1
|
Ran L, Liu J, Lan X, Zhou X, Tan Y, Zhang J, Tang Y, Tang L, Zhang J, Liu D. White matter microstructure damage measured by automated fiber quantification correlates with pain symptoms in lung cancer patients. Brain Imaging Behav 2024:10.1007/s11682-024-00942-2. [PMID: 39356440 DOI: 10.1007/s11682-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
To investigative the white matter (WM) alterations in lung cancer patients with cancer pain (CP+), and explore the correlations between damaged WM fiber tracts and clinical indicators. Twenty-six CP+, 26 lung cancer patients without CP (CP-), and 31 healthy controls (HC) were recruited. All participants underwent diffusion tensor imaging (DTI) and clinical assessments. Automated fiber quantification (AFQ) technique was performed to identify the 20 WM fiber bundles, and the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were extracted. Intergroup comparisons of these diffusion metrics were conducted based on the entire fiber bundle level and 100 node levels along each tract. The associations between altered diffusion metrics and the numeric rating scale (NRS) scores, as well as the pain duration, were analyzed. At the entire level, the CP + group showed impaired WM structure in the right cingulum hippocampus (CH_R). At the pointwise level, the CP + group exhibited extensive nodal FA reduction or MD, RD, and AD elevation. In addition, the AD of the posterior portion of the right inferior longitudinal fasciculus (ILF_R, nodes 71-75) in the CP + group was positively correlated with the pain duration, and the FA of CH_R (nodes 22-38) was negatively correlated with NRS score. Extensive WM microstructural damage may be a pattern of brain abnormalities in lung cancer patients with CP, and in particular, specific nodal disruption along pain-related fiber tracts may be a sensitive imaging biomarker to characterize the severity and duration of CP.
Collapse
Affiliation(s)
- Li Ran
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jiang Liu
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Xiaosong Lan
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Yong Tan
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jing Zhang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Yu Tang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Lin Tang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China.
| | - Daihong Liu
- Department of Radiology, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181, Hanyu Road, Shapingba District, Chongqing, China.
| |
Collapse
|
2
|
Bautin P, Fortier MA, Sean M, Little G, Martel M, Descoteaux M, Léonard G, Tétreault P. What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review. Pain 2024:00006396-990000000-00689. [PMID: 39172945 DOI: 10.1097/j.pain.0000000000003345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain. This review synthesizes findings from 58 articles that constitute the current research landscape, covering methods and key discoveries. We discuss the evidence supporting the role of altered white matter microstructure and connectivity in chronic primary pain conditions, highlighting the importance of studying multiple chronic pain syndromes to identify common neurobiological pathways. We also explore the prospective clinical utility of diffusion MRI, such as its role in identifying diagnostic, prognostic, and therapeutic biomarkers. Furthermore, we address shortcomings and challenges associated with brain diffusion MRI in chronic primary pain studies, emphasizing the need for the harmonization of data acquisition and analysis methods. We conclude by highlighting emerging approaches and prospective avenues in the field that may provide new insights into the pathophysiology of chronic pain and potential new therapeutic targets. Because of the limited current body of research and unidentified targeted therapeutic strategies, we are forced to conclude that further research is required. However, we believe that brain diffusion MRI presents a promising opportunity for enhancing our understanding of chronic pain and improving clinical outcomes.
Collapse
Affiliation(s)
- Paul Bautin
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Antoine Fortier
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Monica Sean
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Graham Little
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marylie Martel
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Léonard
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging du Centre intégré universitaire de santé et de services sociaux de l'Estrie-Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal Tétreault
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Watanabe M, Shrivastava RK, Balchandani P. Advanced neuroimaging of the trigeminal nerve and the whole brain in trigeminal neuralgia: a systematic review. Pain 2024:00006396-990000000-00680. [PMID: 39132931 DOI: 10.1097/j.pain.0000000000003365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT For trigeminal neuralgia (TN), a major role of imaging is to identify the causes, but recent studies demonstrated structural and microstructural changes in the affected nerve. Moreover, an increasing number of studies have reported central nervous system involvement in TN. In this systematic review, recent quantitative magnetic resonance imaging (MRI) studies of the trigeminal nerve and the brain in patients with TN were compiled, organized, and discussed, particularly emphasizing the possible background mechanisms and the interpretation of the results. A systematic search of quantitative MRI studies of the trigeminal nerve and the brain in patients with TN was conducted using PubMed. We included the studies of the primary TN published during 2013 to 2023, conducted for the assessment of the structural and microstructural analysis of the trigeminal nerve, and the structural, diffusion, and functional MRI analysis of the brain. Quantitative MRI studies of the affected trigeminal nerves and the trigeminal pathway demonstrated structural/microstructural alterations and treatment-related changes, which differentiated responders from nonresponders. Quantitative analysis of the brain revealed changes in the brain areas associated with pain processing/modulation and emotional networks. Studies of the affected nerve demonstrated evidence of demyelination and axonal damage, compatible with pathological findings, and have shown its potential value as a tool to assess treatment outcomes. Quantitative MRI has also revealed the possibility of dynamic microstructural, structural, and functional neuronal plasticity of the brain. Further studies are needed to understand these complex mechanisms of neuronal plasticity and to achieve a consensus on the clinical use of quantitative MRI in TN.
Collapse
Affiliation(s)
- Memi Watanabe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, United States
| | - Priti Balchandani
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Islam J, Rahman MT, Kc E, Park YS. Deciphering the functional role of insular cortex stratification in trigeminal neuropathic pain. J Headache Pain 2024; 25:76. [PMID: 38730344 PMCID: PMC11084050 DOI: 10.1186/s10194-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
5
|
Sun B, Zhang C, Huang K, Bhetuwal A, Yang X, Jing C, Li H, Lu H, Zhang Q, Yang H. The white matter characteristic of the genu of corpus callosum coupled with pain intensity and negative emotion scores in patients with trigeminal neuralgia: a multivariate analysis. Front Neurosci 2024; 18:1381085. [PMID: 38576866 PMCID: PMC10991788 DOI: 10.3389/fnins.2024.1381085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Background Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder that not only causes intense pain but also affects the psychological health of patients. Since TN pain intensity and negative emotion may be grounded in our own pain experiences, they exhibit huge inter-individual differences. This study investigates the effect of inter-individual differences in pain intensity and negative emotion on brain structure in patients with TN and the possible pathophysiology mechanism underlying this disease. Methods T1 weighted magnetic resonance imaging and diffusion tensor imaging scans were obtained in 46 patients with TN and 35 healthy controls. All patients with TN underwent pain-related and emotion-related questionnaires. Voxel-based morphometry and regional white matter diffusion property analysis were used to investigate whole brain grey and white matter quantitatively. Innovatively employing partial least squares correlation analysis to explore the relationship among pain intensity, negative emotion and brain microstructure in patients with TN. Results Significant difference in white matter integrity were identified in patients with TN compared to the healthy controls group; The most correlation brain region in the partial least squares correlation analysis was the genus of the corpus callosum, which was negatively associated with both pain intensity and negative emotion. Conclusion The genu of corpus callosum plays an important role in the cognition of pain perception, the generation and conduction of negative emotions in patients with TN. These findings may deepen our understanding of the pathophysiology of TN.
Collapse
Affiliation(s)
- Baijintao Sun
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chuan Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kai Huang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Anup Bhetuwal
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuezhao Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chuan Jing
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongjian Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyu Lu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qingwei Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hanfeng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Saghafi M, Danesh E, Askari R, Mousavi Z, Haghparast A. Differential Roles of the D1- and D2-Like Dopamine Receptors Within the Ventral Tegmental Area in Modulating the Antinociception Induced by Forced Swim Stress in the Rat. Neurochem Res 2024; 49:143-156. [PMID: 37642894 DOI: 10.1007/s11064-023-04017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Several preclinical and clinical studies indicate that exposure to acute stress may decrease pain perception and increases pain tolerance. This phenomenon is called stress-induced analgesia (SIA). A variety of neurotransmitters, including dopamine, is involved in the SIA. Dopaminergic neurons in the mesolimbic circuits, originating from the ventral tegmental area (VTA), play a crucial role in various motivational, rewarding, and pain events. The present study aimed to investigate the modulatory role of VTA dopaminergic receptors in the antinociceptive responses evoked by forced swim stress (FSS) in a model of acute pain. One hundred-five adult male albino Wistar rats were subjected to stereotaxic surgery for implanting a unilateral cannula into the VTA. After one week of recovery, separate groups of animals were given different doses of SCH23390 and Sulpiride (0.25, 1, and 4 µg/0.3 µl) as D1- and D2-like receptor antagonists into the VTA, respectively. Then, the animals were exposed to FSS for a 6-min period, and the pain threshold was measured using the tail-flick test over a 60-min time set intervals. Results indicated that exposure to FSS produces a prominent antinociceptive response, diminishing by blocking both dopamine receptors in the VTA. Nonetheless, the effect of a D1-like dopamine receptor antagonist on FSS-induced analgesia was more prominent than that of a D2-like dopamine receptor antagonist. The results demonstrated that VTA dopaminergic receptors contribute to the pain process in stressful situations, and it might be provided a practical approach to designing new therapeutic agents for pain management.
Collapse
Affiliation(s)
- Mohammad Saghafi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Danesh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Reyhaneh Askari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zheng Y, Shao S, Zhang Y, Yuan S, Xing Y, Wang J, Qi X, Cui K, Tong J, Liu F, Cui S, Wan Y, Yi M. HCN2 Channels in the Ventral Hippocampal CA1 Regulate Nociceptive Hypersensitivity in Mice. Int J Mol Sci 2023; 24:13823. [PMID: 37762124 PMCID: PMC10531460 DOI: 10.3390/ijms241813823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yu Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Peking Union Medical College (PUMC), Beijing 100101, China;
| | - Shulu Yuan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yuanwei Xing
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| |
Collapse
|
8
|
Yang R, Xiong B, Wang M, Wu Y, Gao Y, Xu Y, Deng H, Pan W, Wang W. Gamma Knife surgery and deep brain stimulation of the centromedian nucleus for chronic pain: A systematic review. Asian J Surg 2023; 46:3437-3446. [PMID: 37422388 DOI: 10.1016/j.asjsur.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023] Open
Abstract
Chronic pain has been a major problem in personal quality of life and social economy, causing psychological disorders in people and a larger amount of money loss in society. Some targets were adopted for chronic pain, but the efficacy of the CM nucleus for pain was still unclear. A systematic review was performed to summarize GK surgery and DBS of the CM nucleus for chronic pain. PubMed, Embase and Medline were searched to review all studies discussing GK surgery and DBS on the CM nucleus for chronic pain. Studies that were review, meet, conference, not English or not the therapy of pain were excluded. Demographic characteristics, surgery parameters and outcomes of pain relief were selected. In total, 101 patients across 12 studies were included. The median age of most patients ranged from 44.3 to 80 years when the duration of pain ranged from 5 months to 8 years. This review showed varied results of 30%-100% pain reduction across studies. The difference in the effect between GK surgery and DBS cannot be judged. Moreover, three retrospective articles related to GK surgery of the CM nucleus for trigeminal neuralgia presented an average pain relief rate of 34.6-82.5%. Four studies reported adverse effects in a small number of patients. GK surgery and DBS of the CM nucleus might be promising therapeutic approaches for chronic refractory pain. More rigorous studies and larger samples with longer follow-up periods are needed to support the effectiveness and safety.
Collapse
Affiliation(s)
- Ruiqing Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Botao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
9
|
Latypov TH, So MC, Hung PSP, Tsai P, Walker MR, Tohyama S, Tawfik M, Rudzicz F, Hodaie M. Brain imaging signatures of neuropathic facial pain derived by artificial intelligence. Sci Rep 2023; 13:10699. [PMID: 37400574 DOI: 10.1038/s41598-023-37034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Advances in neuroimaging have permitted the non-invasive examination of the human brain in pain. However, a persisting challenge is in the objective differentiation of neuropathic facial pain subtypes, as diagnosis is based on patients' symptom descriptions. We use artificial intelligence (AI) models with neuroimaging data to distinguish subtypes of neuropathic facial pain and differentiate them from healthy controls. We conducted a retrospective analysis of diffusion tensor and T1-weighted imaging data using random forest and logistic regression AI models on 371 adults with trigeminal pain (265 classical trigeminal neuralgia (CTN), 106 trigeminal neuropathic pain (TNP)) and 108 healthy controls (HC). These models distinguished CTN from HC with up to 95% accuracy, and TNP from HC with up to 91% accuracy. Both classifiers identified gray and white matter-based predictive metrics (gray matter thickness, surface area, and volume; white matter diffusivity metrics) that significantly differed across groups. Classification of TNP and CTN did not show significant accuracy (51%) but highlighted two structures that differed between pain groups-the insula and orbitofrontal cortex. Our work demonstrates that AI models with brain imaging data alone can differentiate neuropathic facial pain subtypes from healthy data and identify regional structural indicates of pain.
Collapse
Affiliation(s)
- Timur H Latypov
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Matthew C So
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Pascale Tsai
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew R Walker
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sarasa Tohyama
- A.A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Marina Tawfik
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Frank Rudzicz
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Hornung RS, Kinchington PR, Umorin M, Kramer PR. PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus. Mol Pain 2023; 19:17448069231202598. [PMID: 37699860 PMCID: PMC10515525 DOI: 10.1177/17448069231202598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Infection with varicella zoster virus (VZV) results in chicken pox and reactivation of VZV results in herpes zoster (HZ) or what is often referred to as shingles. Patients with HZ experience decreased motivation and increased emotional distress consistent with functions of the ventral tegmental area (VTA) of the brain. In addition, activity within the ventral tegmental area is altered in patients with HZ. HZ primarily affects individuals that are older and the VTA changes with age. To begin to determine if the VTA has a role in HZ symptoms, a screen of 10,000 genes within the VTA in young and old male rats was completed after injecting the whisker pad with VZV. The two genes that had maximal change were membrane progesterone receptors PAQR8 (mPRβ) and PAQR9 (mPRε). Neurons and non-neuronal cells expressed both PAQR8 and PAQR9. PAQR8 and PAQR9 protein expression was significantly reduced after VZV injection of young males. In old rats PAQR9 protein expression was significantly increased after VZV injection and PAQR9 protein expression was reduced in aged male rats versus young rats. Consistent with previous results, pain significantly increased after VZV injection of the whisker pad and aged animals showed significantly more pain than young animals. Our data suggests that PAQR8 and PAQR9 expression is altered by VZV injection and that these changes are affected by age.
Collapse
Affiliation(s)
- Rebecca S Hornung
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| |
Collapse
|
11
|
Donertas-Ayaz B, Caudle RM. Locus coeruleus-noradrenergic modulation of trigeminal pain: Implications for trigeminal neuralgia and psychiatric comorbidities. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100124. [PMID: 36974102 PMCID: PMC10038791 DOI: 10.1016/j.ynpai.2023.100124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Trigeminal neuralgia is the most common neuropathic pain involving the craniofacial region. Due to the complex pathophysiology, it is therapeutically difficult to manage. Noradrenaline plays an essential role in the modulation of arousal, attention, cognitive function, stress, and pain. The locus coeruleus, the largest source of noradrenaline in the brain, is involved in the sensory and emotional processing of pain. This review summarizes the knowledge about the involvement of noradrenaline in acute and chronic trigeminal pain conditions and how the activity of the locus coeruleus noradrenergic neurons changes in response to acute and chronic pain conditions and how these changes might be involved in pain-related comorbidities including anxiety, depression, and sleep disturbance.
Collapse
Affiliation(s)
| | - Robert M. Caudle
- Corresponding author at: Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, PO Box 100416, 1395 Center Drive, Gainesville, FL 32610, United States.
| |
Collapse
|
12
|
Altered White Matter Microstructure in Herpes Zoster and Postherpetic Neuralgia Determined by Automated Fiber Quantification. Brain Sci 2022; 12:brainsci12121668. [PMID: 36552128 PMCID: PMC9775099 DOI: 10.3390/brainsci12121668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
This study aimed to explore changes in the white matter microstructure in herpes zoster (HZ) and postherpetic neuralgia (PHN) patients and to estimate the correlation of these changes with clinical data. Diffusion tensor imaging (DTI) data were collected from 33 HZ patients, 32 PHN patients, and 35 well-matched healthy controls (HCs). Subsequently, these data were analyzed by automated fiber quantification (AFQ) to accurately locate alterations in the white matter microstructure. Compared with HCs, HZ and PHN patients both showed a wide range of changes in the diffusion properties of fiber tracts. HZ patients exhibited changes primarily in the left superior longitudinal fasciculus (SLF), whereas PHN patients predominantly exhibited changes in the left inferior fronto-occipital fasciculus. The bilateral SLF and the left corticospinal tract were altered in the PHN patients compared with HZ patients. In addition, PHN patients showed a trend toward more expansive white matter alterations compared with those observed in HZ patients; additionally, in PHN patients, changes in the left cingulum cingulate were significantly correlated with changes in emotion and the duration of disease. These findings may help to elucidate the transformation from HZ to PHN and provide new ideas regarding the reasons for intractable neuropathic pain in PHN.
Collapse
|
13
|
Altered Structural and Functional Abnormalities of Hippocampus in Classical Trigeminal Neuralgia: A Combination of DTI and fMRI Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8538700. [PMID: 36504636 PMCID: PMC9729045 DOI: 10.1155/2022/8538700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022]
Abstract
Purpose Diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) were applied to speculate the altered structural and functional abnormalities within the hippocampus in classical trigeminal neuralgia (CTN) patients by detecting the alteration of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and regional homogeneity (ReHo). Patients and Methods. Multimodal MRI dataset (DTI and fMRI) and clinical indices (pain and neuropsychological scores) were collected in 27 CTN patients and 27 age- and gender-matched healthy controls (HC). Two independent-sample t-tests were performed to compare the ADC, FA, and ReHo values in hippocampus areas between CTN patients and HC. Correlation analyses were applied between all the DTI and fMRI parameters within the hippocampus and the VAS (visual analog scale), MoCA (Montreal cognitive assessment), and CDR (clinical dementia rating) scores. Results CTN patients showed a significantly increased FA values in the right hippocampus (t = 2.387, P = 0.021) and increased ReHo values in the right hippocampus head (voxel P < 0.001, cluster P < 0.05, FDR correction) compared with HC. A positively significant correlation was observed between the ReHo values and MOCA scores in the right hippocampus head; FA values were also positively correlated with MOCA scores in the right hippocampus. Conclusion CTN patients demonstrated an abnormality of structures and functions in the hippocampus, which may help to provide novel insights into the neuropathologic change related to the pain-related dysfunction of CTN.
Collapse
|
14
|
Bosak N, Branco P, Kuperman P, Buxbaum C, Cohen RM, Fadel S, Zubeidat R, Hadad R, Lawen A, Saadon‐Grosman N, Sterling M, Granovsky Y, Apkarian AV, Yarnitsky D, Kahn I. Brain Connectivity Predicts Chronic Pain in Acute Mild Traumatic Brain Injury. Ann Neurol 2022; 92:819-833. [PMID: 36082761 PMCID: PMC9826527 DOI: 10.1002/ana.26463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Previous studies have established the role of the cortico-mesolimbic and descending pain modulation systems in chronic pain prediction. Mild traumatic brain injury (mTBI) is an acute pain model where chronic pain is prevalent and complicated for prediction. In this study, we set out to study whether functional connectivity (FC) of the nucleus accumbens (NAc) and the periaqueductal gray matter (PAG) is predictive of pain chronification in early-acute mTBI. METHODS To estimate FC, resting-state functional magnetic resonance imaging (fMRI) of 105 participants with mTBI following a motor vehicle collision was acquired within 72 hours post-accident. Participants were classified according to pain ratings provided at 12-months post-collision into chronic pain (head/neck pain ≥30/100, n = 44) and recovery (n = 61) groups, and their FC maps were compared. RESULTS The chronic pain group exhibited reduced negative FC between NAc and a region within the primary motor cortex corresponding with the expected representation of the area of injury. A complementary pattern was also demonstrated between PAG and the primary somatosensory cortex. PAG and NAc also shared increased FC to the rostral anterior cingulate cortex (rACC) within the recovery group. Brain connectivity further shows high classification accuracy (area under the curve [AUC] = .86) for future chronic pain, when combined with an acute pain intensity report. INTERPRETATION FC features obtained shortly after mTBI predict its transition to long-term chronic pain, and may reflect an underlying interaction of injury-related primary sensorimotor cortical areas with the mesolimbic and pain modulation systems. Our findings indicate a potential predictive biomarker and highlight targets for future early preventive interventions. ANN NEUROL 2022;92:819-833.
Collapse
Affiliation(s)
- Noam Bosak
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Paulo Branco
- Department of NeuroscienceNorthwestern University Medical SchoolChicagoIL
| | - Pora Kuperman
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Chen Buxbaum
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Ruth Manor Cohen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shiri Fadel
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Rabab Zubeidat
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Rafi Hadad
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Amir Lawen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Noam Saadon‐Grosman
- Department of Medical Neurobiology, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Road Traffic Injury RecoveryThe University of QueenslandBrisbaneAustralia
| | - Yelena Granovsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | | | - David Yarnitsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Itamar Kahn
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
15
|
Jotwani ML, Wu Z, Lunde CE, Sieberg CB. The missing mechanistic link: Improving behavioral treatment efficacy for pediatric chronic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1022699. [PMID: 36313218 PMCID: PMC9614027 DOI: 10.3389/fpain.2022.1022699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Pediatric chronic pain is a significant global issue, with biopsychosocial factors contributing to the complexity of the condition. Studies have explored behavioral treatments for pediatric chronic pain, but these treatments have mixed efficacy for improving functional and psychological outcomes. Furthermore, the literature lacks an understanding of the biobehavioral mechanisms contributing to pediatric chronic pain treatment response. In this mini review, we focus on how neuroimaging has been used to identify biobehavioral mechanisms of different conditions and how this modality can be used in mechanistic clinical trials to identify markers of treatment response for pediatric chronic pain. We propose that mechanistic clinical trials, utilizing neuroimaging, are warranted to investigate how to optimize the efficacy of behavioral treatments for pediatric chronic pain patients across pain types and ages.
Collapse
Affiliation(s)
- Maya L. Jotwani
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Ziyan Wu
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Claire E. Lunde
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christine B. Sieberg
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Liu H, Hou H, Li F, Zheng R, Zhang Y, Cheng J, Han S. Structural and Functional Brain Changes in Patients With Classic Trigeminal Neuralgia: A Combination of Voxel-Based Morphometry and Resting-State Functional MRI Study. Front Neurosci 2022; 16:930765. [PMID: 35844235 PMCID: PMC9277055 DOI: 10.3389/fnins.2022.930765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Brain structural and functional abnormalities have been separately reported in patients with classic trigeminal neuralgia (CTN). However, whether and how the functional deficits are related to the structural alterations remains unclear. This study aims to investigate the anatomical and functional deficits in patients with CTN and explore their association. Methods A total of 34 patients with CTN and 29 healthy controls (HCs) with age- and gender-matched were recruited. All subjects underwent structural and resting-state functional magnetic resonance imaging (fMRI) scanning and neuropsychological assessments. Voxel-based morphometry (VBM) was applied to characterize the alterations of gray matter volume (GMV). The amplitude of low-frequency fluctuation (ALFF) method was used to evaluate regional intrinsic spontaneous neural activity. Further correlation analyses were performed between the structural and functional changes and neuropsychological assessments. Results Compared to the HCs, significantly reduced GMV was revealed in the right hippocampus, right fusiform gyrus (FFG), and temporal-parietal regions (the left superior/middle temporal gyrus, left operculo-insular gyrus, left inferior parietal lobule, and right inferior temporal gyrus) in patients with CTN. Increased functional activity measured by zALFF was observed mainly in the limbic system (the bilateral hippocampus and bilateral parahippocampal gyrus), bilateral FFG, basal ganglia system (the bilateral putamen, bilateral caudate, and right pallidum), left thalamus, left cerebellum, midbrain, and pons. Moreover, the right hippocampus and FFG were the overlapped regions with both functional and anatomical deficits. Furthermore, GMV in the right hippocampus was negatively correlated with pain intensity, anxiety, and depression. GMV in the right FFG was negatively correlated with illness duration. The zALFF value in the right FFG was positively correlated with anxiety. Conclusion Our results revealed concurrent structural and functional changes in patients with CTN, indicating that the CTN is a brain disorder with structural and functional abnormalities. Moreover, the overlapping structural and functional changes in the right hippocampus and FFG suggested that anatomical and functional changes might alter dependently in patients with CTN. These findings highlight the vital role of hippocampus and FFG in the pathophysiology of CTN.
Collapse
Affiliation(s)
- Hao Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Haiman Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- *Correspondence: Yong Zhang,
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Jingliang Cheng,
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Shaoqiang Han,
| |
Collapse
|
17
|
Budd AS, Huynh TKT, Seres P, Beaulieu C, Armijo-Olivo S, Cummine J. White Matter Diffusion Properties in Chronic Temporomandibular Disorders: An Exploratory Analysis. FRONTIERS IN PAIN RESEARCH 2022; 3:880831. [PMID: 35800990 PMCID: PMC9254396 DOI: 10.3389/fpain.2022.880831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To determine differences in diffusion metrics in key white matter (WM) tracts between women with chronic temporomandibular disorders (TMDs) and age- and sex-matched healthy controls. Design Cross sectional study compared diffusion metrics between groups and explored their associations with clinical variables in subjects with TMDs. Methods In a total of 33 subjects with TMDs and 33 healthy controls, we performed tractography to obtain diffusion metrics (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) from the cingulum near the cingulate gyrus (CGC), the cingulum near the hippocampus (CGH), the fornix, the anterior limb of the internal capsule (ALIC), the posterior limb of the internal capsule (PLIC), and the uncinate fasciculus (UF). We compared diffusion metrics across groups and explored the relationships between diffusion metrics and clinical measures (pain chronicity and intensity, central sensitization, somatization, depression, orofacial behavior severity, jaw function limitations, disability, and interference due to pain) in subjects with TMDs. Results We observed differences in diffusion metrics between groups, primarily in the right side of the brain, with the right CGC having lower FA and the right UF having lower FA and higher MD and RD in subjects with TMDs compared to healthy controls. No clinical measures were consistently associated with diffusion metrics in subjects with TMDs. Conclusion The UF showed potential microstructural damage in subjects with TMDs, but further studies are needed to confirm any associations between diffusion changes and clinical measures.
Collapse
Affiliation(s)
- Alexandra S. Budd
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thi K. T. Huynh
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Susan Armijo-Olivo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Faculty of Business and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Susan Armijo-Olivo
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Blockade of kappa opioid receptors reduces mechanical hyperalgesia and anxiety-like behavior in a rat model of trigeminal neuropathic pain. Behav Brain Res 2022; 417:113595. [PMID: 34592375 DOI: 10.1016/j.bbr.2021.113595] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
It has been shown that kappa opioid receptor (KOR) antagonists, such as nor-binaltorphimine (nor-BNI), have antinociceptive effects in some pain models that affect the trigeminal system. Also, its anxiolytic-like effect has been extensively demonstrated in the literature. The present study aimed to investigate the systemic, local, and central effect of nor-BNI on trigeminal neuropathic pain using the infraorbital nerve constriction model (CCI-ION), as well as to evaluate its effect on anxiety-like behavior associated with this model. Animals received nor-BNI systemically; in the trigeminal ganglion (TG); in the subarachnoid space to target the spinal trigeminal nucleus caudalis (Sp5C) or in the central amygdala (CeA) 14 days after CCI-ION surgery. Systemic administration of nor-BNI caused a significant reduction of facial mechanical hyperalgesia and promoted an anxiolytic-like effect, which was detected in the elevated plus-maze and the light-dark transition tests. When administered in the TG or CeA, the KOR antagonist was able to reduce facial mechanical hyperalgesia induced by CCI-ION, but without changing the anxiety-like behavior. Moreover, no change was observed on nociception and anxiety-like behavior after nor-BNI injection into the Sp5C. The present study demonstrated antinociceptive and anxiolytic-like effects of nor-BNI in a model of trigeminal neuropathic pain. The antinociceptive effect seems to be dissociated from the anxiolytic-like effect, at both the sites involved and at the dose need to achieve the effect. In conclusion, the kappa opioid system may represent a promising target to be explored for the control of trigeminal pain and associated anxiety. However, further studies are necessary to better elucidate its functioning and modulatory role in chronic trigeminal pain states.
Collapse
|
19
|
Araya EI, Carvalho EC, Andreatini R, Zamponi GW, Chichorro JG. Trigeminal neuropathic pain causes changes in affective processing of pain in rats. Mol Pain 2022; 18:17448069211057750. [PMID: 35042377 PMCID: PMC8777332 DOI: 10.1177/17448069211057750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Trigeminal neuropathic pain has been modeled in rodents through the constriction of the
infraorbital nerve (CCI-ION). Sensory alterations, including spontaneous pain, and thermal
and mechanical hyperalgesia are well characterized, but there is a notable lack of
evidence about the affective pain component in this model. Evaluation of the emotional
component of pain in rats has been proposed as a way to optimize potential translational
value of non-clinical studies. In rats, 22 and 50 kHz ultrasonic vocalizations (USVs) are
considered well-established measures of negative and positive emotional states,
respectively. Thus, this study tested the hypothesis that trigeminal neuropathic pain
would result, in addition to the sensory alterations, in a decrease of 50 kHz USV, which
may be related to altered function of brain areas involved in emotional pain processing.
CCI-ION surgery was performed on 60-day-old male Wistar rats. 15 days after surgery, von
Frey filaments were applied to detect mechanical hyperalgesia, and USV was recorded. At
the same timepoint, systemic treatment with d,l-amphetamine (1 mg/kg) allowed
investigation of the involvement of the dopaminergic system in USV emission. Finally,
brain tissue was collected to assess the change in tyrosine hydroxylase (TH) expression in
the nucleus accumbens (NAc) and c-Fos expression in brain areas involved in emotional pain
processing, including the prefrontal cortex (PFC), amygdala, and NAc. The results showed
that CCI-ION rats presented mechanical hyperalgesia and a significant reduction of
environmental-induced 50 kHz USV. Amphetamine caused a marked increase in 50 kHz USV
emission in CCI-ION rats. In addition, TH expression was lower in constricted animals and
c-Fos analysis revealed an increase in neuronal activation. Taken together, these data
indicate that CCI-ION causes a reduction in the emission of environmental-induced
appetitive calls concomitantly with facial mechanical hyperalgesia and that both changes
may be related to a reduction in the mesolimbic dopaminergic activity.
Collapse
Affiliation(s)
- Erika I Araya
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Eduardo C Carvalho
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, 70401University of Calgary, Calgary, AB, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
20
|
Noorani A, Hung PSP, Zhang JY, Sohng K, Laperriere N, Moayedi M, Hodaie M. Pain relief reverses hippocampal abnormalities in trigeminal neuralgia. THE JOURNAL OF PAIN 2021; 23:141-155. [PMID: 34380093 DOI: 10.1016/j.jpain.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Chronic pain patients frequently report memory and concentration difficulties. Objective testing in this population points to poor performance on memory and cognitive tests, and increased comorbid anxiety and depression. Recent evidence has suggested convergence between chronic pain and memory deficits onto the hippocampus. The hippocampus consists of heterogenous subfields involved in memory consolidation, behavior regulation, and stress modulation. Despite significant studies outlining hippocampal changes in human and chronic pain animal models, the effect of pain relief on hippocampal abnormalities remains unknown. Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder which is highly amenable to surgical interventions, providing a unique opportunity to investigate the effect of pain relief. This study investigates the effect of pain relief on hippocampal subfields in TN. Anatomical MR images of 61 TN patients were examined before and 6 months after surgery. Treatment responders (n=47) reported 95% pain relief, whereas non-responders (n=14) reported 40% change in pain on average. At baseline, patients had smaller hippocampal volumes, compared to controls. After surgery, responders' hippocampal volumes normalized, largely driven by CA2/3, CA4 and dentate gyrus, which are involved in memory consolidation and neurogenesis. We propose that hippocampal atrophy in TN is pain-driven and successful treatment normalizes such abnormalities.
Collapse
Affiliation(s)
- Alborz Noorani
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Jia Y Zhang
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kaylee Sohng
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Normand Laperriere
- Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Massieh Moayedi
- Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Ontario, Canada; University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada; Division of Clinical & Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Division of Neurosurgery, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Ontario, Canada.
| |
Collapse
|
21
|
Senatus P, Zurek S, Deogaonkar M. Deep Brain Stimulation and Motor Cortex Stimulation for Chronic Pain. Neurol India 2021; 68:S235-S240. [PMID: 33318357 DOI: 10.4103/0028-3886.302471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Deep brain stimulation (DBS) and Motor Cortex stimulation (MCS) have been used for control of chronic pain. Chronic pain of any origin is complex and difficult to treat. Stimulation of various areas in brain-like sensory thalamus, medial nuclei of thalamus including centro-lateral nucleus of thalamus (CL), periaqueductal gray, periventricular gray, nucleus accumbence and motor cortex provides partial relief in properly selected patients. This article reviews the pain pathways, theories of pain, targets for DBS and rationale of DBS and MCS. It also discusses the patient selection, technical details of each target.
Collapse
Affiliation(s)
- Patrick Senatus
- Department of Neurosurgery, Ayer Neuroscience Institute, Hartford HealthCare, Hartford, CT, USA
| | - Sarah Zurek
- Department of Neurosurgery, Ayer Neuroscience Institute, Hartford HealthCare, Hartford, CT, USA
| | - Milind Deogaonkar
- Department of Neurosurgery, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
22
|
Tohyama S, Walker MR, Zhang JY, Cheng JC, Hodaie M. Brainstem trigeminal fiber microstructural abnormalities are associated with treatment response across subtypes of trigeminal neuralgia. Pain 2021; 162:1790-1799. [PMID: 33306503 PMCID: PMC8120686 DOI: 10.1097/j.pain.0000000000002164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
ABSTRACT Neurosurgical treatments for trigeminal neuralgia (TN) can provide long-lasting pain relief; however, some patients fail to respond and undergo multiple, repeat procedures. Surgical outcomes can vary depending on the type of TN, but the reasons for this are not well understood. Neuroimaging studies of TN point to abnormalities in the brainstem trigeminal fibers; however, whether this is a common characteristic of treatment nonresponse across different subtypes of TN is unknown. Here, we used diffusion tensor imaging (DTI) to determine whether the brainstem trigeminal fiber microstructure is a common biomarker of surgical response in TN and whether the extent of these abnormalities is associated with the likelihood of response across subtypes of TN. We studied 98 patients with TN (61 classical TN, 26 TN secondary to multiple sclerosis, and 11 TN associated with a solitary pontine lesion) who underwent neurosurgical treatment and 50 healthy controls. We assessed treatment response using pain intensity measures and examined microstructural features by extracting pretreatment DTI metrics from the proximal pontine segment of the trigeminal nerves. We found that microstructural abnormalities in the affected pontine trigeminal fibers (notably, lower fractional anisotropy and higher radial diffusivity) highlight treatment nonresponders (n = 47) compared with responders (n = 51) and controls, and that the degree of abnormalities is associated with the likelihood of surgical response across subtypes of TN. These novel findings demonstrate the value of DTI as an objective, noninvasive tool for the prediction of treatment response and elucidate the features that distinguish treatment responders from nonresponders in the TN population.
Collapse
Affiliation(s)
- Sarasa Tohyama
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Matthew R. Walker
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jia Y. Zhang
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Joshua C. Cheng
- Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour—Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
Yang S, Kwon S, Chang MC. The Usefulness of Diffusion Tensor Tractography in Diagnosing Neuropathic Pain: A Narrative Review. Front Neurosci 2021; 15:591018. [PMID: 33841069 PMCID: PMC8032899 DOI: 10.3389/fnins.2021.591018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Diffusion tensor tractography (DTT) is derived from diffusion tensor imaging. It has allowed visualization and estimation of neural tract injury, which may be associated with the pathogenesis of neuropathic pain (NP). The aim of the present study was to review DTT studies that demonstrated the relationship between neural injuries and NP and to describe the potential use of DTT in the evaluation of neural injuries that are involved in the pathophysiological process of NP. A PubMed search was conducted for articles published until July 3, 2020, which used DTT to investigate the association between neural injuries and NP. The key search phrase for identifying potentially relevant articles was (diffusion tensor tractography AND pain). The following inclusion criteria were applied for article selection: (1) studies involving patients with NP and (2) studies in which DTT was applied for the evaluation of NP. Review articles were excluded. Altogether, 108 potentially relevant articles were identified. After reading the titles and abstracts and assessment of eligibility based on the full-text articles, 46 publications were finally included in our review. The results of the included studies suggested that DTT may be beneficial in identifying the pathophysiological mechanism of NP of various origins including central pain caused by brain injuries, trigeminal neuralgia, sciatica, and some types of headache. Further studies are needed to validate the efficacy of DTT in investigating the pathophysiology of other types of NP.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Women's University Seoul Hospital, Ewha Women's University School of Medicine, Seoul, South Korea
| | - SuYeon Kwon
- Department of Rehabilitation Medicine, Ewha Women's University Seoul Hospital, Ewha Women's University School of Medicine, Seoul, South Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
24
|
Garcia-Isidoro S, Castellanos-Sanchez VO, Iglesias-Lopez E, Perpiña-Martinez S. Invasive and Non-Invasive Electrical Neuromodulation in Trigeminal Nerve Neuralgia: A Systematic Review and Meta-Analysis. Curr Neuropharmacol 2021; 19:320-333. [PMID: 32727329 PMCID: PMC8033962 DOI: 10.2174/1570159x18666200729091314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Trigeminal neuralgia is a chronic disease characterized by intense facial pain that is caused by trigeminal nerve affectation. It usually affects adults from 50 years of age, and is more frequent in women. Additionally, it presents serious psychological effects that often lead to depression, which is why it is considered highly disabling. The therapeutic approach is based on the modification of nerve activity through electrical, surgical or chemical stimulation in specific regions of the nervous system. OBJECTIVE To perform a meta-analysis of the scientific literature related to invasive and non-invasive electrical neuromodulation of trigeminal neuralgia, in order to assess their effects over pain and adverse effects. METHODS A literature search was conducted in 4 databases, followed by a manual search of articles on invasive or non-invasive electrical neuromodulation to control the pain of trigeminal neuralgia, including the last 15 years. RESULTS Regarding non-invasive methods, clinical trials did not present enough results in order to perform a meta-analysis. Regarding invasive methods, clinical trials meta-analysis showed no statistical differences between different treatment methods. In all cases, improvements in patients' pain were reported, although results regarding adverse effects were variable. CONCLUSION In the treatment of trigeminal neuralgia, the continuous radiofrequency provides better short and medium-term results, but pulsed radiofrequency shows less adverse effects after treatment, and has better results in the long-term.
Collapse
Affiliation(s)
- Sara Garcia-Isidoro
- Departamento de Fisioterapia, Facultad de Enfermería y Fisioterapia Salus Infirmorum, Universidad Pontificia de Salamanca, Campus de Madrid, Madrid, Spain
| | | | - Elvira Iglesias-Lopez
- AFAMI. Asociación de familiares de afectados de Alzheimer y otras demencias, Miranda de Ebro (Burgos), Spain
| | - Sara Perpiña-Martinez
- Departamento de Fisioterapia, Facultad de Enfermería y Fisioterapia Salus Infirmorum, Universidad Pontificia de Salamanca, Campus de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Wu M, Jiang X, Qiu J, Fu X, Niu C. Gray and white matter abnormalities in primary trigeminal neuralgia with and without neurovascular compression. J Headache Pain 2020; 21:136. [PMID: 33238886 DOI: 10.1186/s10194-020-01205-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Previous researches have reported gray and white matter microalterations in primary trigeminal neuralgia (TN) with neurovascular compression (NVC). The central mechanism underlying TN without NVC are unknown but may include changes in specific brain regions or circuitries. This study aimed to investigate abnormalities in the gray matter (GM) and white matter (WM) of the whole brain and the possible pathogenetic mechanism underlying this disease. METHODS We analyzed brain morphologic images of TN patients, 23 with NVC (TN wNVC) and 22 without NVC (TN wNVC) compared with 45 healthy controls (HC). All subjects underwent 3T-magnetic resonance imaging and pain scale evaluation. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) were used to investigate whole brain grey matter quantitatively; graph theory was applied to obtain network measures based on extracted DTI data based on DTI data of the whole brains. Sensory and affective pain rating indices were assessed using the visual analog scale (VAS) and short-form McGill Pain Questionnaire (SF-MPQ). RESULTS The VBM and SBM analyses revealed widespread decreases in GM volume and cortical thickness in TN wNVC compared to TN woNVC, and diffusion metrics measures and topology organization changes revealed DTI showed extensive WM integrity alterations. However, above structural changes differed between TN wNVC and TN woNVC, and were related to specific chronic pain modulation mechanism. CONCLUSION Abnormalities in characteristic regions of GM and WM structural network were found in TN woNVC compared with TN wNVC group, suggesting differences in pathophysiology of two types of TN.
Collapse
Affiliation(s)
- Min Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China. .,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
| | - Xiaofeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China
| | - Jun Qiu
- Department of Diagnostic Radiology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Xianming Fu
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China
| |
Collapse
|
26
|
Yang S, Boudier-Revéret M, Choo YJ, Chang MC. Association between Chronic Pain and Alterations in the Mesolimbic Dopaminergic System. Brain Sci 2020; 10:brainsci10100701. [PMID: 33023226 PMCID: PMC7600461 DOI: 10.3390/brainsci10100701] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (pain lasting for >3 months) decreases patient quality of life and even occupational abilities. It can be controlled by treatment, but often persists even after management. To properly control pain, its underlying mechanisms must be determined. This review outlines the role of the mesolimbic dopaminergic system in chronic pain. The mesolimbic system, a neural circuit, delivers dopamine from the ventral tegmental area to neural structures such as the nucleus accumbens, prefrontal cortex, anterior cingulate cortex, and amygdala. It controls executive, affective, and motivational functions. Chronic pain patients suffer from low dopamine production and delivery in this system. The volumes of structures constituting the mesolimbic system are known to be decreased in such patients. Studies on administration of dopaminergic drugs to control chronic pain, with a focus on increasing low dopamine levels in the mesolimbic system, show that it is effective in patients with Parkinson’s disease, restless legs syndrome, fibromyalgia, dry mouth syndrome, lumbar radicular pain, and chronic back pain. However, very few studies have confirmed these effects, and dopaminergic drugs are not commonly used to treat the various diseases causing chronic pain. Thus, further studies are required to determine the effectiveness of such treatment for chronic pain.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman’s University Seoul Hospital, Ewha Woman’s University School of Medicine, Seoul 07804, Korea;
| | - Mathieu Boudier-Revéret
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2W 1T8, Canada;
| | - Yoo Jin Choo
- Production R&D Division Advanced Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Deagu 41061, Korea;
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
- Correspondence:
| |
Collapse
|
27
|
Willsey MS, Collins KL, Conrad EC, Chubb HA, Patil PG. Diffusion tensor imaging reveals microstructural differences between subtypes of trigeminal neuralgia. J Neurosurg 2020; 133:573-579. [PMID: 31323635 DOI: 10.3171/2019.4.jns19299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/18/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Trigeminal neuralgia (TN) is an uncommon idiopathic facial pain syndrome. To assist in diagnosis, treatment, and research, TN is often classified as type 1 (TN1) when pain is primarily paroxysmal and episodic or type 2 (TN2) when pain is primarily constant in character. Recently, diffusion tensor imaging (DTI) has revealed microstructural changes in the symptomatic trigeminal root and root entry zone of patients with unilateral TN. In this study, the authors explored the differences in DTI parameters between subcategories of TN, specifically TN1 and TN2, in the pontine segment of the trigeminal tract. METHODS The authors enrolled 8 patients with unilateral TN1, 7 patients with unilateral TN2, and 23 asymptomatic controls. Patients underwent DTI with parameter measurements in a region of interest within the pontine segment of the trigeminal tract. DTI parameters were compared between groups. RESULTS In the pontine segment, the radial diffusivity (p = 0.0049) and apparent diffusion coefficient (p = 0.023) values in TN1 patients were increased compared to the values in TN2 patients and controls. The DTI measures in TN2 were not statistically significant from those in controls. When comparing the symptomatic to asymptomatic sides in TN1 patients, radial diffusivity was increased (p = 0.025) and fractional anisotropy was decreased (p = 0.044) in the symptomatic sides. The apparent diffusion coefficient was increased, with a trend toward statistical significance (p = 0.066). CONCLUSIONS Noninvasive DTI analysis of patients with TN may lead to improved diagnosis of TN subtypes (e.g., TN1 and TN2) and improve patient selection for surgical intervention. DTI measurements may also provide insights into prognosis after intervention, as TN1 patients are known to have better surgical outcomes than TN2 patients.
Collapse
Affiliation(s)
- Matthew S Willsey
- 1Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Kelly L Collins
- 1Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
- 2Department of Neurosurgery, University of Washington, Seattle, Washington
| | - Erin C Conrad
- 1Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
- 3Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Heather A Chubb
- 4Neuroscience and Sensory CTSU, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Parag G Patil
- 1Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
De Groote S, Goudman L, Linderoth B, Buyck F, Rigoard P, De Jaeger M, Van Schuerbeek P, Peeters R, Sunaert S, Moens M. A Regions of Interest Voxel-Based Morphometry Study of the Human Brain During High-Frequency Spinal Cord Stimulation in Patients With Failed Back Surgery Syndrome. Pain Pract 2020; 20:878-888. [PMID: 32470180 DOI: 10.1111/papr.12922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The effectiveness of spinal cord stimulation (SCS) as pain-relieving treatment for failed back surgery syndrome (FBSS) has already been demonstrated. However, potential structural and functional brain alterations resulting from subsensory SCS are less clear. The aim of this study was to test structural volumetric changes in a priori chosen regions of interest related to chronic pain after 1 month and 3 months of high-frequency SCS in patients with FBSS. METHODS Eleven patients with FBSS who were scheduled for SCS device implantation were included in this study. All patients underwent a magnetic resonance imaging protocol before SCS device implantation 1 and 3 months after high-frequency SCS. Pain intensity, pain catastrophizing, and sleep quality were also measured. Regions-of-interest voxel-based morphometry was used to explore grey matter volumetric changes over time. Additionally, volumetric changes were correlated with changes in pain intensity, catastrophizing, and sleep quality. RESULTS Significant decreases were found in volume in the left and right hippocampus over time. More specifically, a significant difference was revealed between volumes before SCS implantation and after 3 months of SCS. Repeated-measures correlations revealed a significant positive correlation between volumetric changes in the left hippocampus and changes in back pain score over time and between volumetric changes in the right hippocampus and changes in back pain score over time. CONCLUSION In patients with FBSS, high-frequency SCS influences structural brain regions over time. The volume of the hippocampus was decreased bilaterally after 3 months of high-frequency SCS with a positive correlation with back pain intensity.
Collapse
Affiliation(s)
- Sander De Groote
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Pain in Motion International Research Group, Vrije Universiteit Brussel, Jette, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Félix Buyck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Philippe Rigoard
- Spine & Neuromodulation Functional Unit, Poitiers University Hospital, Poitiers, France.,Institut Prime UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Poitiers, France.,PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium
| | | | - Ronald Peeters
- Department of Radiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Department of Radiology, Universitair Ziekenhuis Brussel, Jette, Belgium
| |
Collapse
|
29
|
Tang Y, Wang M, Zheng T, Yuan F, Yang H, Han F, Chen G. Grey matter volume alterations in trigeminal neuralgia: A systematic review and meta-analysis of voxel-based morphometry studies. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109821. [PMID: 31756417 DOI: 10.1016/j.pnpbp.2019.109821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/29/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
In recent decades, a growing number of structural neuroimaging studies of grey matter (GM) in trigeminal neuralgia (TN) have reported inconsistent alterations. We carried out a systematic review and meta-analysis to identify consistent and replicable GM volume abnormalities using effect-size signed differential mapping (ES-SDM). Furthermore, we conducted a meta-regression to explore the potential effects of clinical characteristics on GM volume alterations in patients with TN. A total of 13 studies with 15 datasets, representing 407 TN patients and 376 healthy individuals, were included in the present study. The results revealed that TN patients had GM volume abnormalities mainly in the basal ganglia, including the putamen, nucleus accumbens (NAc), caudate nucleus and amygdala, as well as the cingulate cortex (CC), thalamus, insula and superior temporal gyrus (STG). The meta-regression analysis showed that verbal rating scale (VRS) scores were negatively correlated with decreased GM volume in the left striatum and that illness duration was negatively correlated with decreased GM volume in the left STG and left insula. These results provide a thorough profile of GM volume alterations in TN patients and constitute robust evidence that aberrant GM volumes in the brain regions regulating and moderating sensory-motor and affective processing may play an important role in the pathophysiology of TN.
Collapse
Affiliation(s)
- Yu Tang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Maohua Wang
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ting Zheng
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Fengying Yuan
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Han Yang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Fugang Han
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guangxiang Chen
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
30
|
Serafini RA, Pryce KD, Zachariou V. The Mesolimbic Dopamine System in Chronic Pain and Associated Affective Comorbidities. Biol Psychiatry 2020; 87:64-73. [PMID: 31806085 PMCID: PMC6954000 DOI: 10.1016/j.biopsych.2019.10.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Chronic pain is a complex neuropsychiatric disorder characterized by sensory, cognitive, and affective symptoms. Over the past 2 decades, researchers have made significant progress toward understanding the impact of mesolimbic dopamine circuitry in acute and chronic pain. These efforts have provided insights into the circuits and intracellular pathways in the brain reward center that are implicated in sensory and affective manifestations of chronic pain. Studies have also identified novel therapeutic targets as well as factors that affect treatment responsiveness. Dysregulation of dopamine function in the brain reward center may further promote comorbid mood disorders and vulnerability to addiction. This review discusses recent clinical and preclinical findings on the neuroanatomical and neurochemical adaptations triggered by prolonged pain states in the brain reward pathway. Furthermore, this discussion highlights evidence of mechanisms underlying comorbidities among pain, depression, and addiction.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
31
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
32
|
Moayedi M, Hodaie M. Trigeminal nerve and white matter brain abnormalities in chronic orofacial pain disorders. Pain Rep 2019; 4:e755. [PMID: 31579849 PMCID: PMC6728001 DOI: 10.1097/pr9.0000000000000755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 02/02/2023] Open
Abstract
Medial temporal lobe activity is investigated in meta-analyses of experimental and chronic pain. Abnormal hippocampal connectivity is found in patients with chronic low back pain. The orofacial region is psychologically important, given that it serves fundamental and important biological purposes. Chronic orofacial pain disorders affect the head and neck region. Although some have clear peripheral etiologies, eg, classic trigeminal neuralgia, others do not have a clear etiology (eg, muscular temporomandibular disorders). However, these disorders provide a unique opportunity in terms of elucidating the neural mechanisms of these chronic pain conditions: both the peripheral and central nervous systems can be simultaneously imaged. Diffusion-weighted imaging and diffusion tensor imaging have provided a method to essentially perform in vivo white matter dissections in humans, and to elucidate abnormal structure related to clinical correlates in disorders, such as chronic orofacial pains. Notably, the trigeminal nerve anatomy and architecture can be captured using diffusion imaging. Here, we review the trigeminal somatosensory pathways, diffusion-weighted imaging methods, and how these have contributed to our understanding of the neural mechanisms of chronic pain disorders affecting the trigeminal system. We also discuss novel findings indicating the potential for trigeminal nerve diffusion imaging to develop diagnostic and precision medicine biomarkers for trigeminal neuralgia. In sum, diffusion imaging serves both an important basic science purpose in identifying pain mechanisms, but is also a clinically powerful tool that can be used to improve treatment outcomes.
Collapse
Affiliation(s)
- Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mojgan Hodaie
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery and Krembil Research Institute, Toronto Western Hospital, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Effects of Depression and Anxiety on Microvascular Decompression Outcome for Trigeminal Neuralgia Patients. World Neurosurg 2019; 128:e556-e561. [DOI: 10.1016/j.wneu.2019.04.194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
34
|
Vaculik MF, Noorani A, Hung PSP, Hodaie M. Selective hippocampal subfield volume reductions in classic trigeminal neuralgia. Neuroimage Clin 2019; 23:101911. [PMID: 31491821 PMCID: PMC6616529 DOI: 10.1016/j.nicl.2019.101911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
Abstract
Trigeminal Neuralgia (TN) is a chronic neuropathic pain syndrome characterized by paroxysmal unilateral shock-like pains in the trigeminal territory most frequently attributed to neurovascular compression of the trigeminal nerve at its root entry zone. Recent advances in the study of TN suggest a possible central nervous system (CNS) role in modulation and maintenance of pain. TN and other chronic pain patients commonly experience alterations in cognition and affect, as well as abnormalities in CNS volume and microstructure in regions associated with pain perception, emotional modulation, and memory consolidation. However, the microstructural changes in the hippocampus, an important structure within the limbic system, have not been previously studied in TN patients. Here, we use grey matter analysis to assess whether TN pain is associated with altered hippocampal subfield volume in patients with classic TN. Anatomical magnetic resonance (MR) images of twenty-two right-sided TN patients and matched healthy controls underwent automated segmentation of hippocampal subfields using FreeSurfer v6.0. Right-sided TN patients had significant volumetric reductions in ipsilateral cornu ammois 1 (CA1), CA4, dentate gyrus, molecular layer, and hippocampus-amygdala transition area - resulting in decreased whole ipsilateral hippocampal volume, compared to healthy controls. Overall, we demonstrate selective hippocampal subfield volume reduction in patients with classic TN. These changes occur in subfields implicated as neural circuits for chronic pain processing. Selective subfield volume reduction suggests aberrant processes and circuitry reorganization, which may contribute to development and/or maintenance of TN symptoms.
Collapse
Affiliation(s)
- Michael Frantisek Vaculik
- Dalhousie Medical School, Dalhousie University, Halifax, Nova Scotia, Canada; Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Alborz Noorani
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Surgery and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada; Collaborative Program in Neuroscience, University of Toronto, Ontario, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, Ontario, Canada.
| |
Collapse
|
35
|
Multivariate pattern classification of brain white matter connectivity predicts classic trigeminal neuralgia. Pain 2019; 159:2076-2087. [PMID: 29905649 DOI: 10.1097/j.pain.0000000000001312] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trigeminal neuralgia (TN) is a severe form of chronic facial neuropathic pain. Increasing interest in the neuroimaging of pain has highlighted changes in the root entry zone in TN, but also group-level central nervous system gray and white matter (WM) abnormalities. Group differences in neuroimaging data are frequently evaluated with univariate statistics; however, this approach is limited because it is based on single, or clusters of, voxels. By contrast, multivariate pattern analyses consider all the model's neuroanatomical features to capture a specific distributed spatial pattern. This approach has potential use as a prediction tool at the individual level. We hypothesized that a multivariate pattern classification method can distinguish specific patterns of abnormal WM connectivity of classic TN from healthy controls (HCs). Diffusion-weighted scans in 23 right-sided TN and matched controls were processed to extract whole-brain interregional streamlines. We used a linear support vector machine algorithm to differentiate interregional normalized streamline count between TN and HC. This algorithm successfully differentiated between TN and HC with an accuracy of 88%. The structural pattern emphasized WM connectivity of regions that subserve sensory, affective, and cognitive dimensions of pain, including the insula, precuneus, inferior and superior parietal lobules, and inferior and medial orbital frontal gyri. Normalized streamline counts were associated with longer pain duration and WM metric abnormality between the connections. This study demonstrates that machine-learning algorithms can detect characteristic patterns of structural alterations in TN and highlights the role of structural brain imaging for identification of neuroanatomical features associated with neuropathic pain disorders.
Collapse
|
36
|
Liu J, Zhu J, Yuan F, Zhang X, Zhang Q. Abnormal brain white matter in patients with right trigeminal neuralgia: a diffusion tensor imaging study. J Headache Pain 2018; 19:46. [PMID: 29931400 PMCID: PMC6013416 DOI: 10.1186/s10194-018-0871-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Idiopathic or classical trigeminal neuralgia (TN) is a chronic painful condition characterized by intermittent pain attacks. Enough evidence demonstrates classical TN is related to neurovascular compression (NVC) at the trigeminal root entry zone (REZ), but white matter change secondary to TN are not totally known. METHODS Visual Analogue Scale (VAS) and diffusion tensor imaging were performed on 29 patients with right TN and 35 healthy individuals. Voxel-wise analyses were performed with TBSS using multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Group differences in these parameters were compared between right TN patients and controls using TBSS and correlations between the white matter change and disease duration and VAS in right TN patients were assessed. Multiple comparison correction were applied to test significant correlations. RESULTS The right TN patients showed significantly lower FA and higher RD in most left white matter (P < 0.05, FWE corrected). Moreover, negative correlations were observed between disease duration and the FA values of left corona radiata, genu of corpus callosum, left external capsule and left cerebral peduncle, and between VAS and the FA values of left corona radiata, left external capsule and left cerebral peduncle (P < 0.05). Positive correlations were observed for disease duration and the RD values of left corona radiata, right external capsule, left fornix cerebri and left cerebral peduncle, and for VAS and the RD values of left corona radiata and left external capsule (P < 0.05). However, once Bonferroni corrections were applied, these correlations were not statistically significant. CONCLUSION These findings suggest that TN selectively impairs widespread white matter, especially contralateral hemisphere, which may be the hallmark of disease severity in TN patients.
Collapse
Affiliation(s)
- Junpeng Liu
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Road, Hexi District, Tianjin, 300203, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Yuan
- Department of Radiology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, No. 220, Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Road, Hexi District, Tianjin, 300203, China.
| | - Quan Zhang
- Department of Radiology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, No. 220, Chenglin Road, Hedong District, Tianjin, 300162, China.
| |
Collapse
|