1
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
2
|
Utashiro N, MacLaren DAA, Liu YC, Yaqubi K, Wojak B, Monyer H. Long-range inhibition from prelimbic to cingulate areas of the medial prefrontal cortex enhances network activity and response execution. Nat Commun 2024; 15:5772. [PMID: 38982042 PMCID: PMC11233578 DOI: 10.1038/s41467-024-50055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaneschka Yaqubi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf and Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Wojak
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Bertero A, Apicella AJ. Distinct electrophysiological properties of long-range GABAergic and glutamatergic neurons from the lateral amygdala to the auditory cortex of the mouse. J Physiol 2024; 602:1733-1757. [PMID: 38493320 DOI: 10.1113/jp286094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Differentiating between auditory signals of various emotional significance plays a crucial role in an individual's ability to thrive and excel in social interactions and in survival. Multiple approaches, including anatomical studies, electrophysiological investigations, imaging techniques, optogenetics and chemogenetics, have confirmed that the auditory cortex (AC) impacts fear-related behaviours driven by auditory stimuli by conveying auditory information to the lateral amygdala (LA) through long-range excitatory glutamatergic and GABAergic connections. In addition, the LA provides glutamatergic projections to the AC which are important to fear memory expression and are modified by associative fear learning. Here we test the hypothesis that the LA also sends long-range direct inhibitory inputs to the cortex. To address this fundamental question, we used anatomical and electrophysiological approaches, allowing us to directly assess the nature of GABAergic inputs from the LA to the AC in the mouse. Our findings elucidate the existence of a long-range inhibitory pathway from the LA to the AC (LAC) via parvalbumin-expressing (LAC-Parv) and somatostatin-expressing (LAC-SOM) neurons. This research identifies distinct electrophysiological properties for genetically defined long-range GABAergic neurons involved in the communication between the LA and the cortex (LAC-Parv inhibitory projections → AC neurons; LAC-Som inhibitory projections → AC neurons) within the lateral amygdala cortical network. KEY POINTS: The mouse auditory cortex receives inputs from the lateral amygdala. Retrograde viral tracing techniques allowed us to identify two previously undescribed lateral amygdala to auditory cortex (LAC) GABAergic projecting neurons. Extensive electrophysiological, morphological and anatomical characterization of LAC neurons is provided here, demonstrating key differences in the three populations. This study paves the way for a better understanding of the growing complexity of the cortico-amygdala-cortico circuit.
Collapse
Affiliation(s)
- Alice Bertero
- Neuroscience Institute, Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alfonso Junior Apicella
- Neuroscience Institute, Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Villarin JM, Kellendonk C. Locus of control: How the brain gives up when failure is taken for granted. Neuron 2023; 111:2620-2622. [PMID: 37678166 PMCID: PMC10859865 DOI: 10.1016/j.neuron.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
After repeatedly failing to get out of a stressful, uncontrollable environment, mice switch from escape behavior to inactivity. In this issue of Neuron, Li et al. identify a circuit involving noradrenergic projections from the locus coeruleus to GABAergic projection neurons in the orbitofrontal cortex that participate in this adaptive behavior.
Collapse
Affiliation(s)
- Joseph M Villarin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
5
|
Li C, Sun T, Zhang Y, Gao Y, Sun Z, Li W, Cheng H, Gu Y, Abumaria N. A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice. Neuron 2023; 111:2727-2741.e7. [PMID: 37352858 DOI: 10.1016/j.neuron.2023.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Persistence in the face of failure helps to overcome challenges. But the ability to adjust behavior or even give up when the task is uncontrollable has advantages. How the mammalian brain switches behavior when facing uncontrollability remains an open question. We generated two mouse models of behavioral transition from action to no-action during exposure to a prolonged experience with an uncontrollable outcome. The transition was not caused by pain desensitization or muscle fatigue and was not a depression-/learned-helplessness-like behavior. Noradrenergic neurons projecting to GABAergic neurons within the orbitofrontal cortex (OFC) are key regulators of this behavior. Fiber photometry, microdialysis, mini-two-photon microscopy, and tetrode/optrode in vivo recording in freely behaving mice revealed that the reduction of norepinephrine and downregulation of alpha 1 receptor in the OFC reduced the number and activity of GABAergic neurons necessary for driving action behavior resulting in behavioral transition. These findings define a circuit governing behavioral switch in response to prolonged uncontrollability.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tianping Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yimu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhou Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 211500, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Dowling KF, Dienel SJ, Barile Z, Bazmi HH, Lewis DA. Localization and Diagnostic Specificity of Glutamic Acid Decarboxylase Transcript Alterations in the Dorsolateral Prefrontal Cortex in Schizophrenia. Biol Psychiatry 2023; 94:322-331. [PMID: 37061080 PMCID: PMC10524522 DOI: 10.1016/j.biopsych.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Working memory (WM) deficits in schizophrenia are thought to reflect altered inhibition in the dorsolateral prefrontal cortex (DLPFC). This interpretation is supported by findings of lower transcript levels of the 2 enzymes, GAD67 and GAD65, which mediate basal and activity-dependent GABA (gamma-aminobutyric acid) synthesis, respectively. However, the relative magnitude, location within the depth of the DLPFC, and specificity to the disease process of schizophrenia of alterations in GAD67 and/or GAD65 remain unclear. METHODS Levels of GAD67 and GAD65 messenger RNAs (mRNAs) in superficial (layers 2/superficial 3) and deep (deep layer 6/white matter) zones of the DLPFC were quantified by quantitative polymerase chain reaction in subjects with schizophrenia (n = 41), major depression (n = 42), or bipolar disorder (n = 39) and unaffected comparison (n = 43) subjects. RESULTS Relative to the unaffected comparison group, GAD67 and GAD65 mRNA levels in the schizophrenia group were lower (p = .039, effect size = -0.69 and p = .027, effect size = -0.72, respectively) in the superficial zone but were unaltered in the deep zone. In the major depression group, only GAD67 mRNA levels were lower and only in the superficial zone (p = .089, effect size = 0.70). No differences were detected in the bipolar disorder group. Neither GAD67 nor GAD65 mRNA alterations were explained by psychosis, mood disturbance, or common comorbid factors. CONCLUSIONS Alterations in markers of GABA synthesis demonstrated transcript, DLPFC zone, and diagnostic specificity. Given the dependence of WM on GABA neurotransmission in the superficial DLPFC, our findings suggest that limitations to GABA synthesis in this location contribute to WM impairments in schizophrenia, especially during demanding WM tasks, when GABA synthesis requires the activity of both GAD67 and GAD65.
Collapse
Affiliation(s)
- Kevin F Dowling
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Zackery Barile
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
7
|
Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, Ishida Y, Koike M, Watanabe M, Isa T, Hioki H. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res 2023; 190:92-106. [PMID: 36574563 DOI: 10.1016/j.neures.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.
Collapse
Affiliation(s)
- Megumu Takahashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoyo Kobayashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Haruhi Mizuma
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuki Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
8
|
Ahmed N, Paré D. The Basolateral Amygdala Sends a Mixed (GABAergic and Glutamatergic) Projection to the Mediodorsal Thalamic Nucleus. J Neurosci 2023; 43:2104-2115. [PMID: 36788026 PMCID: PMC10039751 DOI: 10.1523/jneurosci.1924-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023] Open
Abstract
The medial prefrontal cortex receives converging inputs from the mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA). Although many studies reported that the BLA also projects to MD, there is conflicting evidence regarding this projection, with some data suggesting that it originates from GABAergic or glutamatergic neurons. Therefore, the present study aimed to determine the neurotransmitter used by MD-projecting BLA cells in male and female rats. We first examined whether BLA cells retrogradely labeled by Fast Blue infusions in MD are immunopositive for multiple established markers of BLA interneurons. A minority of MD-projecting BLA cells expressed somatostatin (∼22%) or calretinin (∼11%) but not other interneuronal markers, suggesting that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Second, we examined the responses of MD cells to optogenetic activation of BLA axons using whole-cell recordings in vitro Consistent with our immunohistochemical findings, among responsive MD cells, light stimuli typically elicited isolated EPSPs (73%) or IPSPs (27%) as well as coincident EPSPs and IPSPs (11%). Indicating that these IPSPs were monosynaptic, light-evoked EPSPs and IPSPs had the same latency and the IPSPs persisted in the presence of ionotropic glutamate receptor antagonists. Overall, our results indicate that the BLA sends a mixed, glutamatergic-GABAergic projection to MD, which likely influences coordination of activity between BLA, MD, and medial prefrontal cortex. An important challenge for future studies will be to examine the connections formed by MD-projecting glutamatergic and GABAergic BLA cells with each other and other populations of BLA cells.SIGNIFICANCE STATEMENT The mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA) send convergent projections to the medial prefrontal cortex. Although many studies reported that the BLA also projects to MD, there is conflicting evidence as to whether this projection is glutamatergic or GABAergic. By combining tract tracing, immunohistochemistry, optogenetics, and patch clamp recordings in vitro, we found that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Differential recruitment of these two contingents of cells likely influences coordination of activity between the BLA, MD, and medial prefrontal cortex.
Collapse
Affiliation(s)
- Nowrin Ahmed
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
9
|
Kupferschmidt DA, Cummings KA, Joffe ME, MacAskill A, Malik R, Sánchez-Bellot C, Tejeda HA, Yarur Castillo H. Prefrontal Interneurons: Populations, Pathways, and Plasticity Supporting Typical and Disordered Cognition in Rodent Models. J Neurosci 2022; 42:8468-8476. [PMID: 36351822 PMCID: PMC9665918 DOI: 10.1523/jneurosci.1136-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Prefrontal cortex (PFC) inhibitory microcircuits regulate the gain and timing of pyramidal neuron firing, coordinate neural ensemble interactions, and gate local and long-range neural communication to support adaptive cognition and contextually tuned behavior. Accordingly, perturbations of PFC inhibitory microcircuits are thought to underlie dysregulated cognition and behavior in numerous psychiatric diseases and relevant animal models. This review, based on a Mini-Symposium presented at the 2022 Society for Neuroscience Meeting, highlights recent studies providing novel insights into: (1) discrete medial PFC (mPFC) interneuron populations in the mouse brain; (2) mPFC interneuron connections with, and regulation of, long-range mPFC afferents; and (3) circuit-specific plasticity of mPFC interneurons. The contributions of such populations, pathways, and plasticity to rodent cognition are discussed in the context of stress, reward, motivational conflict, and genetic mutations relevant to psychiatric disease.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892
| | - Kirstie A Cummings
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35233
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Andrew MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
| | - Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, 94158
| | - Candela Sánchez-Bellot
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
- Laboratorio de Circuitos Neuronales, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 28002
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| | - Hector Yarur Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| |
Collapse
|
10
|
Du M, Santiago A, Akiz C, Aoki C. GABAergic interneurons' feedback inhibition of dorsal raphe-projecting pyramidal neurons of the medial prefrontal cortex suppresses feeding of adolescent female mice undergoing activity-based anorexia. Brain Struct Funct 2022; 227:2127-2151. [PMID: 35635653 DOI: 10.1007/s00429-022-02507-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
Anorexia Nervosa (AN) is characterized by voluntary food restriction, excessive exercise and extreme body weight loss. AN is particularly prevalent among adolescent females experiencing stress-induced anxiety. We used the animal model, activity-based anorexia (ABA), which captures these characteristics of AN, to reveal the neurobiology underlying individual differences in AN vulnerability. Dorsal raphe (DR) regulates feeding and is recruited when coping inescapable stress. Through chemogenetic activation, we investigated the role of mPFC pyramidal neurons projecting to DR (mPFC→DR) in adolescent female mice's decision to eat or exercise following ABA induction. Although the DREADD ligand C21 could activate 44% of the mPFC→DR neurons, this did not generate significant group mean difference in the amount of food intake, compared to control ABA mice without chemogenetic activation. However, analysis of individuals' responses to C21 revealed a significant, positive correlation between food intake and mPFC→DR neurons that co-express cFos, a marker for neuronal activity. cFos expression by GABAergic interneurons (GABA-IN) in mPFC was significantly greater than that for the control ABA mice, indicating recruitment of GABA-IN by mPFC→DR neurons. Electron microscopic immunohistochemistry revealed that GABAergic innervation is 60% greater for the PFC→DR neurons than adjacent Layer 5 pyramidal neurons without projections to DR. Moreover, individual differences in this innervation correlated negatively with food intake specifically on the day of C21 administration. We propose that C21 activates two antagonistic pathways: (1) PFC→DR pyramidal neurons that promote food intake; and (2) GABA-IN in the mPFC that dampen food intake through feedback inhibition of mPFC→DR neurons.
Collapse
Affiliation(s)
- Muzi Du
- Center for Neural Science, New York University, New York, NY, 10003, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Adrienne Santiago
- Center for Neural Science, New York University, New York, NY, 10003, USA.,New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cenk Akiz
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, 10003, USA. .,Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
11
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
13
|
Bertero A, Garcia C, Apicella AJ. Corticofugal VIP Gabaergic Projection Neurons in the Mouse Auditory and Motor Cortex. Front Neural Circuits 2021; 15:714780. [PMID: 34366798 PMCID: PMC8343102 DOI: 10.3389/fncir.2021.714780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Anatomical and physiological studies have described the cortex as a six-layer structure that receives, elaborates, and sends out information exclusively as excitatory output to cortical and subcortical regions. This concept has increasingly been challenged by several anatomical and functional studies that showed that direct inhibitory cortical outputs are also a common feature of the sensory and motor cortices. Similar to their excitatory counterparts, subsets of Somatostatin- and Parvalbumin-expressing neurons have been shown to innervate distal targets like the sensory and motor striatum and the contralateral cortex. However, no evidence of long-range VIP-expressing neurons, the third major class of GABAergic cortical inhibitory neurons, has been shown in such cortical regions. Here, using anatomical anterograde and retrograde viral tracing, we tested the hypothesis that VIP-expressing neurons of the mouse auditory and motor cortices can also send long-range projections to cortical and subcortical areas. We were able to demonstrate, for the first time, that VIP-expressing neurons of the auditory cortex can reach not only the contralateral auditory cortex and the ipsilateral striatum and amygdala, as shown for Somatostatin- and Parvalbumin-expressing long-range neurons, but also the medial geniculate body and both superior and inferior colliculus. We also demonstrate that VIP-expressing neurons of the motor cortex send long-range GABAergic projections to the dorsal striatum and contralateral cortex. Because of its presence in two such disparate cortical areas, this would suggest that the long-range VIP projection is likely a general feature of the cortex’s network.
Collapse
Affiliation(s)
- Alice Bertero
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| | - Charles Garcia
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Bae JW, Jeong H, Yoon YJ, Bae CM, Lee H, Paik SB, Jung MW. Parallel processing of working memory and temporal information by distinct types of cortical projection neurons. Nat Commun 2021; 12:4352. [PMID: 34272368 PMCID: PMC8285375 DOI: 10.1038/s41467-021-24565-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
It is unclear how different types of cortical projection neurons work together to support diverse cortical functions. We examined the discharge characteristics and inactivation effects of intratelencephalic (IT) and pyramidal tract (PT) neurons-two major types of cortical excitatory neurons that project to cortical and subcortical structures, respectively-in the deep layer of the medial prefrontal cortex in mice performing a delayed response task. We found stronger target-dependent firing of IT than PT neurons during the delay period. We also found the inactivation of IT neurons, but not PT neurons, impairs behavioral performance. In contrast, PT neurons carry more temporal information than IT neurons during the delay period. Our results indicate a division of labor between IT and PT projection neurons in the prefrontal cortex for the maintenance of working memory and for tracking the passage of time, respectively.
Collapse
Affiliation(s)
- Jung Won Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Huijeong Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Young Ju Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Chan Mee Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Hyeonsu Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea.
| |
Collapse
|
15
|
Esumi S, Nasu M, Kawauchi T, Miike K, Morooka K, Yanagawa Y, Seki T, Sakimura K, Fukuda T, Tamamaki N. Characterization and Stage-Dependent Lineage Analysis of Intermediate Progenitors of Cortical GABAergic Interneurons. Front Neurosci 2021; 15:607908. [PMID: 34305510 PMCID: PMC8297055 DOI: 10.3389/fnins.2021.607908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Intermediate progenitors of both excitatory and inhibitory neurons, which can replenish neurons in the adult brain, were recently identified. However, the generation of intermediate progenitors of GABAergic inhibitory neurons (IPGNs) has not been studied in detail. Here, we characterized the spatiotemporal distribution of IPGNs in mouse cerebral cortex. IPGNs generated neurons during both embryonic and postnatal stages, but the embryonic IPGNs were more proliferative. Our lineage tracing analyses showed that the embryonically proliferating IPGNs tended to localize to the superficial layers rather than the deep cortical layers at 3 weeks after birth. We also found that embryonic IPGNs derived from the medial and caudal ganglionic eminence (CGE) but more than half of the embryonic IPGNs were derived from the CGE and broadly distributed in the cerebral cortex. Taken together, our data indicate that the broadly located IPGNs during embryonic and postnatal stages exhibit a different proliferative property and layer distribution.
Collapse
Affiliation(s)
- Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nasu
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Koichiro Miike
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Protachevicz PR, Hansen M, Iarosz KC, Caldas IL, Batista AM, Kurths J. Emergence of Neuronal Synchronisation in Coupled Areas. Front Comput Neurosci 2021; 15:663408. [PMID: 33967729 PMCID: PMC8100315 DOI: 10.3389/fncom.2021.663408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most fundamental questions in the field of neuroscience is the emergence of synchronous behaviour in the brain, such as phase, anti-phase, and shift-phase synchronisation. In this work, we investigate how the connectivity between brain areas can influence the phase angle and the neuronal synchronisation. To do this, we consider brain areas connected by means of excitatory and inhibitory synapses, in which the neuron dynamics is given by the adaptive exponential integrate-and-fire model. Our simulations suggest that excitatory and inhibitory connections from one area to another play a crucial role in the emergence of these types of synchronisation. Thus, in the case of unidirectional interaction, we observe that the phase angles of the neurons in the receiver area depend on the excitatory and inhibitory synapses which arrive from the sender area. Moreover, when the neurons in the sender area are synchronised, the phase angle variability of the receiver area can be reduced for some conductance values between the areas. For bidirectional interactions, we find that phase and anti-phase synchronisation can emerge due to excitatory and inhibitory connections. We also verify, for a strong inhibitory-to-excitatory interaction, the existence of silent neuronal activities, namely a large number of excitatory neurons that remain in silence for a long time.
Collapse
Affiliation(s)
- Paulo R Protachevicz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Matheus Hansen
- Computer Science Department, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, Brazil
| | - Kelly C Iarosz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Faculdade de Telêmaco Borba, Telêmaco Borba, Brazil.,Graduate Program in Chemical Engineering, Federal University of Technology Paraná, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Antonio M Batista
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jürgen Kurths
- Department Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University, Berlin, Germany.,Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
17
|
Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020; 177:5437-5458. [PMID: 31347144 PMCID: PMC7707094 DOI: 10.1111/bph.14800] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| |
Collapse
|
18
|
Beutel T, Dzimiera J, Kapell H, Engelhardt M, Gass A, Schirmer L. Cortical projection neurons as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1211-1224. [PMID: 33103501 DOI: 10.1080/14728222.2020.1842358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory-demyelinating disease of the central nervous system associated with lesions of the cortical gray matter and subcortical white matter. Recently, cortical lesions have become a major focus of research because cortical pathology and neuronal damage are critical determinants of irreversible clinical progression. Recent transcriptomic studies point toward cell type-specific changes in cortical neurons in MS with a selective vulnerability of excitatory projection neuron subtypes. AREAS COVERED We discuss the cortical mapping and the molecular properties of excitatory projection neurons and their role in MS lesion pathology while placing an emphasis on their subtype-specific transcriptomic changes and levels of vulnerability. We also examine the latest magnetic resonance imaging techniques to study cortical MS pathology as a key tool for monitoring disease progression and treatment efficacy. Finally, we consider possible therapeutic avenues and novel strategies to protect excitatory cortical projection neurons. Literature search methodology: PubMed articles from 2000-2020. EXPERT OPINION Excitatory cortical projection neurons are an emerging therapeutic target in the treatment of progressive MS. Understanding neuron subtype-specific molecular pathologies and their exact spatial mapping will help establish starting points for the development of novel cell type-specific therapies and biomarkers in MS.
Collapse
Affiliation(s)
- Tatjana Beutel
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Julia Dzimiera
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Hannah Kapell
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| |
Collapse
|
19
|
Single Cocaine Exposure Inhibits GABA Uptake via Dopamine D1-Like Receptors in Adolescent Mice Frontal Cortex. Neurotox Res 2020; 38:824-832. [DOI: 10.1007/s12640-020-00259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
|
20
|
Kawai T, Yamada H, Sato N, Takada M, Matsumoto M. Preferential Representation of Past Outcome Information and Future Choice Behavior by Putative Inhibitory Interneurons Rather Than Putative Pyramidal Neurons in the Primate Dorsal Anterior Cingulate Cortex. Cereb Cortex 2020; 29:2339-2352. [PMID: 29722795 DOI: 10.1093/cercor/bhy103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) plays crucial roles in monitoring the outcome of a choice and adjusting a subsequent choice behavior based on the outcome information. In the present study, we investigated how different types of dACC neurons, that is, putative pyramidal neurons and putative inhibitory interneurons, contribute to these processes. We analyzed single-unit database obtained from the dACC in monkeys performing a reversal learning task. The monkey was required to adjust choice behavior from past outcome experiences. Depending on their action potential waveforms, the recorded neurons were classified into putative pyramidal neurons and putative inhibitory interneurons. We found that these neurons do not equally contribute to outcome monitoring and behavioral adjustment. Although both neuron types evenly responded to the current outcome, a larger proportion of putative inhibitory interneurons than putative pyramidal neurons stored the information about the past outcome. The putative inhibitory interneurons further represented choice-related signals more frequently, such as whether the monkey would shift the last choice to an alternative at the next choice opportunity. Our findings suggest that putative inhibitory interneurons, which are thought not to project to brain areas outside the dACC, preferentially transmit signals that would adjust choice behavior based on past outcome experiences.
Collapse
Affiliation(s)
- Takashi Kawai
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Yamada
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuya Sato
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya, Hyogo, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama Aichi, Japan
| | - Masayuki Matsumoto
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Melzer S, Monyer H. Diversity and function of corticopetal and corticofugal GABAergic projection neurons. Nat Rev Neurosci 2020; 21:499-515. [PMID: 32747763 DOI: 10.1038/s41583-020-0344-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
It is still widely thought that cortical projections to distant brain areas derive by and large from glutamatergic neurons. However, an increasing number of reports provide evidence that cortical GABAergic neurons comprise a smaller population of 'projection neurons' in addition to the well-known and much-studied interneurons. GABAergic long-range axons that derive from, or project to, cortical areas are thought to entrain distant brain areas for efficient information transfer and processing. Research conducted over the past 10 years has revealed that cortical GABAergic projection neurons are highly diverse in terms of molecular marker expression, synaptic targeting (identity of targeted cell types), activity pattern during distinct behavioural states and precise temporal recruitment relative to ongoing neuronal network oscillations. As GABAergic projection neurons connect many cortical areas unidirectionally or bidirectionally, it is safe to assume that they participate in the modulation of a whole series of behavioural and cognitive functions. We expect future research to examine how long-range GABAergic projections fine-tune activity in distinct distant networks and how their recruitment alters the behaviours that are supported by these networks.
Collapse
Affiliation(s)
- Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Bertero A, Zurita H, Normandin M, Apicella AJ. Auditory Long-Range Parvalbumin Cortico-Striatal Neurons. Front Neural Circuits 2020; 14:45. [PMID: 32792912 PMCID: PMC7390902 DOI: 10.3389/fncir.2020.00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that cortico-striatal pathways link auditory signals to action-selection and reward-learning behavior through excitatory projections. Only recently it has been demonstrated that long-range GABAergic cortico-striatal somatostatin-expressing neurons in the auditory cortex project to the dorsal striatum, and functionally inhibit the main projecting neuronal population, the spiny projecting neuron. Here we tested the hypothesis that parvalbumin-expressing neurons of the auditory cortex can also send long-range projections to the auditory striatum. To address this fundamental question, we took advantage of viral and non-viral anatomical tracing approaches to identify cortico-striatal parvalbumin neurons (CS-Parv inhibitory projections → auditory striatum). Here, we describe their anatomical distribution in the auditory cortex and determine the anatomical and electrophysiological properties of layer 5 CS-Parv neurons. We also analyzed their characteristic voltage-dependent membrane potential gamma oscillation, showing that intrinsic membrane mechanisms generate them. The inherent membrane mechanisms can also trigger intermittent and irregular bursts (stuttering) of the action potential in response to steps of depolarizing current pulses.
Collapse
Affiliation(s)
- Alice Bertero
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Hector Zurita
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Marc Normandin
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
24
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
25
|
Rock C, Zurita H, Lebby S, Wilson CJ, Apicella AJ. Cortical Circuits of Callosal GABAergic Neurons. Cereb Cortex 2019; 28:1154-1167. [PMID: 28174907 DOI: 10.1093/cercor/bhx025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
Anatomical studies have shown that the majority of callosal axons are glutamatergic. However, a small proportion of callosal axons are also immunoreactive for glutamic acid decarboxylase, an enzyme required for gamma-aminobutyric acid (GABA) synthesis and a specific marker for GABAergic neurons. Here, we test the hypothesis that corticocortical parvalbumin-expressing (CC-Parv) neurons connect the two hemispheres of multiple cortical areas, project through the corpus callosum, and are a functional part of the local cortical circuit. Our investigation of this hypothesis takes advantage of viral tracing and optogenetics to determine the anatomical and electrophysiological properties of CC-Parv neurons of the mouse auditory, visual, and motor cortices. We found a direct inhibitory pathway made up of parvalbumin-expressing (Parv) neurons which connects corresponding cortical areas (CC-Parv neurons → contralateral cortex). Like other Parv cortical neurons, these neurons provide local inhibition onto nearby pyramidal neurons and receive thalamocortical input. These results demonstrate a previously unknown long-range inhibitory circuit arising from a genetically defined type of GABAergic neuron that is engaged in interhemispheric communication.
Collapse
Affiliation(s)
- Crystal Rock
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Sharmon Lebby
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Charles J Wilson
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
26
|
Riedemann T. Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex. Int J Mol Sci 2019; 20:E2952. [PMID: 31212931 PMCID: PMC6627222 DOI: 10.3390/ijms20122952] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
Inhibitory interneurons make up around 10-20% of the total neuron population in the cerebral cortex. A hallmark of inhibitory interneurons is their remarkable diversity in terms of morphology, synaptic connectivity, electrophysiological and neurochemical properties. It is generally understood that there are three distinct and non-overlapping interneuron classes in the mouse neocortex, namely, parvalbumin-expressing, 5-HT3A receptor-expressing and somatostatin-expressing interneuron classes. Each class is, in turn, composed of a multitude of subclasses, resulting in a growing number of interneuron classes and subclasses. In this review, I will focus on the diversity of somatostatin-expressing interneurons (SOM+ INs) in the cerebral cortex and elucidate their function in cortical circuits. I will then discuss pathological consequences of a malfunctioning of SOM+ INs in neurological disorders such as major depressive disorder, and present future avenues in SOM research and brain pathologies.
Collapse
Affiliation(s)
- Therese Riedemann
- Ludwig-Maximilians-University, Biomedical Center, Physiological Genomics, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
27
|
Clarke RE, Verdejo-Garcia A, Andrews ZB. The role of corticostriatal-hypothalamic neural circuits in feeding behaviour: implications for obesity. J Neurochem 2018; 147:715-729. [PMID: 29704424 DOI: 10.1111/jnc.14455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/02/2023]
Abstract
Emerging evidence from human imaging studies suggests that obese individuals have altered connectivity between the hypothalamus, the key brain region controlling energy homeostasis, and cortical regions involved in decision-making and reward processing. Historically, animal studies have demonstrated that the lateral hypothalamus is the key hypothalamic region involved in feeding and reward. The lateral hypothalamus is a heterogeneous structure comprised of several distinct types of neurons which are scattered throughout. In addition, the lateral hypothalamus receives inputs from a number of cortical brain regions suggesting that it is uniquely positioned to be a key integrator of cortical information and metabolic feedback. In this review, we summarize how human brain imaging can inform detailed animal studies to investigate neural pathways connecting cortical regions and the hypothalamus. Here, we discuss key cortical brain regions that are reciprocally connected to the lateral hypothalamus and are implicated in decision-making processes surrounding food.
Collapse
Affiliation(s)
- Rachel E Clarke
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash University, Clayton, Vic., Australia
| | - Antonio Verdejo-Garcia
- Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Vic., Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,Department of Physiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
28
|
Zurita H, Feyen PLC, Apicella AJ. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons. Front Cell Neurosci 2018; 12:53. [PMID: 29559891 PMCID: PMC5845545 DOI: 10.3389/fncel.2018.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K+ channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| | - Paul L C Feyen
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas, San Antonio, San Antonio, TX, United States
| |
Collapse
|
29
|
Popovitchenko T, Rasin MR. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination. Front Neuroanat 2017; 11:102. [PMID: 29170632 PMCID: PMC5684109 DOI: 10.3389/fnana.2017.00102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mladen-Roko Rasin
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
30
|
Burke DA, Rotstein HG, Alvarez VA. Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron 2017; 96:267-284. [PMID: 29024654 DOI: 10.1016/j.neuron.2017.09.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/01/2022]
Abstract
This Perspective will examine the organization of intrastriatal circuitry, review recent findings in this area, and discuss how the pattern of connectivity between striatal neurons might give rise to the behaviorally observed synergism between the direct/indirect pathway neurons. The emphasis of this Perspective is on the underappreciated role of lateral inhibition between striatal projection cells in controlling neuronal firing and shaping the output of this circuit. We review some classic studies in combination with more recent anatomical and functional findings to lay out a framework for an updated model of the intrastriatal lateral inhibition, where we explore its contribution to the formation of functional units of processing and the integration and filtering of inputs to generate motor patterns and learned behaviors.
Collapse
Affiliation(s)
- Dennis A Burke
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, Providence, RI 02912, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102, USA; Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
32
|
Guo C, Peng J, Zhang Y, Li A, Li Y, Yuan J, Xu X, Ren M, Gong H, Chen S. Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field. Sci Rep 2017; 7:2846. [PMID: 28588276 PMCID: PMC5460143 DOI: 10.1038/s41598-017-03000-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Corticofugal projection neurons are key components in connecting the neocortex and the subcortical regions. In the barrel field, these neurons have various projection targets and play crucial roles in the rodent whisker sensorimotor system. However, the projection features of corticofugal projection neurons at the single-axon level are far from comprehensive elucidation. Based on a brain-wide positioning system with high-resolution imaging for Thy1-GFP M-line mice brains, we reconstructed and analyzed more than one hundred corticofugal projection neurons in both layer V and VI of barrel cortex. The dual-color imaging made it possible to locate the neurons’ somata, trace their corresponding dendrites and axons and then distinguish the neurons as L5 type I/II or L6 type. The corticofugal projection pattern showed significant diversity across individual neurons. Usually, the L5 type I neurons have greater multi-region projection potential. The thalamus and the midbrain are the most frequent projection targets among the investigated multidirectional projection neurons, and the hypothalamus is particularly unique in that it only appears in multidirectional projection situations. Statistically, the average branch length of apical dendrites in multi-region projection groups is larger than that of single-region projection groups. This study demonstrated a single-axon-level analysis for barrel corticofugal projection neurons, which could provide a micro-anatomical basis for interpreting whisker sensorimotor circuit function.
Collapse
Affiliation(s)
- Congdi Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Peng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yalun Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuxin Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofeng Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Miao Ren
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China. .,Key Laboratory for Biomedical Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
33
|
Rock C, Zurita H, Wilson C, Apicella AJ. An inhibitory corticostriatal pathway. eLife 2016; 5. [PMID: 27159237 PMCID: PMC4905740 DOI: 10.7554/elife.15890] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/08/2016] [Indexed: 12/05/2022] Open
Abstract
Anatomical and physiological studies have led to the assumption that the dorsal striatum receives exclusively excitatory afferents from the cortex. Here we test the hypothesis that the dorsal striatum receives also GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics and directly examining the functional effects of cortical GABAergic inputs to spiny projection neurons (SPNs) of the mouse auditory and motor cortex. We found that the cortex, via corticostriatal somatostatin neurons (CS-SOM), has a direct inhibitory influence on the output of the striatum SPNs. Our results describe a corticostriatal long-range inhibitory circuit (CS-SOM inhibitory projections → striatal SPNs) underlying the control of spike timing/generation in SPNs and attributes a specific function to a genetically defined type of cortical interneuron in corticostriatal communication. DOI:http://dx.doi.org/10.7554/eLife.15890.001 The striatum is located beneath the cerebral cortex, where it contributes to processes including learning and movement. The Spanish anatomist Ramon y Cajal, working in the early 20th century, was the first to observe individual neurons extending from the cortex to the striatum. Cajal published drawings of these neurons in his now celebrated anatomical papers, but knew little about their properties. In the 1980s, advances in techniques for labeling individual cells made it possible to study these neurons in detail. The results suggested that the pathways are exclusively excitatory: that is, the cortical neurons always increase the activity of their partners in the striatum. However, this result made it difficult to explain why electrically stimulating the cortex can sometimes reduce or inhibit the activity of the striatum. To reconcile these facts, most people assumed that inhibition must occur when excitatory cortical neurons activate networks of inhibitory cells within the striatum itself. Rock et al. now challenge this view by providing anatomical and physiological evidence for the existence of long-range inhibitory pathways from the cortex to the striatum in the mouse brain. These inhibitory neurons project from the auditory and motor regions of the cortex, and contain a substance called somatostatin. These neurons form connections with a specific type of striatal neuron called medium spiny neurons, which in turn project to other brain regions outside the striatum. The inhibitory cortical neurons can alter the activity of the medium spiny neurons, and can therefore directly control the output of the striatum. The discovery that the striatum receives both excitatory and inhibitory inputs from cortex suggests that the timing and relative strength of these inputs can affect the activity of the striatum. Future experiments should examine whether this is a general mechanism by which sensory stimuli can influence the processes controlled by the striatum, such as movement. DOI:http://dx.doi.org/10.7554/eLife.15890.002
Collapse
Affiliation(s)
- Crystal Rock
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| | - Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| | - Charles Wilson
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| |
Collapse
|