but involve deeper cognitive levels that concern body cognition, self-awareness, and the ability to integrate tools into body schemes, extending the body's functional and structural range. Therefore, a co-evolution between body and technology is to be expected not only in terms of anatomical correspondence but also in terms of cognitive integration. In prehistory, lithic tools are crucial in the interpretation of the cognitive abilities of extinct human species. The shape of tools and the grasping patterns associated with the corresponding haptic experience can supply some basic quantitative approaches to evaluate changes in the archaeological record. At the physiological level, electrodermal activity can be used as proxy to investigate the cognitive response during haptic experiences, revealing differences between tools and between subjects. These approaches can be also useful to evaluate whether and to what extent our complex cognitive resources are based on the capacity to export and delegate functions to external technological components.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.
| | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | | |
Collapse
|
24
|
Beaudet A, Carlson KJ, Clarke RJ, de Beer F, Dhaene J, Heaton JL, Pickering TR, Stratford D. Cranial vault thickness variation and inner structural organization in the StW 578 hominin cranium from Jacovec Cavern, South Africa. J Hum Evol 2018; 121:204-220. [DOI: 10.1016/j.jhevol.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
|
25
|
Challenges Facing the Study of the Evolutionary Origins of Human Right-Handedness and Language. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0038-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Aboitiz F. A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing. Front Neurosci 2018; 12:174. [PMID: 29636657 PMCID: PMC5880940 DOI: 10.3389/fnins.2018.00174] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/05/2018] [Indexed: 12/27/2022] Open
Abstract
In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Pereira‐Pedro AS, Masters M, Bruner E. Shape analysis of spatial relationships between orbito-ocular and endocranial structures in modern humans and fossil hominids. J Anat 2017; 231:947-960. [PMID: 29027198 PMCID: PMC5696126 DOI: 10.1111/joa.12693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 11/30/2022] Open
Abstract
The orbits and eyes of modern humans are situated directly below the frontal lobes and anterior to the temporal lobes. Contiguity between these orbital and cerebral elements could generate spatial constraints, and potentially lead to deformation of the eye and reduced visual acuity during development. In this shape analysis we evaluate whether and to what extent covariation exists between ocular morphology and the size and spatial position of the frontal and temporal areas in adult modern humans. Magnetic resonance imaging (MRI) was used to investigate patterns of variation among the brain and eyes, while computed tomography (CT) was used to compare cranial morphology in this anatomical region among modern humans, extinct hominids and chimpanzees. Seventeen landmarks and semi-landmarks that capture the outline of the eye, frontal lobe, anterior fossa/orbital roof and the position of the temporal tips were sampled using lateral scout views in two dimensions, after projection of the average grayscale values of each hemisphere, with midsagittal and parasagittal elements overlapped onto the same plane. MRI results demonstrated that eye position in adult humans varies most with regard to its horizontal distance from the temporal lobes and, secondly, in its vertical distance from the frontal lobes. Size was mainly found to covary with the distance between the eye and temporal lobes. Proximity to these cerebral lobes may generate spatial constraints, as some ocular deformation was observed. Considering the CT analysis, modern humans vary most with regard to the orientation of the orbits, while interspecific variation is mainly associated with separation between the orbits and endocranial elements. These findings suggest that size and position of the frontal and temporal lobes can affect eye and orbit morphology, though potential effects on eye shape require further study. In particular, possible effects of these spatial and allometric relationships on the eye and vision should be examined using ontogenetic samples, vision parameters such as refractive error in diopters, and three-dimensional approaches that include measures of extraocular soft tissues within the orbit.
Collapse
Affiliation(s)
| | | | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
28
|
Bollero P, Ricchiuti MR, Laganà G, DI Fusco G, Lione R, Cozza P. Correlations between dental malocclusions, ocular motility, and convergence disorders: a cross-sectional study in growing subjects. ACTA ACUST UNITED AC 2017; 10:289-294. [PMID: 29285332 DOI: 10.11138/orl/2017.10.3.289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective The purpose of the study was to analyze the association between dento-skeletal malocclusions, ocular motility, and convergence disorders in growing subjects. Materials and methods 84 subjects (49 males, 35 females) with a mean age of 7.3±1.7 years were enrolled in a screening procedure for celiac disease at the Department of Gastroenterology of the University of Rome "Tor Vergata". Each child underwent an orthodontic, orthoptic, and ophtalmological examination. Pearson's Chi-Square test with Yates' correction and Fisher's exact test were conducted to assess the association between orthoptic defects and malocclusions (p<0.05). Results Ocular motility disorders were present in 44.9% of males and in 57.1% of females, while convergence defects were present in 10.2% of males and in 2.9% of females. Ocular motility disorders were more frequent in subjects with Angle Class III malocclusion (66.7%) than in subjects with Angle Class II (59.1%) and Class I (45.8%) malocclusion. Convergence defects were equally frequent in Angle Class I and Class II malocclusion (5.1%), while none subject presenting with Angle Class III malocclusion exhibited convergence defects. A statistically significant correlations was found between ocular motility disorders and unilateral cross-bite with midline deviation. Conclusion Ocular motility defects had a significant greater prevalence in subjects presenting with unilateral cross-bite and midline deviation. The importance of role of orthodontic diagnosis among interdisciplinary treatment in growing children should be recognized.
Collapse
Affiliation(s)
- P Bollero
- Department of Clinical Sciences and Traslation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - M R Ricchiuti
- Department of Clinical Sciences and Traslation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - G Laganà
- Department of Clinical Sciences and Traslation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - G DI Fusco
- Department of Clinical Sciences and Traslation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - R Lione
- Department of Clinical Sciences and Traslation Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - P Cozza
- Department of Clinical Sciences and Traslation Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
29
|
Pereira-Pedro AS, Rilling JK, Chen X, Preuss TM, Bruner E. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:255-263. [PMID: 29065406 PMCID: PMC5687995 DOI: 10.1159/000481085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022]
Abstract
The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage.
Collapse
Affiliation(s)
- Ana Sofia Pereira-Pedro
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| | - James K. Rilling
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Yerkes National Primate Research Center, Emory University, Atlanta, (USA)
| | - Xu Chen
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
| | - Todd M. Preuss
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta (USA)
| | - Emiliano Bruner
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| |
Collapse
|
30
|
Bruner E. Language, Paleoneurology, and the Fronto-Parietal System. Front Hum Neurosci 2017; 11:349. [PMID: 28713257 PMCID: PMC5491953 DOI: 10.3389/fnhum.2017.00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución HumanaBurgos, Spain
| |
Collapse
|
31
|
Bruner E, Pereira-Pedro AS, Bastir M. Patterns of morphological integration between parietal and temporal areas in the human skull. J Morphol 2017; 278:1312-1320. [DOI: 10.1002/jmor.20714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Emiliano Bruner
- Grupo de Paleobiología; Centro Nacional de Investigación sobre la Evolución Humana; Burgos Spain
| | - Ana Sofia Pereira-Pedro
- Grupo de Paleobiología; Centro Nacional de Investigación sobre la Evolución Humana; Burgos Spain
| | - Markus Bastir
- Departamento de Paleobiología; Museo Nacional de Ciencias Naturales; Madrid Spain
| |
Collapse
|
32
|
Van Minh N, Hamada Y. Age-related changes of sulcal imprints on the endocranium in the Japanese macaque (Macaca fuscata). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:285-294. [DOI: 10.1002/ajpa.23205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Nguyen Van Minh
- Faculty of Forestry; University of Agriculture and Forestry, Hue University, Hue; Thua Thien Hue Vietnam
| | - Yuzuru Hamada
- Evolutionary Morphology Section, Primate Research Institute; Kyoto University; Inuyama Aichi 484-8506 Japan
| |
Collapse
|
33
|
Precuneus proportions and cortical folding: A morphometric evaluation on a racially diverse human sample. Ann Anat 2017; 211:120-128. [PMID: 28279731 DOI: 10.1016/j.aanat.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Recent analyses have suggested that the size and proportions of the precuneus are remarkably variable among adult humans, representing a major source of geometrical difference in midsagittal brain morphology. The same area also represents the main midsagittal brain difference between humans and chimpanzees, being more expanded in our species. Enlargement of the upper parietal surface is a specific feature of Homo sapiens, when compared with other fossil hominids, suggesting the involvement of these cortical areas in recent modern human evolution. Here, we provide a survey on midsagittal brain morphology by investigating whether precuneus size represents the largest component of variance within a larger and racially diverse sample of 265 adult humans. Additionally, we investigate the relationship between precuneus shape variation and folding patterns. Precuneus proportions are confirmed to be a major source of human brain variation even when racial variability is considered. Larger precuneus size is associated with additional precuneal gyri, generally in its anterior district. Spatial variation is most pronounced in the dorsal areas, with no apparent differences between hemispheres, between sexes, or among different racial groups. These dorsal areas integrate somatic and visual information together with the lateral elements of the parietal cortex, representing a crucial node for self-centered mental imagery. The histological basis and functional significance of this intra-specific variation in the upper precuneus remains to be evaluated.
Collapse
|
34
|
Eisová S, Rangel de Lázaro G, Píšová H, Pereira-Pedro S, Bruner E. Parietal Bone Thickness and Vascular Diameters in Adult Modern Humans: A Survey on Cranial Remains. Anat Rec (Hoboken) 2016; 299:888-96. [DOI: 10.1002/ar.23348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/25/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Stanislava Eisová
- Grupo de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana; Burgos Spain
| | - Gizéh Rangel de Lázaro
- Area de Prehistoria, Universitat Rovira i Virgili; Tarragona Spain
- Institut Català De Paleoecologia Humana i Evolució Social (IPHES); Tarragona Spain
| | - Hana Píšová
- Katedra antropologie a genetiky člověka, Univerzita Karlova; Czech Republic
- Antropologické oddělení Přírodovědeckého muzea; Narodnı Muzeum Prague Czech Republic
| | - Sofia Pereira-Pedro
- Grupo de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana; Burgos Spain
| | - Emiliano Bruner
- Grupo de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana; Burgos Spain
| |
Collapse
|
35
|
Hublin JJ, Neubauer S, Gunz P. Brain ontogeny and life history in Pleistocene hominins. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140062. [PMID: 25602066 DOI: 10.1098/rstb.2014.0062] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A high level of encephalization is critical to the human adaptive niche and emerged among hominins over the course of the past 2 Myr. Evolving larger brains required important adaptive adjustments, in particular regarding energy allocation and life history. These adaptations included a relatively small brain at birth and a protracted growth of highly dependent offspring within a complex social environment. In turn, the extended period of growth and delayed maturation of the brain structures of humans contribute to their cognitive complexity. The current palaeoanthropological evidence shows that, regarding life history and brain ontogeny, the Pleistocene hominin taxa display different patterns and that one cannot simply contrast an 'ape-model' to a 'human-model'. Large-brained hominins such as Upper Pleistocene Neandertals have evolved along their own evolutionary pathway and can be distinguished from modern humans in terms of growth pattern and brain development. The life-history pattern and brain ontogeny of extant humans emerged only recently in the course of human evolution.
Collapse
Affiliation(s)
- Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| |
Collapse
|
36
|
Evidence for expansion of the precuneus in human evolution. Brain Struct Funct 2016; 222:1053-1060. [PMID: 26725108 DOI: 10.1007/s00429-015-1172-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
Abstract
The evolution of neurocranial morphology in Homo sapiens is characterized by bulging of the parietal region, a feature unique to our species. In modern humans, expansion of the parietal surface occurs during the first year of life, in a morphogenetic stage which is absent in chimpanzees and Neandertals. A similar variation in brain shape among living adult humans is associated with expansion of the precuneus. Using MRI-derived structural brain templates, we compare medial brain morphology between humans and chimpanzees through shape analysis and geometrical modeling. We find that the main spatial difference is a prominent expansion of the precuneus in our species, providing further evidence of evolutionary changes associated with this area. The precuneus is a major hub of brain organization, a central node of the default-mode network, and plays an essential role in visuospatial integration. Together, the comparative neuroanatomical and paleontological evidence suggest that precuneus expansion is a neurological specialization of H. sapiens that evolved in the last 150,000 years that may be associated with recent human cognitive specializations.
Collapse
|
37
|
Rangel de Lázaro G, de la Cuétara JM, Píšová H, Lorenzo C, Bruner E. Diploic vessels and computed tomography: Segmentation and comparison in modern humans and fossil hominids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:313-24. [DOI: 10.1002/ajpa.22878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/10/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Gizéh Rangel de Lázaro
- Área de Prehistoria; Universitat Rovira I Virgili; Tarragona Spain
- Institut Català De Paleoecologia Humana I Evolució Social (IPHES); Tarragona Spain
| | | | - Hana Píšová
- Antropologické Oddělení; Univerzita Karlova and Národní Muzeum; Prague Czech Republic
| | - Carlos Lorenzo
- Área de Prehistoria; Universitat Rovira I Virgili; Tarragona Spain
- Institut Català De Paleoecologia Humana I Evolució Social (IPHES); Tarragona Spain
| | - Emiliano Bruner
- Grupo de Paleobiología; Centro Nacional De Investigación Sobre La Evolución Humana (CENIEH); Burgos Spain
| |
Collapse
|
38
|
Masters M, Bruner E, Queer S, Traynor S, Senjem J. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology. J Anat 2015; 227:460-73. [PMID: 26250048 DOI: 10.1111/joa.12364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/29/2022] Open
Abstract
Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject's body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a number of occipital lobe gyri even after accounting for these cofactors, but was again found to be more highly correlated with the frontal cortex than with the occipital cortex. These results indicate that eye volume explains only a small amount of variation in orbital and visual cortical volume, and that the eye and orbit are generally more structurally associated with the frontal lobes than they are functionally associated with the visual cortex of the occipital lobes. Results also demonstrate that these components of the visual system are highly complex and influenced by a multitude of factors in humans.
Collapse
Affiliation(s)
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | - Jess Senjem
- University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Amano H, Kikuchi T, Morita Y, Kondo O, Suzuki H, Ponce de León MS, Zollikofer CP, Bastir M, Stringer C, Ogihara N. Virtual reconstruction of the Neanderthal Amud 1 cranium. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:185-197. [DOI: 10.1002/ajpa.22777] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/06/2015] [Accepted: 05/15/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Hideki Amano
- Department of Mechanical Engineering, Faculty of Science and Technology; Keio University; Yokohama 223-8522 Japan
| | - Takeo Kikuchi
- Department of Mechanical Engineering, Faculty of Science and Technology; Keio University; Yokohama 223-8522 Japan
| | - Yusuke Morita
- Department of Mechanical Engineering, Faculty of Science and Technology; Keio University; Yokohama 223-8522 Japan
| | - Osamu Kondo
- Department of Biological Sciences, Graduate School of Science; University of Tokyo; Tokyo 113-0033 Japan
| | - Hiromasa Suzuki
- Department of Precision Engineering, Graduate School of Engineering; University of Tokyo; Tokyo 113-8656 Japan
| | | | | | - Markus Bastir
- Paleoanthropology Group, Department of Paleobiology; Museo Nacional De Ciencias Naturales; Madrid 28006 Spain
| | - Chris Stringer
- Department of Earth Sciences; Natural History Museum; London Sw7 5BD UK
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Faculty of Science and Technology; Keio University; Yokohama 223-8522 Japan
| |
Collapse
|
40
|
Bruner E, Amano H, de la Cuétara JM, Ogihara N. The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans. J Anat 2015. [PMID: 26200138 DOI: 10.1111/joa.12355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The spatial relationships between brain and braincase represent a major topic in surgery and evolutionary neuroanatomy. In paleoneurology, neurocranial landmarks are often used as references for brain areas. In this study, we analyze the variation and covariation of midsagittal brain and skull coordinates in a sample of adult modern humans in order to demonstrate spatial associations between hard and soft tissues. The correlation between parietal lobe size and parietal bone size is very low, and there is a marked individual variation. The distances between lobes and bones are partially influenced by the dimensions of the parietal lobes. The main pattern of morphological variability among individuals, associated with the size of the precuneus, apparently does not influence the position of the neurocranial sutures. Therefore, variations in precuneal size modify the distance between the paracentral lobule and bregma, and between the parietal lobe and lambda. Hence, the relative position of the cranial and cerebral landmarks can change as a function of the parietal dimensions. The slight correlation and covariation among these elements suggests a limited degree of spatial integration between soft and hard tissues. Therefore, although the brain influences the cranial size and shape during morphogenesis, the specific position of the cerebral components is sensitive to multiple effects and local factors, without a strict correspondence with the bone landmarks. This absence of correspondent change between brain and skull boundaries suggests caution when making inferences about the brain areas from the position of the cranial sutures. The fact that spatial relationships between cranial and brain areas may vary according to brain proportions must be considered in paleoneurology, when brain anatomy is inferred from cranial evidence.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | |
Collapse
|
41
|
Fan CC, Bartsch H, Schork AJ, Chen CH, Wang Y, Lo MT, Brown TT, Kuperman JM, Hagler DJ, Schork NJ, Jernigan TL, Dale AM. Modeling the 3D geometry of the cortical surface with genetic ancestry. Curr Biol 2015; 25:1988-92. [PMID: 26166778 DOI: 10.1016/j.cub.2015.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/04/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
Knowing how the human brain is shaped by migration and admixture is a critical step in studying human evolution [1, 2], as well as in preventing the bias of hidden population structure in brain research [3, 4]. Yet, the neuroanatomical differences engendered by population history are still poorly understood. Most of the inference relies on craniometric measurements, because morphology of the brain is presumed to be the neurocranium's main shaping force before bones are fused and ossified [5]. Although studies have shown that the shape variations of cranial bones are consistent with population history [6-8], it is unknown how much human ancestry information is retained by the human cortical surface. In our group's previous study, we found that area measures of cortical surface and total brain volumes of individuals of European descent in the United States correlate significantly with their ancestral geographic locations in Europe [9]. Here, we demonstrate that the three-dimensional geometry of cortical surface is highly predictive of individuals' genetic ancestry in West Africa, Europe, East Asia, and America, even though their genetic background has been shaped by multiple waves of migratory and admixture events. The geometry of the cortical surface contains richer information about ancestry than the areal variability of the cortical surface, independent of total brain volumes. Besides explaining more ancestry variance than other brain imaging measurements, the 3D geometry of the cortical surface further characterizes distinct regional patterns in the folding and gyrification of the human brain associated with each ancestral lineage.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hauke Bartsch
- Multimodal Imaging Laboratory, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Andrew J Schork
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chi-Hua Chen
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Yunpeng Wang
- Multimodal Imaging Laboratory, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway; Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Min-Tzu Lo
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Timothy T Brown
- Multimodal Imaging Laboratory, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Joshua M Kuperman
- Multimodal Imaging Laboratory, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Donald J Hagler
- Multimodal Imaging Laboratory, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | | | - Terry L Jernigan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA; Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Anders M Dale
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Multimodal Imaging Laboratory, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Reid SN, Ziermann JM, Gondré-Lewis MC. Genetically induced abnormal cranial development in human trisomy 18 with holoprosencephaly: comparisons with the normal tempo of osteogenic-neural development. J Anat 2015; 227:21-33. [PMID: 26018729 PMCID: PMC4475356 DOI: 10.1111/joa.12326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
Craniofacial malformations are common congenital defects caused by failed midline inductive signals. These midline defects are associated with exposure of the fetus to exogenous teratogens and with inborn genetic errors such as those found in Down, Patau, Edwards' and Smith-Lemli-Opitz syndromes. Yet, there are no studies that analyze contributions of synchronous neurocranial and neural development in these disorders. Here we present the first in-depth analysis of malformations of the basicranium of a holoprosencephalic (HPE) trisomy 18 (T18; Edwards' syndrome) fetus with synophthalmic cyclopia and alobar HPE. With a combination of traditional gross dissection and state-of-the-art computed tomography, we demonstrate the deleterious effects of T18 caused by a translocation at 18p11.31. Bony features included a single developmentally unseparated frontal bone, and complete dual absence of the anterior cranial fossa and ethmoid bone. From a superior view with the calvarium plates removed, there was direct visual access to the orbital foramen and hard palate. Both the eyes and the pituitary gland, normally protected by bony structures, were exposed in the cranial cavity and in direct contact with the brain. The middle cranial fossa was shifted anteriorly, and foramina were either missing or displaced to an abnormal location due to the absence or misplacement of its respective cranial nerve (CN). When CN development was conserved in its induction and placement, the respective foramen developed in its normal location albeit with abnormal gross anatomical features, as seen in the facial nerve (CNVII) and the internal acoustic meatus. More anteriorly localized CNs and their foramina were absent or heavily disrupted compared with posterior ones. The severe malformations exhibited in the cranial fossae, orbital region, pituitary gland and sella turcica highlight the crucial involvement of transcription factors such as TGIF, which is located on chromosome 18 and contributes to neural patterning, in the proper development of neural and cranial structures. Our study of a T18 specimen emphasizes the intricate interplay between bone and brain development in midline craniofacial abnormalities in general.
Collapse
Affiliation(s)
- Shaina N Reid
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of MedicineWashington, DC, USA
| | - Janine M Ziermann
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of MedicineWashington, DC, USA
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of MedicineWashington, DC, USA
| |
Collapse
|
43
|
Carreira LM, Ferreira A. Longitudinal Cerebral Fissure Anatomy Variations in Brachy-, Dolicho- and Mesaticephalic Dogs and Their Importance to Brain Surgery. Anat Rec (Hoboken) 2015; 298:1612-21. [PMID: 26062077 DOI: 10.1002/ar.23183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 03/31/2015] [Accepted: 04/25/2015] [Indexed: 11/07/2022]
Abstract
The study used a sample of 69 formalin-fixed brains from adult dog cadavers (n = 69) and aimed (1) to characterize the longitudinal cerebral fissure (LCF) anatomy in brachy-(B), dolicho-(D) and mesaticephalic-(M) dogs and their potential differences, and (2) to establish cranioencephalic relationships between the LCF and five classical craniometric points(cp): asterion(ast), bregma(b), stephanion(st), glabella(g), and pterion(pt). Anatomical records were collected using a digital caliper, and for statistical analysis P-values < 0.05 were considered significant. The LCF length can be ranked, in ascending order as B < D < M, and if used as a surgical corridor, the M group had the greatest surgical corridor area, and the D group the smallest. LCF morphology was uniform among the three groups exhibiting dilated anterior(AR) and posterior(PR) regions and narrow middle region, where the most marked differences were registered. The LCF AR is the ideal spot to begin brain surgery if the LCF is to be used as a surgical corridor in B and M, while the LCF PR should be considered in D. The five cp selected were quite useful to understand LCF anatomical morphology, its projections over the external skull surface, and to establish cranioencephalic relationships between the LCF and vault; allowing us to consider the vault anterior area in B, and in M, and the vault posterior area in D for craniotomy initial burr-hole placement. As for the distance from the cp projections in the brain surface to the LCF regions, major differences were registered by comparing the B group with the other two, and for both hemispheres.
Collapse
Affiliation(s)
- L Miguel Carreira
- Department of Clinic, Surgery, Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Portugal
- Centre for Interdisciplinary of Research in Animal Health (CIISA), FMV-ULisboa, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| | - A Ferreira
- Department of Clinic, Surgery, Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Portugal
- Centre for Interdisciplinary of Research in Animal Health (CIISA), FMV-ULisboa, Portugal
| |
Collapse
|
44
|
Bruner E, Román F, de la Cuétara J, Martin-Loeches M, Colom R. Cortical surface area and cortical thickness in the precuneus of adult humans. Neuroscience 2015; 286:345-52. [DOI: 10.1016/j.neuroscience.2014.11.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/10/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022]
|
45
|
OGIHARA NAOMICHI, AMANO HIDEKI, KIKUCHI TAKEO, MORITA YUSUKE, HASEGAWA KUNIHIRO, KOCHIYAMA TAKANORI, TANABE HIROKIC. Towards digital reconstruction of fossil crania and brain morphology. ANTHROPOL SCI 2015. [DOI: 10.1537/ase.141109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- NAOMICHI OGIHARA
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama
| | - HIDEKI AMANO
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama
| | - TAKEO KIKUCHI
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama
| | - YUSUKE MORITA
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama
| | - KUNIHIRO HASEGAWA
- Department of Social and Human Environment, Graduate School of Environmental Studies, Nagoya University, Nagoya
| | - TAKANORI KOCHIYAMA
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute International, Kyoto
| | - HIROKI C. TANABE
- Department of Social and Human Environment, Graduate School of Environmental Studies, Nagoya University, Nagoya
| |
Collapse
|
46
|
Esteve-Altava B, Rasskin-Gutman D. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations. J Anat 2014; 225:306-16. [PMID: 24975579 PMCID: PMC4166971 DOI: 10.1111/joa.12212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 11/29/2022] Open
Abstract
Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton.
Collapse
Affiliation(s)
- Borja Esteve-Altava
- Theoretical Biology Research Group, Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaValencia, Spain
| | - Diego Rasskin-Gutman
- Theoretical Biology Research Group, Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaValencia, Spain
| |
Collapse
|