1
|
Goncharov A, Joung HA, Ghosh R, Han GR, Ballard ZS, Maloney Q, Bell A, Aung CTZ, Garner OB, Carlo DD, Ozcan A. Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300617. [PMID: 37104829 DOI: 10.1002/smll.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Multiplexed computational sensing with a point-of-care serodiagnosis assay to simultaneously quantify three biomarkers of acute cardiac injury is demonstrated. This point-of-care sensor includes a paper-based fluorescence vertical flow assay (fxVFA) processed by a low-cost mobile reader, which quantifies the target biomarkers through trained neural networks, all within <15 min of test time using 50 µL of serum sample per patient. This fxVFA platform is validated using human serum samples to quantify three cardiac biomarkers, i.e., myoglobin, creatine kinase-MB, and heart-type fatty acid binding protein, achieving less than 0.52 ng mL-1 limit-of-detection for all three biomarkers with minimal cross-reactivity. Biomarker concentration quantification using the fxVFA that is coupled to neural network-based inference is blindly tested using 46 individually activated cartridges, which shows a high correlation with the ground truth concentrations for all three biomarkers achieving >0.9 linearity and <15% coefficient of variation. The competitive performance of this multiplexed computational fxVFA along with its inexpensive paper-based design and handheld footprint makes it a promising point-of-care sensor platform that can expand access to diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Artem Goncharov
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Rajesh Ghosh
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Gyeo-Re Han
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Zachary S Ballard
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Quinn Maloney
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Alexandra Bell
- Chemistry & Biochemistry Department, University of California, Los Angeles, CA, 90095, USA
| | - Chew Tin Zar Aung
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical & Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Bhadola P, Chaudhary V, Markandan K, Talreja RK, Aggarwal S, Nigam K, Tahir M, Kaushik A, Rustagi S, Khalid M. Analysing role of airborne particulate matter in abetting SARS-CoV-2 outbreak for scheming regional pandemic regulatory modalities. ENVIRONMENTAL RESEARCH 2023; 236:116646. [PMID: 37481054 DOI: 10.1016/j.envres.2023.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
The mutating SARS-CoV-2 necessitates gauging the role of airborne particulate matter in the COVID-19 outbreak for designing area-specific regulation modalities based on the environmental state-of-affair. To scheme the protocols, the hotspots of air pollutants such as PM2.5, PM10, NH3, NO, NO2, SO2, and and environmental factors including relative humidity (RH), and temperature, along with COVID-19 cases and mortality from January 2020 till December 2020 from 29 different ground monitoring stations spanning Delhi, are mapped. Spearman correlation coefficients show a positive relationship between SARS-COV-2 with particulate matter (PM2.5 with r > 0.36 and PM10 with r > 0.31 and p-value <0·001). Besides, SARS-COV-2 transmission showed a substantial correlation with NH3 (r = 0.41), NO2 (r = 0.36), and NO (r = 0.35) with a p-value <0.001, which is highly indicative of their role in SARS-CoV-2 transmission. These outcomes are associated with the source of PM and its constituent trace elements to understand their overtone with COVID-19. This strongly validates temporal and spatial variation in COVID-19 dependence on air pollutants as well as on environmental factors. Besides, the bottlenecks of missing latent data, monotonous dependence of variables, and the role air pollutants with secondary environmental variables are discussed. The analysis set the foundation for strategizing regional-based modalities considering environmental variables (i.e., pollutant concentration, relative humidity, temperature) as well as urban and transportation planning for efficient control and handling of future public health emergencies.
Collapse
Affiliation(s)
- Pradeep Bhadola
- Centre for Theoretical Physics & Natural Philosophy, Mahidol University, Nakhonsawan 60130, Thailand
| | - Vishal Chaudhary
- Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110072, India.
| | - Kalaimani Markandan
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Sumit Aggarwal
- Division of Epidemiology and Communicable Diseases (ECD), Indian Council of Medical Research (ICMR)-Headquaters, New Delhi 110029, India
| | - Kuldeep Nigam
- Division of Epidemiology and Communicable Diseases (ECD), Indian Council of Medical Research (ICMR)-Headquaters, New Delhi 110029, India
| | - Mohammad Tahir
- Department of Computing, University of Turku, FI-20014, Turun Yliopisto, Finland
| | - Ajeet Kaushik
- NanoBio Tech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Division of Research and Development, Lovely Professional University, Phagwara, 144411, Punjab, India; School of Engineering and Technology, Sharda University, Greater Noida, 201310, India.
| |
Collapse
|
3
|
Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Int J Nanomedicine 2023; 18:5831-5869. [PMID: 37869062 PMCID: PMC10590117 DOI: 10.2147/ijn.s423251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Immunomodulatory and broad-spectrum antiviral activities have motivated the evaluation of curcumin for Coronavirus infection 2019 (COVID-19) management. Inadequate bioavailability is the main impediment to the therapeutic effects of oral Cur. This study aimed to develop an optimal curcumin transferosome-loaded thermosensitive in situ gel to improve its delivery to the lungs. Methods Transferosomes were developed by using 33 screening layouts. The phospholipid concentration as well as the concentration and type of surfactant were considered independent variables. The entrapment efficiency (EE%), size, surface charge, and polydispersity index (PDI) were regarded as dependent factors. A cold technique was employed to develop thermosensitive in-situ gels. Optimized transferosomes were loaded onto the selected gels. The produced gel was assessed based on shape attributes, ex vivo permeability enhancement, and the safety of the nasal mucosa. The in vitro cytotoxicity, antiviral cytopathic effect, and plaque assay (CV/CPE/Plaque activity), and in vivo performance were evaluated after intranasal administration in experimental rabbits. Results The optimized preparation displayed a particle size of 664.3 ± 69.3 nm, EE% of 82.8 ± 0.02%, ZP of -11.23 ± 2.5 mV, and PDI of 0.6 ± 0.03. The in vitro curcumin release from the optimized transferosomal gel was markedly improved compared with that of the free drug-loaded gel. An ex vivo permeation study revealed a significant improvement (2.58-fold) in drug permeability across nasal tissues of sheep. Histopathological screening confirmed the safety of these preparations. This formulation showed high antiviral activity against SARS-CoV-2 at reduced concentrations. High relative bioavailability (226.45%) was attained after the formula intranasally administered to rabbits compared to the free drug in-situ gel. The curcumin transferosome gel displayed a relatively high lung accumulation after intranasal administration. Conclusion This study provides a promising formulation for the antiviral treatment of COVID-19 patients, which can be evaluated further in preclinical and clinical studies.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Wesam M El-Koussi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Noha G Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Parihar A, Malviya S, Khan R, Kaushik A, Mostafavi E. COVID-19 associated thyroid dysfunction and other comorbidities and its management using phytochemical-based therapeutics: a natural way. Biosci Rep 2023; 43:BSR20230293. [PMID: 37212057 PMCID: PMC10372472 DOI: 10.1042/bsr20230293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023] Open
Abstract
The present severe acute respiratory syndrome-2 (SARS-CoV-2) mediated Coronavirus pandemic (COVID-19) and post-COVID-19 complications affect human life drastically. Patients who have been cured of COVID-19 infection are now experiencing post-COVID-19 associated comorbidities, which have increased mortality rates. The SARS-CoV-2 infection distresses the lungs, kidneys, gastrointestinal tract, and various endocrine glands, including the thyroid. The emergence of variants which includes Omicron (B.1.1.529) and its lineages threaten the world severely. Among different therapeutic approaches, phytochemical-based therapeutics are not only cost-effective but also have lesser side effects. Recently a plethora of studies have shown the therapeutic efficacy of various phytochemicals for the treatment of COVID-19. Besides this, various phytochemicals have been found efficacious in treating several inflammatory diseases, including thyroid-related anomalies. The method of the phytochemical formulation is quick and facile and the raw materials for such herbal preparations are approved worldwide for human use against certain disease conditions. Owing to the advantages of phytochemicals, this review primarily discusses the COVID-19-related thyroid dysfunction and the role of key phytochemicals to deal with thyroid anomaly and post-COVID-19 complications. Further, this review shed light on the mechanism via which COVID-19 and its related complication affect organ function of the body, along with the mechanistic insight into the way by which phytochemicals could help to cure post-COVID-19 complications in thyroid patients. Considering the advantages offered by phytochemicals as a safer and cost-effective medication they can be potentially used to combat COVID-19-associated comorbidities.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, MP, India
| | - Shivani Malviya
- Department of Biochemistry and Genetics, Barkatullah University, Habib Ganj, Bhopal, Madhya Pradesh 462026, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, U.S.A
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, U.S.A
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, U.S.A
| |
Collapse
|
5
|
Asmat-Campos D, Rojas-Jaimes J, de Oca-Vásquez GM, Nazario-Naveda R, Delfín-Narciso D, Juárez-Cortijo L, Bayona DE, Diringer B, Pereira R, Menezes DB. Biogenic production of silver, zinc oxide, and cuprous oxide nanoparticles, and their impregnation into textiles with antiviral activity against SARS-CoV-2. Sci Rep 2023; 13:9772. [PMID: 37328549 PMCID: PMC10275893 DOI: 10.1038/s41598-023-36910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Nanotechnology is being used to fight off infections caused by viruses, and one of the most outstanding nanotechnological uses is the design of protective barriers made of textiles functionalized with antimicrobial agents, with the challenge of combating the SARS-CoV-2 virus, the causal agent of COVID-19. This research is framed within two fundamental aspects: the first one is linked to the proposal of new methods of biogenic synthesis of silver, cuprous oxide, and zinc oxide nanoparticles using organic extracts as reducing agents. The second one is the application of nanomaterials in the impregnation (functionalization) of textiles based on methods called "in situ" (within the synthesis), and "post-synthesis" (after the synthesis), with subsequent evaluation of their effectiveness in reducing the viral load of SARS-CoV-2. The results show that stable, monodisperse nanoparticles with defined geometry can be obtained. Likewise, the "in situ" impregnation method emerges as the best way to adhere nanoparticles. The results of viral load reduction show that 'in situ' textiles with Cu2O NP achieved a 99.79% load reduction of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- David Asmat-Campos
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru.
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru.
| | - Jesús Rojas-Jaimes
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru
| | | | - R Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | - D Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | - L Juárez-Cortijo
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | | | - Benoit Diringer
- INCABIOTEC SAC, Tumbes, 24 000, Peru
- Programa de Maestría de Biotecnología Molecular, Universidad Nacional de Tumbes, Tumbes, 24 000, Peru
| | - Reinaldo Pereira
- National Laboratory of Nanotechnology, National Center for High Technology, Pavas, San José, 10109, Costa Rica
| | - Diego Batista Menezes
- National Laboratory of Nanotechnology, National Center for High Technology, Pavas, San José, 10109, Costa Rica
| |
Collapse
|
6
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
7
|
Iqbal R, Khan S, Ali HM, Khan M, Wahab S, Khan T. Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers are now looking to nanomaterials to fight serious infectious diseases that cause outbreaks and even pandemics. SARS-CoV-2 brought chaos to almost every walk of life in the past 2 years and has challenged every available treatment method. Although vaccines were developed in no time against it, the most pressing issue was the emergence of variants of concern arising because of the rapidly evolving viral strains. The higher pathogenicity and, in turn, the higher mortality rate of infections caused by these variants renders the existing vaccines less effective and the effort to produce further vaccines a costly endeavor. While several techniques, such as immunotherapy and repurposed pharmaceutical research, are being studied to minimize viral infection, the fundamentals of nanotechnology must also be considered to enhance the anti-SARS-CoV-2 efforts. For instance, silver nanoparticles (AgNPs) have been applied against SARS-CoV-2 effectively. Similarly, nanomaterials have been tested in masks, gloves, and disinfectants to aid in controlling SARS-CoV-2. Nanotechnology has also contributed to diagnoses such as rapid and accurate detection and treatment such as the delivery of mRNA vaccines and other antiviral agents into the body. The development of polymeric nanoparticles has been dubbed a strategy of choice over traditional drugs because of their tunable release kinetics, specificity, and multimodal drug composition. Our article explores the potential of nanomaterials in managing the variants of concern. This will be achieved by highlighting the inherent ability of nanomaterials to act against the virus on fronts such as inhibition of SARS-CoV-2 entry, inhibition of RNA replication in SARS-CoV-2, and finally, inhibition of their release. In this review, a detailed discussion on the potential of nanomaterials in these areas will be tallied with their potential against the current and emerging future variants of concern.
Collapse
|
8
|
Rana R, Kant R, Huirem RS, Bohra D, Ganguly NK. Omicron variant: Current insights and future directions. Microbiol Res 2022; 265:127204. [PMID: 36152612 PMCID: PMC9482093 DOI: 10.1016/j.micres.2022.127204] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
The global COVID-19 outbreak has returned with the identification of the SARS-CoV-2 Omicron variant (B.1.1.529) after appearing to be persistently spreading for the more than past two years. In comparison to prior SARS-CoV-2 variants, this new variant revealed a significant amount of mutation. This novel variety may have a greater rate of transmissibility which might impede the effectiveness of current diagnostic equipment as well as vaccination efficacy and also impede immunotherapies (Antibody / monoclonal antibody based). WHO designated B.1.1.529 as a variant of concern on November 26, 2021, identified as Omicron. The Omicron variant transmission method and severity, on the other hand, are well defined. The global spread of Omicron, which has now seized many nations, has resulted in numerous speculations regarding its origin and degree of infectivity. The following sections will go over its potential for transmission, omicron structure, and impact on COVID-19 vaccines, how it is different from delta variant and diagnostics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | - Deepika Bohra
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | |
Collapse
|
9
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
10
|
Singh A, Singh P, Kumar R, Kaushik A. Exploring nanoselenium to tackle mutated SARS-CoV-2 for efficient COVID-19 management. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1004729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite ongoing public health measures and increasing vaccination rates, deaths and disease severity caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new emergent variants continue to threaten the health of people around the world. Therefore, there is an urgent need to develop novel strategies for research, diagnosis, treatment, and government policies to combat the variant strains of SARS-CoV-2. Since the state-of-the-art COVID-19 pandemic, the role of selenium in dealing with COVID-19 disease has been widely discussed due to its importance as an essential micronutrient. This review aims at providing all antiviral activities of nanoselenium (Nano-Se) ever explored using different methods in the literature. We systematically summarize the studied antiviral activities of Nano-Se required to project it as an efficient antiviral system as a function of shape, size, and synthesis method. The outcomes of this article not only introduce Nano-Se to the scientific community but also motivate scholars to adopt Nano-Se to tackle any serious virus such as mutated SARS-CoV-2 to achieve an effective antiviral activity in a desired manner.
Collapse
|
11
|
Al‐kuraishy HM, Al‐Gareeb AI, Kaushik A, Kujawska M, Batiha GE. Ginkgo biloba in the management of the COVID-19 severity. Arch Pharm (Weinheim) 2022; 355:e2200188. [PMID: 35672257 PMCID: PMC9348126 DOI: 10.1002/ardp.202200188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is linked with inflammatory disorders and the development of oxidative stress in extreme cases. Therefore, anti-inflammatory and antioxidant drugs may alleviate these complications. Ginkgo biloba L. folium extract (EGb) is a herbal medicine containing various active constituents. This review aims to provide a critical discussion on the potential role of EGb in the management of coronavirus disease 2019 (COVID-19). The antiviral effect of EGb is mediated by different mechanisms, including blocking SARS-CoV-2 3-chymotrypsin-like protease that provides trans-variant effectiveness. Moreover, EGb impedes the development of pulmonary inflammatory disorders through the diminution of neutrophil elastase activity, the release of proinflammatory cytokines, platelet aggregation, and thrombosis. Thus, EGb can attenuate the acute lung injury and acute respiratory distress syndrome in COVID-19. In conclusion, EGb offers the potential of being used as adjuvant antiviral and symptomatic therapy. Nanosystems enabling targeted delivery, personalization, and booster of effects provide the opportunity for the use of EGb in modern phytotherapy.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental EngineeringFlorida Polytechnic UniversityLakelandFloridaUSA
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
12
|
Rastogi A, Singh A, Naik K, Mishra A, Chaudhary S, Manohar R, Singh Parmar A. A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS - CoV- 2 (COVID - 19). J Mol Liq 2022; 362:119795. [PMID: 35832289 PMCID: PMC9265145 DOI: 10.1016/j.molliq.2022.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 is a pandemic caused by the SARS-CoV-2 virus, has instigated major health problems and prompted WHO to proclaim a worldwide medical emergency. The knowledge of SARS-CoV-2 fundamental structure, aetiology, its entrance mechanism, membrane hijacking and immune response against the virus, are important parameters to develop effective vaccines and medicines. Liquid crystals integrated nano-techniques and various nanoformulations were applied to tackle the severity of the virus. It was reported that nanoformulations have helped to enhance the effectiveness of presently accessible antiviral medicines or to elicit a fast immunological response against COVID-19 virus. Applications of liquid crystals, nanostructures, nanoformulations and nanotechnology in diagnosis, prevention, treatment and tailored vaccine administration against COVID-19 which will help in establishing the framework for a successful pandemic combat are reviewed. This review also focuses on limitations associated with liquid crystal-nanotechnology based systems and suggests the possible ways to address these limitations. Also, topical advancements in the ground of liquid crystals and nanostructures established diagnostics (nanosensor/biosensor) are discussed in detail.
Collapse
Affiliation(s)
- Ayushi Rastogi
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Humanity and Applied Sciences (Physics), SMS College of Engineering, Institute of Technology, Lucknow 226001, Uttar Pradesh, India
| | - Abhilasha Singh
- Department of Physics, J.S.S Academy of Technical Education, Bangalore 560060, Karnataka, India
| | - Kaustubh Naik
- Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay - 400085, Mumbai, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh 160012, Punjab, India
| | - Rajiv Manohar
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | | |
Collapse
|
13
|
Khan J, Rasmi Y, Kırboğa KK, Ali A, Rudrapal M, Patekar RR. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:111. [PMID: 36092513 PMCID: PMC9444098 DOI: 10.1186/s43088-022-00293-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism of coronavirus disease 2019 (COVID-19) which poses a significant threat to public health worldwide. Though there are certain recommended drugs that can cure COVID-19, their therapeutic efficacy is limited. Therefore, the early and rapid detection without compromising the test accuracy is necessary in order to provide an appropriate treatment for the disease suppression.
Main body
Nanoparticles (NPs) can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. NPs have been widely applied in a variety of medical applications, including biosensing, drug delivery, antimicrobial treatment, and imaging. Recently, NPs-based biosensors have attracted great interest for their biological activities and specific sensing properties, which allows the detection of analytes such as nucleic acids (DNA or RNA), aptamers, and proteins in clinical samples. Further, the advances of nanotechnologies have enabled the development of miniaturized detection systems for point-of-care biosensors, a new strategy for detecting human viral diseases. Among the various NPs, the specific physicochemical properties of gold NPs (AuNPs) are being widely used in the field of clinical diagnostics. As a result, several AuNP-based colorimetric detection methods have been developed.
Short conclusion
The purpose of this review is to provide an overview of the development of AuNPs-based biosensors by virtue of its powerful characteristics as a signal amplifier or enhancer that target pathogenic RNA viruses that provide a reliable and effective strategy for detecting of the existing or newly emerging SARS-CoV-2.
Collapse
|
14
|
Bazargan M, Elahi R, Esmaeilzadeh A. OMICRON: Virology, immunopathogenesis, and laboratory diagnosis. J Gene Med 2022; 24:e3435. [PMID: 35726542 PMCID: PMC9350010 DOI: 10.1002/jgm.3435] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Since its emersion, coronavirus disease 2019 (COVID-19) has been a significant global dilemma. Several mutations in the severe acute respiratory virus (SARS-Co-2) genome has given rise to different variants with various levels of transmissibility, severity and mortality. Up until November 2021, the variants of concern declared by the World Health Organization were Alpha, Beta, Delta and Gamma. Since then, a novel variant named Omicron (B.1.1.529) has been developed. BA.1, BA.1.1, BA.2 and BA.3 are four known subvariants of Omicron. The Omicron variant involves new mutations in its spike protein, most of which are in its receptor binding site, and increase its transmissibility and decrease its antibody and vaccine response. Understanding the virology and mutations of Omicron is necessary for developing diagnostic and therapeutic methods. Moreover, important issues, such as the risk of re-infection, the response to different kinds of vaccines, the need for a booster vaccine dose and the increased risk of Omicron infection in pediatrics, need to be addressed. In this article, we provide an overview of the biological and immunopathological properties of Omicron and its subvariants, its clinical signs and symptoms, Omicron and pediatrics, vaccines against Omicron, re-infection with Omicron, diagnostic approaches and specific challenges of Omicron in the successful control and management of the rapid global spread of this variant.
Collapse
Affiliation(s)
- Mahsa Bazargan
- Department of Immunology, School of MedicineSahid Beheshti University of Medical SciencesTehranIran
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari HospitalSahid Beheshti University of Medical SciencesTehranIran
| | - Reza Elahi
- School of MedicineZanjan University of Medical SciencesZanjanIran
| | - Abdolreza Esmaeilzadeh
- Department of ImmunologyZanjan University of Medical SciencesZanjanIran
- Cancer Gene Therapy Research CenterZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
15
|
Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. APPLIED SURFACE SCIENCE ADVANCES 2022; 9:100236. [PMCID: PMC8939627 DOI: 10.1016/j.apsadv.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus diseases 2019 (COVID-19), a viral infection pandemic, arises due to easy human-to-human transmission of severe acute respiratory syndrome coronavirus (SARS-CoV-2). The SARS-CoV-2 causes severe respiratory disorders and other life-threatening diseases (during/post-infection) such as black mold disease, diabetes, cardiovascular, and neurological disorders/diseases. COVID-19 infection emerged challenging to control as SARS-CoV-2 transmits through respiratory droplets (> 10 µm size range), aerosols (< 5 µm), airborne, and particulate matter (PM1.0 PM2.5 and PM10.0). SARS-CoV-2 is more infective in indoor premises due to aerodynamics where droplets, aerosols, and PM1.0/2.5/10.0 float for a longer time and distance leading to a higher probability of it entering upper and lower respiratory tracts. To avoid human-to-human transmission, it is essential to trap and destroy SARS-CoV-2 from the air and provide virus-free air that will significantly reduce indoor viral exposure concerns. In this process, an efficient nano-enable photoelectrochemical oxidation (PECO, a destructive approach to neutralize bio-organism) assisted air purification is undoubtedly a good technological choice. This technical perspective explores the role of PECO-assisted Air-Purifiers (i.e., Molekule as a focus example for proof-of-concept) to trap and destroy indoor microorganisms (bacteria and viruses including Coronaviruses), molds, and allergens, and other indoor air pollutants, such as volatile organic compounds (VOCs) and PM1.0/2.5/10.0. It is observed through various standard and non-standard tests that stimuli-responsive nanomaterials coated filter technology traps and destroys microbial particles. Due to technological advancements according to premises requirements and high-performance desired outcomes, Molekule air purifiers, Air Pro Air -Rx, Air Mini, and Air Mini+, have received Food and Drug Administration (FDA) clearance as a Class II medical device for the destruction of bacteria and viruses.
Collapse
|
16
|
Muthiah G, Sarkar A, Roy S, Singh P, Kumar P, Bhardwaj K, Jaiswal A. Nanotechnology Toolkit for Combating COVID-19 and Beyond. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2022; 8:e202100505. [PMID: 35542043 PMCID: PMC9074423 DOI: 10.1002/cnma.202100505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The outbreak of SARS-CoV-2 is unlikely to be contained anytime soon with conventional medical technology. This beckons an urgent demand for novel and innovative interventions in clinical protocols, diagnostics, and therapeutics; to manage the current "disease X" and to be poised to counter its successor of like nature if one were to ever arise. To meet such a demand requires more attention to research on the viral-host interactions and on developing expeditious solutions, the kinds of which seem to spring from promising domains such as nanotechnology. Inducing activity at scales comparable to the viruses themselves, nanotechnology-based preventive measures, diagnostic tools and therapeutics for COVID-19 have been rapidly growing during the pandemic. This review covers the recent and promising nanomedicine-based solutions relating to COVID-19 and how some of these are possibly applicable to a wider range of viruses and pathogens. We also discuss the type, composition, and utility of nanostructures which play various roles specifically under prevention, diagnosis, and therapy. Further, we have highlighted the adoption and commercialization of some the solutions by large and small corporations alike, as well as providing herewith an exhaustive list on nanovaccines.
Collapse
Affiliation(s)
- Giredhar Muthiah
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Ankita Sarkar
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Shounak Roy
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Prem Singh
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Praveen Kumar
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Keshav Bhardwaj
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| | - Amit Jaiswal
- School of Basic SciencesIndian Institute of Technology MandiKamandMandi Himachal Pradesh175075India
| |
Collapse
|
17
|
Tiwari S, Juneja S, Ghosal A, Bandara N, Khan R, Wallen SL, Ramakrishna S, Kaushik A. Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 21:100363. [PMID: 34869963 PMCID: PMC8632437 DOI: 10.1016/j.cobme.2021.100363] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
The increased severity of the COVID-19 infection due to new SARS-CoV-2 variants has resonated pandemic impact which made health experts to re-evaluate the effectiveness of pandemic management strategies. This becomes critical owing to the infection in large population and shortcomings in the existing global healthcare system worldwide. The designing of high-performance nanosystems (NS) with tunable performances seems to be the most efficient method to tackle infectious SARS-CoV-2 variants including recently emerged omicron mutation. In this direction, experts projects the versatile functionalized NS and their capabilities to mitigate SARS-CoV-2 propagation pathways by sensitization, antipathogenicity, photocatalysis, photothermal effects, immune response, developing efficient diagnostics assays or associated, selective biomarkers detection, and targeted drug delivery systems. To achieve these tasks, this opinion article project the importance of the fabrication of nano-enabled protective gear, masks, gloves, sheets, filtration units, nano-emulsified disinfectants, antiviral/bacterial paints, and therangostics to facilitate quarantine strategies via protection, detection, and treatment needed to manage COVID-19 pandemic in personalized manners. These functional protective high-performance antibacterial and antiviral NS can efficiently tackle the SARS-CoV-2 variants transmission through respiratory fluids and pollutants within water droplets, aerosols, air, and particulates along with their severe infection via neutralizing or eradicating the virus.
Collapse
Affiliation(s)
- Shivani Tiwari
- Department of Zoology, Delhi University, New Delhi, 110007, India
| | - Subhavna Juneja
- NanoBiotechnology Lab, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anujit Ghosal
- Department of Food & Human Nutritional Sciences, The University of Manitoba, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, The University of Manitoba, MB R3T 6C5, Canada
| | - Nandika Bandara
- Department of Food & Human Nutritional Sciences, The University of Manitoba, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, The University of Manitoba, MB R3T 6C5, Canada
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
| | - Scott L Wallen
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 119260 Singapore
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| |
Collapse
|
18
|
Dubey AK, Chaudhry SK, Singh HB, Gupta VK, Kaushik A. Perspectives on nano-nutraceuticals to manage pre and post COVID-19 infections. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00712. [PMID: 35186674 PMCID: PMC8832856 DOI: 10.1016/j.btre.2022.e00712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Optimized therapeutic bio-compounds supported by bio-acceptable nanosystems (i.e., precise nanomedicine) have ability to promote health via maintaining body structure, organ function, and controlling chronic and acute effects. Therefore, nano-nutraceuticals (designed to neutralize virus, inhibit virus bindings with receptors, and support immunity) utilization can manage COVID-19 pre/post-infection effects. To explore these approaches well, our mini-review explores optimized bio-active compounds, their ability to influence SARS-CoV-2 infection, improvement in performance supported by precise nanomedicine approach, and challenges along with prospects. Such optimized pharmacologically relevant therapeutic cargo not only affect SARS-CoV-2 but will support other organs which show functional alternation due to SARS-CoV-2 for example, neurological functions. Hence, coupling the nutraceuticals with the nano-pharmacology perspective of higher efficacy via targeted delivery action can pave a novel way for health experts to plan future research needed to manage post COVID-19 infection effect where a longer efficacy with no side-effects is a key requirement.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Tamil Nadu, 600036, India
- Institute of Scholars (InSc), Bengaluru, 560091, Karnataka, India
| | - Suman Kumar Chaudhry
- Department of Computer Science and Engineering, Tezpur University, Sonitpur, Assam, 784028, India
| | | | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
19
|
Xiao Y, Li S, Pang Z, Wan C, Li L, Yuan H, Hong X, Du W, Feng X, Li Y, Chen P, Liu BF. Multi-reagents dispensing centrifugal microfluidics for point-of-care testing. Biosens Bioelectron 2022; 206:114130. [PMID: 35245866 DOI: 10.1016/j.bios.2022.114130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Point-of-care testing (POCT) has shown great advantages for public health monitoring in resource-limited settings. However, developing of POCT tools with automated and accurate quantitative dispensing of multiple reagents and samples is challenging. Here, we demonstrate a novel multi-reagents dispensing centrifugal microfluidics (MDCM) that allows rapid and automated dispensing of multiple reagents and samples with high throughput and accuracy. The MDCM was designed with multiple aliquoting units with the hydrophobic valve at different radial positions. All reagents and samples were loaded simultaneously, dispensed in parallel by centrifugation at low speed, and then introduced into the reaction chamber sequentially by centrifugation at high speed. Two MDCM chips are demonstrated, including a uniform concentration generator and a gradient concentration generator. The concentration coefficient of variation (CV) among the independent reaction chambers was lower than 0.56%, and the theoretical quantitative concentration gradient was strongly correlated with the actual concentration gradient (R2 = 0.9938). We have successfully applied the MDCM to loop-mediated isothermal amplification (LAMP)-based nucleic acid detection for multiple infectious pathogens and antimicrobial susceptibility testing (AST) for kanamycin sulfate against E. coli. To further extend the applications, the MDCM has also been applied to bicinchoninic acid (BCA) protein assays with online calibration, reducing the detection time from 2 h to 10 min with a twenty-fold reduction in reagent consumption. These results indicated that the MDCM is a high potential platform for POCT.
Collapse
Affiliation(s)
- Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Pang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
20
|
Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim NY, Li CZ, Kumar Mishra Y, Kaushik A. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:833-864. [PMID: 35194511 PMCID: PMC8853211 DOI: 10.1007/s40097-022-00472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/23/2022] [Indexed: 05/02/2023]
Abstract
Biomedical researchers have subsequently been inspired the development of new approaches for precisely changing an organism's genomic DNA in order to investigate customized diagnostics and therapeutics utilizing genetic engineering techniques. Clustered Regulatory Interspaced Short Palindromic Repeats (CRISPR) is one such technique that has emerged as a safe, targeted, and effective pharmaceutical treatment against a wide range of disease-causing organisms, including bacteria, fungi, parasites, and viruses, as well as genetic abnormalities. The recent discovery of very flexible engineered nucleic acid binding proteins has changed the scientific area of genome editing in a revolutionary way. Since current genetic engineering technique relies on viral vectors, issues about immunogenicity, insertional oncogenesis, retention, and targeted delivery remain unanswered. The use of nanotechnology has the potential to improve the safety and efficacy of CRISPR/Cas9 component distribution by employing tailored polymeric nanoparticles. The combination of two (CRISPR/Cas9 and nanotechnology) offers the potential to open new therapeutic paths. Considering the benefits, demand, and constraints, the goal of this research is to acquire more about the biology of CRISPR technology, as well as aspects of selective and effective diagnostics and therapies for infectious illnesses and other metabolic disorders. This review advocated combining nanomedicine (nanomedicine) with a CRISPR/Cas enabled sensing system to perform early-stage diagnostics and selective therapy of specific infectious disorders. Such a Nano-CRISPR-powered nanomedicine and sensing system would allow for successful infectious illness control, even on a personal level. This comprehensive study also discusses the current obstacles and potential of the predicted technology. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40097-022-00472-7.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- CIBER Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Nanobiocel Research Group, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Nam-Young Kim
- Department of Electronics Engineering, RFIC Bio Centre, NDAC Centre, RFIC Bio Centre, NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897 South Korea
| | - Chen-zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112 USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112 USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL-33805 USA
| |
Collapse
|
21
|
Mall A, Das TR, Bhattacharjee P, Pal S, Sharma S, Shukla SK, Patra S. Role of nanotechnology for coronavirus detection. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9335014 DOI: 10.1016/b978-0-323-90280-9.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) is the worst pandemic faced by the mankind in current millennium. It is due to the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This was detected for the first time in December 2019 with rapid human-to-human transmission. The global pandemic has spread out across 213 countries by affecting millions including 52.7 lakh death. Currently, there are no clinically proven therapeutic methods that clearly inhibit the effects of this virus. Nanoparticles (NPs) have been widely used in many medical applications, such as biosensing, drug delivery, imaging, and antimicrobial treatment. Looking the rapid, cost effective and accurate sensing of the virus, the field of nanoscience and nanotechnology is working actively. By following the colorimetric method and surface plasmon spectroscopy, several nanoparticles are used in quantifying and detecting the COVID-19. This chapter contains the rapid analysis and quantification of COVID-19 by the arrangements of several nanoparticles including gold nanoparticles, iron oxide nanoparticles, etc.
Collapse
|
22
|
Bhalla N, Ingle N, Patri SV, Haranath D. Phytochemical analysis of Moringa Oleifera leaves extracts by GC-MS and free radical scavenging potency for industrial applications. Saudi J Biol Sci 2021; 28:6915-6928. [PMID: 34866991 PMCID: PMC8626243 DOI: 10.1016/j.sjbs.2021.07.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/27/2022] Open
Abstract
Natural extracts have been of very high interest since ancient time due to their enormous medicinal use and researcher's attention have further gone up recently to explore their phytochemical compositions, properties, potential applications in the areas such as, cosmetics, foods etc. In this present study phytochemical analysis have been done on the aqueous and methanolic Moringa leaves extracts using Gas Chromatography-Mass spectrometry (GCMS) and their free radical scavenging potency (FRSP) studied using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical for further applications. GCMS analysis revealed an extraction of range of phytochemicals in aqueous and methanolic extracts. In aqueous, extract constituents found with high percent peak area are Carbonic acid, butyl 2-pentyl ester (20.64%), 2-Isopropoxyethyl propionate (16.87%), Butanedioic acid, 2-hydroxy-2-methyl-, (3.14%) (also known as Citramalic acid that has been rarely detected in plant extracts) and many other phytochemicals were detected. Similarly, fifty-four bio components detected in methanolic extract of Moringa leaves, which were relatively higher than the aqueous extract. Few major compounds found with high percent peak area are 1,3-Propanediol, 2-ethyl-2- (hydroxymethyl)- (21.19%), Propionic acid, 2-methyl-, octyl ester (15.02%), Ethanamine, N-ethyl-N-nitroso- (5.21%), and 9,12,15-Octadecatrienoic acid etc. FRSP for methanolic extract was also recorded much higher than aqueous extract. The half-maximal inhibitory concentration (IC50) of Moringa aqueous extract observed is 4.65 µl/ml and for methanolic extract 1.83 µl/ml. These extracts can act as very powerful antioxidants, anti-inflammatory ingredient for various applications in diverse field of food, cosmetics, medicine etc.
Collapse
Affiliation(s)
- Nitesh Bhalla
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India
- IFFCO Group, Seville Products LLC, Plot 24, Street 3B, Umm Ramool, PO Box 10596, Dubai, United Arab Emirates
| | - Nitin Ingle
- IFFCO Group, Seville Products LLC, Plot 24, Street 3B, Umm Ramool, PO Box 10596, Dubai, United Arab Emirates
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India
| | - D. Haranath
- Department of Physics, National Institute of Technology, Warangal 506004, Telangana, India
| |
Collapse
|
23
|
Ghasemzad M, Hashemian SMR, Memarnejadian A, Akbarzadeh I, Hossein-Khannazer N, Vosough M. The nano-based theranostics for respiratory complications of COVID-19. Drug Dev Ind Pharm 2021; 47:1353-1361. [PMID: 34666567 DOI: 10.1080/03639045.2021.1994989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.
Collapse
Affiliation(s)
- Mahsa Ghasemzad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Faculty of Basic Sciences and Advanced Technologies in biology, Department of Molecular Cell Biology-Genetics, University of Science and Culture, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
24
|
Hristov DR, Gomez-Marquez J, Wade D, Hamad-Schifferli K. SARS-CoV-2 and approaches for a testing and diagnostic strategy. J Mater Chem B 2021; 9:8157-8173. [PMID: 34494642 DOI: 10.1039/d1tb00674f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has led to an unprecedented global health challenge, creating sudden, massive demands for diagnostic testing, treatment, therapies, and vaccines. In particular, the development of diagnostic assays for SARS-CoV-2 has been pursued as they are needed for quarantine, disease surveillance, and patient treatment. One of the major lessons the pandemic highlighted was the need for fast, cheap, scalable and reliable diagnostic methods, such as paper-based assays. Furthermore, it has previously been suggested that paper-based tests may be more suitable for settings with lower resource availability and may help alleviate some supply chain challenges which arose during the COVID-19 pandemic. Therefore, we explore how such devices may fit in a comprehensive diagnostic strategy and how some of the challenges to the technology, e.g. low sensitivity, may be addressed. We discuss the properties of the SARS-CoV-2 virus itself, the COVID-19 disease pathway, and the immune response. We then describe the different diagnostic strategies that have been pursued, focusing on molecular strategies for viral genetic material, antigen tests, and serological assays, and innovations for improving the diagnostic sensitivity and capabilities. Finally, we discuss pressing issues for the future, and what needs to be addressed for the ongoing pandemic and future outbreaks.
Collapse
Affiliation(s)
- Delyan R Hristov
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA.
| | - Jose Gomez-Marquez
- Little Devices Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Djibril Wade
- iLEAD (Innovation in Laboratory Engineered Accelerated Diagnostics), Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF), Dakar, Senegal
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA. .,School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
25
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
26
|
Singh L, Anyaneji UJ, Ndifon W, Turok N, Mattison SA, Lessells R, Sinayskiy I, San EJ, Tegally H, Barnett S, Lorimer T, Petruccione F, de Oliveira T. Implementation of an efficient SARS-CoV-2 specimen pooling strategy for high throughput diagnostic testing. Sci Rep 2021; 11:17793. [PMID: 34493744 PMCID: PMC8423848 DOI: 10.1038/s41598-021-96934-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
The rapid identification and isolation of infected individuals remains a key strategy for controlling the spread of SARS-CoV-2. Frequent testing of populations to detect infection early in asymptomatic or presymptomatic individuals can be a powerful tool for intercepting transmission, especially when the viral prevalence is low. However, RT-PCR testing-the gold standard of SARS-CoV-2 diagnosis-is expensive, making regular testing of every individual unfeasible. Sample pooling is one approach to lowering costs. By combining samples and testing them in groups the number of tests required is reduced, substantially lowering costs. Here we report on the implementation of pooling strategies using 3-d and 4-d hypercubes to test a professional sports team in South Africa. We have shown that infected samples can be reliably detected in groups of 27 and 81, with minimal loss of assay sensitivity for samples with individual Ct values of up to 32. We report on the automation of sample pooling, using a liquid-handling robot and an automated web interface to identify positive samples. We conclude that hypercube pooling allows for the reliable RT-PCR detection of SARS-CoV-2 infection, at significantly lower costs than lateral flow antigen (LFA) tests.
Collapse
Affiliation(s)
- Lavanya Singh
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Ugochukwu J Anyaneji
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, The Next Einstein Initiative, Kigali, Rwanda.
| | - Neil Turok
- Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Stacey A Mattison
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ilya Sinayskiy
- School of Chemistry and Physics, University of Kwa-Zulu Natal, Westville, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), KwaZulu-Natal, South Africa
| | - Emmanuel J San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Shaun Barnett
- Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Trevor Lorimer
- Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Francesco Petruccione
- School of Chemistry and Physics, University of Kwa-Zulu Natal, Westville, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), KwaZulu-Natal, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
27
|
Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. Int J Nanomedicine 2021; 16:5713-5743. [PMID: 34465991 PMCID: PMC8402990 DOI: 10.2147/ijn.s327334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
A serious viral infectious disease was introduced to the globe by the end of 2019 that was seen primarily from China, but spread worldwide in a few months to be a pandemic. Since then, accurate prevention, early detection, and effective treatment strategies are not yet outlined. There is no approved drug to counter its worldwide transmission. However, integration of nanostructured delivery systems with the current management strategies has promised a pronounced opportunity to tackle the pandemic. This review addressed the various promising nanotechnology-based approaches for the diagnosis, prevention, and treatment of the pandemic. The pharmaceutical, pharmacoeconomic, and regulatory aspects of these systems with currently achieved or predicted beneficial outcomes, challenges, and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ebrahim Abdela Siraj
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Atlaw Abate Alemie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Food and Drug Authority (EFDA), Federal Ministry of Health (FMoH), Addis Ababa, Ethiopia
| | - Manaye Tamrie Derseh
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Abyou Seyfu Ambaye
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
28
|
Fontana C, Favaro M, Minelli S, Bossa MC, Altieri A. Co-infections observed in SARS-CoV-2 positive patients using a rapid diagnostic test. Sci Rep 2021; 11:16355. [PMID: 34381118 PMCID: PMC8357960 DOI: 10.1038/s41598-021-95772-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid diagnostic tests are tools of paramount impact both for improving patient care and in antimicrobial management programs. Particularly in the case of respiratory infections, it is of great importance to quickly confirm/exclude the involvement of pathogens, be they bacteria or viruses, while obtaining information about the presence/absence of a genetic target of resistance to modulate antibiotic therapy. In this paper, we present our experiences with the use of the Biofire® FilmArray® Pneumonia Panel Plus (FAPP; bioMérieux; Marcy l'Etoile, France) to assess coinfection in COVID-19 patients. A total of 152 respiratory samples from consecutive patients were examined, and 93 (61%) were found to be FAPP positive, with the detection of bacteria and/or viruses. The patients were 93 males and 59 females with an average age of 65 years who were admitted to our hospital due to moderate/severe acute respiratory symptoms. Among the positive samples were 52 from sputum (SPU) and 41 from bronchoalveolar lavage (BAL). The most representative species was S. aureus (most isolates were mecA positive; 30/44, 62%), followed by gram-negative pathogens such as P. aeruginosa, K. pneumoniae, and A. baumannii. Evidence of a virus was rare. Cultures performed from BAL and SPU samples gave poor results. Most of the discrepant negative cultures were those in which FAPP detected pathogens with a microbial count ≤ 105 CFU/mL. H. influenzae was one of the most common pathogens lost by the conventional method. Despite the potential limitations of FAPP, which detects a defined number of pathogens, its advantages of rapid detection combined with predictive information regarding the antimicrobial resistance of pathogens through the detection of some relevant markers of resistance could be very useful for establishing empirical targeted therapy for the treatment of patients with respiratory failure. In the COVID era, we understand the importance of using antibiotics wisely to curb the phenomenon of antibiotic resistance.
Collapse
Affiliation(s)
- Carla Fontana
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
- Microbiology and Virology Lab, Tor Vergata University Hospital, V.le Oxford, 81 00133, Rome, Italy.
| | - Marco Favaro
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Silvia Minelli
- Microbiology and Virology Lab, Tor Vergata University Hospital, V.le Oxford, 81 00133, Rome, Italy
| | - Maria Cristina Bossa
- Microbiology and Virology Lab, Tor Vergata University Hospital, V.le Oxford, 81 00133, Rome, Italy
| | - Anna Altieri
- Microbiology and Virology Lab, Tor Vergata University Hospital, V.le Oxford, 81 00133, Rome, Italy
| |
Collapse
|
29
|
Krishnan S, Dusane A, Morajkar R, Venkat A, Vernekar AA. Deciphering the role of nanostructured materials in the point-of-care diagnostics for COVID-19: a comprehensive review. J Mater Chem B 2021; 9:5967-5981. [PMID: 34254626 DOI: 10.1039/d1tb01182k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The infamous COVID-19 outbreak has left a crippling impact on the economy, healthcare infrastructure, and lives of the general working class, with all the scientists determined to find suitable and efficient diagnostic techniques and therapies to contain its ramifications. This article presents the complete outline of the diagnostic platforms developed using nanoparticles in the detection of SARS-CoV-2, delineating the direct and indirect use of nanomaterials in COVID-19 diagnosis. The properties of nanostructured materials and their relevance in the development of novel point-of-care diagnostic approaches for COVID-19 are highlighted. More importantly, the advantages of nanotechnologies over conventional reverse transcriptase-polymerase chain reaction technique and few other methods used in the detection of SARS-CoV-2 along with the viewpoints are discussed. Also, the future perspectives highlighting the commercial aspects of the nanotechnology-based diagnostic tools developed to combat the COVID-19 pandemic are presented.
Collapse
Affiliation(s)
| | - Apurva Dusane
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India.
| | - Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India.
| | - Akila Venkat
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India.
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai 600 020, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Ukhurebor KE, Singh KR, Nayak V, Uk-Eghonghon G. Influence of the SARS-CoV-2 pandemic: a review from the climate change perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1060-1078. [PMID: 34132283 DOI: 10.1039/d1em00154j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ever since the global outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2/COVID-19) in the early part of 2020, there is no doubt that the SARS-CoV-2 pandemic has placed great tension globally and has affected almost all aspects of human endeavors. There are presently several research studies on the atmospheric environmental and economic effects of this dreaded virus. Supposedly, the responses ought to have also present innovations that would advance scientific research to mitigate its impacts since most of the ensuing consequences impact the atmospheric climatic conditions. Even when it appears that economic events would possibly return in no time, the circumstances will change. Specifically, from the existing literature, it appears that not much has been done to study the influence of the SARS-CoV-2 pandemic on climate change. Hence, this present review article will explore the possible connection between the SARS-CoV-2 pandemic and climate change. The utilization of various scientific domains for climate change studies during the SARS-CoV-2 pandemic and exploring the positive influences of the SARS-CoV-2 pandemic and measures to avoid the negative impacts on climate change owing to SARS-CoV-2 have also been discussed.
Collapse
|
31
|
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. BIOSENSORS-BASEL 2021; 11:bios11070227. [PMID: 34356698 PMCID: PMC8301786 DOI: 10.3390/bios11070227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
This research presents an electrochemical immunosensor for collagen I detection using a self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and covalently immobilized half-reduced monoclonal antibody as a receptor; this allowed for the validation of the collagen I concentration through two different independent methods: electrochemically by Electrochemical Impedance Spectroscopy (EIS), and optically by Surface Plasmon Resonance (SPR). The high unique advantage of the proposed sensor is based on the performance of the stable covalent immobilization of the AuNPs and enzymatically reduced half-IgG collagen I antibodies, which ensured their appropriate orientation onto the sensor's surface, good stability, and sensitivity properties. The detection of collagen type I was performed in a concentration range from 1 to 5 pg/mL. Moreover, SPR was utilized to confirm the immobilization of the monoclonal half-antibodies and sensing of collagen I versus time. Furthermore, EIS experiments revealed a limit of detection (LOD) of 0.38 pg/mL. The selectivity of the performed immunosensor was confirmed by negligible responses for BSA. The performed approach of the immunosensor is a novel, innovative attempt that enables the detection of collagen I with very high sensitivity in the range of pg/mL, which is significantly lower than the commonly used enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Marcin Gwiazda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Sheetal K. Bhardwaj
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: or (S.K.B.); or (A.K.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
| | - Unni Sivasankaran
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805, USA
- Correspondence: or (S.K.B.); or (A.K.)
| |
Collapse
|
32
|
Mishra A, Basumallick S, Lu A, Chiu H, Shah MA, Shukla Y, Tiwari A. The healthier healthcare management models for COVID-19. J Infect Public Health 2021; 14:927-937. [PMID: 34119847 PMCID: PMC8164338 DOI: 10.1016/j.jiph.2021.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic situation of COVID-19 generates a situation in which healthcare resources such as diagnostic kits, drugs and basic healthcare infrastructure were on shortage throughout the period, along with negative impact on socio-economic system. Standardized public healthcare models were missing in pandemic situation, covering from hospitalized patient care to local resident's healthcare managements in terms of monitoring, assess to diagnosis and medicines. This exploratory and intervention-based study with the objective of proposing COVID-19 Care Management Model representing comprehensive care of society including patients (COVID-19 and other diseases) and healthy subjects under integrated framework of healthier management model. Shifting policy towards technology-oriented models with well-aligned infrastructure can achieve better outcomes in COVID-19 prevention and care. The planned development of technical healthcare models for prognosis and improved treatment outcomes that take into account not only genomics, proteomics, nanotechnology, materials science perspectives but also the possible contribution of advanced digital technologies is best strategies for early diagnosis and infections control. In view of current pandemic, a Healthier Healthcare Management Model is proposed here as a source of standardized care having technology support, medical consultation, along with public health model of sanitization, distancing and contact less behaviours practices. Effective healthcare managements have been the main driver of healthier society where, positive action at identified research, technology and management segment more specifically public health, patient health, technology selection and political influence has great potential to enhanced the global response to COVID-19. The implementation of such practices will deliver effective diagnosis and control mechanism and make healthier society.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Ulrika 59053, Sweden,VBRI, Gammalkilsvägen 18, Ulrika 59 053, Sweden,VBRI Innovation, 7/16 Kalkaji Extension, New Delhi 110 019, India
| | | | - Albert Lu
- Tripod Nano Tech, Taoyuan City 326, Taiwan
| | - Helen Chiu
- Tripod Nano Tech, Taoyuan City 326, Taiwan
| | | | - Yogesh Shukla
- mHospitals, 2/31 Nehru Enclave, New Delhi 110019, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Ulrika 59053, Sweden,VBRI, Gammalkilsvägen 18, Ulrika 59 053, Sweden,VBRI Innovation, 7/16 Kalkaji Extension, New Delhi 110 019, India,mHospitals, 2/31 Nehru Enclave, New Delhi 110019, India,Corresponding author at: Institute of Advanced Materials, IAAM, Ulrika 59053, Sweden
| |
Collapse
|
33
|
Gage A, Brunson K, Morris K, Wallen SL, Dhau J, Gohel H, Kaushik A. Perspectives of Manipulative and High-Performance Nanosystems to Manage Consequences of Emerging New Severe Acute Respiratory Syndrome Coronavirus 2 Variants. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.700888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The emergence of new SARS-CoV-2 variants made the COVID-19 infection pandemic and/or endemic more severe and life-threatening due to ease of transmission, rapid infection, high mortality, and capacity to neutralize the therapeutic ability of developed vaccines. These consequences raise questions on established COVID-19 infection management strategies based on nano-assisted approaches, including rapid diagnostics, therapeutics, and efficient trapping and virus eradication through stimuli-assisted masks and filters composed of nanosystems. Considering these concerns as motivation, this perspective article highlights the role and aspects of nano-enabled approaches to manage the consequences of the COVID-19 infection pandemic associated with newer SARS-CoV-2 variants of concern and significance generated due to mutations. The controlled high-performance of a nanosystem seems capable of effectively detecting new variables for rapid diagnostics, performing site-specific delivery of a therapeutic agent needed for effective treatment, and developing technologies to purify the air and sanitizing premises. The outcomes of this report project manipulative, multifunctional nanosystems for developing high-performance technologies needed to manage consequences of newer SARS-CoV-2 variants efficiently and effectively through an overall targeted, smart approach.
Collapse
|
34
|
Sadique MA, Yadav S, Ranjan P, Verma S, Salammal ST, Khan MA, Kaushik A, Khan R. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J Mater Chem B 2021; 9:4620-4642. [PMID: 34027540 DOI: 10.1039/d1tb00472g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite significant accomplishments in developing efficient rapid sensing systems and nano-therapeutics of higher efficacy, the recent coronavirus disease (COVID-19) pandemic is not under control successfully because the severe acute respiratory syndrome virus (SARS-CoV-2, original and mutated) transmits easily from human to -human and causes life-threatening respiratory disorders. Thus, it has become crucial to avoid this transmission through precautions and keep premises hygienic using high-performance anti-viral nanomaterials to trap and eradicate SARS-CoV-2. Such an antiviral nano-system has successfully demonstrated useful significant contribution in COVID-19 pandemic/endemic management effectively. However, their projection with potential sustainable prospects still requires considerable attention and efforts. With this aim, the presented review highlights various severe life-threatening viral infections and the role of multi-functional anti-viral nanostructures with manipulative properties investigated as an efficient precative shielding agent against viral infection progression. The salient features of such various nanostructures, antiviral mechanisms, and high impact multi-dimensional roles are systematically discussed in this review. Additionally, the challenges associated with the projection of alternative approaches also support the demand and significance of this selected scientific topic. The outcomes of this review will certainly be useful to motivate scholars of various expertise who are planning future research in the field of investigating sustainable and affordable high-performance nano-systems of desired antiviral performance to manage not only COVID-19 infection but other targeted viral infections as well.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
| | - Shalu Yadav
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpesh Ranjan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Verma
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shabi Thankaraj Salammal
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Akram Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
35
|
Ranjan P, Thomas V, Kumar P. 2D materials as a diagnostic platform for the detection and sensing of the SARS-CoV-2 virus: a bird's-eye view. J Mater Chem B 2021; 9:4608-4619. [PMID: 34013310 PMCID: PMC8559401 DOI: 10.1039/d1tb00071c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Worldwide infections and fatalities caused by the SARS-CoV-2 virus and its variants responsible for COVID-19 have significantly impeded the economic growth of many nations. People in many nations have lost their livelihoods, it has severely impacted international relations and, most importantly, health infrastructures across the world have been tormented. This pandemic has already left footprints on human psychology, traits, and priorities and is certainly going to lead towards a new world order in the future. As always, science and technology have come to the rescue of the human race. The prevention of infection by instant and repeated cleaning of surfaces that are most likely to be touched in daily life and sanitization drives using medically prescribed sanitizers and UV irradiation of textiles are the first steps to breaking the chain of transmission. However, the real challenge is to develop and uplift medical infrastructure, such as diagnostic tools capable of prompt diagnosis and instant and economic medical treatment that is available to the masses. Two-dimensional (2D) materials, such as graphene, are atomic sheets that have been in the news for quite some time due to their unprecedented electronic mobilities, high thermal conductivity, appreciable thermal stability, excellent anchoring capabilities, optical transparency, mechanical flexibility, and a unique capability to integrate with arbitrary surfaces. These attributes of 2D materials make them lucrative for use as an active material platform for authentic and prompt (within minutes) disease diagnosis via electrical or optical diagnostic tools or via electrochemical diagnosis. We present the opportunities provided by 2D materials as a platform for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Physics, UAE University, Al-Ain, Abu Dhabi 15551, United Arab Emirates
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, USA.
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, India.
| |
Collapse
|
36
|
Ehsan MA, Khan SA, Rehman A. Screen-Printed Graphene/Carbon Electrodes on Paper Substrates as Impedance Sensors for Detection of Coronavirus in Nasopharyngeal Fluid Samples. Diagnostics (Basel) 2021; 11:1030. [PMID: 34205178 PMCID: PMC8227093 DOI: 10.3390/diagnostics11061030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome (SARS-CoV-2), the causative agent of the global pandemic, which has resulted in more than one million deaths with tens of millions reported cases, requires a fast, accurate, and portable testing mechanism operable in the field environment. Electrochemical sensors, based on paper substrates with portable electrochemical devices, can prove an excellent alternative in mitigating the economic and public health effects of the disease. Herein, we present an impedance biosensor for the detection of the SARS-CoV-2 spike protein utilizing the IgG anti-SARS-CoV-2 spike antibody. This label-free platform utilizing screen-printed electrodes works on the principle of redox reaction impedance of a probe and can detect antigen spikes directly in nasopharyngeal fluid as well as virus samples collected in the universal transport medium (UTM). High conductivity graphene/carbon ink is used for this purpose so as to have a small background impedance that leads to a wider dynamic range of detection. Antibody immobilization onto the electrode surface was conducted through a chemical entity or a biological entity to see their effect; where a biological immobilization can enhance the antibody loading and thereby the sensitivity. In both cases, we were able to have a very low limit of quantification (i.e., 0.25 fg/mL), however, the linear range was 3 orders of magnitude wider for the biological entity-based immobilization. The specificity of the sensor was also tested against high concentrations of H1N1 flu antigens with no appreciable response. The most optimized sensors are used to identify negative and positive COVID-19 samples with great accuracy and precision.
Collapse
Affiliation(s)
- Muhammad Ali Ehsan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (M.A.E.); (S.A.K.)
| | - Safyan Akram Khan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (M.A.E.); (S.A.K.)
| | - Abdul Rehman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
37
|
Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. MATERIALS TODAY. CHEMISTRY 2021; 20:100443. [PMID: 33615086 PMCID: PMC7877231 DOI: 10.1016/j.mtchem.2021.100443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
The World Health Organization (WHO) has declared the COVID-19 an international health emergency due to the severity of infection progression, which became more severe due to its continuous spread globally and the unavailability of appropriate therapy and diagnostics systems. Thus, there is a need for efficient devices to detect SARS-CoV-2 infection at an early stage. Nowadays, the reverse transcription polymerase chain reaction (RT-PCR) technique is being applied for detecting this virus around the globe; however, factors such as stringent expertise, long diagnostic times, invasive and painful screening, and high costs have restricted the use of RT-PCR methods for rapid diagnostics. Therefore, the development of cost-effective, portable, sensitive, prompt and selective sensing systems to detect SARS-CoV-2 in biofluids at fM/pM/nM concentrations would be a breakthrough in diagnostics. Immunosensors that show increased specificity and sensitivity are considerably fast and do not imply costly reagents or instruments, reducing the cost for COVID-19 detection. The current developments in immunosensors perhaps signify the most significant opportunity for a rapid assay to detect COVID-19, without the need of highly skilled professionals and specialized tools to interpret results. Artificial intelligence (AI) and the Internet of Medical Things (IoMT) can also be equipped with this immunosensing approach to investigate useful networking through database management, sharing, and analytics to prevent and manage COVID-19. Herein, we represent the collective concepts of biomarker-based immunosensors along with AI and IoMT as smart sensing strategies with bioinformatics approach to monitor non-invasive early stage SARS-CoV-2 development, with fast point-of-care (POC) diagnostics as the crucial goal. This approach should be implemented quickly and verified practicality for clinical samples before being set in the present times for mass-diagnostic research.
Collapse
Affiliation(s)
- A K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - D Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, 201301, India
| | - A Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - P Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110017, India
| | - P R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
38
|
Kumawat M, Umapathi A, Lichtfouse E, Daima HK. Nanozymes to fight the COVID-19 and future pandemics. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3951-3957. [PMID: 34031634 PMCID: PMC8134966 DOI: 10.1007/s10311-021-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mamta Kumawat
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| | - Akhela Umapathi
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| | - Eric Lichtfouse
- CNRS, IRD, INRAE, Coll France, Aix-Marseille Université, 13100 Marseille, Aix‑en‑Provence France
| | - Hemant Kumar Daima
- Amity Centre for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002 Rajasthan India
| |
Collapse
|
39
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
40
|
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021. [PMCID: PMC7988262 DOI: 10.1007/s41204-021-00109-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A sensitive method for diagnosing coronavirus disease 2019 (COVID-19) is highly required to fight the current and future global health threats due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). However, most of the current methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanoparticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned from handling this outbreak to prepare ourself for future pandemic.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
41
|
Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, Kaushik A, Li CZ. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 2021; 179:113074. [PMID: 33596516 PMCID: PMC7866895 DOI: 10.1016/j.bios.2021.113074] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
On global scale, the current situation of pandemic is symptomatic of increased incidences of contagious diseases caused by pathogens. The faster spread of these diseases, in a moderately short timeframe, is threatening the overall population wellbeing and conceivably the economy. The inadequacy of conventional diagnostic tools in terms of time consuming and complex laboratory-based diagnosis process is a major challenge to medical care. In present era, the development of point-of-care testing (POCT) is in demand for fast detection of infectious diseases along with “on-site” results that are helpful in timely and early action for better treatment. In addition, POCT devices also play a crucial role in preventing the transmission of infectious diseases by offering real-time testing and lab quality microbial diagnosis within minutes. Timely diagnosis and further treatment optimization facilitate the containment of outbreaks of infectious diseases. Presently, efforts are being made to support such POCT by the technological development in the field of internet of medical things (IoMT). The IoMT offers wireless-based operation and connectivity of POCT devices with health expert and medical centre. In this review, the recently developed POC diagnostics integrated or future possibilities of integration with IoMT are discussed with focus on emerging and re-emerging infectious diseases like malaria, dengue fever, influenza A (H1N1), human papilloma virus (HPV), Ebola virus disease (EVD), Zika virus (ZIKV), and coronavirus (COVID-19). The IoMT-assisted POCT systems are capable enough to fill the gap between bioinformatics generation, big rapid analytics, and clinical validation. An optimized IoMT-assisted POCT will be useful in understanding the diseases progression, treatment decision, and evaluation of efficacy of prescribed therapy.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - TonyY Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States.
| | - Chen-Zhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
42
|
Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A. Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. Int J Nanomedicine 2021; 16:539-560. [PMID: 33519200 PMCID: PMC7837559 DOI: 10.2147/ijn.s283686] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, severely affects the respiratory system, and may lead to death. Lacking effective diagnostics and therapies made this pandemic challenging to manage since the SARS-CoV-2 transmits via human-to-human, enters via ACE2 and TMPSSR2 receptors, and damages organs rich in host cells, spreads via symptomatic carriers and is prominent in an immune-compromised population. New SARS-CoV-2 informatics (structure, strains, like-cycles, functional sites) motivated bio-pharma experts to investigate novel therapeutic agents that act to recognize, inhibit, and knockdown combinations of drugs, vaccines, and antibodies, have been optimized to manage COVID-19. However, successful targeted delivery of these agents to avoid off-targeting and unnecessary drug ingestion is very challenging. To overcome these obstacles, this mini-review projects nanomedicine technology, a pharmacologically relevant cargo of size within 10 to 200 nm, for site-specific delivery of a therapeutic agent to recognize and eradicate the SARS-CoV-2, and improving the human immune system. Such combinational therapy based on compartmentalization controls the delivery and releases of a drug optimized based on patient genomic profile and medical history. Nanotechnology could help combat COVID-19 via various methods such as avoiding viral contamination and spraying by developing personal protective equipment (PPE) to increase the protection of healthcare workers and produce effective antiviral disinfectants surface coatings capable of inactivating and preventing the virus from spreading. To quickly recognize the infection or immunological response, design highly accurate and sensitive nano-based sensors. Development of new drugs with improved activity, reduced toxicity, and sustained release to the lungs, as well as tissue targets; and development of nano-based immunizations to improve humoral and cellular immune responses. The desired and controlled features of suggested personalized therapeutics, nanomedicine, is a potential therapy to manage COVID-19 successfully. The state-of-the-art nanomedicine, challenges, and prospects of nanomedicine are carefully and critically discussed in this report, which may serve as a key platform for scholars to investigate the role of nanomedicine for higher efficacy to manage the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sree Pooja Varahachalam
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Masoumeh Chamaneh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Tanya Chhibber
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Kevin Morris
- Maharashtra University of Health Sciences (MUHS), Nashik, Maharashtra422004, India
| | - Joe F Bolanos
- Facultad De Ciencias De La Salud “Dr.Luis Edmundo Vasquez” Santa Tecla, Universidad Dr. Jose Matias Delgado, Cd Merliot, El Salvador
| | - Nam-Young Kim
- RFIC Bio Center, Department of Electronics Engineering, Kwangwoon University, Seoul01897, South Korea
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, and Mathematics, Florida Polytechnic University, Lakeland, FL3385, USA
| |
Collapse
|
43
|
Ahmed J, Alenezi H, Edirisinghe U, Edirisinghe M. Perspective: Covid-19; emerging strategies and material technologies. EMERGENT MATERIALS 2021; 4:3-8. [PMID: 33748673 PMCID: PMC7967112 DOI: 10.1007/s42247-021-00173-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 05/02/2023]
Abstract
It will be remembered in history as the event that brought the world together with science and technology; the COVID-19 pandemic has allowed for decades worth of progression in both healthcare policies and technology development. It has been a show of unprecedented global health policies ranging from the legal requirement for public facemask use to the use of tough movement restrictions that has bought the world's economy to its knees. Here, we observe the impact of national lockdowns, facemask usage, and their effect on infection rates. It is clear that healthcare policies alone cannot tackle a pandemic. There is a huge pressure to develop personal protective equipment that not only has the capacity to prevent transmission but also has the ergonomics to be worn for long durations. In this work, we reveal our views and thoughts on the healthcare policies and developing materials and technology strategies that have contributed to reduce the damage of the pandemic, coming from the perspectives of materials scientists and a UK National Health Service consultant doctor.
Collapse
Affiliation(s)
- Jubair Ahmed
- Department of Mechanical Engineering, University College London, London, WC1E 7JE UK
| | - Hussain Alenezi
- Department of Mechanical Engineering, University College London, London, WC1E 7JE UK
| | - Ursula Edirisinghe
- Emergency Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Rd, Hammersmith, London, W6 8RF UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, WC1E 7JE UK
| |
Collapse
|
44
|
Aydogdu MO, Altun E, Chung E, Ren G, Homer-Vanniasinkam S, Chen B, Edirisinghe M. Surface interactions and viability of coronaviruses. J R Soc Interface 2021; 18:20200798. [PMID: 33402019 PMCID: PMC7879773 DOI: 10.1098/rsif.2020.0798] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
The recently emerged coronavirus pandemic (COVID-19) has become a worldwide threat affecting millions of people, causing respiratory system related problems that can end up with extremely serious consequences. As the infection rate rises significantly and this is followed by a dramatic increase in mortality, the whole world is struggling to accommodate change and is trying to adapt to new conditions. While a significant amount of effort is focused on developing a vaccine in order to make a game-changing anti-COVID-19 breakthrough, novel coronavirus (SARS-CoV-2) is also developing mutations rapidly as it transmits just like any other virus and there is always a substantial chance of the invented antibodies becoming ineffective as a function of time, thus failing to inhibit virus-to-cell binding efficiency as the spiked protein keeps evolving. Hence, controlling the transmission of the virus is crucial. Therefore, this review summarizes the viability of coronaviruses on inanimate surfaces under different conditions while addressing the current state of known chemical disinfectants for deactivation of the coronaviruses. The review attempts to bring together a wide spectrum of surface-virus-cleaning agent interactions to help identify material selection for inanimate surfaces that have frequent human contact and cleaning procedures for effective prevention of COVID-19 transmission.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| | - Esra Altun
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| | - Etelka Chung
- Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Guogang Ren
- Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK
| | | | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
45
|
Kaushik A. Manipulative magnetic nanomedicine: the future of COVID-19 pandemic/endemic therapy. Expert Opin Drug Deliv 2020; 18:531-534. [PMID: 33307877 DOI: 10.1080/17425247.2021.1860938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
46
|
Kaushik AK, Dhau JS, Gohel H, Mishra YK, Kateb B, Kim NY, Goswami DY. Electrochemical SARS-CoV-2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management. ACS APPLIED BIO MATERIALS 2020; 3:7306-7325. [PMID: 35019473 PMCID: PMC7605341 DOI: 10.1021/acsabm.0c01004] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.
Collapse
Affiliation(s)
- Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of
Natural Sciences, Division of Sciences, Art, & Mathematics,
Florida Polytechnic University,
Lakeland, Florida 33805, United States
| | | | - Hardik Gohel
- Applied AI Research Lab,
University of Houston Victoria,
Victoria, Texas 77901, United State
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD,
University of Southern Denmark,
Alsion 2, 6400 Sønderborg, Denmark
| | - Babak Kateb
- National Center for
NanoBioElectronics, Brain Mapping Foundation, Brain Technology and
Innovation Park, Society for Brain Mapping and
Therapeutics, Pacific Palisades, California 90272,
United States
| | - Nam-Young Kim
- RFIC Bio Center, Department of Electronics
Engineering, Kwangwoon University, Seoul
01897, South Korea
| | - Dharendra Yogi Goswami
- Clean Energy Research Center,
University of South Florida, Tampa,
Florida 33620, United States
| |
Collapse
|