1
|
Xiao Q, Lu M, Zhang X, Guan J, Li X, Wen R, Wang N, Qian L, Liao Y, Zhang Z, Liao X, Jiang C, Yue F, Ren S, Xia J, Hu J, Luo F, Hu Z, He C. Isolated theta waves originating from the midline thalamus trigger memory reactivation during NREM sleep in mice. Nat Commun 2024; 15:9231. [PMID: 39455583 PMCID: PMC11511994 DOI: 10.1038/s41467-024-53522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
During non-rapid eye movement (NREM) sleep, neural ensembles in the entorhinal-hippocampal circuit responsible for encoding recent memories undergo reactivation to facilitate the process of memory consolidation. This reactivation is widely acknowledged as pivotal for the formation of stable memory and its impairment is closely associated with memory dysfunction. To date, the neural mechanisms driving the reactivation of neural ensembles during NREM sleep remain poorly understood. Here, we show that the neural ensembles in the medial entorhinal cortex (MEC) that encode spatial experiences exhibit reactivation during NREM sleep. Notably, this reactivation consistently coincides with isolated theta waves. In addition, we found that the nucleus reuniens (RE) in the midline thalamus exhibits typical theta waves during NREM sleep, which are highly synchronized with those occurring in the MEC in male mice. Closed-loop optogenetic inhibition of the RE-MEC pathway specifically suppressed these isolated theta waves, resulting in impaired reactivation and compromised memory consolidation following a spatial memory task in male mice. The findings suggest that theta waves originating from the ventral midline thalamus play a role in initiating memory reactivation and consolidation during sleep.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Minmin Lu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Xiaolong Zhang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Xin Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ruyi Wen
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ling Qian
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Yixiang Liao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences of Jilin University, Changchun, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Shuancheng Ren
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing, China.
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Mountoufaris G, Nair A, Yang B, Kim DW, Vinograd A, Kim S, Linderman SW, Anderson DJ. A line attractor encoding a persistent internal state requires neuropeptide signaling. Cell 2024; 187:5998-6015.e18. [PMID: 39191257 PMCID: PMC11490375 DOI: 10.1016/j.cell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1+ neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
Affiliation(s)
- George Mountoufaris
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Wook Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Amit Vinograd
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Samuel Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute, Pasadena, CA 91001, USA.
| |
Collapse
|
3
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
4
|
Ananth MR, Gardus JD, Huang C, Palekar N, Slifstein M, Zaborszky L, Parsey RV, Talmage DA, DeLorenzo C, Role LW. Loss of cholinergic input to the entorhinal cortex is an early indicator of cognitive impairment in natural aging of humans and mice. RESEARCH SQUARE 2024:rs.3.rs-3851086. [PMID: 38260541 PMCID: PMC10802688 DOI: 10.21203/rs.3.rs-3851086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In a series of translational experiments using fully quantitative positron emission tomography (PET) imaging with a new tracer specific for the vesicular acetylcholine transporter ([18F]VAT) in vivo in humans, and genetically targeted cholinergic markers in mice, we evaluated whether changes to the cholinergic system were an early feature of age-related cognitive decline. We found that deficits in cholinergic innervation of the entorhinal cortex (EC) and decline in performance on behavioral tasks engaging the EC are, strikingly, early features of the aging process. In human studies, we recruited older adult volunteers that were physically healthy and without prior clinical diagnosis of cognitive impairment. Using [18F]VAT PET imaging, we demonstrate that there is measurable loss of cholinergic inputs to the EC that can serve as an early signature of decline in EC cognitive performance. These deficits are specific to the cholinergic circuit between the medial septum and vertical limb of the diagonal band (MS/vDB; CH1/2) to the EC. Using diffusion imaging, we further demonstrate impaired structural connectivity in the tracts between the MS/vDB and EC in older adults with mild cognitive impairment. Experiments in mouse, designed to parallel and extend upon the human studies, used high resolution imaging to evaluate cholinergic terminal density and immediate early gene (IEG) activity of EC neurons in healthy aging mice and in mice with genetic susceptibility to accelerated accumulation amyloid beta plaques and hyperphosphorylated mouse tau. Across species and aging conditions, we find that the integrity of cholinergic projections to the EC directly correlates with the extent of EC activation and with performance on EC-related object recognition memory tasks. Silencing EC-projecting cholinergic neurons in young, healthy mice during the object-location memory task impairs object recognition performance, mimicking aging. Taken together we identify a role for acetylcholine in normal EC function and establish loss of cholinergic input to the EC as an early, conserved feature of age-related cognitive decline in both humans and rodents.
Collapse
|
5
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
6
|
Gedankien T, Tan RJ, Qasim SE, Moore H, McDonagh D, Jacobs J, Lega B. Acetylcholine modulates the temporal dynamics of human theta oscillations during memory. Nat Commun 2023; 14:5283. [PMID: 37648692 PMCID: PMC10469188 DOI: 10.1038/s41467-023-41025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The cholinergic system is essential for memory. While degradation of cholinergic pathways characterizes memory-related disorders such as Alzheimer's disease, the neurophysiological mechanisms linking the cholinergic system to human memory remain unknown. Here, combining intracranial brain recordings with pharmacological manipulation, we describe the neurophysiological effects of a cholinergic blocker, scopolamine, on the human hippocampal formation during episodic memory. We found that the memory impairment caused by scopolamine was coupled to disruptions of both the amplitude and phase alignment of theta oscillations (2-10 Hz) during encoding. Across individuals, the severity of theta phase disruption correlated with the magnitude of memory impairment. Further, cholinergic blockade disrupted connectivity within the hippocampal formation. Our results indicate that cholinergic circuits support memory by coordinating the temporal dynamics of theta oscillations across the hippocampal formation. These findings expand our mechanistic understanding of the neurophysiology of human memory and offer insights into potential treatments for memory-related disorders.
Collapse
Affiliation(s)
- Tamara Gedankien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ryan Joseph Tan
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Salman Ehtesham Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haley Moore
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - David McDonagh
- Department of Anesthesiology, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA.
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Gan C, Cao X, Wang L, Sun H, Ji M, Zhang H, Yuan Y, Zhang K. Cholinergic basal forebrain atrophy in Parkinson's disease with freezing of gait. Ann Clin Transl Neurol 2023; 10:814-824. [PMID: 37000969 DOI: 10.1002/acn3.51769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Mounting research support that cholinergic dysfunction plays a prominent role in freezing of gait (FOG), which commonly occurs in Parkinson's disease (PD). Basal forebrain (BF), especially the cholinergic nuclei 4 (Ch4), provides the primary source of the brain cholinergic input. However, whether the degeneration of BF and its innervated cortex contribute to the pathogenesis of FOG is unknown. OBJECTIVE To explore the role of structural alterations of BF and its innervated cortical brain regions in the pathogenesis of PD patients with freezing. METHODS Magnetic resonance imaging assessments and neurological assessments were performed on 20 PD patients with FOG (PD-FOG), 20 without FOG (PD-NFOG), and 21 healthy participants. Subregion volumes of the BF were compared among groups. Local gyrification index (LGI) was computed to reveal the cortical alternations. Relationships among subregional BF volumes, LGI, and the severity of FOG were evaluated by multiple linear regression. RESULTS Our study discovered that, compared to PD-NFOG, PD-FOG exhibited significant Ch4 atrophy (p = 4.6 × 10-5 ), accompanied by decreased LGI values in the left entorhinal cortex (p = 3.00 × 10-5 ) and parahippocampal gyrus (p = 2.90 × 10-5 ). Based on the regression analysis, Ch4 volume was negatively associated with FOG severity in PD-FOG group (β = -12.224, T = -2.556, p = 0.031). INTERPRETATION Our results imply that Ch4 degeneration and microstructural disorganization of its innervated cortical brain regions may play important roles in PD-FOG.
Collapse
|
8
|
Oxytocin-Modulated Ion Channel Ensemble Controls Depolarization, Integration and Burst Firing in CA2 Pyramidal Neurons. J Neurosci 2022; 42:7707-7720. [PMID: 36414006 PMCID: PMC9581561 DOI: 10.1523/jneurosci.0921-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Oxytocin (OXT) and OXT receptor (OXTR)-mediated signaling control excitability, firing patterns, and plasticity of hippocampal CA2 pyramidal neurons, which are pivotal in generation of brain oscillations and social memory. Nonetheless, the ionic mechanisms underlying OXTR-induced effects in CA2 neurons are not fully understood. Using slice physiology in a reporter mouse line and interleaved current-clamp and voltage-clamp experiments, we systematically identified the ion channels modulated by OXT signaling in CA2 pyramidal cells (PYRs) in mice of both sexes and explored how changes in channel conductance support altered electrical activity. Activation of OXTRs inhibits an outward potassium current mediated by inward rectifier potassium channels (I Kir) and thus favoring membrane depolarization. Concomitantly, OXT signaling also diminishes inward current mediated by hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels (I h), providing a hyperpolarizing drive. The combined reduction in both I Kir and I h synergistically elevate the membrane resistance and favor dendritic integration while the membrane potential is restrained from quickly depolarizing from rest. As a result, the responsiveness of CA2 PYRs to synaptic inputs is highly sharpened during OXTR activation. Unexpectedly, OXTR signaling also strongly enhances a tetrodotoxin-resistant (TTX-R), voltage-gated sodium current that helps drive the membrane potential to spike threshold and thus promote rhythmic firing. This novel array of OXTR-stimulated ionic mechanisms operates in close coordination and underpins OXT-induced burst firing, a key step in CA2 PYRs' contribution to hippocampal information processing and broader influence on brain circuitry. Our study deepens our understanding of underpinnings of OXT-promoted social memory and general neuropeptidergic control of cognitive states.SIGNIFICANCE STATEMENT Oxytocin (OXT) plays key roles in reproduction, parenting and social and emotional behavior, and deficiency in OXT receptor (OXTR) signaling may contribute to neuropsychiatric disorders. We identified a novel array of OXTR-modulated ion channels that operate in close coordination to retune hippocampal CA2 pyramidal neurons, enhancing responsiveness to synaptic inputs and sculpting output. OXTR signaling inhibits both potassium conductance (I Kir) and mixed cation conductance (I h), engaging opposing influences on membrane potential, stabilizing it while synergistically elevating membrane resistance and electrotonic spread. OXT signaling also facilitates a tetrodotoxin-resistant (TTX-R) Na+ current, not previously described in hippocampus (HP), engaged on further depolarization. This TTX-R current lowers the spike threshold and supports rhythmic depolarization and burst firing, a potent driver of downstream circuitry.
Collapse
|
9
|
Pena RFO, Rotstein HG. The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability. BIOLOGICAL CYBERNETICS 2022; 116:163-190. [PMID: 35038010 DOI: 10.1007/s00422-021-00919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We systematically investigate the response of neurons to oscillatory currents and synaptic-like inputs and we extend our investigation to non-structured synaptic-like spiking inputs with more realistic distributions of presynaptic spike times. We use two types of chirp-like inputs consisting of (i) a sequence of cycles with discretely increasing frequencies over time, and (ii) a sequence having the same cycles arranged in an arbitrary order. We develop and use a number of frequency-dependent voltage response metrics to capture the different aspects of the voltage response, including the standard impedance (Z) and the peak-to-trough amplitude envelope ([Formula: see text]) profiles. We show that Z-resonant cells (cells that exhibit subthreshold resonance in response to sinusoidal inputs) also show [Formula: see text]-resonance in response to sinusoidal inputs, but generally do not (or do it very mildly) in response to square-wave and synaptic-like inputs. In the latter cases the resonant response using Z is not predictive of the preferred frequencies at which the neurons spike when the input amplitude is increased above subthreshold levels. We also show that responses to conductance-based synaptic-like inputs are attenuated as compared to the response to current-based synaptic-like inputs, thus providing an explanation to previous experimental results. These response patterns were strongly dependent on the intrinsic properties of the participating neurons, in particular whether the unperturbed Z-resonant cells had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like inputs with arbitrarily ordered patterns where all signals (trials) in a given protocol have the same frequency content and the only source of uncertainty is the subset of all possible permutations of cycles chosen for a given protocol. This variability is the result of the multiple different ways in which the autonomous transient dynamics is activated across cycles in each signal (different cycle orderings) and across trials. We extend our results to include high-rate Poisson distributed current- and conductance-based synaptic inputs and compare them with similar results using additive Gaussian white noise. We show that the responses to both Poisson-distributed synaptic inputs are attenuated with respect to the responses to Gaussian white noise. For cells that exhibit oscillatory responses to Gaussian white noise (band-pass filters), the response to conductance-based synaptic inputs are low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters, consistent with experimental findings. Our results shed light on the mechanisms of communication of oscillatory activity among neurons in a network via subthreshold oscillations and resonance and the generation of network resonance.
Collapse
Affiliation(s)
- Rodrigo F O Pena
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA.
- Corresponding Investigator, CONICET, Buenos Aires, Argentina.
- Graduate Faculty, Behavioral Neurosciences Program, Rutgers University, Newark, USA.
| |
Collapse
|
10
|
Lin C, Oh MM, Disterhoft JF. Aging-Related Alterations to Persistent Firing in the Lateral Entorhinal Cortex Contribute to Deficits in Temporal Associative Memory. Front Aging Neurosci 2022; 14:838513. [PMID: 35360205 PMCID: PMC8963507 DOI: 10.3389/fnagi.2022.838513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
With aging comes a myriad of different disorders, and cognitive decline is one of them. Studies have consistently shown a decline amongst aged subjects in their ability to acquire and maintain temporal associative memory. Defined as the memory of the association between two objects that are separated in time, temporal associative memory is dependent on neocortical structures such as the prefrontal cortex and temporal lobe structures. For this memory to be acquired, a mental trace of the first stimulus is necessary to bridge the temporal gap so the two stimuli can be properly associated. Persistent firing, the ability of the neuron to continue to fire action potentials even after the termination of a triggering stimulus, is one mechanism that is posited to support this mental trace. A recent study demonstrated a decline in persistent firing ability in pyramidal neurons of layer III of the lateral entorhinal cortex with aging, contributing to learning impairments in temporal associative memory acquisition. In this work, we explore the potential ways persistent firing in lateral entorhinal cortex (LEC) III supports temporal associative memory, and how aging may disrupt this mechanism within the temporal lobe system, resulting in impairment in this crucial behavior.
Collapse
|
11
|
Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE. Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer's disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis 2021; 152:105274. [PMID: 33484828 DOI: 10.1016/j.nbd.2021.105274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
It has been reported that hyperexcitability occurs in a subset of patients with Alzheimer's disease (AD) and hyperexcitability could contribute to the disease. Several studies have suggested that the hippocampal dentate gyrus (DG) may be an important area where hyperexcitability occurs. Therefore, we tested the hypothesis that the principal DG cell type, granule cells (GCs), would exhibit changes at the single-cell level which would be consistent with hyperexcitability and might help explain it. We used the Tg2576 mouse, where it has been shown that hyperexcitability is robust at 2-3 months of age. GCs from 2 to 3-month-old Tg2576 mice were compared to age-matched wild type (WT) mice. Effects of muscarinic cholinergic antagonism were tested because previously we found that Tg2576 mice exhibited hyperexcitability in vivo that was reduced by the muscarinic cholinergic antagonist atropine, counter to the dogma that in AD one needs to boost cholinergic function. The results showed that GCs from Tg2576 mice exhibited increased frequency of spontaneous excitatory postsynaptic potentials/currents (sEPSP/Cs) and reduced frequency of spontaneous inhibitory synaptic events (sIPSCs) relative to WT, increasing the excitation:inhibition (E:I) ratio. There was an inward NMDA receptor-dependent current that we defined here as a novel synaptic current (nsC) in Tg2576 mice because it was very weak in WT mice. Intrinsic properties were distinct in Tg2576 GCs relative to WT. In summary, GCs of the Tg2576 mouse exhibit early electrophysiological alterations that are consistent with increased synaptic excitation, reduced inhibition, and muscarinic cholinergic dysregulation. The data support previous suggestions that the DG contributes to hyperexcitability and there is cholinergic dysfunction early in life in AD mouse models.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Elissavet Chartampila
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Chiara Criscuolo
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Helen E Scharfman
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY 10016, USA; Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
12
|
Sadahiro M, Demars MP, Burman P, Yevoo P, Zimmer A, Morishita H. Activation of Somatostatin Interneurons by Nicotinic Modulator Lypd6 Enhances Plasticity and Functional Recovery in the Adult Mouse Visual Cortex. J Neurosci 2020; 40:5214-5227. [PMID: 32467358 PMCID: PMC7329312 DOI: 10.1523/jneurosci.1373-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/27/2023] Open
Abstract
The limitation of plasticity in the adult brain impedes functional recovery later in life from brain injury or disease. This pressing clinical issue may be resolved by enhancing plasticity in the adult brain. One strategy for triggering robust plasticity in adulthood is to reproduce one of the hallmark physiological events of experience-dependent plasticity observed during the juvenile critical period: to rapidly reduce the activity of parvalbumin (PV)-expressing interneurons and disinhibit local excitatory neurons. This may be achieved through the enhancement of local inhibitory inputs, particularly those of somatostatin (SST)-expressing interneurons. However, to date the means for manipulating SST interneurons for enhancing cortical plasticity in the adult brain are not known. We show that SST interneuron-selective overexpression of Lypd6, an endogenous nicotinic signaling modulator, enhances ocular dominance plasticity in the adult primary visual cortex (V1). Lypd6 overexpression mediates a rapid experience-dependent increase in the visually evoked activity of SST interneurons as well as a simultaneous reduction in PV interneuron activity and disinhibition of excitatory neurons. Recapitulating this transient activation of SST interneurons using chemogenetics similarly enhanced V1 plasticity. Notably, we show that SST-selective Lypd6 overexpression restores visual acuity in amblyopic mice that underwent early long-term monocular deprivation. Our data in both male and female mice reveal selective modulation of SST interneurons and a putative downstream circuit mechanism as an effective method for enhancing experience-dependent cortical plasticity as well as functional recovery in adulthood.SIGNIFICANCE STATEMENT The decline of cortical plasticity after closure of juvenile critical period consolidates neural circuits and behavior, but this limits functional recovery from brain diseases and dysfunctions in later life. Here we show that activation of cortical somatostatin (SST) interneurons by Lypd6, an endogenous modulator of nicotinic acetylcholine receptors, enhances experience-dependent plasticity and recovery from amblyopia in adulthood. This manipulation triggers rapid reduction of PV interneuron activity and disinhibition of excitatory neurons, which are known hallmarks of cortical plasticity during juvenile critical periods. Our study demonstrates modulation of SST interneurons by Lypd6 to achieve robust levels of cortical plasticity in the adult brain and may provide promising targets for restoring brain function in the event of brain trauma or disease.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Dominance, Ocular/genetics
- Evoked Potentials, Visual/genetics
- Evoked Potentials, Visual/physiology
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/physiology
- Immunohistochemistry
- Interneurons/physiology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Phosphatidylinositols/pharmacology
- Receptors, Nicotinic/genetics
- Recovery of Function/genetics
- Somatostatin/physiology
- Vision, Monocular/genetics
- Vision, Monocular/physiology
- Visual Acuity/genetics
- Visual Cortex/physiology
Collapse
Affiliation(s)
- Masato Sadahiro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Poromendro Burman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Priscilla Yevoo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
13
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
14
|
Volobueva MN, Dobryakova YV, Manolova AO, Stepanichev MY, Kvichansky AA, Gulyaeva NV, Markevich VA, Bolshakov AP. Intracerebroventricular Administration of 192IgG-Saporin Alters the State of Microglia in the Neocortex. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Rotstein HG, Nadim F. Frequency-dependent responses of neuronal models to oscillatory inputs in current versus voltage clamp. BIOLOGICAL CYBERNETICS 2019; 113:373-395. [PMID: 31286211 PMCID: PMC6689413 DOI: 10.1007/s00422-019-00802-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Action potential generation in neurons depends on a membrane potential threshold and therefore on how subthreshold inputs influence this voltage. In oscillatory networks, for example, many neuron types have been shown to produce membrane potential ([Formula: see text]) resonance: a maximum subthreshold response to oscillatory inputs at a nonzero frequency. Resonance is usually measured by recording [Formula: see text] in response to a sinusoidal current ([Formula: see text]), applied at different frequencies (f), an experimental setting known as current clamp (I-clamp). Several recent studies, however, use the voltage clamp (V-clamp) method to control [Formula: see text] with a sinusoidal input at different frequencies [[Formula: see text]] and measure the total membrane current ([Formula: see text]). The two methods obey systems of differential equations of different dimensionality, and while I-clamp provides a measure of electrical impedance [[Formula: see text]], V-clamp measures admittance [[Formula: see text]]. We analyze the relationship between these two measurement techniques. We show that, despite different dimensionality, in linear systems the two measures are equivalent: [Formula: see text]. However, nonlinear model neurons produce different values for Z and [Formula: see text]. In particular, nonlinearities in the voltage equation produce a much larger difference between these two quantities than those in equations of recovery variables that describe activation and inactivation kinetics. Neurons are inherently nonlinear, and notably, with ionic currents that amplify resonance, the voltage clamp technique severely underestimates the current clamp response. We demonstrate this difference experimentally using the PD neurons in the crab stomatogastric ganglion. These findings are instructive for researchers who explore cellular mechanisms of neuronal oscillations.
Collapse
Affiliation(s)
- Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, 07102, USA
- Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Behavioral and Neural Systems, Rutgers University, Newark, NJ, USA
- CONICET, Buenos Aires, Argentina
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, 07102, USA.
- Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
16
|
Sullenberger T, Don H, Kumar SS. Functional Connectivity of the Parasubiculum and Its Role in Temporal Lobe Epilepsy. Neuroscience 2019; 410:217-238. [PMID: 31121261 DOI: 10.1016/j.neuroscience.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is the commonest of adult epilepsies, often refractory to antiepileptic medications, whose prevention and treatment rely on understanding basic pathophysiological mechanisms in interlinked structures of the temporal lobe. The medial entorhinal area (MEA) is affected in TLE but mechanisms underlying hyperexcitability of MEA neurons require further elucidation. Previous studies have examined the role of the presubiculum (PrS) in mediating MEA pathophysiology but not the juxtaposed parasubiculum (Par). Here, we report on an electrophysiological assessment of the cells and circuits of the Par, their excitability under normal and epileptic conditions, and alterations in functional connectivity with neighboring PrS and MEA using the rat pilocarpine model of TLE. We show that Par, unlike the cell heterogeneous PrS, has a single dominant neuronal population whose excitability under epileptic conditions is altered by changes in both intrinsic properties and synaptic drive. These neurons experience significant reductions in synaptic inhibition and perish under chronic epileptic conditions. Connectivity between brain regions was deduced through changes in excitatory and inhibitory synaptic drive to neurons recorded in one region upon focal application of glutamate followed by NBQX to neurons in another using a microfluidic technique called CESOP and TLE-related circuit reorganization was assessed using data from normal and epileptic animals. The region-specific changes in Par and neighboring PrS and MEA together with their unexpected interactions are of significance in identifying ictogenic cells and circuits within the parahippocampal region and in unraveling pathophysiological mechanisms underlying TLE.
Collapse
Affiliation(s)
- Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States of America
| | - Hershel Don
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States of America
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States of America.
| |
Collapse
|
17
|
Choi Y, Park H, Jung H, Kweon H, Kim S, Lee SY, Han H, Cho Y, Kim S, Sim WS, Kim J, Bae Y, Kim E. NGL-1/LRRC4C Deletion Moderately Suppresses Hippocampal Excitatory Synapse Development and Function in an Input-Independent Manner. Front Mol Neurosci 2019; 12:119. [PMID: 31156385 PMCID: PMC6528442 DOI: 10.3389/fnmol.2019.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Netrin-G ligand-1 (NGL-1), also known as LRRC4C, is a postsynaptic densities (PSDs)-95-interacting postsynaptic adhesion molecule that interacts trans-synaptically with presynaptic netrin-G1. NGL-1 and its family member protein NGL-2 are thought to promote excitatory synapse development through largely non-overlapping neuronal pathways. While NGL-2 is critical for excitatory synapse development in specific dendritic segments of neurons in an input-specific manner, whether NGL-1 has similar functions is unclear. Here, we show that Lrrc4c deletion in male mice moderately suppresses excitatory synapse development and function, but surprisingly, does so in an input-independent manner. While NGL-1 is mainly detected in the stratum lacunosum moleculare (SLM) layer of the hippocampus relative to the stratum radiatum (SR) layer, NGL-1 deletion leads to decreases in the number of PSDs in both SLM and SR layers in the ventral hippocampus. In addition, both SLM and SR excitatory synapses display suppressed short-term synaptic plasticity in the ventral hippocampus. These morphological and functional changes are either absent or modest in the dorsal hippocampus. The input-independent synaptic changes induced by Lrrc4c deletion involve abnormal translocation of NGL-2 from the SR to SLM layer. These results suggest that Lrrc4c deletion moderately suppresses hippocampal excitatory synapse development and function in an input-independent manner.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Soo Yeon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hyemin Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Seyeon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Woong Seob Sim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Jeongmin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Yongchul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
18
|
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019; 13:24. [PMID: 31031601 PMCID: PMC6473068 DOI: 10.3389/fncir.2019.00024] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Collapse
Affiliation(s)
- Cristina Colangelo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | - Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
19
|
Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations. J Comput Neurosci 2019; 46:169-195. [PMID: 30895410 DOI: 10.1007/s10827-019-00710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance (MPR), defined as the occurrence of a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency. MPR has been investigated both experimentally and theoretically. However, whether MPR is simply an epiphenomenon or it plays a functional role for the generation of neuronal network oscillations and how the latent time scales present in individual, non-oscillatory cells affect the properties of the oscillatory networks in which they are embedded are open questions. We address these issues by investigating a minimal network model consisting of (i) a non-oscillatory linear resonator (band-pass filter) with 2D dynamics, (ii) a passive cell (low-pass filter) with 1D linear dynamics, and (iii) nonlinear graded synaptic connections (excitatory or inhibitory) with instantaneous dynamics. We demonstrate that (i) the network oscillations crucially depend on the presence of MPR in the resonator, (ii) they are amplified by the network connectivity, (iii) they develop relaxation oscillations for high enough levels of mutual inhibition/excitation, and (iv) the network frequency monotonically depends on the resonators resonant frequency. We explain these phenomena using a reduced adapted version of the classical phase-plane analysis that helps uncovering the type of effective network nonlinearities that contribute to the generation of network oscillations. We extend our results to networks having cells with 2D dynamics. Our results have direct implications for network models of firing rate type and other biological oscillatory networks (e.g, biochemical, genetic).
Collapse
|
20
|
Aussel A, Buhry L, Tyvaert L, Ranta R. A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations. J Comput Neurosci 2018; 45:207-221. [DOI: 10.1007/s10827-018-0704-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 01/21/2023]
|
21
|
Wu XQ, Zhao YN, Ding J, Si Z, Cheng DF, Shi HC, Wang X. Decreased vesicular acetylcholine transporter related to memory deficits in epilepsy: A [ 18 F] VAT positron emission tomography brain imaging study. Epilepsia 2018; 59:1655-1666. [PMID: 30126014 DOI: 10.1111/epi.14533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Vesicular acetylcholine transporter (VAChT) is a rate-limiting factor for synaptic acetylcholine transport. Our study focused on whether [18 F] VAT, a novel positron emission tomography (PET) tracer, could be used in detecting cognitive deficits in epilepsy. METHODS Morris water maze test was used to evaluate learning and memory deficits in pilocarpine-induced chronic epilepsy rats 12 weeks after status epilepticus. Interictal [18 F] VAT PET was performed 13 weeks after status epilepticus to evaluate the level of VAChT in cholinergic pathways compared with [18 F] fluorodeoxyglucose PET. The association between VAChT levels and memory measures was analyzed. Neuropathological tests were performed. RESULTS Epileptic rats exhibited significant memory deficits in Morris water maze test. [18 F] VAT uptake decreased in septum, hippocampus, thalamus, and basal forebrain, and correlated to memory function. Of note, the level of VAChT in basal forebrain significantly decreased, yet no glucose hypometabolism was detected. Immunofluorescence and Western blot demonstrated decreased expression of VAChT in hippocampus and basal forebrain in the epilepsy group, but no change of expression of acetyltransferase or activity of acetylcholinesterase was detected. SIGNIFICANCE [18 F] VAT PET is a promising method to test the level of VAChT as a valuable biomarker for memory deficits in pilocarpine-induced chronic epileptic rats.
Collapse
Affiliation(s)
- Xu-Qing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya-Nan Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Deng-Feng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong-Cheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institute of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Schulz J, Pagano G, Fernández Bonfante JA, Wilson H, Politis M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease. Brain 2018; 141:1501-1516. [PMID: 29701787 PMCID: PMC6171218 DOI: 10.1093/brain/awy072] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022] Open
Abstract
Currently, no reliable predictors of cognitive impairment in Parkinson's disease exist. We hypothesized that microstructural changes at grey matter T1-weighted MRI and diffusion tensor imaging in the cholinergic system nuclei and associated limbic pathways underlie cognitive impairment in Parkinson's disease. We performed a cross-sectional comparison between patients with Parkinson's disease with and without cognitive impairment. We also performed a longitudinal 36-month follow-up study of cognitively intact Parkinson's disease patients, comparing patients who remained cognitively intact to those who developed cognitive impairment. Patients with Parkinson's disease with cognitive impairment showed lower grey matter volume and increased mean diffusivity in the nucleus basalis of Meynert, compared to patients with Parkinson's disease without cognitive impairment. These results were confirmed both with region of interest and voxel-based analyses, and after partial volume correction. Lower grey matter volume and increased mean diffusivity in the nucleus basalis of Meynert was predictive for developing cognitive impairment in cognitively intact patients with Parkinson's disease, independent of other clinical and non-clinical markers of the disease. Structural and microstructural alterations in entorhinal cortex, amygdala, hippocampus, insula, and thalamus were not predictive for developing cognitive impairment in Parkinson's disease. Our findings provide evidence that degeneration of the nucleus basalis of Meynert precedes and predicts the onset of cognitive impairment, and might be used in a clinical setting as a reliable biomarker to stratify patients at higher risk of cognitive decline.
Collapse
Affiliation(s)
- Jonathan Schulz
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | | - Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
23
|
Abstract
The muscarinic receptor agonist carbachol (CCh) can induce activity in the theta range (4-15 Hz) in the entorhinal cortex (EC), but the underlying network mechanisms remain unclear. Here, we investigated the interplay between interneurons and principal cells in the EC during CCh-induced theta-like field oscillations in an in vitro brain slice preparation using tetrodes. Field oscillations at 10.1 Hz (IQR = 9.5-10.9 Hz) occurred during bath application of CCh (100 μM; n = 32 experiments) and were associated with single-unit (n = 189) firing. Interneuron activity increased before principal cell activity at the onset of the oscillations and both interneurons and principal cells fired at specific oscillation phases with interneurons preceding principal cells, suggesting that interneurons modulate principal cell activity during such oscillations. The regularity of occurrence of CCh-induced oscillations was abolished by applying the GABAA receptor antagonist picrotoxin (100 μM; n = 13). These effects were accompanied by changes in firing with principal cells discharging action potentials before interneurons, along with a loss of preferred firing phase for principal cells in relation to the oscillation peaks. Blocking ionotropic glutamatergic transmission abolished CCh-induced field oscillations (n = 6), suggesting that ionotropic glutamatergic receptor signaling is necessary for their generation. Our results show that neuronal network interactions leading to CCh-induced theta-like field oscillations rest on the close interplay between interneurons and principal cells and that interneurons modulate principal cell activity during such oscillatory activity. Moreover, they underscore the role of ionotropic glutamatergic transmission in this type of oscillations.
Collapse
|
24
|
Rotstein HG. Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. J Comput Neurosci 2017; 43:243-271. [PMID: 29064059 DOI: 10.1007/s10827-017-0661-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 01/20/2023]
Abstract
The generation of spiking resonances in neurons (preferred spiking responses to oscillatory inputs) requires the interplay of the intrinsic ionic currents that operate at the subthreshold voltage level and the spiking mechanisms. Combinations of the same types of ionic currents in different parameter regimes may give rise to different types of nonlinearities in the voltage equation (e.g., parabolic- and cubic-like), generating subthreshold (membrane potential) oscillations patterns with different properties. These nonlinearities are not apparent in the model equations, but can be uncovered by plotting the voltage nullclines in the phase-plane diagram. We investigate the spiking resonant properties of conductance-based models that are biophysically equivalent at the subthreshold level (same ionic currents), but dynamically different (parabolic- and cubic-like voltage nullclines). As a case study we consider a model having a persistent sodium and a hyperpolarization-activated (h-) currents, which exhibits subthreshold resonance in the theta frequency band. We unfold the concept of spiking resonance into evoked and output spiking resonance. The former focuses on the input frequencies that are able to generate spikes, while the latter focuses on the output spiking frequencies regardless of the input frequency that generated these spikes. A cell can exhibit one or both types of resonances. We also measure spiking phasonance, which is an extension of subthreshold phasonance (zero-phase-shift response to oscillatory inputs) to the spiking regime. The subthreshold resonant properties of both types of models are communicated to the spiking regime for low enough input amplitudes as the voltage response for the subthreshold resonant frequency band raises above threshold. For higher input amplitudes evoked spiking resonance is no longer present in these models, but output spiking resonance is present primarily in the parabolic-like model due to a cycle skipping mechanism (involving mixed-mode oscillations), while the cubic-like model shows a better 1:1 entrainment. We use dynamical systems tools to explain the underlying mechanisms and the mechanistic differences between the resonance types. Our results demonstrate that the effective time scales that operate at the subthreshold regime to generate intrinsic subthreshold oscillations, mixed-mode oscillations and subthreshold resonance do not necessarily determine the existence of a preferred spiking response to oscillatory inputs in the same frequency band. The results discussed in this paper highlight both the complexity of the suprathreshold responses to oscillatory inputs in neurons having resonant and amplifying currents with different time scales and the fact that the identity of the participating ionic currents is not enough to predict the resulting patterns, but additional dynamic information, captured by the geometric properties of the phase-space diagram, is needed.
Collapse
Affiliation(s)
- Horacio G Rotstein
- Federated Department of Biological Sciences, Rutgers University and New Jersey Institute of Technology, Newark, NJ, 07102, USA. .,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
25
|
Rotstein HG. Resonance modulation, annihilation and generation of anti-resonance and anti-phasonance in 3D neuronal systems: interplay of resonant and amplifying currents with slow dynamics. J Comput Neurosci 2017; 43:35-63. [PMID: 28569367 DOI: 10.1007/s10827-017-0646-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/09/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
Subthreshold (membrane potential) resonance and phasonance (preferred amplitude and zero-phase responses to oscillatory inputs) in single neurons arise from the interaction between positive and negative feedback effects provided by relatively fast amplifying currents and slower resonant currents. In 2D neuronal systems, amplifying currents are required to be slave to voltage (instantaneously fast) for these phenomena to occur. In higher dimensional systems, additional currents operating at various effective time scales may modulate and annihilate existing resonances and generate antiresonance (minimum amplitude response) and antiphasonance (zero-phase response with phase monotonic properties opposite to phasonance). We use mathematical modeling, numerical simulations and dynamical systems tools to investigate the mechanisms underlying these phenomena in 3D linear models, which are obtained as the linearization of biophysical (conductance-based) models. We characterize the parameter regimes for which the system exhibits the various types of behavior mentioned above in the rather general case in which the underlying 2D system exhibits resonance. We consider two cases: (i) the interplay of two resonant gating variables, and (ii) the interplay of one resonant and one amplifying gating variables. Increasing levels of an amplifying current cause (i) a response amplification if the amplifying current is faster than the resonant current, (ii) resonance and phasonance attenuation and annihilation if the amplifying and resonant currents have identical dynamics, and (iii) antiresonance and antiphasonance if the amplifying current is slower than the resonant current. We investigate the underlying mechanisms by extending the envelope-plane diagram approach developed in previous work (for 2D systems) to three dimensions to include the additional gating variable, and constructing the corresponding envelope curves in these envelope-space diagrams. We find that antiresonance and antiphasonance emerge as the result of an asymptotic boundary layer problem in the frequency domain created by the different balances between the intrinsic time constants of the cell and the input frequency f as it changes. For large enough values of f the envelope curves are quasi-2D and the impedance profile decreases with the input frequency. In contrast, for f ≪ 1 the dynamics are quasi-1D and the impedance profile increases above the limiting value in the other regime. Antiresonance is created because the continuity of the solution requires the impedance profile to connect the portions belonging to the two regimes. If in doing so the phase profile crosses the zero value, then antiphasonance is also generated.
Collapse
Affiliation(s)
- Horacio G Rotstein
- Department of Mathematical Sciences and Institute for Brain and Neuroscience, Research New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
26
|
Soares JI, Valente MC, Andrade PA, Maia GH, Lukoyanov NV. Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. J Comp Neurol 2017; 525:2690-2705. [PMID: 28472854 DOI: 10.1002/cne.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
The septohippocampal cholinergic neurotransmission has long been implicated in seizures, but little is known about the structural features of this projection system in epileptic brain. We evaluated the effects of experimental epilepsy on the areal density of cholinergic terminals (fiber varicosities) in the dentate gyrus. For this purpose, we used two distinct post-status epilepticus rat models, in which epilepsy was induced with injections of either kainic acid or pilocarpine. To visualize the cholinergic fibers, we used brain sections immunostained for the vesicular acetylcholine transporter. It was found that the density of cholinergic fiber varicosities was higher in epileptic rats versus control rats in the inner and outer zones of the dentate molecular layer, but it was reduced in the dentate hilus. We further evaluated the effects of kainate treatment on the total number, density, and soma volume of septal cholinergic cells, which were visualized in brain sections stained for either vesicular acetylcholine transporter or choline acetyltransferase (ChAT). Both the number of septal cells with cholinergic phenotype and their density were increased in epileptic rats when compared to control rats. The septal cells stained for vesicular acetylcholine transporter, but not for ChAT, have enlarged perikarya in epileptic rats. These results revealed previously unknown details of structural reorganization of the septohippocampal cholinergic system in experimental epilepsy, involving fiber sprouting into the dentate molecular layer and a parallel fiber retraction from the dentate hilus. We hypothesize that epilepsy-related neuroplasticity of septohippocampal cholinergic neurons is capable of increasing neuronal excitability of the dentate gyrus.
Collapse
Affiliation(s)
- Joana I Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Maria C Valente
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro A Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Gisela H Maia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Nikolai V Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Strength and Diversity of Inhibitory Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex. J Neurosci 2017; 37:4717-4734. [PMID: 28381592 DOI: 10.1523/jneurosci.3757-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/18/2017] [Accepted: 03/29/2017] [Indexed: 11/21/2022] Open
Abstract
The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) of the primate play distinctive roles in the mediation of complex cognitive tasks. Compared with the LPFC, integration of information by the ACC can span longer timescales and requires stronger engagement of inhibitory processes. Here, we reveal the synaptic mechanism likely to underlie these differences using in vitro patch-clamp recordings of synaptic events and multiscale imaging of synaptic markers in rhesus monkeys. Although excitatory synaptic signaling does not differ, the level of synaptic inhibition is much higher in ACC than LPFC layer 3 pyramidal neurons, with a significantly higher frequency (∼6×) and longer duration of inhibitory synaptic currents. The number of inhibitory synapses and the ratio of cholecystokinin to parvalbumin-positive inhibitory inputs are also significantly higher in ACC compared with LPFC neurons. Therefore, inhibition is functionally and structurally more robust and diverse in ACC than in LPFC, resulting in a lower excitatory: inhibitory ratio and a greater dynamic range for signal integration and network oscillation by the ACC. These differences in inhibitory circuitry likely underlie the distinctive network dynamics in ACC and LPC during normal and pathological brain states.SIGNIFICANCE STATEMENT The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) play temporally distinct roles during the execution of cognitive tasks (rapid working memory during ongoing tasks and long-term memory to guide future action, respectively). Compared with LPFC-mediated tasks, ACC-mediated tasks can span longer timescales and require stronger engagement of inhibition. This study shows that inhibitory signaling is much more robust and diverse in the ACC than in the LPFC. Therefore, there is a lower excitatory: inhibitory synaptic ratio and a greater dynamic range for signal integration and oscillatory behavior in the ACC. These significant differences in inhibitory synaptic transmission form an important basis for the differential timing of cognitive processing by the LPFC and ACC in normal and pathological brain states.
Collapse
|
28
|
Nicotinic regulation of experience-dependent plasticity in visual cortex. ACTA ACUST UNITED AC 2016; 110:29-36. [PMID: 27840212 DOI: 10.1016/j.jphysparis.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
While the cholinergic neuromodulatory system and muscarinic acetylcholine receptors (AChRs) have been appreciated as permissive factors for developmental critical period plasticity in visual cortex, it was unknown why plasticity becomes limited after the critical period even in the presence of massive cholinergic projections to visual cortex. In this review we highlighted the recent progresses that started to shed light on the role of the nicotinic cholinergic neuromodulatory signaling on limiting juvenile form of plasticity in the adult brain. We introduce the Lynx family of proteins and Lynx1 as its representative, as endogenous proteins structurally similar to α-bungarotoxin with the ability to bind and modulate nAChRs to effectively regulate functional and structural plasticity. Remarkably, Lynx family members are expressed in distinct subpopulations of GABAergic interneurons, placing them in unique positions to potentially regulate the convergence of GABAergic and nicotinic neuromodulatory systems to regulate plasticity. Continuing studies of the potentially differential roles of Lynx family of proteins may further our understanding of the fundamentals of molecular and cell type-specific mechanisms of plasticity that we may be able to harness through nicotinic cholinergic signaling.
Collapse
|
29
|
John D, Berg DK. Long-lasting changes in neural networks to compensate for altered nicotinic input. Biochem Pharmacol 2015; 97:418-424. [PMID: 26206188 PMCID: PMC4600434 DOI: 10.1016/j.bcp.2015.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
The nervous system must balance excitatory and inhibitory input to constrain network activity levels within a proper dynamic range. This is a demanding requirement during development, when networks form and throughout adulthood as networks respond to constantly changing environments. Defects in the ability to sustain a proper balance of excitatory and inhibitory activity are characteristic of numerous neurological disorders such as schizophrenia, Alzheimer's disease, and autism. A variety of homeostatic mechanisms appear to be critical for balancing excitatory and inhibitory activity in a network. These are operative at the level of individual neurons, regulating their excitability by adjusting the numbers and types of ion channels, and at the level of synaptic connections, determining the relative numbers of excitatory versus inhibitory connections a neuron receives. Nicotinic cholinergic signaling is well positioned to contribute at both levels because it appears early in development, extends across much of the nervous system, and modulates transmission at many kinds of synapses. Further, it is known to influence the ratio of excitatory-to-inhibitory synapses formed on neurons during development. GABAergic inhibitory neurons are likely to be key for maintaining network homeostasis (limiting excitatory output), and nicotinic signaling is known to prominently regulate the activity of several GABAergic neuronal subtypes. But how nicotinic signaling achieves this and how networks may compensate for the loss of such input are important questions remaining unanswered. These issues are reviewed.
Collapse
Affiliation(s)
- Danielle John
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States
| | - Darwin K Berg
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States.
| |
Collapse
|
30
|
O'Connor WT, O'Shea SD. Clozapine and GABA transmission in schizophrenia disease models. Pharmacol Ther 2015; 150:47-80. [DOI: 10.1016/j.pharmthera.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
|
31
|
Rotstein HG. Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comput Neurosci 2015; 38:325-54. [PMID: 25586875 DOI: 10.1007/s10827-014-0544-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023]
Abstract
We investigate the biophysical and dynamic mechanisms of generation of subthreshold amplitude and phase resonance in response to sinusoidal input currents in two-dimensional models of quadratic type. These models feature a parabolic voltage nullcline and a linear nullcline for the recovery gating variable, capturing the interplay of the so-called resonant currents (e.g., hyperpolarization-activated mixed-cation inward and slow potassium) and amplifying currents (e.g., persistent sodium) in biophysically realistic parameter regimes. These currents underlie the generation of resonance in medial entorhinal cortex layer II stellate cells and CA1 pyramidal cells. We show that quadratic models exhibit nonlinear amplifications of the voltage response to sinusoidal inputs in the resonant frequency band. These are expressed as an increase in the impedance profile as the input amplitude increases. They are stronger for values positive than negative to resting potential and are accompanied by a shift in the phase profile, a decrease in the resonant and phase-resonant frequencies, and an increase in the sharpness of the voltage response. These effects are more prominent for smaller values of ∊ (larger levels of the time scale separation between the voltage and the resonant gating variable) and for values of the resting potential closer to threshold for spike generation. All other parameter fixed, as ∊ increases the voltage response becomes "more linear"; i.e., the nonlinearities are present, but "ignored". In addition, the nonlinear effects are strongly modulated by the curvature of the parabolic voltage nullcline (partially reflecting the effects of the amplifying current) and the slope of the resonant current activation curve. Following the effects of changes in the biophysical conductances of realistic conductance-based models through the parameters of the quadratic model, we characterize the qualitatively different effects that resonant and amplifying currents have on the nonlinear properties of the voltage response. We identify different classes of resonant currents, represented by h- and slow potassium, according to whether they enhance (h-) or attenuate (slow potassium) the nonlinear effects. Finally, we use dynamical systems tools to investigate the dynamic mechanisms of generation of resonance and phase-resonance. We show that the nonlinear effects on the voltage response (e.g., amplification of the voltage response in the resonant frequency band and shifts in the resonant and phase-resonant frequencies) result from the ability of limit cycle trajectories to follow the unstable (right) branch of the voltage nullcline for a significant amount of time. This is a canard-related mechanism that has been shown to underlie the generation of intrinsic subthreshold oscillations in quadratic type models such as medial entorhinal cortex stellate cells. Overall, our results highlight the complexity of the voltage response to oscillatory inputs in nonlinear models and the roles that resonant and amplifying currents have in shaping these responses.
Collapse
Affiliation(s)
- Horacio G Rotstein
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA,
| |
Collapse
|
32
|
Demars MP, Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain 2014; 7:75. [PMID: 25359633 PMCID: PMC4228157 DOI: 10.1186/s13041-014-0075-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inhibition from GABAergic interneurons in brain circuits is a critical component of cognitive function. This inhibition is regulated through a diverse network of neuromodulation. A number of recent studies suggest that one of the major regulators of interneuron function is nicotinic acetylcholinergic transmission and dysregulation of both systems is common in psychiatric conditions. However, how nicotinic modulation impacts specific subpopulations of diverse GABAergic interneurons remains in question. One potential way of conferring specificity to the convergence of GABAergic and nicotinic signaling is through the expression of a unique family of nicotinic acetycholine receptor modulators, the Lynx family. The present study sought to identify members of the Lynx family enriched in cortical interneurons and to elucidate subpopulations of GABAergic neurons that express unique nicotinic modulators. RESULTS We utilize double fluorescence in situ hybridization to examine the interneuronal expression of the Lynx family in adult mouse visual cortex. We find that two of the Lynx family members, Lynx1 and Lypd6, are enriched in interneuron populations in cortex. Nearly all parvalbumin interneurons express Lynx1 but we did not detect Lypd6 in this population. Conversely, in somatostatin interneurons Lypd6 was found in a subset localized to deep cortical layers but no somatostatin neurons show detectable levels of Lynx1. Using a combination of genetic and viral manipulations we further show that a subpopulation of deep-layer cortico-cortical long-range somatostatin neurons also express Lypd6. CONCLUSIONS This work shows that distinct subpopulations of GABAergic interneurons express unique Lynx family members. The pattern of expression of Lynx family members within interneurons places them in a unique position to potentially regulate the convergence of GABAergic and nicotinic systems, dysfunction of which are characteristic of psychiatric disorders.
Collapse
Affiliation(s)
- Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
33
|
Sparks DW, Chapman CA. Contribution of Ih to the relative facilitation of synaptic responses induced by carbachol in the entorhinal cortex during repetitive stimulation of the parasubiculum. Neuroscience 2014; 278:81-92. [PMID: 25130557 DOI: 10.1016/j.neuroscience.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 11/16/2022]
Abstract
Neurons in the superficial layers of the entorhinal cortex provide the hippocampus with the majority of its cortical sensory input, and also receive the major output projection from the parasubiculum. This puts the parasubiculum in a position to modulate the activity of entorhinal neurons that project to the hippocampus. These brain areas receive cholinergic projections that are active during periods of theta- and gamma-frequency electroencephalographic (EEG) activity. The purpose of this study was to investigate how cholinergic receptor activation affects the strength of repetitive synaptic responses at these frequencies in the parasubiculo-entorhinal pathway and the cellular mechanisms involved. Whole-cell patch-clamp recordings of rat layer II medial entorhinal neurons were conducted using an acute slice preparation, and responses to 5-pulse trains of stimulation at theta- and gamma-frequency delivered to the parasubiculum were recorded. The cholinergic agonist carbachol (CCh) suppressed the amplitude of single synaptic responses, but also produced a relative facilitation of synaptic responses evoked during stimulation trains. The N-methyl-d-aspartate (NMDA) glutamate receptor blocker APV did not significantly reduce the relative facilitation effect. However, the hyperpolarization-activated cationic current (Ih) channel blocker ZD7288 mimicked the relative facilitation induced by CCh, suggesting that CCh-induced inhibition of Ih could produce the effect by increasing dendritic input resistance (Rin). Inward-rectifying and leak K(+) currents are known to interact with Ih to affect synaptic excitability. Application of the K(+) channel antagonist Ba(2+) depolarized neurons and enhanced temporal summation, but did not block further facilitation of train-evoked responses by ZD7288. The Ih-dependent facilitation of synaptic responses can therefore occur during reductions in inward-rectifying potassium current (IKir) associated with dendritic depolarization. Thus, in addition to cholinergic reductions in transmitter release that are known to facilitate train-evoked responses, these findings emphasize the role of inhibition of Ih in the integration of synaptic inputs within the entorhinal cortex during cholinergically-induced oscillatory states, likely due to enhanced summation of excitatory postsynaptic potentials (EPSPs) induced by increases in dendritic Rin.
Collapse
Affiliation(s)
- D W Sparks
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - C A Chapman
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
34
|
Gaskin S, White NM. Parallel processing of information about location in the amygdala, entorhinal cortex and hippocampus. Hippocampus 2014; 23:1075-83. [PMID: 23929819 DOI: 10.1002/hipo.22179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/07/2022]
Abstract
The conditioned cue preference paradigm was used to study how rats use extra-maze cues to discriminate between 2 adjacent arms on an 8-arm radial maze, a situation in which most of the same cues can be seen from both arms but only one arm contains food. Since the food-restricted rats eat while passively confined on the food-paired arm no responses are reinforced, so the discrimination is due to Pavlovian stimulus-reward (or outcome) learning. Consistent with other evidence that rats must move around in an environment to acquire a spatial map, we found that learning the adjacent arms CCP (ACCP) required a minimum amount of active exploration of the maze with no reinforcers present prior to passive pairing of the extra-maze cues with the food reinforcer, an instance of latent learning. Temporary inactivation of the hippocampus during the pre-exposure sessions had no effect on ACCP learning, confirming other evidence that the hippocampus is not involved in latent learning. A series of experiments indentified a circuit involving fimbria-fornix and dorsal entorhinal cortex as the neural basis of latent learning in this situation. In contrast, temporary inactivation of the entorhinal cortex or hippocampus during passive training or during testing blocked ACCP learning and expression, respectively, suggesting that these two structures co-operate in using spatial information to learn the location of food on the maze during passive pairing and to express this combined information during testing. In parallel with these processes we found that the amygdala processes information leading to an equal tendency to enter both adjacent arms (even though only one was paired with food) suggesting that the stimulus information available to this structure is not sufficiently precise to discriminate between the ambiguous cues visible from the adjacent arms. Expression of the ACCP in normal rats depends on hippocampus-based learning to avoid the unpaired arm which competes with the amygdala-based tendency to enter that arm. In contrast, there is cooperation between amygdala- and hippocampus-based tendencies to enter the food-paired arm. These independent forms of learning contribute to the rat's ability to discriminate among spatial locations using ambiguous extra-maze cues.
Collapse
Affiliation(s)
- Stephane Gaskin
- Department of Psychology, McGill University, Montreal, Quebec, H3G 1C7, Canada
| | | |
Collapse
|
35
|
Rangel LM, Quinn LK, Chiba AA, Gage FH, Aimone JB. A hypothesis for temporal coding of young and mature granule cells. Front Neurosci 2013; 7:75. [PMID: 23717259 PMCID: PMC3653099 DOI: 10.3389/fnins.2013.00075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/26/2013] [Indexed: 01/22/2023] Open
Abstract
While it has been hypothesized that adult neurogenesis (NG) plays a role in the encoding of temporal information at long time-scales, the temporal relationship of immature cells to the highly rhythmic network activity of the hippocampus has been largely unexplored. Here, we present a theory for how the activity of immature adult-born granule cells relates to hippocampal oscillations. Our hypothesis is that theta rhythmic (5–10 Hz) excitatory and inhibitory inputs into the hippocampus could differentially affect young and mature granule cells due to differences in intrinsic physiology and synaptic inhibition between the two cell populations. Consequently, immature cell activity may occur at broader ranges of theta phase than the activity of their mature counterparts. We describe how this differential influence on young and mature granule cells could separate the activity of differently aged neurons in a temporal coding regime. Notably, this process could have considerable implications on how the downstream CA3 region interprets the information conveyed by young and mature granule cells. To begin to investigate the phasic behavior of granule cells, we analyzed in vivo recordings of the rat dentate gyrus (DG), observing that the temporal behavior of granule cells with respect to the theta rhythm is different between rats with normal and impaired levels of NG. Specifically, in control animals, granule cells exhibit both strong and weak coupling to the phase of the theta rhythm. In contrast, the distribution of phase relationships in NG-impaired rats is shifted such that they are significantly stronger. These preliminary data support our hypothesis that immature neurons could distinctly affect the temporal dynamics of hippocampal encoding.
Collapse
Affiliation(s)
- Lara M Rangel
- Department of Neurosciences, University of California San Diego, CA, USA ; Department of Mathematics and Statistics, Boston University Boston, MA, USA
| | | | | | | | | |
Collapse
|
36
|
Tsuno Y, Schultheiss NW, Hasselmo ME. In vivo cholinergic modulation of the cellular properties of medial entorhinal cortex neurons. J Physiol 2013; 591:2611-27. [PMID: 23529129 DOI: 10.1113/jphysiol.2012.250431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extensive in vitro data and modeling studies suggest that intrinsic properties of medial entorhinal cortex (MEC) neurons contribute to the spiking behaviour of functional cell types of MEC neurons, such as grid cells, recorded in behaving animals. It remains unclear, however, how intrinsic properties of MEC neurons influence cellular dynamics in intact networks in vivo. In order to begin to bridge the gap between electrophysiological data sets from brain slices and behaving animals, in the present study we performed intracellular recordings using sharp electrodes in urethane-anaesthetized rats to elucidate the cellular dynamics of MEC neurons in vivo. We focused on the h-current-dependent sag potential during hyperpolarizing current steps, subthreshold resonance in response to oscillatory frequency sweeps (chirp stimuli), persistent spiking in response to brief depolarizing inputs and the relationship between firing frequency and input (f-I curve), each of which is sensitive to cholinergic modulation in vitro. Consistent with data from in vitro studies, cholinergic activation by systemic application of the acetylcholinesterase inhibitor, physostigmine, resulted in decreased sag amplitude, increased sag time constant and a decrease of the peak resonance frequency. The f-I curve was also modulated by physostigmine in many neurons, but persistent spiking was not observed in any of our recordings, even when picrotoxin, a GABAA blocker, was included in the internal solution of the recording pipette to reduce possible effects of network inhibition. These results suggest that intrinsic oscillatory and rate-coding mechanisms, but not intrinsic bistability, are significantly modulated by acetylcholine in the intact entorhinal network.
Collapse
Affiliation(s)
- Yusuke Tsuno
- Center for Memory and Brain, Department of Psychology and Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | | | | |
Collapse
|
37
|
Glasgow SD, Chapman CA. Muscarinic depolarization of layer II neurons of the parasubiculum. PLoS One 2013; 8:e58901. [PMID: 23520542 PMCID: PMC3592838 DOI: 10.1371/journal.pone.0058901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/08/2013] [Indexed: 11/18/2022] Open
Abstract
The parasubiculum (PaS) is a component of the hippocampal formation that sends its major output to layer II of the entorhinal cortex. The PaS receives strong cholinergic innervation from the basal forebrain that is likely to modulate neuronal excitability and contribute to theta-frequency network activity. The present study used whole cell current- and voltage-clamp recordings to determine the effects of cholinergic receptor activation on layer II PaS neurons. Bath application of carbachol (CCh; 10–50 µM) resulted in a dose-dependent depolarization of morphologically-identified layer II stellate and pyramidal cells that was not prevented by blockade of excitatory and inhibitory synaptic inputs. Bath application of the M1 receptor antagonist pirenzepine (1 µM), but not the M2-preferring antagonist methoctramine (1 µM), blocked the depolarization, suggesting that it is dependent on M1 receptors. Voltage-clamp experiments using ramped voltage commands showed that CCh resulted in the gradual development of an inward current that was partially blocked by concurrent application of the selective Kv7.2/3 channel antagonist XE-991, which inhibits the muscarine-dependent K+ current IM. The remaining inward current also reversed near EK and was inhibited by the K+ channel blocker Ba2+, suggesting that M1 receptor activation attenuates both IM as well as an additional K+ current. The additional K+ current showed rectification at depolarized voltages, similar to K+ conductances mediated by Kir 2.3 channels. The cholinergic depolarization of layer II PaS neurons therefore appears to occur through M1-mediated effects on IM as well as an additional K+ conductance.
Collapse
Affiliation(s)
- Stephen D. Glasgow
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - C. Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|